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Abstract: Uncertainties in hydrological simulations can be quantified and reduced through data
assimilation (DA). This study explores strategies for assimilating soil moisture (SM) data from Cosmic-
Ray Neutron Sensors (CRNS) and groundwater level (GWL) data into the Terrestrial System Modeling
Platform (TSMP), which integrates both land surface and subsurface processes. DA experiments
incorporating both state and parameter estimation were performed using the localized Ensemble Kalman
Filter (LEnKF) within a representative catchment in Germany over the period 2016 to 2018, with cross-
validation conducted on non-overlapping years. Univariate assimilation of SM reduced the unbiased root
mean square error (ubRMSE) by approximately 50%, while univariate assimilation of GWL achieved up
to a 70% reduction in ubRMSE at assimilation sites. Improvements in GWL estimates extended up to 5
km from the assimilation points, with ubRMSE reductions ranging between 2% and 50%. However,
assimilating GWL independently had a negative effect on SM representation, and similarly, assimilating
SM alone degraded GWL predictions. To address these issues, a novel multivariate DA framework was
developed, enabling SM and GWL to be assimilated independently through separate modules.
Groundwater data were used to constrain the water table position, thereby improving the estimation of
the boundary between unsaturated and saturated zones and allowing updates to hydraulic conditions
within the saturated zone. Meanwhile, SM data improved the representation of hydrological processes in
the unsaturated zone. The multivariate assimilation approach resulted in comparable improvements in
GWL, SM, and evapotranspiration (ET) at the assimilation sites. Moreover, including parameter

estimation alongside state updating further reduced the ubRMSE by up to 17%.

1. Introduction

Subsurface hydrologic states such as root zone soil moisture (RZSM) and groundwater level (GWL) are
critical in regulating surface-subsurface water interactions in hydrologic and land modeling frameworks

(Zhang et al., 2016; Maxwell and Condon, 2016). Shallow groundwater controls fluxes between saturated
1
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and unsaturated zones, directly influencing soil moisture (SM) dynamics and evapotranspiration (ET)
(Chen and Hu, 2004; Scanlon et al., 2023). Accurate representation of RZSM and GWL is crucial for
quantifying coupled water-energy exchanges across the soil-plant-atmosphere continuum (Sehgal et al.,
2024). However, conventional land surface models often neglect groundwater-surface interactions and
their impact on land-atmosphere exchanges (Gleeson et al., 2021; Maxwell et al., 2007; Maxwell and
Condon, 2016). Integrated frameworks like the Terrestrial System Modeling Platform (TSMP) (Shrestha
et al., 2014) simulate complex interactions among subsurface hydrology, soil processes, vegetation, and
atmosphere, effectively capturing spatiotemporal GWL dynamics and their influence on terrestrial
ecosystems (Gasper et al., 2014; Kollet et al., 2018; Shams Eddin and Gall, 2024).

Complicated coupled models often involve many parameters, introducing uncertainty and reducing
forecast reliability. In groundwater modeling, parameterization simplifications and assumptions cause
significant uncertainties due to spatial variability in hydraulic properties and limited in-situ data (Xu et
al., 2017). Additional uncertainties stem from input forcings, initial states, and model structure (Beven,
2006; Herrera et al., 2022). Data assimilation (DA) reduces uncertainties in model parameters and states
by integrating observations to improve predictions (Liu et al., 2012). The Ensemble Kalman Filter (EnKF)
is a widely used sequential DA method that effectively handles complex, high-dimensional nonlinear
hydrologic and terrestrial system dynamics (Evensen, 2009; Houtekamer and Zhang, 2016; Evensen,
2003). EnKF has been shown to enhance SM prediction in land surface models (Dan et al., 2020; De
Lannoy et al., 2007) and improve groundwater table simulations in subsurface hydrological models
(Chen and Zhang, 2006; Tang et al., 2024).

Terrestrial SM can be estimated across various spatial scales using in-situ and remotely sensed (RS)
data, which are often assimilated into land surface models to enhance simulation accuracy (Han et al.,
2015; Gebler et al., 2019; Strebel et al., 2022). However, in-situ measurements have limited spatial
coverage and temporal continuity (Nicolai-Shaw et al., 2015), while RS products like Soil Moisture
Active Passive (SMAP) (Kwon et al., 2024; Zhou et al., 2022; Seo et al., 2021) and Soil Moisture Ocean
Salinity (SMOS) (Tangdamrongsub et al., 2022; Hostache et al., 2020) offer broader coverage but with
coarser resolution, shallow sensing depth, and greater uncertainty. These limitations hinder effective DA,
particularly in high-resolution modeling (Zhou et al., 2020; Shen et al., 2024). As an alternative, Cosmic-
Ray Neutron Sensors (CRNS) (Zreda et al., 2008) provide reliable, non-invasive SM estimates at the
field scale (~18 ha), with deeper penetration (~80 cm) and reduced bias compared to RS products (Zreda
et al., 2012; Kohli et al., 2015; Bogena et al., 2022). Recent advances in CRNS techniques, including

improved footprint characterization and revised calibration strategies, have substantially enhanced its

robustness (Franz et al., 2013; Ko6hli et al., 2015; Schron et al., 2017). As a result, CRNS data have been

adopted in diverse applications such as hydrology, snow and vegetation monitoring, and land surface

modeling (Fersch et al., 2020; Dimitrova-Petrova et al., 2021; Bogena et al., 2022). With the

establishment of long-term monitoring networks, CRNS data have also been increasingly integrated into

DA frameworks (Baatz et al., 2017; Cooper et al., 2021: Patil et al., 2021). By bridging CRNSthus

bridges-the scale gap between point measurements and model grids, CRNS serves effering-an effective

data source for-improvingSMrepresentation-in DA frameworks, thereby reducing model uncertainties
2
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and enhancing the reliability of terrestrial hydrology simulations (Shuttleworth et al., 2013; Han et al.,
2015; Baatz et al., 2017; Mwangi et al., 2020).

Groundwater table depth is typically monitored via observation wells. Most groundwater DA studies
have relied on synthetic experiments. For example, Chen and Zhang (2006) showed that EnKF can
reconstruct hydraulic conductivity using synthetic head data. Subsequent studies (Hendricks Franssen
and Kinzelbach, 2008; Tong et al., 2011) highlighted the benefits of localization in LEnKF to mitigate
filter divergence and improve parameter estimation. Panzeri et al. (2013, 2014) introduced EnKF variants
tailored to groundwater DA by solving ensemble-based flow dynamics. These efforts demonstrate
EnKF’s effectiveness in handling nonlinear, high-dimensional groundwater systems. However, even with
synthetic data, EnKF requires careful adaptation-such as localization-to avoid filter instability. Real-
world applications pose greater challenges, demanding further modifications to enhance DA performance.

Most DA research has focused on single Earth system components, typically assimilating one
variable. However, groundwater and SM are strongly interconnected, and multivariate DA is essential to
capture their interactions. PreviousReeent studies have applied multivariate EnKF within coupled models

like CATHY and Flux-PIHM to jointly assimilate multiple observations, including SM, groundwater,

discharge, and land surface fluxes, demonstrating improved estimates of hydrologic states and parameters

(Camporese et al., 2009a; Shi et al., 2014; Botto et al., 2018; Shi et al., 2015). Despite being tested

primarily on small experimental catchments, these multivariate DA frameworks remain computationally

intensive and may involve trade-offs among variables. Some parameters can only be identified under

specific hydrological conditions, particularly in strongly nonlinear problems involving the unsaturated

zones. To overcome these challenges, some studies have explored alternative multivariate DA strategies

within coupled models. While-multisourcc-assimilation-cnhances—simulationaceuracy—it-may-reduee
performanee—for—unassimiated—variables—Using MIKE-SHE, Zhang et al. (2016) highlighted the

importance of spatial and variable-based localization in jointly assimilating SM and groundwater head.

Yet, its unsaturated flow is still modeled in one dimension, limiting full system representation. More
recently, Zafarmomen et al. (2024) demonstrated that a multivariate particle filter framework assimilating

Sentinel-based leaf area index (LAI) and streamflow in a coupled SWAT-MODFLOW model improved

estimates of vegetation and hydrologic states. However, the loosely coupled model. in which surface and

groundwater components interact via data exchange, may not fully capture integrated dynamics of

saturated and unsaturated zones.

The coupled modeling system TSMP integrated with Parallel Data Assimilation Framework (PDAF)
(Nerger et al., 2005) has also been utilized for the assimilation of both synthetic and observed SM or
groundwater data across various spatial scales. Kurtz et al. (2016) showed its capability in simulating
terrestrial states and quantifying uncertainties. Subsequent studies (Gebler et al., 2019; Li et al., 2023a)
demonstrated improved SM estimates through assimilation of in-situ and CRNS-derived SM. Brandhorst
and Neuweiler (2023) found that jointly updating van Genuchten parameters, porosity, and saturated
conductivity optimized SM forecasts. Li et al. (2023b) improved GWL estimates using LEnKF with real
GWL data. While most TSMP studies focused on single-variable assimilation, Zhang et al. (2018) and
Hung et al. (2022) explored joint assimilation of SM and groundwater in synthetic domains, highlighting
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the benefits of weakly coupled approach (only updates the saturated subsurface states) in more complex
domain. Further research is needed on multivariate assimilation in real-world settings.

Given the challenges of jointly assimilating SM and GWL data into the integrated TSMP framework
under realistic conditions in the German Rur catchment, we propose a novel multivariate assimilation
method. This study aims to: (i) evaluate the effectiveness of simultaneously assimilating CRNS-based
SM and GWL observations using the new method; (i) compare assimilation performance across different
multivariate DA strategies; and (iii) demonstrate the advantages of the proposed approach over
conventional single-variable assimilation in improving SM, GWL, and ET predictions. To our knowledge,
this study represents the first attempt to simultaneously assimilate in-situ CRNS SM and observed GWL
data within TSMP at the catchment scale.

2. Data and Methodology
2.1 Rur catchment

This study focuses on the Rur catchment (Fig. 1), which covers approximately 2354 km? and is mainly
located in western Germany, with a small portion extending into the Netherlands and Belgium. The Rur
River originates in the southern highlands and flows northward, descending gradually in elevation from
about 690 m to 15 m above sea level. Elevation strongly influences the regional climate: mean annual
temperature decreases from around 10 °C in the northern lowlands to approximately 7 °C in the southern
mountains, while precipitation increases from 650 mm to nearly 1300 mm (Bogena et al., 2018). Potential
evapotranspiration declines with altitude, ranging from 850 mm in the north to 450 mm in the south
(Montzka et al., 2008). Land use varies spatially; the northern lowlands are primarily dominated by
agricultural fields-mainly maize and wheat-and extensive grasslands. In contrast, the southern
mountainous zone is predominantly forested, featuring both coniferous and broadleaf vegetation types
(Waldhoff and Lussem, 2015; Shukla et al., 2023). Additionally, lignite extraction through open-pit
mining and urban infrastructure constitute significant components of the land use pattern (Shukla et al.,
2023). Hydrogeological characteristics also differ markedly across the catchment: the southern
mountainous area is dominated by consolidated bedrock that limits aquifer permeability and groundwater
recharge, whereas the northern lowlands, composed of loose sediments, enable higher rates of

groundwater recharge (Bogena et al., 2018).
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Figure 1. (a) Elevation map of the study area, accompanied by (b) the spatial distribution of hydrological
monitoring infrastructure, including groundwater wells, cosmic-ray neutron probes, and flux measurement
towers.

2.2 Terrestrial System Modeling Platform (TSMP)

The TSMP framework was developed as a fully coupled land-energy-hydrology model to simulate
vertical and lateral exchanges of water and heat across the surface-subsurface continuum (Shrestha et al.,
2014). In this study, only the Community Land Model (CLM, version 3.5) (Oleson et al., 2004; Oleson
et al., 2008) was employed to simulate terrestrial surface dynamics, while ParFlow (Kollet and Maxwell,
2006, 2008; Kollet et al., 2010), a three-dimensional simulator of groundwater dynamics under variable
saturation conditions, was used for subsurface modeling. These two models are coupled through a two-
way interaction using the Ocean Atmosphere Sea Ice Soil Model Coupling Toolkit (OASIS-MCT)
(Valcke, 2013), which enables the exchange of variables and fluxes between them. Within TSMP, CLM
primarily simulates water and energy exchanges, including ET from soil and vegetation, as well as
processes such as snow accumulation and melting (Oleson et al., 2004; Oleson et al., 2008). The
terrestrial surface heterogeneity is represented in CLM via a hierarchical subgrid system, where
individual grid cells are subdivided into distinct land units such as glaciers, lakes, wetlands, urban areas,
and vegetated areas. Each land unit may consist of multiple soil or snow columns, within which different
plant functional types (PFTs) with unique physiological characteristics can be specified (Oleson et al.,
2008). Subsurface hydrology and the representation of surface and groundwater dynamics are handled
by ParFlow within the TSMP framework, which takes over soil water movement, overland flow, and

aquifer interactions from CLM (Ashby and Falgout, 1996; Jones and Woodward, 2001; Maxwell, 2013).
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ParFlow couples a two-dimensional surface flow module with a high-performance three-dimensional
solver for saturated-unsaturated subsurface flow (Kollet and Maxwell, 2006). It employs the Newton-
Krylov iterative algorithm (Jones and Woodward, 2001) to solve the coupled partial differential equations
governing interactions between surface and subsurface hydrological systems, including the three-
dimensional form of Richards’ equation (Richards, 1931) for saturated and unsaturated flow, and the
kinematic wave formulation (Lighthill and Whitham, 1955) to simulate surface runoff. Designed for
parallel computing, ParFlow efficiently manages large-scale, high-resolution, and highly heterogeneous
problems. Further details on the coupling mechanism between CLM and ParFlow are provided in Kollet

and Maxwell (2008).

2.3 Model Forcing Data and Observations
2.3.1 Forcing Data from Atmospheric Reanalysis

The TSMP model utilized atmospheric forcing derived from the COSMO-REA6 reanalysis dataset,
which provides high spatial resolution of approximately 6 km (0.055°) and hourly temporal frequency.
This dataset, produced by the German Meteorological Service (DWD), was generated through
simulations of the COSMO numerical weather prediction system (Baldauf et al., 2011; Borsche et al.,
2016). The primary meteorological variables used to drive TSMP include precipitation, air pressure,

specific humidity, air temperature, wind speed, as well as incoming longwave and shortwave radiation.

2.3.2 Terrestrial and Subsurface Data

The Shuttle Radar Topography Mission (SRTM) version 4 dataset with 90 m resolution (Jarvis et al.,
2008) provided the digital terrain for the Rur catchment (Fig. 1). Land cover classification was based on
Sentinel-2 imagery (Phiri et al., 2020; Drusch et al., 2012) and mapped to PFTs in CLM following
Montzka et al. (2021). Monthly leafarea-index(LAI) data for 2016-2018 were retrieved per PFT using
the Sentinel-2 Level 2 Prototype Processor (SL2P) within SNAP (Weiss and Baret, 2020). SL2P employs
an artificial neural network trained on global LAI and biophysical data, including PROSAIL-simulated
canopy reflectance (Chander et al., 2009; Verrelst et al., 2016; Poulter et al., 2023). For pixel-level LAI
estimation, the model inputs include Sentinel-2 canopy-top reflectance and geometric factors such as
solar illumination and viewing angles derived from satellite orbit data.

Figure 2 shows the distribution of soil sand and clay fractions derived from the BK50 soil map of
North Rhine-Westphalia, which has a mapping scale of 1:50,000 (Geologischer Dienst NRW, 2009). Bulk
density information was obtained from the European Soil Database (Pano, 2006). These soil texture and
density datasets were then used to estimate soil hydraulic properties via the Rosetta pedotransfer
functions, as described by Schaap et al. (2001) and Zhang and Schaap (2017). Furthermore, the HK100
subsurface geology map, produced at a scale of 1:100,000 by Geologischer Dienst NRW (2011), supplied
the data necessary to define the hydraulic conductivity (K) for the aquifer layers.



205

210

215

220

225

230

51°N

50.5°N
6°E 6.5°E 6°E 6.5°E 6°E 6:5°E
o e e e e e e N | e e S B e |
0 10 20 30 40 50 60 70 80 90 100 -109 8 -7 6 -5 4 -3
Percent(%) logio(m/s)

Figure 2. Spatial distribution of sand (a) and clay (b) fractions, along with hydraulic conductivity of aquifer
layers (c) within the Rur catchment.

2.3.3 Field Measurements of Soil Moisture, Groundwater, and Evapotranspiration

Soil moisture observations were obtained from 13 CRNS sites (see Table 1) distributed across the Rur
catchment within the TERrestrial Environmental Observatories (TERENO) framework (Bogena et al.,
2018), with preprocessing carried out through the COSMOS-Europe project (Bogena et al., 2022). To
prevent redundancy caused by spatial proximity, measurements from Rollesbroichl and Rollesbroich2
were aggregated into a single representative value, resulting in 12 effective CRNS sites used for DA.
Groundwater table depth data for assimilation and independent validation were obtained from the
Geoportal NRW platform (www.geoportal.nrw, accessed May 2, 2025). Given the weak hydraulic
connectivity between the RZSM and the deep confined aquifer, this study focused on assimilating data
from the unconfined upper aquifer. Wells selected exhibited observation depths between 0 to 20 meters
and supplied records with at least monthly observations. In total, 616 wells met these criteria during the

2016-2018 period (Fig. 1). Due to the 500 m model resolution and the spatial clustering of observation

wells near rivers, multiple wells were often located within a single grid cell or within river cells. Fo

wel-with-the-median-GWl—was—retained—To _ensure representative observations for assimilation, the

median GWL was chosen among multiple wells within a grid cell to minimize potential biases from

unusually high or low groundwater levels. Additionally, grid cells adjacent to stream networks were

excluded from the assimilation process, as persistent saturation in these areas caused large discrepancies

with observed values. Accordingly, wells situated in river grid cells were excluded from the assimilation.

Following these screening procedures, 78 wells were selected for DA, while the remaining 465 wells
were reserved for independent validation.

Evapotranspiration estimations from various DA experiments were assessed against flux
measurements obtained from three eddy covariance monitoring sites located at Selhausen, Rollesbroich,
and Wiistebach. These datasets were made available through the TERENO infrastructure
(https://www.tereno.net/; last retrieved on August 26, 2024). The eddy covariance-based ET data were


http://www.geoportal.nrw/
https://www.tereno.net/

235

240

245

250

255

quality-controlled, gap-filled, and energy-balance corrected following the procedures outlined in Bogena

etal. (2018).

Table 1. Key site-specific information for the CRNS stations.

Mean air
Latitude Longitude Altitude Mean annual

Name (degr) (degr) (m) precipitation (mm y) teml::;a;ture Landuse

Aachen 50.80 6.03 232 865 10.3 crop

Gevenich 50.99 6.32 107 718 10.3 crop

Heinsberg 51.04 6.10 58 722 10.3 crop
Kall 50.50 6.53 505 857 8 grassland
Kleinhau 50.72 6.37 374 614 9 grassland

Merzenhausen 50.93 6.30 91 718 10.3 crop
Rollesbroichl 50.62 6.30 515 1018 7 grassland
Rollesbroich2 50.62 6.31 506 1018 7 grassland
Ruraue 50.86 6.43 100 718 10.3 grassland

Selhausen 50.87 6.45 101 718 10.3 crop
Schoneseiffen 50.52 6.38 611 870 7 grassland
Wildenrath 51.13 6.17 72 722 10.3 needleleaf

Wiistebach 50.51 6.33 605 1401 7 spruce

2.4 Localized Ensemble Kalman Filter for Data Assimilation

Data assimilation consists of two main phases: the prediction phase and the correction phase (Carrassi et
al., 2018). During the prediction phase, system state estimates are generated solely based on prior
historical information. In the correction phase, these predictions are updated by integrating current
observational data, which refines the estimates of states and/or parameters and subsequently updates their
probability distributions (Mclaughlin, 2002).

Hendricks Franssen et al. (2011) developed a method using an augmented state vector to enable the
simultaneous assimilation of multiple variables and model parameters. In this study, the focus is on
updating soil water content (6) and groundwater levels, represented by the piezometric head (/). To
address parameter uncertainty, hydraulic conductivity (K) is also included in the update process. These
variables and parameters are combined into a single vector within the EnKF framework, structured as

follows:

= b
Yy = (10910(K5))_ log,o(Ks) )

State and parameter updates are carried out by integrating observations from SM and GWL
(represented as /) into a unified observation vector.
The update formula for y is computed individually for each member j (j=1, ...., N) of the ensemble

as outlined in Evensen (2003). To generate the ensembles, this study considered the uncertainties from
8



260

265

270

275

280

285

290

both atmospheric inputs and model parameters (e.g., Ks and porosity). The update equation for each

realization is as follows:

¥ = ¥] + ak(; - Hy]) @

where ¥/ and y/ represent the prior and posterior state-parameter vectors for the j" realization, y;
denotes the measurement vector (e.g., € and /), K stands for the Kalman gain matrix, and a is a relaxation
coefficient (or called damping factor) for parameter (logi0Ks) update, with values ranging from 0 to 1.
This step is essential to prevent covariance underestimation, a phenomenon that may arise when the
ensemble Kalman filter is employed iteratively with limited realizations, leading to a reduced estimate
of the ensemble spread (Hendricks Franssen and Kinzelbach, 2008).

The K matrix is defined by the following equation:

K = PHT(HPH” + R)! 3)

The observation operator H links the observation vector to the state vector. The matrix P represents
the covariance of the model states and uncertain parameters, while R denotes the covariance matrix for
measurement error. The performance of the filter relies on the state-error covariance matrix P, which is
estimated based on the members of ensemble (Evensen, 2003; Houtekamer and Mitchell, 1998).

Due to the small ensemble size, spurious correlations may arise between distant model grid points,
potentially distorting the covariance estimation. To address this, we employed the localized EnKF
approach introduced by Houtekamer and Mitchell (1998), which incorporates spatial localization to
confine observational influence within a specified radius (Hamill et al., 2001). This is achieved by
modifying PH" to poPH" in Eq. 3, where the Schur product involves a localization matrix p and the
original cross-covariance. The localization weights in p are computed using a compactly supported fifth-
order function proposed by Gaspari and Cohn (1999), ensuring smooth spatial falloff of influence.

The correlation w, representing an element in p that links a grid point to an observation, can be

approximated as follows:

[ 0 osess
lLe) = o\ 5 o4 o\ 3 o\ 2 e e\~1 4
YT L@ 2O O 2O -5 () + a2 t<esa @
\ 0, e> 2l

Here, [ refers to the chosen localization radius, while e indicates the direct distance from the
measurement location to the particular grid cell being analyzed. The correlation value o varies with this
distance, attaining a maximum of 1 directly at the observation point and gradually decreasing to zero
once the distance exceeds twice the radius /.

In this study, SM observations for assimilation were obtained from CRNS. As CRNS measurement
depth depends on SM conditions, it was first estimated following Schron et al. (2017). The PDAF
framework then mapped CRNS data to soil layers within the estimated penetration depth (Fig. 3),
allowing updates to the simulated SM profiles. After assimilation, modeled SM was aggregated using a
weighted average and compared to CRNS data for validation, as detailed in Schron et al. (2017). The Rur

catchment model consists of 100 x 162 grid cells with a resolution of 500 m x 500 m. Following previous

EnKF studies using 12 CRNS stations (Baatz et al., 2017; Li et al., 2023a), we set the localization radius

9
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to ~100 km to ensure that assimilation effects cover the entire study area. In the LEnKF framework, a
fifth-order polynomial (Eq. 4) is applied to gradually reduce update magnitudes with distance,

distinguishing it from the standard EnKF approach. With-aleealizationradins-of—100-km;exeeedinsthe

Within the TSMP-PDAF framework, GWL observations were converted to pressure head values for

saturated layers based on hydrostatic equilibrium (Zhang et al., 2018). The saturated zone was defined

using the shallowest water table values from the ensemble. An update range was constrained using a

horizontal localization radius of 5 km, derived from spatial correlation patterns of GWL. Due-to-the slow

Earlier research by Zhang et al. (2018) showed that in TSMP, assimilating SM and/or GWL enables

updates to all relevant subsurface states via DA. In this fully coupled DA configuration of Zhang et al.

(2018), cross-variable covariances ensured that observations of one variable (e.g.., SM) could directly

adjust others (e.g., GWL). Later, Hung et al. (2022) applied GWL assimilation restricted to the saturated

zones and demonstrated that this approach outperformed the fully coupled strategy of Zhang et al. (2018).

In this study, we develop a new weakly coupled DA scheme that introduces separate update restrictions

for each observation type: GWL observations are used to update only saturated cells, while SM

observations are used to update only unsaturated zones. This design minimizes potential spurious cross-

variable correlations and enhances the robustness of multivariate assimilation. Additionally, updates are
applied asynchronously to account for the different temporal dynamics of the variables: SM, which

changes more rapidly, is typically updated daily, whereas groundwater, with slower dynamics, is updated

weekly. Furthermore, unlike previous DA studies of TSMP, which generally used the same localization

radius for joint GWL and SM assimilation, our approach applies different localization radii for the two

variables, accounting for their distinct spatial correlation characteristics.

10
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Figure 3. Conceptual diagram illustrating the assimilation of CRNS-based soil moisture and groundwater
level (pressure head) observations into the TSMP system (CLM-ParFlow) using the PDAF framework. Here,
¢ and 6 represent the predicted and updated states of soil moisture in the unsaturated zone, respectively,
while /#/ and h* denote the predicted and updated pressure heads in the saturated zone. Groundwater level
measurements are converted into pressure head values to serve as input data.

3. Setup of Model and Experiments
3.1 Generation of Ensemble Members

To represent input uncertainty, the CLM-ParFlow system was perturbed by modifying atmospheric
forcings and subsurface properties, including saturated hydraulic conductivity and soil porosity, resulting
in 128 ensemble realizations. Table 2 summarizes the statistical metrics of meteorological perturbations.
Precipitation, air temperature, and shortwave and longwave radiation were stochastically perturbed using
a multivariate normal framework with temporal dependencies. A first-order autoregressive model was
applied to capture temporal structure (Han et al., 2015). Standard deviations and time-series
dependencies were informed by previous regional-scale DA studies (Reichle et al., 2010; Baatz et al.,
2017). To preserve mass-energy balance, lognormally distributed noise with correction was added to

shortwave radiation and precipitation (Yamamoto, 2007).

Table 2. Statistics of atmospheric variable perturbations. The last column presents their cross-correlations,
arranged in the same order as the variables listed in the first column of the table.

Variables Noise Standard deviation Time correlation scale Cross correlation

Precipitation Multiplicative 0.3 24 h [1.0,-0.8, 0.5, 0.0,

Shortwave radiation Multiplicative 0.2 24 h -0.8,1.0,-0.5,0.4,
Longwave radiation Additive 20 W m? 24 h 0.5,-0.5,1.0,0.4,
Air temperature Additive 1K 24 h 0.0,0.4,0.4,1.0]

The model domain is discretized at 500 m resolution horizontally and extends 100 m vertically with

11
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25 layers of increasing thickness. The top 10 layers (to 3 m depth) align with CLM-defined soil layers,
while deeper layers represent bedrock. Porosity and hydraulic conductivity were perturbed separately in
soil and aquifer zones. Soil hydraulic parameters for the Mualem-Van Genuchten model were derived
using Rosetta (Schaap et al., 2001; Zhang and Schaap, 2017), based on geostatistically simulated sand
and clay content using a spherical variogram (mean 0, variance 50%?2, range 12.5 km). Silt was calculated
as the residual. Soil textures were constrained to 0~100%, and Rosetta estimated spatially variable
porosity and K. Aquifer K values were taken from a hydrogeological map (Fig. 2) and perturbed by

spatially uniform noise on log;oK; (range: -0.5 to 0.5), while aquifer porosity was fixed at 0.15.

3.2 Configuration of Data Assimilation Experiments

Each ensemble member underwent a spin-up to achieve hydrologic equilibrium specific to its realization.
This involved two phases: first, ParFlow was run for 100 years using initial groundwater depths averaged
from Bogena et al. (2005), driven by 30-year average recharge derived from climatological inputs
(precipitation and actual evapotranspiration) provided by the German Meteorological Service. Second,
the steady-state output from ParFlow initialized the coupled CLM-ParFlow model, which was then
repeatedly forced with 2015 atmospheric inputs for ten years. Following spin-up, DA experiments were
conducted over three years (Jan 1, 2016-Dec 31, 2018), assimilating GWL from 78 wells and SM from
12 CRNS sites using LEnKF.

Eleven-11 DA experiments (Table 3) were conducted to assess assimilation performance, differing

in observation type, state vector composition, and localization strategy. The open loop (OL) experiment

performed without assimilation, served as the reference for DA comparisons. SM_DA assimilated daily

SM observations from CRNS (observation error of 0.03 cm?/cm?) with 100 km localization radius.

GWL_DA assimilated weekly GWL observations, with an observational error of 0.05 m, using a 5 km

localization radius, updating only hydraulic head (%) in the saturated zone. FC_DA assimilated both SM

and GWL using the fully coupled DA strategy, with the state vector including / and @ in all subsurface

layers. 6 and h were updated daily and weekly, respectively, both with a 5 km localization radius. WC_DA

used the weakly coupled scheme, with 4 updated only in the saturated zone and @ only in the unsaturated

zone; all other settings were the same as FC_DA. Moreover, WC DA _r followed the same setup as

WC DA, except that the localization radius differed between the two variables: 5 km for GWL and 100

km for SM. For all DA experiments, the suffix PAR indicates that, in addition to state updates, the

saturated hydraulic conductivity (log K;) was updated every seven days using a damping factor of 0.1.

The PAR runs were initialized from the same spun-up equilibrium state as their corresponding state-

update experiments, and the gradual parameter updates ensured that changes remained small and did not

disturb the equilibrium state too much, thereby avoiding the need for additional spin-ups. Furthermore,

parametera

validation involved applying BA-updated K -updated from one year to epentoep{OL) simulations in
other years (e.g., using 26+6-updated K in-from 2016 in 2017-2018)-fercomparison.

Table 3. Summary of the data assimilation experiments conducted. Observational data include groundwater
12



levels (GWL) and soil moisture (SM). Key variables consist of pressure head (%), soil water content (), and

390 hydraulic conductivity (Ks). The terms “unsar’ and “sar” distinguish between the unsaturated and saturated
domains, respectively. Experiments FC_ DA and FC_DA_ PAR were performed using the fully coupled
framework, following the methodology described by Hung et al. (2022).

Experiments (abbrev.) Observations State vector GWL and SM local radius
OL - - -
SM_DA SM 6 -
SM_DA_PAR SM 0, log K, -
GWL_DA GWL Psar -
GWL_DA_PAR GWL hgar, log K -
FC_DA GWL, SM 0, h Same
FC DA PAR GWL, SM 6, h, log K, Same
WC_DA GWL, SM Ounsars Msar Same
WC_DA _PAR GWL, SM Ounsats Hsarr 108 K Same
WC_DA r GWL, SM Ounsats Psar Different
WC_DA r PAR GWL, SM Ounsats Msars 10g K Different

3.3 Model Performance Assessment

395 Simulation outputs from the OL run along with multiple assimilation experiments were evaluated against
daily observed data for GWL, SM, and ET. The assessment employed statistical indicators including the
root mean square error (RMSE), unbiased RMSE (ubRMSE), and Pearson’s correlation coefficient (R).

Among these, ubRMSE was emphasized in our analysis because it is widely applied in DA research and

facilitates comparison with previous studies. To avoid redundancy, detailed results for RMSE and R are

400 presented in the Supplementary Tables to ensure a comprehensive evaluation of model performance.

The RMSE at a given time step ¢ was computed using the following formula:

Nobs sim_,,obs 2
RMSE, = |2 OE"veT) (5)
Nobs
The ubRMSE at each time step ¢ was computed using:
Nobs[ (. sim_stm obs_—obs\|?
b —ySTm) - (ybs
ubRMSE, = |~ o2 yN Sy )], (6)
obs
405 Calculation of R is based on the following expression:
Zn= obs__obs sim_sum
R = t 1(J’t y )(J’t y ) (7)

- — 2 . 2°
N N )

sim

Here, y,”" denotes the ensemble-mean simulation for the target variable (SM, GWL, or ET) at a given
time step ¢, originating from either an OL or DA experiment, while y,”" refers to the matching observation.
Nops represents the count of available observations at time ¢, and » indicates the overall count of evaluated

410  temporal intervals.
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4. Results
4.1 Univariate Soil Moisture Assimilation

Table 4 compares the ubRMSE of SM, ET, and GWL between the baseline OL simulation and the SM-
only assimilation scenarios (SM_DA and SM_DA PAR), while additional metrics including RMSE and
R for SM and ET are provided in Table S1. Assimilating CRNS SM observations significantly improved
SM prediction accuracy at monitored sites during 2016-2018, as shown in Figures S1-S3. In the SM_DA
scenario, SM ubRMSE and RMSE decreased by over 45% and 50%, respectively. Joint updates of states
and parameters (SM_DA PAR) outperformed state-only assimilation. Correlation coefficients for SM
improved notably in DA runs (R = 0.85~0.90) versus OL (R = 0.61~0.63) (Table S1). However, SM
assimilation had limited impact on ET, with RMSE reduced by less than 3% compared to OL. However

GWL ubRMSE metric showed variable changes when only SM was assimilated, ranging from -7% to

15% across individual years, where positive values indicate a deterioration in performance. Over the

2016-2018 period, the average change in ubRMSE was small, corresponding to 3.87% for SM_DA and
-0.41% for SM_DA_PAR. Overall, SM assimilation had a minor negative effect on GWL, with some

annual variability.

Table 4. Annual unbiased root mean square error of volumetric soil moisture, evapotranspiration, and
groundwater level during 2016-2018 for the open-loop (OL) and univariate soil moisture data assimilation
experiments (SM_DA and SM_DA_PAR).

Experiments
Year Variable
OL SM_DA SM_DA_PAR
2016 0.08 0.05 0.05
2017 SM 0.09 0.04 0.04
2018 (cm*/cm?) 0.09 0.05 0.04
2016-2018 0.09 0.05 0.04
2016 0.63 0.65 0.64
2017 ET 0.66 0.66 0.66
2018 (mm/day) 0.68 0.70 0.70
2016-2018 0.66 0.67 0.66
2016 7.30 6.87 6.79
2017 GWL 7.24 8.31 7.74
2018 (m) 7.16 7.34 7.06
2016-2018 7.23 7.51 7.20

Figure 4 illustrates the differences in SM, ET, and GWL between the OL simulation and the
univariate SM assimilation scenarios for the year 2018, with corresponding findings for 2016 and 2017
shown in Figures S4 and S5. In the scenarios involving only state estimation and those involving
simultaneous parameter estimation, assimilation led to distinct spatial changes in SM distribution across
the catchment-marked by increased moisture in the northern areas and a drying trend in the south. For

2018, the spatial distribution in annual SM was similar for both the state-only and joint state-parameter
14



440

445

450

455

update runs, indicating a limited parameter influence that year. In contrast, the impact of parameter
updates on SM was more pronounced in 2016 and 2017, likely due to differing hydrological conditions.
Specifically, under the wetter conditions of 2016, elevated SM levels enhanced spatial coherence, thereby
increasing sensitivity to parameter adjustments (Li et al., 2023a).

The regional distribution of ET changes closely followed the corresponding SM patterns, indicating
a direct influence of SM assimilation on ET dynamics. Within the southern region of the catchment, both
SM_ DA and SM_DA_PAR simulations exhibited reduced ET compared to the OL simulation, consistent
with lower SM levels. In contrast, the northern catchment showed increased ET linked to higher SM
following assimilation. The impact of SM assimilation on ET in the southern region was relatively limited,
with changes generally below 50 mm yr!, as ET there was primarily constrained by available energy.
However, in the northern Rur subregion-characterized by lower precipitation-ET responded more
strongly to assimilation, with increases exceeding 100 mm yr* following the rise in SM. Notable spatial
variations in GWL also emerged across certain areas of the catchment after assimilation. Since TSMP is
a comprehensive system, assimilation of SM alone also influenced GWL dynamics. Additionally, due to
the SM localization radius covering the entire basin and the inclusion of lateral groundwater flow in
TSMP, changes in GWL were not confined to areas near CRNS locations. While GWL spatial patterns
showed some alignment with those of SM, they were less consistently matched than the patterns observed

in ET.
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Figure 4. Spatial variations in annual soil moisture (0-80 cm), evapotranspiration, and groundwater level for
2018 are shown in panels (a)-(c), depicting the differences between SM_DA and OL simulations (SM_DA
minus OL). Panels (d)-(f) present similar contrasts between SM_DA PAR and OL (SM_DA_ PAR minus OL).
Black pentagrams mark the locations of the CRNS monitoring stations.

4.2 Univariate Groundwater Level Assimilation

Table 5 provides an overview of simulation results for GWL, SM, and ET across multiple years,
comparing outputs from the OL and univariate GWL assimilation experiments. The unbiased RMSE of
GWL was evaluated at update points and at validation sites categorized by their distance from these
points, with consistent patterns observed across all distance groups. A more detailed assessment of GWL
performance, including RMSE metrics, is available in Table S2. Temporal dynamics of GWL in response
to assimilation are illustrated in Fig. S6, which depicts GWL evolution at 12 monitoring locations.
Substantial improvements in GWL simulations were observed at assimilation sites in the GWL DA
experiment, where the annual ubRMSE was reduced by approximately 60% relative to the OL run. When
both states and parameters were jointly updated in the GWL_DA_PAR experiment, the ubRMSE further
decreased to 2.04 m, corresponding to a ~72% reduction compared to OL. While notable improvements
were evident near assimilation wells, the performance gains declined with increasing distance from these
locations. Joint updating of states and parameters (GWL_DA_PAR) consistently outperformed state-only
updates (GWL_DA). Within the 0~0.5 km ranges from assimilation points, GWL ubRMSE decreased
from 6.96 m to 3.78 m, reflecting a 46% improvement. Beyond 0.5 km, ubRMSE in the GWL_DA PAR

experiment remained at least 10% lower than in OL. In contrast to the large improvements in GWL,

univariate GWL assimilation generally had a limited negative impact on SM, with interannual variability.
Over the 2016-2018 period, the average SM ubRMSE was 0.09 cm*/cm? in GWL_DA and 0.11 cm?/cm?
in GWL_DA_PAR, compared with 0.09 cm*/cm? in OL. In individual years, SM ubRMSE ranged from

0.09 t0 0.10 cm*/cm? in GWL_DA, corresponding to annual changes of 0-25% compared with OL value
in each respective year. In GWL_DA_PAR., SM ubRMSE further increased to 0.10~0.11cm’/cm?,

reflecting annual rises of over 20% relative to OL values of the corresponding year. However

n-OL(0-09-em*/em?)- This absence of enhancement in SM was likewise observed in ET, since univariate

GWL assimilation did not improve SM simulations. Consequently, ET simulations exhibited minimal

change, with ubRMSE, RMSE, and R metrics showing negligible differences, as summarized in Table
S1.

Table 5. Annual unbiased root mean square error of groundwater level, volumetric soil moisture, and
evapotranspiration for 2016-2018, evaluated for the open-loop (OL) and univariate groundwater level
assimilation scenarios (GWL_DA and GWL_DA_PAR). Note: “0” refers to assimilation points; validation
sites are grouped by their distance from these points into three categories: less than 0.5 km, between 0.5 and
2.5 km, and between 2.5 and 5 km.

Experiments

OL GWL DA GWL _DA_PAR

Year Variable Distance

16
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2016 7.30 3.39 2.03

2017 7.24 278 2.05
2018 0 7.16 2.52 2.04
2016-2018 7.23 2.90 2.04
T 2016 7.23 6.54 3.70
2017 6.95 4.46 4.02

2018 0-0.3km 6.69 3.89 3.62
2016-2018 GWL 6.96 4.97 3.78
T 2016 (m) 532 5.84 4.60
2017 5.26 4.88 4.82

0.5-2.5km
2018 5.09 470 4.63
2016-2018 5.22 5.14 4.68
T 2016 6.37 6.36 5.12
2017 631 5.50 4.99
2.5-5km

2018 6.03 529 5.16
2016-2018 6.24 572 5.09
2016 0.08 0.10 0.10

2017 SM 0.09 0.09 0.11

2018 (em¥/em?) ) 0.09 0.10 0.11
2016-2018 0.09 0.09 0.11
2016 0.63 0.63 0.63

2017 ET 0.66 0.66 0.66

2018 (m) ) 0.68 0.68 0.68
2016-2018 0.66 0.66 0.66

Figure 5 illustrates the annual variations in multiple variables by comparing the univariate GWL
assimilation scenarios with the OL simulation for 2018, while corresponding results for 2016 and 2017
are provided in Figs. S7 and S8. A 5 km localization radius was applied during groundwater assimilation,
leading to notable GWL variations primarily in the vicinity of the assimilation points. In contrast, the
hilly southern region-characterized by sparse measurement locations-exhibited minimal GWL changes.
Although spatial differences in GWL between the state-only and state-parameter update runs were
generally small, several areas in the central catchment experienced distinct GWL adjustments resulting
from parameter updates. Groundwater assimilation also influenced SM estimates, particularly near
assimilation locations where changes in SM closely corresponded to GWL variations. However, since
most CRNS sites were located at greater distances from the assimilated groundwater wells, SM
simulations at those CRNS locations remained largely unaffected. Furthermore, annual SM estimates
exhibited only minor differences between the state-only and state-parameter GWL assimilation runs. The
influence on ET was similarly limited to areas surrounding the GWL update points due to the applied
localization radius. It is worth highlighting that the distributions of variations in SM and ET showed

strong consistency across space.
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Figure S. Spatial variations in annual groundwater level, soil moisture (0-80 cm), and evapotranspiration for
2018 are shown in panels (a)-(c), illustrating the differences between GWL_DA and OL simulations
(GWL_DA minus OL). Panels (d)-(f) present similar contrasts between GWL_DA PAR and OL
(GWL_DA_PAR minus OL). Black hollow circles indicate the locations of groundwater monitoring wells.

4.3 Multivariate Data Assimilation of Soil Moisture and Groundwater Level

Table 6 summarizes the ubRMSE values of GWL, SM, and ET from various multivariate assimilation
scenarios between 2016 and 2018. Additional RMSE results for groundwater table depth are provided in
Table S3. Among all experiments, the WC DA _PAR scenario produced the best-performing groundwater
estimates at the assimilated sites, lowering the ubRMSE substantially-dropping it from 7.23 m to 2.05 m,
representing a reduction of nearly three-quarters. A similar level of accuracy was attained by the
GWL_ DA PAR run, yielding a ubRMSE of 2.04 m. At validation sites within 0 to 0.5 km of assimilation
points, the multivariate assimilation of SM and GWL slightly underperformed compared to the
standalone groundwater update in predicting GWL, although the difference was not statistically
significant. Across all single- and multi-variable assimilation scenarios, WC DA r PAR achieved the
minimum ubRMSE (4.56 m) for GWL predictions within the 0.5~2.5 km range from assimilation sites.
In comparison, the FC_ DA PAR experiment yielded the lowest ubRMSE value (4.91 m) at sites 2.5 to
5 km away from the assimilation points.

In the multivariate DA experiments, SM depiction showed a significant improvement, with

18



WC DA PAR and WC DA r PAR yielding the greatest ubRMSE decrease of 50%. Detailed RMSE
and R statistics for SM and ET are provided in Table S4. However, SM evaluation results under fully
coupled joint SM and groundwater assimilation scenarios (FC_DA or FC_DA_ PAR) failed to surpass
the outcomes from SM-only assimilation runs (SM_DA or SM_DA_PAR), suggesting that incorporating
540 groundwater data did not improve SM representation in the fully coupled system. Multivariate
assimilation produced a slight enhancement in ET simulation accuracy, reflected by an approximate 3%
decrease in RMSE, though this was not evident in ubRMSE values. Furthermore, applying parameter

updates had minimal impact on ET simulation results across these experiments.

545 Table 6. Annual unbiased root mean square error of groundwater level, soil moisture, and evapotranspiration
during 2016-2018, evaluated for the open-loop (OL) and multivariate assimilation scenarios (FC_DA,
FC_DA_PAR, WC_DA, WC_DA_PAR, WC _DA r, and WC_DA_r_PAR). Note: “0” denotes assimilation
locations; validation sites are grouped by their distance from these points into three ranges: less than 0.5 km,
0.5 to 2.5 km, and 2.5 to 5 km.

Experiments

Year Variable - Distance FC DA FC DA PAR WC DA WC DA PAR WCDAr WCDATr PAR
2016 730 324 2.96 3.14 2.13 3.24 237
2017 724 4.06 2.88 2.93 1.98 3.01 2.04
2018 0 716 3.44 3.06 333 2.03 2.57 2.11
2016-2018 723 358 2.97 3.13 2.05 2.94 2.17
©o2016 723 464 443 4.16 423 4.41 452
2017 coskn 00 36 3.69 3.94 4.60 427 3.49
2018 6.69 325 3.54 3.93 3.62 3.96 3.61
2016-2018  GWL 6.96  3.95 3.89 4.01 4.15 421 3.87
2016 (m) 532 557 472 4.73 7.56 473 4.67
2017 0.5- 526 475 478 4.65 473 4.61 448
2018 25km 5.09 434 4.46 4.66 4.79 4.61 4.52
2016-2018 522 489 4.65 4.68 5.70 4.65 4.56
To2016 637  5.65 5.03 527 8.24 7.54 561
2017 631 523 5.02 5.38 5.52 7.01 7.81
2018 2:3-3km 6.03 489 4.68 5.30 5.18 5.68 5.10
2016-2018 624 526 491 532 6.31 6.74 6.17
2016 008 0.5 0.05 0.06 0.04 0.06 0.04
2017 SM 009  0.06 0.06 0.05 0.04 0.05 0.04
2018 (cm*/em?) ) 0.09 0.8 0.05 0.07 0.04 0.05 0.04
2016-2018 009  0.06 0.05 0.06 0.04 0.05 0.04
2016 063 063 0.64 0.63 0.63 0.64 0.64
2017 ET 066  0.66 0.66 0.66 0.66 0.66 0.66
2018 (mm/day) ) 068  0.70 0.70 0.70 0.70 0.70 0.70
2016-2018 066  0.66 0.67 0.66 0.66 0.66 0.66

550
To facilitate comparison, Fig. 6 presents the ubRMSE values from both univariate and multivariate

assimilation runs. In contrast with the OL simulation, the FC_DA and FC_DA PAR experiments showed
improved ability to reproduce SM and groundwater dynamics. Nonetheless, the results were inferior to
those obtained through individual assimilation of SM or GWL for their corresponding hydrological

555 variables. Alternatively, the weakly integrated schemes (WC_DA and WC_DA_PAR) yielded improved
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575

estimates of SM and GWL relative to the fully coupled configuration. According to Fig. 6, WC DA r
and WC_DA r PAR demonstrated superior capability in replicating GWL and SM at observation sites
relative to the remaining multivariate assimilation approaches. Within the 2.5 to 5 km range from
assimilation locations, predictive accuracy declined slightly compared to the fully coupled configuration,
possibly attributed to the broader localization radius applied during SM assimilation, which imposed a
more pronounced effect on groundwater estimation. By way of reference, assimilating SM alone showed

that updating SM led to decreased accuracy in GWL estimates.
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Figure 6. Comparison of unbiased root mean square error (ubRMSE) for groundwater level (GWL, m) at
different distances from assimilation points, alongside soil moisture (SM, cm*cm?®) results from both
univariate and multivariate assimilation runs. Groundwater level metrics are shown on the left y-axis, while
soil moisture values correspond to the right y-axis.

Figure 7 illustrates the annual changes in GWL, SM, and ET for the Rur catchment in 2018,
comparing various multivariate assimilation experiments with the OL simulation. Since the results from
combined state-parameter updates closely matched those from state-only updates, only the joint state-
parameter updating results are presented. Outcomes for 2016 and 2017 are presented in Figures S9 and
S10, respectively. In the WC_DA_PAR scenario, changes in GWL estimates were highly consistent with
those from the GWL-only DA runs. This consistency arises from using the same groundwater updating
approach, specifically updating only the hydraulic pressure confined to the saturated zone. Notable GWL
variations were also observed in areas without direct groundwater assimilation points. These changes
likely resulted from SM updates within the multivariate assimilation scenarios, particularly in the

FC DA PAR and WC DA r PAR experiments. The spatial distribution of SM in the WC DA r PAR
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595

run was very similar to that of the univariate SM assimilation, since both used the identical assimilation
localization radius. Due to the smaller 5 km assimilation radius applied in the FC_ DA PAR and
WC_DA_PAR runs, SM changes remained largely limited to areas close to assimilation sites. Significant
variations in annual SM were also detected near groundwater monitoring points in the northern catchment,
indicating that combined assimilation of SM and groundwater influences SM prediction accuracy. The
spatial pattern of ET aligned closely with SM, reflecting ET’s primary control by SM variability.
Moreover, in the multivariate assimilation runs, SM at certain locations adjacent to groundwater
assimilation points was influenced by GWL adjustments, resulting in ET fluctuations that might contrast

with those observed in univariate SM assimilation.
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Figure 7. Spatial variations in the 2018 annual differences of groundwater level, 0-80 cm soil moisture, and
evapotranspiration are presented in panels (a, d, g), showing comparisons between the multivariate data
assimilation scenario FC_DA_PAR and the open-loop (OL) run. Panels (b, e, h) and (¢, f, i) display the
corresponding differences for the WC_DA PAR and WC_DA _r PAR scenarios, respectively. The locations
of CRNS stations and assimilated groundwater wells are marked by black pentagrams and circles.

To enable a comprehensive comparison between single-variable and multivariate assimilation
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approaches, Figure 8 presents the time-series variations of SM and GWL recorded at a CRNS site and a
monitoring well throughout all assimilation scenarios. The simulated SM patterns from the state-only
(GWL_DA) and state-parameter (GWL DA PAR) groundwater assimilation runs closely follow those
of the OL simulation, indicating that assimilating GWL data has little impact on SM estimates for these
scenarios. Likewise, assimilating SM alone produced only minor changes in GWL. When GWL data
were assimilated, the modeled GWL progressively converged toward the observed values gradually.
Within the multivariate assimilation runs, the fully coupled setups (FC_DA and FC_DA_PAR) showed
the largest discrepancies in GWL and SM compared to observations. In general, differences in modeled
SM and GWL were small when comparing assimilation experiments updating both states and parameters

to those updating states alone.
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Figure 8. Temporal dynamics of volumetric soil moisture at the Kall CRNS site and groundwater levels at a
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selected observation well throughout 2018 are shown for the open-loop (OL) simulation alongside various
assimilation scenarios. Panels (a-b) present results for the SM_DA and SM_DA_PAR scenarios; panels (c-d)
correspond to GWL_DA and GWL_DA PAR; panels (e-f) display FC_ DA and FC_DA_ PAR outcomes;
panels (g-h) illustrate WC_DA and WC_DA_PAR; and panels (i-j) show results for the WC_DA r and
WC_DA_r_PAR configurations.

4.4 Impact of Parameter Ks Updates on Model Performance

Across all DA experiments, incorporating parameter updates consistently outperformed relying solely on
state updates. To assess the performance of the adjusted parameters, they were implemented in OL
simulations for independent years and evaluated against results obtained using the initial parameter set.
Table 7 summarizes evaluation metrics-RMSE, ubRMSE, and R, which serve as indicators of model
performance for various variables during the K validation period. Improvements in SM estimates were
attributed to the updated K derived from the SM_DA_PAR scenarios, as reflected by enhanced results
across all evaluation metrics. Applying K values estimated from SM_DA PAR reduced the SM
ubRMSE from 0.09 to 0.08 cm?*cm? in the OL validation runs. Nevertheless, the updated K did not
improve GWL predictions, nor were significant enhancements observed in ET simulations.

Applying the K values updated through the GWL DA PAR experiments in OL runs for other
independent years resulted in a slight reduction (less than 2%) in the overall RMSE and ubRMSE of
GWL compared to simulations using the original K. Additionally, enhanced GWL modeling was
observed in unassimilated areas following the incorporation of the revised K. Specifically, within a range
of 2.5~5 km from the assimilation points, the modeled GWL improved by approximately 4%, indicated
by a decrease in ubRMSE from 6.24 m to 6.01 m. However, no evident improvements were found in SM
and ET estimates after applying the revised K, derived through the univariate GWL assimilation
(GWL_DA PAR) experiments.

No noticeable improvement in simulated GWL was observed at the assimilation points during the
OL validation using the revised K, derived from the WC DA r PAR scenario. Compared to the
GWL DA PAR experiment, the K values estimated from WC_DA r PAR produced more accurate
GWL predictions at unassimilated grid locations. Within the 0~0.5 km and 2.5~5 km ranges from
assimilation points, the GWL ubRMSE decreased by over 4%. Furthermore, the revised K5 enhanced SM
simulation performance, demonstrated by a reduction in SM ubRMSE from 0.09 cm’/cm*® with the
original K, to 0.08 cm*/cm? following the WC DA r PAR assimilation. Although the revised K obtained
from the WC DA r PAR scenario brought some improvements, its impact on ET simulation remained

minimal.

Table 7. Summary of performance metrics for simulated groundwater level, volumetric soil moisture, and
evapotranspiration across all validation runs during the 2016-2018 period. Note: “0” refers to groundwater
assimilation locations; validation sites are categorized by their distance from these points as follows: less than
0.5 km, 0.5 to 2.5 km, and 2.5 to 5 km.

Variable  Distance Indicators Ks from SM_DA_PAR K from GWL_DA_PAR K from WC_DA_r PAR

GWL 0 RMSE (m) 7.90 7.16 7.32
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0-0.5km 6.92 6.84

0.5-2.5km 6.54 6.50

2.5-5km 6.98 6.95

0 7.09 7.23

0-0.5km 6.71 6.63
0.5-2.5km ubRMSE () 727 521 5.17

2.5-5km 6.01 5.97

RMSE (cm*/em®) 0.09 0.10 0.09

SM - UbRMSE (cm¥/em?) 0.08 0.09 0.08
R 0.67 0.60 0.68

RMSE (mm/day) 0.75 0.76 0.75

ET - ubRMSE (mm/day) 0.66 0.66 0.66
R 0.83 0.84 0.83

Figure 9 illustrates the differences in the mean spatial values of log;oK; at soil depths of 2 cm and
10 m for the SM_DA PAR, GWL DA PAR, and WC DA r PAR scenarios compared with the
reference OL simulation. The outcomes illustrated correspond to the year 2018, with supplementary
outcomes for 2016 and 2017 provided in Figures S11 and S12. The spatial patterns of Ks modifications
were consistent across all three years. In the SM_DA_ PAR experiment, changes in K occurred both
within the root zone and, indirectly, extended to the saturated zone at 10 m depth. Such modifications in
K may have a significant influence on the accuracy of GWL estimation. Conversely, during the
GWL DA PAR run, state modifications were limited to the saturated layers, producing pronounced
changes in K primarily at the groundwater assimilation points in that zone. No significant impact on Kj
was observed in the unsaturated zone due to these updates.

Within the WC_DA_r PAR scenario, the assimilation processes for SM and GWL were conducted
separately. Consequently, modifications in K within the unsaturated zone were projected to mirror the
patterns identified in the SM_DA_ PAR experiment, whereas variations in the saturated layers were
anticipated to correspond to those seen in the GWL DA PAR experiment. These findings indicate that
the distribution of K modifications across the affected regions closely match those from the individual
assimilation runs. Nevertheless, due to the interdependence between SM and GWL updates in the joint
assimilation, the resulting K modifications exhibit more intricate and integrated system behavior, rather
than merely a straightforward combination of changes seen in the separate univariate runs. As a result,

certain areas of the study region exhibited greater variations in K; at different subsurface depths.
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Figure 9. Spatial comparison of ensemble mean logioKs between the open-loop simulation and various data
assimilation schemes for the year 2018. Panels (a) and (d) show results for the SM_DA_PAR scenario; panels
(b) and (e) present outputs for GWL_DA_PAR; panels (c) and (f) depict results for WC_DA _r PAR. The
upper row corresponds to estimates at 2 cm soil depth, while the lower row represents values at 10 m depth.
Locations of CRNS sites and assimilated groundwater wells are marked by red pentagrams and black circles,
respectively.

5. Discussions

5.1 Benefits and Challenges of the New Multivariate Data Assimilation Framework

In this research, we propose an innovative joint DA framework that improves the accuracy of both SM
and GWL estimations. When assimilation is limited to a single variable-, either SM or GWL-, it generally
enhances the assimilated variable but frequently decreases the reliability of the non-assimilated one. The
observed deterioration may stem from spurious inter-variable covariances generated during the state

estimation process. These covariances can modify the natural trade-offs between SM and GWL that arise

from their physical coupling through soil water retention and pressure head relationships. Specifically,

changes in shallow groundwater directly affect SM in the unsaturated zone, while SM dynamics control

recharge and thus influence GWL. Importantly, the strength of this connection is not spatially uniform.

In areas with shallow groundwater tables, SM and GWL are tightly coupled. so assimilating one variable

has stronger impacts on the other. In contrast, with deeper groundwater, the hydraulic link between SM

and GWL weakens, and under such conditions this connection can be functionally disconnected, resulting

in assimilating one variable having little or no effect on the other, and in some cases, minor degradations

may occur. Such degradations may be partially caused by small ensemble sizes, which make estimated

covariances less reliable, especially for weaker correlations. In addition, non-Gaussianity related to drier
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soil conditions may impair the effectiveness of assimilating one variable on improving the estimates of

the other. This effect particularly impacts the upper soil states when GWL is assimilated, or the deeper

subsurface states when SM is assimilated from dry soils. This issue can also be partly attributed to the
use of point-scalegreund-based observations, given that neutron sensing stations and groundwater

monitoring wells are unevenly distributed across the study area. When assimilation targets only one state
component (e.g., GWL), it is difficult to reduce uncertainties in hydrologically connected states (such as

SM) at non-adjacent spatial locations._Such spatial heterogeneity and statistical limitation explain why

assimilation of a single variable can improve its own estimates while occasionally causing small

degradations in the other, depending on local hydrogeological settings. However, the observed reductions

in the non-assimilated variable are relatively small compared with the improvements in the assimilated
variable, suggesting that univariate assimilation still provides substantial benefits for the targeted state.

These limitations of univariate assimilation underscore the value of multivariate approaches, which may

better account for the coupled dynamics of SM and GWL and improve the accuracy of both states

simultaneously.
Building on earlier TSMP-PDAF studies of multivariate DA, Hung et al. (2022) used demenstrated;

using-a detailed synthetic modeling scenario with-FSMP-PDAE for a southwestern German domain.
They showed;— that updating only restrieting—updates—to-the saturated layers improvedateneteads—te
better GWL estimation compared to fully coupled DA, inwhieh contrast s with-to earlier studies based
on highly simplified synthetic frameworks (Zhang et al., 2018). However, in Hung et al. (2022), the
synthetic GWL and SM data for assimilated locations were situated within a single grid cell. In contrast,
this research was carried out within an actual watershed, where the majority of CRNS SM and
groundwater monitoring sites are located on different grid cells, allowing for a more precise spatial
mapping of SM and GWL measurements. The results of this research indicate that the novel multivariate
assimilation technique introduced here outperforms the fully coupled DA approach employed by Hung
et al. (2022) in predicting system states.

In multivariate DA, previous studies have shown that challenges persist despite methodological

advances. Shi et al. (2015) combined model states and global calibration coefficients into a high-

dimensional joint vector, requiring covariance relaxation, conditional covariance inflation, and quality

control to prevent filter divergence and ensure physical plausibility. Zhang et al. (2016) employed

distance and variable localization to control spurious correlations in joint SM and groundwater head

assimilation, but this approach relies on manually defined rules and may lose physically meaningful

cross-variable information. Botto et al. (2018) applied normalization to measurement error covariance

matrices and addressed simulated data anomalies and innovation vectors to prevent ill-conditioning of

the Kalman gain. While these measures ensure numerical stability, they require careful manual scaling

of each variable.

In contrast, the weakly coupled DA scheme adopted in this study updates states and parameters
sequentially, with each variable employing its own spatial localization andA-key-advantage-of this-novel
multivariate-assimilation-method-is-the-application-of independent updates;-. Thiswhieh allows saturated

zone pressure to be updated using GWL observations, while SM estimates in the unsaturated zone are
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adjusted based on CRNS-derived measurements. The use of variable-specific localization parameters
further improves the representation of their distinct spatial characteristics, reduces the influence of

spatially distant uncertainties, and limits unphysical information propagation. Importantly, this

framework achieves these benefits without requiring extensive manual tuning or high-dimensional

corrective procedures, which are often needed in traditional multivariate DA approaches.—during

performanee-of the-integrated-assimilationframewerk: Additionally, asynchronous assimilation enables
different update intervals for each variable: SM, which varies rapidly, is typically updated daily, whereas
groundwater, with slower dynamics, is updated weekly. This approach allows coupled models to better
accommodate the differing timescales of fast-evolving and slowly changing processes and to assimilate

multiple variables from diverse data inputs,reducing—therisk-of misleadinginteractions—and-timiting
spurious—correlations. These characteristics enhance the robustness and reliability of the assimilation

framework in real-world catchments, where observations are spatially heterogeneous and hydrological

processes operate across multiple timescales.

Beyond improving state estimates, the impact of independent updates on water balance needs to be

considered. During assimilation, SM and groundwater states are modified directly, which can temporarily

disturb the local water balance. These imbalances may persist for a period depending on site-specific

conditions. Such local imbalances are common in data assimilation, but the tight coupling between CLM

and ParFlow ensures that surface and subsurface fluxes redistribute these adjustments through the

model’s physical processes. Consequently, at the catchment scale, independent updates do not induce

systematic water balance errors, as they only alter storage states and local imbalances are mitigated by

the coupled land-subsurface dynamics. Compared to uncoupled models, these local imbalances are not

necessarily larger, but in coupled systems they are redistributed differently due to interactions between

surface and subsurface processes.

To evaluate the robustness of this framework, experiments were conducted over the 2016-2018
period, capturing hydrological variability. Despite interannual fluctuations, the results demonstrated
stability and reliability throughout the study period, with improved forecasting accuracy for diverse
elements across the coupled surface-subsurface system. Nonetheless, it is noteworthy that the ubRMSE
for GWL within the 2.5 to 5 km range was higher under the multivariate assimilation scheme than in
univariate groundwater assimilation experiments (6.17 m versus 5.09 m). Consequently, although
multivariate assimilation integrates a wider variety of observations than univariate assimilation, it is
unable to consistently yield enhanced performance. The findings align with those of Botto et al. (2018),
who used the CATHY model to investigate an artificial hillslope and showed that including more
variables in the assimilation framework can negatively impact the prediction accuracy of certain other
model variables. They suggested that the filter’s effectiveness was constrained by the poor precision of
pressure head measurements. Similarly, Zhang et al. (2016) attributed the unreliable model outputs
observed during joint assimilation of SM and GWL primarily to unrealistic inter-variable correlations
arising from a small number of ensemble members. Overall, the factors limiting the advantages of

multivariate assimilation relative to single-variable assimilation can vary depending on the model used.
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Beyond the assimilated state variables, the coupled model’s related ET output was also assessed.
Nonetheless, findings showed that groundwater assimilation failed to enhance ET simulation accuracy,
primarily owing to the insufficient improvement in representing SM. In regions with deeper groundwater
table depth, assimilating GWL had a diminished influence on near-surface SM and ET dynamics. This
study found that assimilating SM data into the integrated models led to some improvements in ET
predictions, although these gains were relatively minor. Moreover, multivariate DA did not provide
further improvements in ET simulation accuracy compared to univariate SM assimilation, with the

positive impact on ET estimates remaining comparable.

5.2 Uncertainty Analysis and Enhancement Strategies

This research presents novel strategies for applying multivariate assimilation techniques within
integrated hydrological modeling frameworks. While advancements have been made, the assimilation

results still indicate unresolved uncertainties remain-thatand should be addressed in future work. Part of

this uncertainty arisesstems from the model’s use of coarse spatial discretization. Coarser spatial
resolution typically smooths terrain features, which reduces gradients in both surface and groundwater

flows and likely contributes to persistent discrepancies in simulated GWL. Moreover, DA tends to be

less effective in the presence of such systematic biases. For example, Xue et al. (2021) systematicall

evaluated hydrological simulations over High Mountain Asia using models at different spatial resolutions,

and found that coarse model resolution introduced systematic biases in runoff, particularly over complex

terrain, thereby limiting the effectiveness of DA. Future research could explore finer spatial resolutions

(e.g., 100 m) to more accurately represent groundwater systems linked to narrow valleys, thereby

minimizing biases caused by coarse spatial discretization and improving DA performance. Furthermore,

the performance of assimilation tends to decline with increasing distance from observation wells, as

localized updates have weaker influence on more remote areas. Potential strategies to mitigate this issue

include applying adaptive localization radii, assimilating spatially distributed datasets (e.g., RS products),

or increasing the number of groundwater wells to enhance spatial coverage. Employing higher spatial

resolution reduces the likelihood of multiple observation wells being located within a single grid cell,

thereby allowing a larger number of wells to be effectively assimilated. It also reduces wet biases in

simulated GWL, decreasing the probability of wells falling within river or near-river grid cells and

thereby increasing the number of observations that can be reliably assimilated. Additionally, this study

does not consider possible systematic err in the observational datasets. In real-world scenarios, multiple
approaches are employed to handle observational biases during DA, including adjustments for scale
mismatches and the use of long-term normalization techniques, as highlighted in earlier research (Zhang
et al., 2016; Reichle et al., 2002; Crow and Van Den Berg, 2010).

The study took place in the Rur catchment, which features a comprehensive and accurate network

of field measurements, including CRNS and groundwater observation sites. These comprehensive

datasets provide a unique opportunity to evaluate the performance of the novel multivariate assimilation

approach within the catchment area. Based on existing information, no other hydrological region offers
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such a reliable and extensive observation network. To broaden the applicability of this approach, future

studies could focus on integrating more widely accessible datasets, such as terrestrial water storage

variations derived from GRACE/GRACE-FO (Tapley et al., 2019: Khaki et al., 2017) or RS-based SM

products (Bayat et al., 2021). Such spatially distributed observations could also help to reduce the decline

in assimilation performance with distance from individual ground-based observations, thereby providing

additional constraints across larger areas. However, these data products are unfortunately too coarse to

resolve hydrological processes in our study area, highlighting the need for higher-resolution observations

for effective local-scale assimilation.

Beyond spatial resolution and observation distribution, Mereover; structural deficiencies in the

model may contribute to persistent uncertainties and further complicate the effective

applicationimplementation of DA with real-world observations. This study performs GWL assimilation
under the simplifying assumption of hydrostatic equilibrium, even thoughdespite-thefaetthat real-world
conditions are considerably more complex. Multiple aquifers can coexist in a vertically layered system,
separated by intervening aquitards. Additionally, fault lines may act as horizontal barriers that disrupt
aquifer continuity, potentially altering groundwater flow patterns and their spatial distribution.
Anthropogenic groundwater withdrawal also significantly affects aquifers. This is particularly evident in
the Rur catchment, where hydrogeological conditions are strongly influenced by water management
practices aimed at preventing water accumulation in open-cast lignite mines (Bogena et al., 2018). These

processes are insufficiently represented in the current model, which contributes to systematic biases and

makes updating necessary. By assimilating GWL data, the model can be better calibrated and its

parameters fine-tuned to reflect observed conditions, thereby improving prediction accuracy while
effectively accounting for the complexities of layered aquifer systems, groundwater withdrawals, and

mining-related disturbances. Nonetheless, the impact of structural model uncertainties on assimilation

performance should be carefully addressed in future research.

This study employs SM data derived from CRNS measurements for assimilation. The effectiveness
of DA relies on the proper calibration of CRNS data and the use of the weighting function for CRNS data
(see Schron et al., 2017). The COSMIC operator (Shuttleworth et al., 2013) allows for the direct
assimilation of neutron intensity data from CRNS. Currently under development within TSMP-PDAF,
this approach is expected to support future DA applications.

The EnKF, originally developed to address nonlinearity in dynamic modeling systems, has

demonstrated effectiveness in coupled terrestrial simulations. This nonlinearity primarily arises from the

complex interdependencies among state variables, such as the coupling between SM and GWL through

pressure head dynamics H

(Camporese et al.,

2009b;-Shi-et-al5—20+44). This inherent nonlinearity complicates the design of multivariate assimilation

schemes. As a result
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for-assimilation—Nenetheless;—determining the most suitable observational inputs and evaluating the
compromises associated with integrating diverse variables into-a-multivariate DA-secheme-continue to

pose major obstacles for upcoming investigations. Potential strategies to enhance multivariate DA
include using different variants of EnKF, combining EnKF with other filtering methods, or implementing
bias-aware filters.

The primary objective of multivariate DA is to enhance the accuracy of both state variables and
associated parameter estimates. This research focused on updating K, identified as a critical parameter

for the subsurface groundwater system. Although the temporal evolution of assimilated states may not

show large differences between experiments with and without K updates, this does not imply that

parameter updating is ineffective. For example, in our experiments, K updates led to reductions in

ubRMSE of more than 10% for both GWL and SM compared with state-only assimilation. However, the

immediate temporal impact of K updates may be limited, partly due to the constrained adjustment range

applied by the fixed damping factor (0.1) and the slow response of groundwater states. Moreover, model

biases are also influenced by other factors, including forcing uncertainty and structural model errors,

which may play a dominant role in the temporal evolution of SM and groundwater states. Nevertheless

parameter-updating experiments improved performance metrics and long-term mean _states,

demonstrating their value in correcting systematic model biases that cannot be fully addressed by state

assimilation alone. Independent validations using the revised K confirmed enhanced predictions of both

GWL and SM. These results highlight the importance of considering both state and parameter updates in

multivariate assimilation frameworks to achieve more reliable hydrologic predictions.

Even though estimating a larger set of parameters is theoretically possible, Brandhorst and
Neuweiler (2023) reported computational stability issues in idealized scenarios when assimilating SM to
estimate subsurface hydraulic properties. As a result, updating the full set of van Genuchten parameters
in practical applications remains challenging. Similarly, Shi et al. (2015) demonstrated through synthetic
experiments that simultaneously estimating multiple soil hydraulic parameters using EnKF becomes
increasingly difficult as the number of parameters grows. Their findings also indicated that incorporating
a broader range of data types can improve the accuracy of subsurface hydraulic parameter estimation.
Therefore, future studies will need to integrate diverse datasets within multivariate assimilation

frameworks to effectively update key parameters in coupled surface-subsurface models, ultimately

enhancing overall model predictive performance.
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6. Conclusions

This study investigated various strategies for assimilating groundwater and CRNS SM data collected
from an extensive observation network into the integrated land surface and subsurface model (CLM-
ParFlow) within a German watershed. The benefits and limitations of usingrelying—on these datasets
independently were compared with those of empleying-multivariate DA methods. A novel multivariate
DA technique is introduced, in which GWL and SM are weakly coupled through separate phases using
the LEnKF, thereby improving update stability. Assimilating groundwater data adjusts the transition
boundary between the vadose and phreatic zones and updates the hydrological states (and potentially
parameters) within the saturated domain. CRNS-derived SM data is used to modify vadose zone
conditions and may also influence its parameterization. A set of 128 realizations was created by varying
both meteorological inputs and subsurface hydraulic parameters. DA simulations were conducted over
the 2016-2018 period. ET data from eddy covariance stations, alongside GWL and SM observations,
served to assess the impact of both univariate and multivariate assimilation on predicting GWL, SM, and
ET. Improvements in model predictions varied across the different DA experiments and years. Generally,
univariate assimilation yielded better accuracy for the assimilated variable; for example, assimilating SM
data reduced the ubRMSE for SM by 50% at measurement sites, while assimilating GWL data decreased
the ubRMSE for GWL by 70% at observation points, nearly 50% at 500 m, and approximately 20% at 5
km. However, assimilating GWL data alone negatively affected SM prediction accuracy, with the 2016-

2018 average ubRMSE increasing by approximately 20%. and-sSimilarly, assimilating SM data alone

reduced the accuracy of GWL estimates, leading to a less than 4% rise in the 2016-2018 average ubRMSE.

Overall, the improvements in the targeted state clearly exceeded the limited deteriorations in the non-

assimilated state, demonstrating the benefit of univariate assimilation. This also highlights the

importance of multivariate approaches for achieving simultaneous improvements in both variables.

The simultaneous assimilation of CRNS SM and GWL observations using the conventional
integrated model framework fails to provide additional benefits beyond those achieved by single-variable
assimilation and, in fact, is considerably less efficient. However, the newly developed multivariate
assimilation method successfully integrates the strengths of individual univariate assimilation models,
thereby enhancing their respective advantages. As a result, the accuracy of variables estimated under the
multivariate scheme closely matches that obtained from single-variable assimilation. In summary, the
combined assimilation of GWL and SM through the novel method offers a clear improvement over
univariate assimilation. Furthermore, improvements in ET estimation are observed only when SM is
included in the assimilation process, whether in univariate or multivariate form. This study highlights the
benefits of jointly assimilating CRNS and groundwater data from observation networks, aiming to
advance terrestrial hydrology modeling within physically based coupled frameworks. Future research
should focus on developing multivariate DA techniques that integrate diverse data sources, such as RS

products and ground-based measurements, to enhance the representation of terrestrial system
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components at finer spatial scales. Achieving this requires exploring the interrelationships among various
variables within coupled modeling frameworks during joint assimilation and designing improved

assimilation strategies to prevent degradation in the accuracy of non-assimilated states.
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