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This is a carefully done study and the findings are of considerable interest. And the submission is worth 

of publication. Following are some minor comments: 

1. The paper presents a novel multivariate data assimilation (DA) framework for integrating cosmic-ray 

neutron sensor (CRNS) soil moisture (SM) and groundwater level (GWL) data into the Terrestrial System 

Modeling Platform (TSMP). The approach is innovative in its use of a weakly coupled DA scheme to 

independently update saturated and unsaturated zones, addressing limitations of fully coupled DA 

systems. However, the manuscript could strengthen its claim of novelty by explicitly comparing the 

proposed method to existing multivariate DA frameworks in other coupled models (e.g., CATHY, Flux-

PIHM, MIKE-SHE, and SWAT-MODLFOW) beyond the brief mentions in the introduction and 

discussion. For example, "Assimilation of Sentinel-Based Leaf Area Index for Modeling Surface-Ground 

Water Interactions in Irrigation Districts" used the integrated model fully coupled DA systems and you 

can cite it to make a stronge fundation for you research. Moreover, the introduction effectively highlights 

the importance of SM and GWL in terrestrial hydrology and the role of DA in reducing model 

uncertainties. However, it could better contextualize the study by discussing recent advancements in 

CRNS technology and its adoption in DA frameworks. For instance, referencing studies like Bogena et 

al. (2022) or Schrön et al. (2017) earlier in the introduction would clarify why CRNS is a superior choice 

compared to traditional in-situ or RS-based SM data. 

Response: We thank the reviewer for these constructive comments and for recognizing the value of our 

study. We have expanded the introduction to provide a more explicit overview of existing multivariate DA 

approaches implemented in coupled hydrological models, including CATHY, Flux-PIHM, and MIKE-

SHE. Reference to related multivariate DA framework in SWAT-MODFLOW has also been added to 

better introduce our approach within existing studies. In the revised manuscript, the introduction now 

includes the following text reviewing existing multivariate DA studies (lines 88-103): 

“Previous studies have applied multivariate EnKF within coupled models like CATHY and Flux-PIHM 

to jointly assimilate multiple observations, including SM, groundwater, discharge, and land surface 

fluxes, demonstrating improved estimates of hydrologic states and parameters (Camporese et al., 2009a; 

Shi et al., 2014; Botto et al., 2018; Shi et al., 2015). Despite being tested primarily on small experimental 

catchments, these multivariate DA frameworks remain computationally intensive and may involve trade-

offs among variables. Some parameters can only be identified under specific hydrological conditions, 

particularly in strongly nonlinear problems involving the unsaturated zones. To overcome these 

challenges, some studies have explored alternative multivariate DA strategies within coupled models. 

Using MIKE-SHE, Zhang et al. (2016) highlighted the importance of spatial and variable-based 

localization in jointly assimilating SM and groundwater head. Yet, its unsaturated flow is still modeled 

in one dimension, limiting full system representation. More recently, Zafarmomen et al. (2024) 

demonstrated that a multivariate particle filter framework assimilating Sentinel-based leaf area index 

(LAI) and streamflow in a coupled SWAT-MODFLOW model improved estimates of vegetation and 
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hydrologic states. However, the loosely coupled model, in which surface and groundwater components 

interact via data exchange, may not fully capture integrated dynamics of saturated and unsaturated zones.” 

Additionally, the discussion section has been extended to compare our proposed weakly coupled 

multivariate DA framework with these previous studies, highlighting the novel aspects and strengths of 

our method. The revised text reads as follows (lines 694-703): 

“In multivariate DA, previous studies have shown that challenges persist despite methodological 

advances. Shi et al. (2015) combined model states and global calibration coefficients into a high-

dimensional joint vector, requiring covariance relaxation, conditional covariance inflation, and quality 

control to prevent filter divergence and ensure physical plausibility. Zhang et al. (2016) employed 

distance and variable localization to control spurious correlations in joint SM and groundwater head 

assimilation, but this approach relies on manually defined rules and may lose physically meaningful 

cross-variable information. Botto et al. (2018) applied normalization to measurement error covariance 

matrices and addressed simulated data anomalies and innovation vectors to prevent ill-conditioning of 

the Kalman gain. While these measures ensure numerical stability, they require careful manual scaling 

of each variable.” 

We have also revised the introduction to better highlight recent advancements in CRNS technology and 

its integration into data assimilation frameworks, citing relevant studies (e.g., Schrön et al., 2017; 

Bogena et al., 2022). These revisions clarify why CRNS provides superior soil moisture observations 

compared to conventional in-situ and RS-based measurements and explain why CRNS was chosen as the 

data source in our assimilation framework. This revised text has been added in the manuscript (lines 64-

76) and is detailed below: 

“As an alternative, Cosmic-Ray Neutron Sensors (CRNS) (Zreda et al., 2008) provide reliable, non-

invasive SM estimates at the field scale (~18 ha), with deeper penetration (~80 cm) and reduced bias 

compared to RS products (Zreda et al., 2012; Köhli et al., 2015; Bogena et al., 2022). Recent advances 

in CRNS techniques, including improved footprint characterization and revised calibration strategies, 

have substantially enhanced its robustness (Franz et al., 2013; Köhli et al., 2015; Schrön et al., 2017). As 

a result, CRNS data have been adopted in diverse applications such as hydrology, snow and vegetation 

monitoring, and land surface modeling (Fersch et al., 2020; Dimitrova-Petrova et al., 2021; Bogena et 

al., 2022). With the establishment of long-term monitoring networks, CRNS data have also been 

increasingly integrated into DA frameworks (Baatz et al., 2017; Cooper et al., 2021; Patil et al., 2021). 

By bridging the scale gap between point measurements and model grids, CRNS serves an effective data 

source in DA frameworks, thereby reducing model uncertainties and enhancing the reliability of 

terrestrial hydrology simulations (Shuttleworth et al., 2013; Han et al., 2015; Baatz et al., 2017; Mwangi 

et al., 2020).” 

 

2. The description of the Rur catchment and data sources (Section 2.1 and 2.3) is thorough, but the 

rationale for selecting specific CRNS sites and GWL wells is not fully explained. For example, why were 

only 78 out of 616 wells used for DA, and how was the median GWL selection criterion determined? A 



brief justification of these choices would enhance transparency. 

Response: We thank the reviewer for highlighting the need to clarify our data selection criteria. To ensure 

the reliability and representativeness of groundwater level (GWL) observations for assimilation, we 

applied multiple selection criteria to wells across the study area. Selected wells were required to have 

GWL observations at depths of 0-20 m within the unconfined upper aquifer, provide at least monthly 

records during the assimilation period, and should not be located in persistently saturated or river-

adjacent grid cells. In addition, when multiple wells were located within a single model grid cell, the 

well with the median GWL was selected as representative. From a groundwater modeling and 

parameterization perspective, this ensures that the assimilated observation reflects typical conditions 

within the grid cell and provides a stable and representative input for data assimilation, while wells with 

consistently higher or lower GWL may represent extreme or unrepresentative conditions and could 

introduce biases if used. The median GWL is therefore a robust choice for assimilating state variables 

and model parameters. Following these criteria, 78 wells were selected for data assimilation, and the 

remaining wells were reserved for independent validation. A brief explanation of these selection criteria 

has been added to Section 2.3.3 (Field Measurements of Soil Moisture, Groundwater, and 

Evapotranspiration) in the revised manuscript (lines 213-225) to clarify our data selection criteria. 

"Groundwater table depth data for assimilation and independent validation were obtained from the 

Geoportal NRW platform (www.geoportal.nrw, accessed May 2, 2025). Given the weak hydraulic 

connectivity between the RZSM and the deep confined aquifer, this study focused on assimilating data 

from the unconfined upper aquifer. Wells selected exhibited observation depths between 0 to 20 meters 

and supplied records with at least monthly observations. In total, 616 wells met these criteria during the 

2016-2018 period (Fig. 1). Due to the 500 m model resolution and the spatial clustering of observation 

wells near rivers, multiple wells were often located within a single grid cell or within river cells. To 

ensure representative observations for assimilation, the median GWL was chosen among multiple wells 

within a grid cell to minimize potential biases from unusually high or low groundwater levels. 

Additionally, grid cells adjacent to stream networks were excluded from the assimilation process, as 

persistent saturation in these areas caused large discrepancies with observed values. Accordingly, wells 

situated in river grid cells were excluded from the assimilation. Following these screening procedures, 

78 wells were selected for DA, while the remaining 465 wells were reserved for independent validation." 

 

3. The results section provides a comprehensive analysis of ubRMSE, RMSE, and correlation 

coefficients across multiple experiments. However, the focus on ubRMSE as the primary metric is not 

fully justified. While ubRMSE accounts for bias, a discussion of why it is prioritized over RMSE or other 

metrics (e.g., mean absolute error) would clarify its relevance. 

Response: In this study, three performance metrics, ubRMSE, RMSE, and R were calculated. ubRMSE is 

highlighted in the manuscript because it is commonly used in the remote sensing DA literature, which 

facilitates comparison with existing studies. Focusing on a single metric in the main text also helps avoid 

redundancy. RMSE and R are also reported in Supplementary Tables to provide a comprehensive 
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assessment of model performance. Section 3.3 (Model Performance Assessment, lines 380-382) has been 

revised to clarify this motivation. 

“Among these, ubRMSE was emphasized in our analysis because it is widely applied in DA research and 

facilitates comparison with previous studies. To avoid redundancy, detailed results for RMSE and R are 

presented in the Supplementary Tables to ensure a comprehensive evaluation of model performance.” 

 

4. The discussion compares the proposed method to Hung et al. (2022) and Zhang et al. (2016), but it 

could be expanded to include other multivariate DA studies (e.g., Botto et al., 2018; Shi et al., 2015) to 

highlight how the weakly coupled approach addresses their limitations. For instance, how does the 

proposed method mitigate the issue of spurious correlations noted in Zhang et al. (2016)? 

Response: We thank the reviewer for this valuable suggestion. We have expanded discussion to include 

Botto et al. (2018) and Shi et al. (2015) to highlight limitations of previous multivariate DA, which can 

propagate observation errors and generate spurious correlations, as noted by Zhang et al. (2016). In 

contrast, our weakly coupled DA scheme updates variables sequentially, applying variable-specific 

spatial localization to restrict cross-variable influence to physically meaningful scales. This approach 

reduces spurious correlations and maintains physically consistent interactions. The revised manuscript 

now includes this extended discussion (5.1 Benefits and Challenges of the New Multivariate Data 

Assimilation Framework, lines 694-718). 

“In multivariate DA, previous studies have shown that challenges persist despite methodological 

advances. Shi et al. (2015) combined model states and global calibration coefficients into a high-

dimensional joint vector, requiring covariance relaxation, conditional covariance inflation, and quality 

control to prevent filter divergence and ensure physical plausibility. Zhang et al. (2016) employed 

distance and variable localization to control spurious correlations in joint SM and groundwater head 

assimilation, but this approach relies on manually defined rules and may lose physically meaningful 

cross-variable information. Botto et al. (2018) applied normalization to measurement error covariance 

matrices and addressed simulated data anomalies and innovation vectors to prevent ill-conditioning of 

the Kalman gain. While these measures ensure numerical stability, they require careful manual scaling 

of each variable.  

In contrast, the weakly coupled DA scheme adopted in this study updates states and parameters 

sequentially, with each variable employing its own spatial localization and independent updates. This 

allows saturated zone pressure to be updated using GWL observations, while SM estimates in the 

unsaturated zone are adjusted based on CRNS-derived measurements. The use of variable-specific 

localization parameters further improves the representation of their distinct spatial characteristics, 

reduces the influence of spatially distant uncertainties, and limits unphysical information propagation. 

Importantly, this framework achieves these benefits without requiring extensive manual tuning or high-

dimensional corrective procedures, which are often needed in traditional multivariate DA approaches. 

Additionally, asynchronous assimilation enables different update intervals for each variable: SM, which 

varies rapidly, is typically updated daily, whereas groundwater, with slower dynamics, is updated weekly. 



This approach allows coupled models to better accommodate the differing timescales of fast-evolving 

and slowly changing processes and to assimilate multiple variables from diverse data inputs. These 

characteristics enhance the robustness and reliability of the assimilation framework in real-world 

catchments, where observations are spatially heterogeneous and hydrological processes operate across 

multiple timescales.” 

 

5.Terms like “weakly coupled DA” and “fully coupled DA” are used consistently but may confuse 

readers unfamiliar with DA jargon. 

Response: We thank the reviewer for this helpful comment. To improve clarity for readers unfamiliar with 

data assimilation terminology, we have added explicit definitions and explanations of the terms “weakly 

coupled DA” and “fully coupled DA” in the section 2.4 (Localized Ensemble Kalman Filter for Data 

Assimilation). The revised manuscript now includes the following explanations to clarify these terms 

(lines 295-308): 

“Earlier research by Zhang et al. (2018) showed that in TSMP, assimilating SM and/or GWL enables 

updates to all relevant subsurface states via DA. In this fully coupled DA configuration of Zhang et al. 

(2018), cross-variable covariances ensured that observations of one variable (e.g., SM) could directly 

adjust others (e.g., GWL). Later, Hung et al. (2022) applied GWL assimilation restricted to the saturated 

zones and demonstrated that this approach outperformed the fully coupled strategy of Zhang et al. (2018). 

In this study, we develop a new weakly coupled DA scheme that introduces separate update restrictions 

for each observation type: GWL observations are used to update only saturated cells, while SM 

observations are used to update only unsaturated zones. This design minimizes potential spurious cross-

variable correlations and enhances the robustness of multivariate assimilation. Additionally, updates are 

applied asynchronously to account for the different temporal dynamics of the variables: SM, which 

changes more rapidly, is typically updated daily, whereas groundwater, with slower dynamics, is updated 

weekly. Furthermore, unlike previous DA studies of TSMP, which generally used the same localization 

radius for joint GWL and SM assimilation, our approach applies different localization radii for the two 

variables, accounting for their distinct spatial correlation characteristics.” 
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