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Abstract. Systematic errors in dynamical climate models remain a significant challenge to accurate climate predictions, par-
ticularly when modeling the nonlinear coupling between the atmosphere and eeeansocean. Despite notable advances in dy-
namical climate modeling that have improved our understanding of climate variability, these systematic errors can still degrade
predietive-prediction skills. In this study, we adopt a twin experiment framework with a reduced-order coupled atmosphere-
ocean model to explore the utility of machine learning in mitigating these errors. Specifically, we train a data-driven model on
data assimilation increments to learn and emulate the underlying dynamical climate model error, which is then integrated with
the dynamical climate model to form a hybrid systemmodel. Comparison experiments show that the hybrid model consistently
outperforms the standalone dynamical climate model in predicting atmospheric and oceanic variables. Further investigation
using hybrid models that correct only atmospheric or only oceanic errors reveals that atmospheric corrections are essential for
improving short-term fereeastspredictions, while concurrently addressing both atmospheric and oceanic errors yields superior

performance in long-term climate prediction.

1 Introduction

Climate prediction aims at predicting the future state of the climate system based on the initial conditions and external forcings
(e.g., greenhouse gases and aerosols) covering various lead times from seasons to decades (Merryfield et al., 2020). It helps

scientists, policymakers, and communities in understanding potential risks and impacts. It differs from climate projections that
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focus primarily on capturing long-term climate trends and patterns from several decades to centuries by anticipating changes
in external forcings and their impact on the climate system.

Dynamical climate models, such as atmosphere-ocean coupled general circulation models, have been widely used for climate
predictions (e.g., Doblas-Reyes et al., 2013b; Boer et al., 2016). Uncertainties in initial conditions fed to dynamical climate
models and model errors are two critical sources that limit the prediction skill of dynamical climate models. To reduce the
uncertainties of initial conditions, climate prediction centers (Balmaseda and Anderson, 2009; Doblas-Reyes et al., 2013a) have
been evolving towards the use of data assimilation (DA, Carrassi et al., 2018) which combines observations with the dynamical
climate models to estimate best-the-state-the best initial conditions of the climate systemprediction (Penny and Hamill, 2017).
Model errors can arise from a variety of sources, including model parameterizations (Palmer, 2001), unresolved physical
processes (Moufouma-Okia and Jones, 2015), and numerical approximations (Williamson et al., 1992). Despite substantial
efforts to improve dynamical climate models, these errors remain notably large (e.g., Richter, 2015; Palmer and Stevens, 2019;
Richter and Tokinaga, 2020; Tian and Dong, 2020).

There is a growing interest in utilizing machine learning (ML) techniques to address errors in the-dynamieal-a dynamical
climate model. ML can be employed to construct a data-driven predictor of model errors, which can then be integrated with
the dynamical climate model to create a hybrid statistical-dynamical model (e.g., Watson, 2019; Farchi et al., 2021a; Brajard
et al., 2021; Watt-Meyer et al., 2021; Bretherton et al., 2022; Chen et al., 2022; Gregory et al., 2024).

Some notable studies

focused on methodological developments within low-order or simplified coupled models operating in an idealized framework
where the ground truth is known. For example, Farchi et al. (2021a) investigated two approaches in a two-scale Lorenz model,
both of which are potential candidates for implementation in operational systems. One approach involves correcting the so-
called resolvent of the dynamical climate model (i.e., modifying the model output after each numerical integration of the
model). The other approach entails adjusting the ordinary or partial differential equation governing the model tendency before
the numerical integration of the model. Similarly, Watson (2019) examined the tendency correction approach in the Lorenz 96
model. Brajard et al. (2021) explored the resolvent correction approach in the two-scale Lorenz model as well as in a low-order

coupled atmosphere-ocean model called the Modular Arbitrary-Order Ocean-Atmosphere Model (MAOOAM, De Cruz et al.,

2016). Their study aimed to infer the model errors associated with unresolved processes within the dynamical medelJtn-these

predietions-is-obtained-(Wang-et-al;2019)Te-ourknowledge-climate model. While Brajard et al. (2021) conducted prediction
experiments using perfect initial conditions, more recent studies such as Farchi et al. (2023) examined the performance of hy-

brid models unde verfectin

efforts to incorporate more realistic settings, hybrid models are still frequently evaluated under idealized conditions in which
the initial state, taken from the same model as the reference, is assumed to be perfectly known.

(e.g., Watson, 2019; Brajard et al., 2021; Farchi et al., 2021a, 2023)
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Several other investigations

have-tested ML-based error correction methods in realistic weather-orclimate-models—However—in-thereal-framework—the

petentialnumerical weather prediction (NWP) (e.

- Bonavita and Laloyaux (2020) demonstrated that ML can emulate model error corrections derived from weak-constraint
4D-Var in ECMWF's Integrated Forecasting System (IFS), highlighting the potential of ML to systematically reduce model
errors throughout the atmospheric column. Watt-Meyer et al. (2021) used random forests trained on EV3GES nudging tendencies
to_correct model tendencies, achieving stable year-long runs and improved short-term forecasts for 500 hPa height, surface
pressure, and near-surface temperature. Bretherton et al. (2022) corrected coarse-grid model errors by applying ML-learned
temperature and humidity tendencies from a high-resolution reference, significantly improving prediction skills and precipitation.

atterns. Chen et al. (2022) used ML to learn the the analysis increments (i.e., the differences between the analysis and background, Evensc

and correct state-dependent model errors in NOAA’s FV3-GFS. The online application of these corrections during model

integration led to enhanced DA performance and improved 10-day predictions. Grego

framework that employs convolutional neural networks trained on sea ice concentration (SIC) assimilation increments, leadin
to improved five-year sea ice simulations. Most recently, Farchi et al. (2025) implemented an ML-based model error correction
scheme within ECMWEF’s operational IFS. Their results indicated that offline-trained networks can already offer robust corrections,

while online updates further enhance adaptability under diverse conditions. However, the potential benefits of ML-based model
error correction for climate prediction within-an-idealizedframework—Ourprimary-objectiveis-to-explore-how-the-combinatio

of-across different time scales remain largely unexplored. This is primarily due to the data-driven—errorpredictor-and-the

' sparsity of long-term observational records (such as those spanning the 20th century) in both time and space, which
presents significant challenges for developing effective ML-based error correction models for climate prediction applications.
In this study. we investigate the potential of ML-based model error correction for climate prediction within an idealized
framework, To this end, we adopt the hybrid modeling approach introduced by Brajard et al. (2021), which is based on
MAOQOAM. The ML-based error correction model aims to learn and correct dynamical climate model errors using analysis
increments, Unlike Brajard et al. (2021 Farchi et al., 2023
» which better reflect realistic prediction scenarios (Wang et al., 2019; Bethke et al., 2021). Specifically, we examine how the
effectiveness of ML -based error correction varies across different climate time scales. Moreover, given that the respective roles
of atmospheric and oceanic errors in limiting climate predictability are not fully understood. we assess the relative contributions
of these components to the overall prediction error.

we conduct ensemble predictions with imperfect initial conditions

., Bonavita and Laloyaux, 2020; Watt-Meyer et al., 2021; Bretherton et al., 2022; Chen

et al. (2024) developed a hybrid dynamical—
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The article is organized as follows: Seetion-section 2 introduces the main methodological aspects of the study. Section 3
shows the prediction skill of the hybrid model compared with the dynamical climate model and discusses factors affecting the

prediction skill of the hybrid model. Finally, a brief concluding summary is presented in section 4.

2 Methodology

In this study, we restrict our scope to model errors stemming solely from coarse resolutions in the atmospheric component. In
this section, we describe the model (section 2.1), DA technique (section 2.2), and the ML approach (section 2.3). Rather than
focusing on methodological developments, our goal is to examine how the advantages of ML-based error correction evolve
in time in the context of climate prediction and to determine which errors should be corrected at different timescales. Further

details in experiments are provided in section 2.4.
2.1 Modular Arbitrary-Order Ocean-Atmosphere Model

We utilize MAOOAM developed by De Cruz et al. (2016) in our study. MAOOAM consists of a two-layer quasi-geostrophie
{QG-QG atmospheric component coupled with a QG shallow-water oceanic component. The coupling between these compo-
nents incorporates wind forcings, and-radiative and heat exchanges, enabling it to simulate climate variability. MAOOAM has
been widely employed in qualitative analyses for various purposes (e.g., Penny et al., 2019; Brajard et al., 2021). Moreover,
MAOOAM’s numerical efficiency allows us the-exeeution-ofto execute numerous climate prediction experiments at a relatively
low computational cost.

In MAOOAM, the model variables are represented in terms of spectral modes. Specifically, d,, (d,,) represents the x-
direction resolution, and d, (doy) represents the y-direction resolution in the atmosphere (ocean). The model state comprises
Ng (Mg = day(2daz+1)) modes of the atmospheric streamfunction 1, and temperature anomaly 0, as well as 1, (o = doydox)

modes of the oceanic streamfunction 1, and temperature anomaly 6,. Consequently, the model state can be expressed as:

X = (%,17%,2, --wwa,nuaea,laea,%~--70a,na7wo,17¢o,27 ---awo,nweo,heo,%-~-;90,n0) (1)

The total number of variables in the model state is 2n,, + 2n,. His-Note that n, is typically larger than n,, reflecting the distinct

characteristics of the two components in MAOOAM. The atmosphere exhibits faster dynamics and smaller-scale variabilit
necessitating a greater number of modes to adequately capture its behavior. In contrast, the ocean evolves more slowly and is
dominated by larger-scale processes, which can be effectively represented using fewer modes (De Cruz et al., 2016). It is also

important to note that variables with lower indices correspond to low-order (large-sealelarge-scale) processes, while variables

with higher indices correspond to high-order (small-sealesmall-scale) processes. One-of-the-key-features-of MAOOAM-is-its
ability-to-medify-Like many other models formulated in spectral space, MAOOAM offers flexibility in adjusting the number of

atmospheric and oceanic 1 torvariables

by simply modifying the model resolution in spectral space.
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Figure 1. The-attractors-in-speetral-space-for-{a)-Time series of the true model +M56-and-(bred lines) and the dynamical climate model (green
lines) for three key variables: M36(a) 14,1, (b) 1.2, and (¢) 0, 2.

115 In this study, we utilize two different configurations of MAOOAM: one denoted as M56 and the other as M36. The M56
configuration comprises a total of 56 variables, with 20 atmospheric modes (n, = 20) and 8 oceanic modes (n, = 8). Specifi-
cally, the atmosphere in M56 operates at a 2x-4y (i.e., dq; = 2 and dg, = 4) resolution, and the ocean operates at a 2x-4y (i.e.,
doz = 2 and d,y = 4) resolution. On the other hand, FThe-the M36 configuration includes 36 variables, with 10 atmospheric
modes (n, = 10) and 8 oceanic modes (n, = 8), identical to M56. The atmospheric component in M36 operates at a 2x-2y

120 resolution (dq; = 2, dgy = 2), while the ocean component matches that of M56. Figure ??-displays-the-attractors-of-the-1
displays time series of three key variables in eur-the true model M56 and eur-dynamieal-the dynamical climate model M36 in

the-spectral space, shewingthey-evelve-differently-illustrating their different evolution patterns (De Cruz et al., 2016).
It is important to note that the key distinction between M36 and M56 lies in the atmosphere, where M36 has a reduced

number of atmospheric modes, specifically 10 mede-tess-modes fewer than M56 in the y-direction. This difference leads to
125 a lack of higher-order atmospheric modes in M36, thereby unable to capture small-scale variability. The atmospheric error
in the y-direction propagates to the atmosphere in the
x-direction and the ocean component through the coupling terms in the equations. Consequently, the primary source of model
error in this study is attributed to the coarse resolution of atmospherie-part-of-the-modelthe atmospheric component in the

130 2.2 Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) is a flow-dependent and multivariate DA method and has been implemented for climate

e.g., Zhang et al., 2007; Karspeck et al., 2013; Wang et al., 2
. The EnKF constructs the background error covariance from the dynamical ensemble. The utilization of an ensemble-based

prediction

error covariance ensures that the assimilation updates approximately respect to the model dynamics, thereby mitigating assim-

135 ilation shocks (Evensen, 2003).



In—this—study——we—utilize-All experiments in this study are conducted using the DAPPER package (Raanes, 2018)fer
conducting-all-experiments;-as-, The overall experimental setup is described in section 2.4 and depicted in Fig. 2. Specifically,
we employ the finite-size ensemble Kalman filter (EnKF-N) method proposed by Bocquet et al. (2015). This method reduecing
140 reducing the need for extensive manual tuning and enhancing the performance of the assimilation experiments;-espeetatly-in

ease-of-the-presence-of model-errorwhich-we-de-inour-setting. It is worth mentioning that we expect no significant alterations

in the conclusions of this paper when using the traditional EnKF methods instead of EnKF-N.

2.3 Artificial Neural Network Architecture

We consider the dynamical climate model (described in section 2.1) in the following form:
145 Xyy1 = M(Xk), 2)

where xy 1 represents the full model state at ¢ 1, Xi represents the full model state at ¢;, and M represents the dynamical

climate model integration from time ¢, to ¢;41. The model error at time ¢34 is defined as:

t
Ek4+1 = X1 — Xk+1, 3

where xj_, ; represents the true state at time ¢, ;.
150 We aim to use ANN to emulate the model error ¢ 1. Since the truth is not known in practice, the training of ANN is-using
uses the analysis increments produced by the EnKF (Gregory-et-al52024)-(Brajard et al., 2021; Farchi et al., 2021b; Gregory et al., 2024)

. The architecture of ANN used in this study consists of four layers:

The input layer includes a batch normalization layer (Ioffe, 2017), which helps to regularize and normalize the training

process.

155

The second layer is a dense layer with 100 neurons. It applies the rectified linear unit (ReLU) activation function, which

introduces non-linearity into the network.

The third layer has the same configuration as the second layer, with 50 neurons and ReL U activation function.

The output layer, which is a dense layer with a linear activation function and produces the final predictions, is optimized

using the “RMSprop” optimizer (Hinton et al., 2012) and includes an L2 regularization term with a value of 10~

160 During training, the ANN model is trained with a batch size of 128 and for a total of 300 epochs.

The error surrogate model can be expressed as follows:

Epp1 = Mann(Xi), 4)

where M ANy represents the data-driven model built by ANN and ¢}, , represents the model error estimated by ANN. The full

state at time ¢, of the hybrid model can be expressed as follows:

165 Xp,q = M(XK) + Mann (Xk) ®
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Figure 2. Schematic of experiments.

2.4 Experimental-Experiment settings

We present the experimental setup in Fig. 2. The experiments are conducted using two configurations of MAOOAM, as de-
scribed in section 2.1. The configuration with 56 variables (M56, section 2.1) represents the true climate system, while the
configuration with 36 variables (M36, section 2.1) represents a dynamical climate prediction system. The experiments de-

170 picted in Fig. 2 are performed as follows:

— We integrate the M56 configuration with a time step of approximately 1.6 minutes for a spin-up period of 30726.5 years,
as specified in De Cruz et al. (2016). Following the spin-up period, we continue the simulation for an additional 249
years, which we refer to as the “truth". To generate observations, we perturb the “truth" state using a Gaussian random
noise. The standard deviation (™) of the noise is set to 10% of the temporal standard deviation of the true state &
175 (x*) after subtracting the one-month running average. Observations are generated atintervals-of-approximately-every 27
hours in spectral space, while the observation operator H is the identity operator (H = I) and is also applied in spectral
space.

— We assimilate synthetic observations into the dynamical climate model (M36) and generate a-—reanalysis-analysis with
50 ensemble members over the same period ef-as the truth. The initial conditions of the ensemble are randomly sampled

180 from a long free-run simulation of M36 after the spin-up period.
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— We generate several sets of ensemble predictions with the dynamical climate model (M36) or the hybrid model. The
prediction experiments start in each second year from the year 125 to the year 185, with each prediction lasting for 60
years. Each prediction consists of 50 ensemble members. The initial conditions for these ensembles are taken from the

analysis (Fig. 2).

Note that both the observations and DA are conducted in the spectral space. Accordingly, the hybrid model is developed within

the spectral space.
We split the analysis into two parts:

— Training data: The former 124.6 years of the dataset are used to train the ANN parameters to build the hybrid model
(Fig. 2).

— Test data: The latter 124.6 years of the dataset are used to initialize prediction experiments (Fig. 2).

' ining; -outlined in Brajard et al. (2021), the ANN parameters in this study are trained only.
once, without any modifications throughout the training process by using a separate validation set. We examined the loss curves

-eonfirmed-(not shown in this study) to assess the training behavior.
The loss curves provided evidence that the network continued-to-improve-was continuing to learn without signs of overfitting
throughout the training processwithettsigns-ef-overfitting-(not shownin-the paper)—.

Brajard et al. (2021) focused on developing the hybrid model methodology; our study aims to explore the evolution of
prediction skill as a function of lead time. We assess the prediction skill over a wider range of lead times, specifically up
10,50 days for atmospheric variables and up to 60 years for oceanic variables. By examining the skill at various lead times, we
can gain insights into the temporal evolution and long-term performance of the hybrid model, providing a more comprehensive

understanding of its capabilities and limitations. To do so, our experimental setup is different from that of Brajard et al. (2021)

in the following ways:

— We extended the simulation time to 219.2 years, while Brajard et al. (2021) generated an analysis dataset spanning 62
years for training, validation and testing, We divided our analysis dataset into two distinct parts: one for training the ANN
and the other for testing purposes. This separation allows us to independently evaluate the performance of the trained
ANN using data that was not used during the training phase.

— Our experiments utilize the analysis as initial conditions, while Brajard et al. (2021) uses perfect initial conditions (i.¢..
the truth) to initialize predictions. This choice reflects a more realistic scenario, as perfect knowledge of initial conditions
is rarely available in the real framework. By using the analysis as initial conditions, we aim to capture the practical
challenges associated with imperfect knowledge of the initial state in climate prediction.
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— Our study incorporates an ensemble prediction strategy with 50 members, while Brajard et al. (2021) performed predictions

using a single member (i.e., deterministic prediction). In the climate prediction community, probabilistic predictions

based on ensembles are widely recognized. Ensembles provide a valuable means of quantifying uncertainty in climate
redictions by generating multiple realizations rather than a single deterministic prediction.

2.5 Validation metrics

To evaluate the prediction skill of each variable, we employ the correlation and root mean square error (RMSE) skill score

(RMSE-SS), which are commonly used metrics in weather forecasting and climate prediction. The correlation is defined as:

iy (i =) (yi — 7) ZZV (i —7)(yi — 9)
Vi (@ = 2)2 30 (yi — \/Z (z; — 7) Zil(yi_g)z’

Correlation =

(6)

where x represents the prediction (ensemble mean) and y represents the truth. #-1V is the total number of prediction experiments

and is equal to 30 (section 2.4).
The RMSE is calculated as follows:

RMSE = @)

where x represents the prediction (ensemble mean), y represents the truth, and /N is the total number of prediction experiments.
The RMSE-SS compares the rootmean-square-error-(RMSE-)-RMSE of the prediction to the RMSE of a persistence prediction.
It is defined as:

RMSEprediction

RMSE-SSRMSE-SS=1— ————,
T RMSEpersistence

®)

where RMSEprcdiction represents the RMSE between the prediction (ensemble mean) and the truth and RMSEergistence
represents the RMSE between a persistence prediction (where the state remains the same as the initial conditions) and the
truth. A positive RMSE-SS indicates that the prediction outperforms the-persistence and demonstrates skill. On the other hand,
a negative RMSE-SS indicates that the prediction performs worse than the persistence and lacks skill.

By utilizing the correlation and RMSE-SS, we can assess and compare the skill of the predictions generated by the dynamical
climate model and the hybrid model across different variables within the same panel, as shown in Fig. 4(correlation)-and-Fig-
PHRMSE-SS)—.

To assess the W significance of the correlation and RMSE- SSfe%u}t%—weemp}eyL _we perform a two-tailed Student’s
t-test —Fhi i i

the p-value. For the correlation, the null hypothesis is that the correlation is not significantly different from zero, implying no
relationship between the predictions and truth. For RMSE-SS, we perform a hypothesis test to determine whether the squared
errors (SE) from the prediction and persistence methods differ significantly. We compute the SE and use a two-tailed t-test to
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assess whether they are significantly different. Assuming sufficiently large sample sizes, the difference between the mean SEs
can be approximated as normally distributed:

2

2
Sprediction Spersistence

_|_

)
N, prediction N, persistence

MSEprediction - MSEpersislence ~ N 0,

.. are the sample variances of the squared errors, and Nyedictions Vpersis are the correspondin

sample sizes. The resulting p-value represents the probability of observing the given difference (or larger) under the null
hypothesis. A p-value below 0.05 is considered statistically significant, indicating that the prediction and persistence methods

exhibit meaningfully different error characteristics.
To estimate the uncertainties of the-correlation and RMSE-SS, we utilize the bootstrap method. We randomly select, with

replacement, 30 data points from the 30 prediction experiments and calculate the correlation and RMSE-SS based on this

sampled data. This procedure is repeated 10,000 times, resulting in a sample of 10,000 correlation and RMSE-SS values. The

standard deviation of this sample is then used to estimate the uncertainties associated with the correlation and RMSE-SS. By
conducting the t-test and utilizing the bootstrap method, we can obtain a more comprehensive understanding of the significance

and reliability of the correlation and RMSE-SS values obtained from the prediction experiments.

Wang et al., 2019) or annual averages (Boer et al., 2016; Bethke et al., 2021

are often used because time averaging reduces the impact of chaotic weather variability, making the underlying climate signals
more apparent. They also better meet the practical needs of sectors such as agriculture and energy, where planning is often based
on mean conditions. In contrast, predicting higher-order statistics accurately remains challenging due to model limitations
and computational costs, particularly when high-resolution Earth system models are required. Nevertheless, there is growing
interest in representing complex statistical properties to improve the prediction of extreme events and support climate risk
assessments.

To evaluate prediction skill across different time scales, we apply two complementary strategies. For short-term predictions,
instantaneous outputs sampled every 27 hours are used to represent daily variations. For long-term predictions, model outputs
are averaged annually to assess the ability to capture low-frequency variability.

In climate prediction, time-mean quantities such as monthl

3 Results
3.1 Prediction skill

The distinction between short-term (daily) and long-term (yearly-averaged) prediction scales in this study is based on the

fundamentally different error growth characteristics of atmospheric and oceanic variables. As illustrated in Fig. 3, atmospheric
variables exhibit rapid error amplification, with a doubling error time of approximately one day and saturation occurring within
about ten days. In contrast, oceanic variables demonstrate much slower error growth, with errors roughly doubling over the
first year and continuing to grow gradually over the subsequent decade.

10
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Figure 3. RMSE of dynamical prediction as a function of lead time for three key variables in spectral space: (a) ¥q.1, (b) ¥, 2, and (c) O, 2.

The atmospheric variable (1)4.1) is evaluated based on instantaneous outputs sampled every 27 hours, while the oceanic variables (1, 2 and

0,.2) are evaluated using yearly averages. Shading indicates one standard deviation, representing the uncertainty of prediction skill, estimated

using the bootstrap method. The vertical dashed lines represent the time of doubling error.

Within the coupled model framework, the hybrid model is developed to enhance prediction skill across both short-term
and long-term timescales. To evaluate its performance, we adopt 50-day and 60-year prediction horizons as representative
benchmarks for the subseasonal-to-seasonal and decadal prediction regimes, respectively. The 50-day prediction reflects the
model’s capability in capturing fast-evolving atmospheric processes, while the 60-year prediction assesses its capacity to
maintain predictability over longer oceanic timescales.

Figures 4a and ??a-4c show respectively the correlation and RMSE-SS of the dynamical climate model for both atmospheric

temperature 6, and streamfunction 1, in the spectral space. We find that the variables in low-order atmospheric modes, such
as Yq,2, Ya 3, a2 and 6, 3, have significant prediction skills over 10 days. While most variables in high-order modes have
significant skills within a few days, some do not have prediction skills all the time (i.e. ¥4 9, ¥q4,10 and 0, 10). Figures 4b and
2?b-4d show the correlation and RMSE-SS of the hybrid model for atmospheric variables. For atmospheric temperature, the
hybrid model is skillful for up to 50 days for most modes (Fig. 4b), with a significant reduction in prediction error beyond
ten—10 days for most modes (Fig. 2?b4d). For atmospheric streamfunction, the hybrid model is skillful in predicting low-
order atmospheric modes for up to 50 days and high-order modes for up to 15 days. Overall, the hybrid model has higher
correlations and RMSE-SS than the dynamical climate model for atmospheric variables. And the hybrid model exhibits greater
improvements in lower-order modes compared to higher-order modes (FigFigs. 4aand-, 4b, Fig—2?a-and-2?b4c, and 4d).

d n o ha davs atals D ’ 2 no d : S : EQES
G O =T o= 5)0 SO0 pTo O prca O L 2 O v ST

Figures—4e-and-2?e-Figures 4e and 4g show the correlation and RMSE-SS of the dynamical climate model for oceanic
temperature and streamfunction. Since the ocean has-exhibits slower variability than the atmosphere, the-dynamieal-model

11
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Figure 4. Correlation and RMSE-SS as a function of the prediction lead time for different variables. (a,ee) The correlation between the

dynamical climate model and truth. (c,g) The RMSE-SS between the dynamical climate model and truth. (b,df) The correlation between
the hybrid model and truth. (d,h) The RMSE-SS between the hybrid model and truth. The atmospheric variables are calculated based on

daily data, while the oceanic variables are based on annual average data. The black dot indicates the correlation does not exceed the 95%

significance test.

has-significant-predietion—skills-we compute annual means for oceanic variables to evaluate the model’s prediction skill on

interannual timescales. The dynamical climate model demonstrates significant prediction skill for up to 60 years in oceanic tem-
perature in-mest-moedesand-across most modes, and in oceanic streamfunction in seme-certain modes. Overall, odd-numbered

modes exhibit higher predietive-prediction skill than even-numbered modes, related to our experimental design (i.e., the dif-
ference in atmospheric y-direction mode resolution between M56 and M36). In addition, the oceanic temperature is more
predictable than the oceanic streamfunction in the spectral space. Figures 4d-and-22d-f and 4h present the prediction skills
of the hybrid model. The hybrid model has significant prediction skills in both oceanic temperature and streamfunction in all
modes for up to 60 years. It is worth noting that the hybrid model has higher correlations and RMSE-SS than the dynamical
climate model, in particular, for oceanic temperature in the first and last modes and oceanic streamfunctions in some modes in
which the dynamical climate model has no prediction skill at all (e.g., ¢s2-ard955100,2 and Y, ¢).

To further demonstrate the advantages of the hybrid model, we use a ten-day-10-day lead time for atmospheric variables
and a ferty-year-40-year lead time for oceanic variables as examples to show the prediction skills of the hybrid model in the
physical space (Fig. 5 and Fig. 6forcorrelation; Fig—22-and-Fig—22for RMSE-SS).

For atmospheric variables, both atmospheric streamfunction and temperature exhibit similar spatial characteristics (Figs-
Sand-2?Fig. 5). We find that the hybrid model has similar spatial patterns but outperforms the dynamical climate model in most
grid points.
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Figure 5. Correlation-Spatial distributions of correlation and RMSE-SS at the-prediction lead day 10 for atmospheric variables. Panels (a;b—d)
Fhe-eorrelation-between-show results from the dynamical climate model: (a) correlation between predicted and the-trath-for-observed atmo-
spheric temperature;-; (e;db) Fhe-correlation between-the-dynamical-model-for atmospheric streamfunction; (¢) RMSE-SS for atmospheric
temperature; and the-trtth-(d) RMSE-SS for atmospheric streamfunction. Panels (e-h) show corresponding results from the hybrid model.

The black dot indicates the correlation and RMSE-SS does not exceed the 95% significance test.
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in MAOOAM, the dynamical climate model retains high prediction skill at all erid points even at a 40-year lead time (Figs

and-22dfurther improves upon this, showing higher correlations and RMSE-SS at all grid points, thereby outperforming the
dynamical climate model (Figs. 6f and 6h).

For long-term climate prediction, there are additional requirements that the hybrid model must meet. Specifically, the model
should be capable of running for extended periods without diverging or exhibiting significant physical instability. In our study,
we find that the hybrid model maintains stability and does not experience significant physical instability during the 60-year
prediction period.

In summary, the overall performance of the hybrid model surpasses that of the dynamical climate model in both spectral
and physical space, demonstrating the advantages of incorporating a data-driven error correction model constructed by the
ML. This result highlights the potential benefits of leveraging data-driven approaches to improve dyramieal-climate prediction
skills.

3.2 Importance of atmospheric or oceanic error correctionin-climate-predietion

In this section, we extend our analysis by constructing two additional hybrid models to explore the influence of correcting
atmospheric and oceanic errors separately. These models are trained using the same inputs as in the previous section, but are

designed to correct either atmospheric errors or oceanic errors. By comparing the prediction skills of the regional averaged

variables in physical space among these hybrid models, we 4

s-gain some insight into the relative importance of atmospheric and

oceanic error correction for the overall predietion-performanee-performance of the climate prediction on different time scales.
In-Figures-In Figs. 7a, 7b, 2?a-and-2?b7¢, and 7f, we present the correlation and RMSE-SS of different models specifically
for the atmospheric streamfunction and temperature. We observe that there is minimal difference in prediction skill between
correcting only the atmospheric errors (green line) and correcting both the atmospheric and oceanic errors (red line). However,
in the early fereeast-prediction period (less than 20 days), correcting only atmospheric errors has slightly higher skills than
correcting both atmospheric and oceanic errors simultaneously. When comparing the hybrid models with the dynamical climate

model (blue line), we find that correcting only the oceanic errors (cyan line) does not lead to improvements in atmospheric
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Figure 7. Correlation (a-d) and RMSE-SS (e-h) as a function of lead time (50 days for the atmospheric variable and 60 years for the oceanic
variables). Shading shows one standard deviation calculated by the bootstrap method described in section 2.5. The red line is the correla-
tion/RMSE-SS of the hybrid model built by correcting both atmospheric and oceanic model errors, the green line is the correlation/RMSE-SS
of the hybrid model built by only correcting atmospheric model errors, the cyan line is the correlation/RMSE-SS of the hybrid model built

by only correcting oceanic model errors and the blue line is the correlation/RMSE-SS of the dynamical climate model.

prediction. It is related to the fact in MAOOAM that the atmosphere mostly drives the ocean but the ocean has too weak
influenees-in-influence on the atmosphere for short-term climate prediction (Jung and Vitart, 2006).

In Figures-Figs. 7c, 7d, ??e-and-22?d7g and 7h, we focus on the long-term prediction skill of various hybrid models for the
oceanic streamfunction and temperature. Our results reveal that the highest prediction skill over 60 years is achieved when
both atmospheric and oceanic errors are corrected (red line). The hybrid models constructed by correcting only atmospheric or
oceanic model errors exhibit different performances. For the oceanic streamfunction (Fig. 7c),selely-eorreeting,g), correcting
only oceanic errors (cyan line) does not improve the-prediction skill. Speeifieally;-asthe-As lead time increases, itexhibitstower
skills-eompared-to-the-dynamieal-both the correlation and RMSE-SS metrics indicate a degradation in performance, with skill
levels even lower than the dynamical climate model (blue line). When-only-cerreeting-In contrast, correcting only atmospheric
errors (green line) —the-improvement-inprediction—skil-oeeurs—in-significantly improves prediction skill within the first 20
yearsoflead-time. However, afterbeyond 20years-while the-ski-of correcting-atmospherieerrorsstarts-to-deeline—30 years, the
skill gradually declines and becomes comparable to the-skill-that of the dynamical medel(blueline);simultaneously-correcting
climate model. Notably, the hybrid correction that simultaneously addresses both atmospheric and oceanic model errors is-stitt
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Figure 8. A case study based on the ensemble mean and monthly mean average illustrating the simulation results of four variables averaged
over the whole domain in the physical space. (a) atmospheric streamfunction, (b) atmospheric temperature, (c) oceanic streamfunction, (d)

oceanic temperature.

atmospherie-errors—alone-begins—to-deeline—(red line) consistently outperforms the dynamical climate model after 30 years,

Regarding oceanic temperature (Figs. 7d and 2?d7h), correcting only atmospheric errors does not improve the prediction of
oceanic temperatures, while only correcting oceanic errors can enhance the prediction skill of oceanic temperatures. Addition-
ally, simultaneously correcting both atmospheric and oceanic errors (red line) can achieve the highest prediction skills all-the

To better illustrate the advantages of the hybrid model, we use a-set-of-experimental-results-one prediction experiment as an
example to demonstrate the benefits of correcting model errors for long-term simulations (Fig. 8). For atmospheric variables
(Fig. 8a and 8b), correcting only one component does not effectively simulate the slow frequency atmospheric processes (i.e.,

low-frequency signals around lead time 20 years), while simultaneously correcting both atmospheric and oceanic model errors
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(red lines) can better capture this variation. For the oceanic streamfunction (Fig. 8c), solely correcting oceanic errors (cyan
lines) causes a phase change compared to the truth. However, the phase of the other models still matches the truth, with
some differences in magnitude and timing. For oceanic temperature (Fig. 8d), correcting only atmospheric errors leads to the
largest deviation from the truth (grey lines) in the first 20 years, which is similar to the dynamical climate model. Correcting
the oceanic errors is better, but still poorer than correcting both atmospheric and oceanic errors (red lines), which leads to
predictions very close to the truth.

In summary, for short-term atmospheric predictions, correcting atmospheric model errors yields better results, while for

long-term simulations, correcting both oceanic and atmospheric errors provides the best predictions.

4 Summary and discussions

In this study, we applied a method to online correct the error in a simplified atmosphere-ocean coupled model (MAOOAM).
The errors in the MAOOAM setup stem from resolution limitations in the atmospheric moedelcomponent. We constructed a
data-driven predictor of dynamical climate model error with the-ML techniques and integrated it with the dynamical climate
model, creating a hybrid statistical-dynamical model. By incorporating the model error correction through the hybrid model, we
significantly enhanced the prediction skills for both atmospheric and oceanic variables at different lead times in both spectral
and physical space. This approach allowed us to mitigate the limitations of the dynamical climate model and achieve more

accurate climate predictions.

This study also examined the respective
impacts of correcting atmospheric and oceanic model errors on prediction skills—Fer-skill. Our results indicate that short-

term atmospheric weéeﬁm—ﬁﬁeeumeyﬂ%mwmﬂ influenced by atmospheric model errors, while

enly-correcting oceanic errors has

has a limited effect (e.g., Balmaseda and Anderson, 2009). For long -term ocean predlctlon correctlng fheﬂfmespheﬂemede}

atmospheric errors is essential due to their role in surface forcing, while correcting oceanic modet-errors for tong-term-elimate
predietion-errors plays a more critical role in predicting ocean temperature. It is worth noting that in our experiment setup, the
ocean component is perfect, and its prediction errors primarily come from the errors in the atmospheric component. However,
correcting the ocean model errors can influence the atmosphere through the coupling between the ocean and the atmosphere.
Although the experimental setup is not ideal, our results still provide some insights into the relative importance of oceanic error

correction for the prediction on different time scales.
This study serves as a proof of concept, demonstrating the potential of using ML to learn and correct errors in dynamical

climate models, thereby enhancing their prediction skills. Although conducted in the simplified atmosphere-ocean coupled

model MAOOAM, this study contributes to the understanding of the impact of correcting model errors on climate prediction in
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the atmosphere-ocean coupling process. It emphasizes the importance of errors in different components of coupled models and
highlights how correcting errors in various components can improve predictions on different time scales. Future applications
involve applying this method to realistic climate models, which are inherently more complex than MAOOAM, and exploring

the prediction skills under such conditions.
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