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Abstract. Systematic errors in dynamical climate models remain a significant challenge to accurate climate predictions, par-

ticularly when modeling the nonlinear coupling between the atmosphere and oceans
::::
ocean. Despite notable advances in dy-

namical climate modeling that have improved our understanding of climate variability, these systematic errors can still degrade

predictive
::::::::
prediction skills. In this study, we adopt a twin experiment framework with a reduced-order coupled atmosphere-

ocean model to explore the utility of machine learning in mitigating these errors. Specifically, we train a data-driven model on5

data assimilation increments to learn and emulate the underlying dynamical
::::::
climate model error, which is then integrated with

the dynamical
::::::
climate model to form a hybrid system

:::::
model. Comparison experiments show that the hybrid model consistently

outperforms the standalone dynamical
::::::
climate model in predicting atmospheric and oceanic variables. Further investigation

using hybrid models that correct only atmospheric or only oceanic errors reveals that atmospheric corrections are essential for

improving short-term forecasts
:::::::::
predictions, while concurrently addressing both atmospheric and oceanic errors yields superior10

performance in long-term climate prediction.

1 Introduction

Climate prediction aims at predicting the future state of the climate system based on the initial conditions and external forcings

(e.g., greenhouse gases and aerosols) covering various lead times from seasons to decades (Merryfield et al., 2020). It helps

scientists, policymakers, and communities in understanding potential risks and impacts. It differs from climate projections that15
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focus primarily on capturing long-term climate trends and patterns from several decades to centuries by anticipating changes

in external forcings and their impact on the climate system.

Dynamical
::::::
climate models, such as atmosphere-ocean coupled general circulation models, have been widely used for climate

predictions (e.g., Doblas-Reyes et al., 2013b; Boer et al., 2016). Uncertainties in initial conditions fed to dynamical
::::::
climate

models and model errors are two critical sources that limit the prediction skill of dynamical
::::::
climate

:
models. To reduce the20

uncertainties of initial conditions, climate prediction centers (Balmaseda and Anderson, 2009; Doblas-Reyes et al., 2013a) have

been evolving towards the use of data assimilation (DA, Carrassi et al., 2018) which combines observations with the dynamical

::::::
climate models to estimate best the state

::
the

::::
best

:::::
initial

:::::::::
conditions

:
of the climate system

::::::::
prediction (Penny and Hamill, 2017).

Model errors can arise from a variety of sources, including model parameterizations (Palmer, 2001), unresolved physical

processes (Moufouma-Okia and Jones, 2015), and numerical approximations (Williamson et al., 1992). Despite substantial25

efforts to improve
::::::::
dynamical

:
climate models, these errors remain notably large (e.g., Richter, 2015; Palmer and Stevens, 2019;

Richter and Tokinaga, 2020; Tian and Dong, 2020).

There is a growing interest in utilizing machine learning (ML) techniques to address errors in the dynamical
:
a
:::::::::
dynamical

::::::
climate model. ML can be employed to construct a data-driven predictor of model errors, which can then be integrated with

the dynamical
::::::
climate model to create a hybrid statistical-dynamical model (e.g., Watson, 2019; Farchi et al., 2021a; Brajard30

et al., 2021; Watt-Meyer et al., 2021; Bretherton et al., 2022; Chen et al., 2022; Gregory et al., 2024).

Some notable studies (e.g., Watson, 2019; Farchi et al., 2021a) have
:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Watson, 2019; Brajard et al., 2021; Farchi et al., 2021a, 2023)

focused on methodological developments within low-order or simplified coupled models operating in an idealized framework

where the ground truth is known. For example, Farchi et al. (2021a) investigated two approaches in a two-scale Lorenz model,

both of which are potential candidates for implementation in operational systems. One approach involves correcting the so-35

called resolvent of the dynamical
::::::
climate

:
model (i.e., modifying the model output after each numerical integration of the

model). The other approach entails adjusting the ordinary or partial differential equation governing the model tendency before

the numerical integration of the model. Similarly, Watson (2019) examined the tendency correction approach in the Lorenz 96

model. Brajard et al. (2021) explored the resolvent correction approach in the two-scale Lorenz model as well as in a low-order

coupled atmosphere-ocean model called the Modular Arbitrary-Order Ocean-Atmosphere Model (MAOOAM, De Cruz et al.,40

2016). Their study aimed to infer the model errors associated with unresolved processes within the dynamical model. In these

works, the hybrid model is tested in an idealized setting in which initial conditionsare perfectly known. In realistic climate

predictions, uncertainty in initial conditions is generally represented as an ensemble of initial conditions, and an ensemble of

predictions is obtained (Wang et al., 2019). To our knowledge,
::::::
climate

::::::
model.

:::::
While

:::::::::::::::::
Brajard et al. (2021)

::::::::
conducted

:::::::::
prediction

::::::::::
experiments

:::::
using

::::::
perfect

:::::
initial

:::::::::
conditions,

:::::
more

:::::
recent

::::::
studies

:::::
such

::
as

::::::::::::::::
Farchi et al. (2023)

::::::::
examined the performance of hy-45

brid models under imperfect initial conditions—particularly when using an ensemble of forecasts—has not been thoroughly

assessed. Moreover, it remains unclear which component of a coupled system contributes the most critical model error to

climate predictions
::::::::
initialized

::::
with

:::::::::
imperfect

:::::::::
conditions,

:::::
using

::
a
:::::::::
two-layer

:::::::::::::::
quasi-geostrophic

:::::
(QG)

::::::
model.

:::::::
Despite

::::::
recent

:::::
efforts

::
to

::::::::::
incorporate

:::::
more

:::::::
realistic

:::::::
settings,

:::::
hybrid

:::::::
models

:::
are

:::
still

:::::::::
frequently

::::::::
evaluated

:::::
under

::::::::
idealized

:::::::::
conditions

::
in

::::::
which

::
the

::::::
initial

::::
state,

:::::
taken

::::
from

:::
the

:::::
same

::::::
model

::
as

:::
the

::::::::
reference,

::
is

:::::::
assumed

::
to
:::
be

:::::::
perfectly

::::::
known.50
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Several other investigations (e.g., Bonavita and Laloyaux, 2020; Watt-Meyer et al., 2021; Bretherton et al., 2022; Chen et al., 2022)

have tested ML-based error correction methods in realistic weather or climate models. However, in the real framework, the

ground truth is unknown and the error characteristics are complex. Moreover, observation for training, validation, and testing

is relatively limited.

In this study, we aim to utilize the low-order coupled atmosphere-ocean model MAOOAM (section 2) to investigate the55

potential
::::::::
numerical

:::::::
weather

:::::::::
prediction

::::::
(NWP)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Bonavita and Laloyaux, 2020; Watt-Meyer et al., 2021; Bretherton et al., 2022; Chen et al., 2022; Gregory et al., 2024; Farchi et al., 2025)

:
.
:::::::::::::::::::::::::
Bonavita and Laloyaux (2020)

:::::::::::
demonstrated

::::
that

::::
ML

:::
can

:::::::
emulate

::::::
model

:::::
error

::::::::::
corrections

::::::
derived

:::::
from

::::::::::::::
weak-constraint

::::::
4D-Var

::
in

:::::::::
ECMWF’s

:::::::::
Integrated

::::::::::
Forecasting

:::::::
System

:::::
(IFS),

::::::::::
highlighting

:::
the

::::::::
potential

::
of

::::
ML

::
to

::::::::::::
systematically

::::::
reduce

::::::
model

:::::
errors

:::::::::
throughout

:::
the

::::::::::
atmospheric

:::::::
column.

::::::::::::::::::::
Watt-Meyer et al. (2021)

::::
used

:::::::
random

:::::
forests

::::::
trained

:::
on

:::::::
FV3GFS

:::::::
nudging

:::::::::
tendencies

::
to

::::::
correct

:::::
model

::::::::::
tendencies,

::::::::
achieving

::::::
stable

::::::::
year-long

::::
runs

::::
and

::::::::
improved

:::::::::
short-term

::::::::
forecasts

:::
for

:::
500

::::
hPa

::::::
height,

:::::::
surface60

:::::::
pressure,

::::
and

::::::::::
near-surface

:::::::::::
temperature.

::::::::::::::::::::
Bretherton et al. (2022)

:::::::
corrected

::::::::::
coarse-grid

::::::
model

:::::
errors

:::
by

:::::::
applying

:::::::::::
ML-learned

::::::::::
temperature

:::
and

:::::::
humidity

:::::::::
tendencies

:::::
from

:
a
::::::::::::
high-resolution

:::::::::
reference,

::::::::::
significantly

:::::::::
improving

::::::::
prediction

:::::
skills

:::
and

:::::::::::
precipitation

:::::::
patterns.

:::::::::::::::
Chen et al. (2022)

::::
used

:::
ML

::
to

:::::
learn

::
the

:::
the

:::::::
analysis

:::::::::
increments

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(i.e., the differences between the analysis and background, Evensen, 2003)

:::
and

::::::
correct

::::::::::::::
state-dependent

:::::
model

::::::
errors

::
in

::::::::
NOAA’s

:::::::::
FV3-GFS.

::::
The

:::::
online

::::::::::
application

::
of

:::::
these

::::::::::
corrections

::::::
during

::::::
model

:::::::::
integration

::
led

::
to
::::::::
enhanced

::::
DA

::::::::::
performance

:::
and

::::::::
improved

::::::
10-day

::::::::::
predictions.

::::::::::::::::::
Gregory et al. (2024)

::::::::
developed

:
a
::::::
hybrid

:::::::::::::::::
dynamical–statistical65

:::::::::
framework

:::
that

:::::::
employs

::::::::::::
convolutional

:::::
neural

::::::::
networks

::::::
trained

::
on

:::
sea

:::
ice

::::::::::::
concentration

:::::
(SIC)

::::::::::
assimilation

:::::::::
increments,

:::::::
leading

::
to

::::::::
improved

:::::::
five-year

:::
sea

:::
ice

::::::::::
simulations.

::::
Most

::::::::
recently,

::::::::::::::::
Farchi et al. (2025)

::::::::::
implemented

:::
an

:::::::::
ML–based

:::::
model

::::
error

:::::::::
correction

::::::
scheme

:::::
within

::::::::::
ECMWF’s

:::::::::
operational

::::
IFS.

::::
Their

::::::
results

::::::::
indicated

:::
that

::::::::::::
offline-trained

::::::::
networks

:::
can

::::::
already

::::
offer

::::::
robust

:::::::::
corrections,

::::
while

::::::
online

::::::
updates

::::::
further

:::::::
enhance

::::::::::
adaptability

:::::
under

::::::
diverse

::::::::::
conditions.

::::::::
However,

::
the

::::::::
potential

:::::::
benefits of ML-based model

error correction for climate prediction within an idealized framework. Our primary objective is to explore how the combination70

of
:::::
across

::::::::
different

::::
time

::::::
scales

::::::
remain

::::::
largely

:::::::::::
unexplored.

::::
This

::
is

::::::::
primarily

::::
due

::
to

:
the data-driven error predictor and the

dynamical model can enhance climate prediction as a function of lead time. Furthermore, in the coupled atmosphere-ocean

model , the effects of errors in different components of the model in climate prediction are not yet fully understood. We aim to

identify when correcting atmospheric errors or oceanic errors plays a pivotal role in improving climate prediction at different

time scales
::::::
sparsity

::
of

:::::::::
long-term

:::::::::::
observational

::::::
records

:::::
(such

::
as

:::::
those

:::::::
spanning

:::
the

::::
20th

::::::::
century)

::
in

::::
both

::::
time

:::
and

:::::
space,

::::::
which75

:::::::
presents

::::::::
significant

:::::::::
challenges

:::
for

:::::::::
developing

::::::::
effective

:::::::::
ML-based

::::
error

::::::::
correction

:::::::
models

:::
for

::::::
climate

:::::::::
prediction

::::::::::
applications.

:

::
In

:::
this

::::::
study,

:::
we

:::::::::
investigate

:::
the

::::::::
potential

::
of

:::::::::
ML-based

::::::
model

::::
error

:::::::::
correction

:::
for

:::::::
climate

::::::::
prediction

::::::
within

:::
an

::::::::
idealized

:::::::::
framework.

:::
To

::::
this

::::
end,

:::
we

::::::
adopt

:::
the

::::::
hybrid

::::::::
modeling

:::::::::
approach

:::::::::
introduced

:::
by

:::::::::::::::::
Brajard et al. (2021),

::::::
which

::
is
::::::

based
:::
on

::::::::::
MAOOAM.

:::
The

:::::::::
ML-based

:::::
error

:::::::::
correction

:::::
model

:::::
aims

::
to

::::
learn

::::
and

::::::
correct

:::::::::
dynamical

:::::::
climate

:::::
model

::::::
errors

:::::
using

:::::::
analysis

:::::::::
increments.

::::::
Unlike

:::::::::::::::::
Brajard et al. (2021),

:::
we

:::::::
conduct

::::::::
ensemble

:::::::::
predictions

::::
with

::::::::
imperfect

:::::
initial

:::::::::
conditions

::::::::::::::::
(Farchi et al., 2023)80

:
,
:::::
which

:::::
better

::::::
reflect

:::::::
realistic

::::::::
prediction

::::::::
scenarios

::::::::::::::::::::::::::::::::
(Wang et al., 2019; Bethke et al., 2021)

:
.
::::::::::
Specifically,

:::
we

::::::::
examine

::::
how

:::
the

::::::::::
effectiveness

::
of

:::::::::
ML-based

::::
error

:::::::::
correction

:::::
varies

::::::
across

:::::::
different

::::::
climate

::::
time

::::::
scales.

:::::::::
Moreover,

:::::
given

:::
that

:::
the

::::::::
respective

:::::
roles

::
of

::::::::::
atmospheric

:::
and

:::::::
oceanic

:::::
errors

::
in

::::::
limiting

:::::::
climate

:::::::::::
predictability

:::
are

:::
not

::::
fully

::::::::::
understood,

::
we

::::::
assess

::
the

:::::::
relative

:::::::::::
contributions

::
of

::::
these

::::::::::
components

::
to
:::
the

::::::
overall

:::::::::
prediction

::::
error.
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The article is organized as follows: Section
::::::
section 2 introduces the main methodological aspects of the study. Section 385

shows the prediction skill of the hybrid model compared with the dynamical
:::::
climate

:
model and discusses factors affecting the

prediction skill of the hybrid model. Finally, a brief concluding summary is presented in section 4.

2 Methodology

In this study, we restrict our scope to model errors stemming solely from coarse resolutions in the atmospheric component. In

this section, we describe the model (section 2.1), DA technique (section 2.2), and the ML approach (section 2.3). Rather than90

focusing on methodological developments, our goal is to examine how the advantages of ML-based error correction evolve

in time in the context of climate prediction and to determine which errors should be corrected at different timescales. Further

details in experiments are provided in section 2.4.

2.1 Modular Arbitrary-Order Ocean-Atmosphere Model

We utilize MAOOAM developed by De Cruz et al. (2016) in our study. MAOOAM consists of a two-layer quasi-geostrophic95

(QG )
:::
QG

:
atmospheric component coupled with a QG shallow-water oceanic component. The coupling between these compo-

nents incorporates wind forcings, and radiative and heat exchanges, enabling it to simulate climate variability. MAOOAM has

been widely employed in qualitative analyses for various purposes (e.g., Penny et al., 2019; Brajard et al., 2021). Moreover,

MAOOAM’s numerical efficiency allows us the execution of
::
to

::::::
execute

:
numerous climate prediction experiments at a relatively

low computational cost.100

In MAOOAM, the model variables are represented in terms of spectral modes. Specifically, dax (dox) represents the x-

direction resolution, and day (doy) represents the y-direction resolution in the atmosphere (ocean). The model state comprises

na (na = day(2dax+1)) modes of the atmospheric streamfunctionψa and temperature anomaly θa, as well as no (no = doydox)

modes of the oceanic streamfunction ψo and temperature anomaly θo. Consequently, the model state can be expressed as:

x= (ψa,1,ψa,2, ...,ψa,na
,θa,1,θa,2, ...,θa,na

,ψo,1,ψo,2, ...,ψo,no
,θo,1,θo,2, ...,θo,no

) (1)105

The total number of variables in the model state is 2na + 2no. It is
::::
Note

::::
that

::
na::

is
::::::::
typically

:::::
larger

::::
than

:::
no,

::::::::
reflecting

::
the

:::::::
distinct

:::::::::::
characteristics

:::
of

:::
the

:::
two

:::::::::::
components

::
in

::::::::::
MAOOAM.

::::
The

::::::::::
atmosphere

:::::::
exhibits

:::::
faster

::::::::
dynamics

:::
and

::::::::::::
smaller-scale

:::::::::
variability,

::::::::::
necessitating

::
a
::::::
greater

:::::::
number

::
of

::::::
modes

::
to

:::::::::
adequately

::::::
capture

:::
its

::::::::
behavior.

::
In

:::::::
contrast,

:::
the

:::::
ocean

:::::::
evolves

:::::
more

:::::
slowly

::::
and

::
is

::::::::
dominated

:::
by

::::::::::
larger-scale

::::::::
processes,

::::::
which

:::
can

:::
be

:::::::::
effectively

:::::::::
represented

:::::
using

:::::
fewer

::::::
modes

::::::::::::::::::
(De Cruz et al., 2016).

::
It
::
is

::::
also

important to note that variables with lower indices correspond to low-order (large scale
:::::::::
large-scale) processes, while variables110

with higher indices correspond to high-order (small scale
:::::::::
small-scale) processes. One of the key features of MAOOAM is its

ability to modify
:::
Like

:::::
many

:::::
other

::::::
models

:::::::::
formulated

::
in
:::::::
spectral

:::::
space,

::::::::::
MAOOAM

:::::
offers

::::::::
flexibility

::
in

::::::::
adjusting

:
the number of

atmospheric and oceanic model variables simply by adjusting the model ’s resolution in the x-direction or y-direction
:::::::
variables

::
by

::::::
simply

:::::::::
modifying

:::
the

:::::
model

:::::::::
resolution

::
in

::::::
spectral

:::::
space.
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Figure 1. The attractors in spectral space for (a)
:::
Time

:::::
series

::
of the true model : M56 and (b

::
red

::::
lines)

:::
and the dynamical

:::::
climate model

:::::
(green

::::
lines)

:::
for

::::
three

:::
key

:::::::
variables: M36

::
(a)

::::
ψa,1,

:::
(b)

::::
ψo,2,

:::
and

::
(c)

::::
θo,2.

In this study, we utilize two different configurations of MAOOAM: one denoted as M56 and the other as M36. The M56115

configuration comprises a total of 56 variables, with 20 atmospheric modes (na = 20) and 8 oceanic modes (no = 8). Specifi-

cally, the atmosphere in M56 operates at a 2x-4y (i.e., dax = 2 and day = 4) resolution, and the ocean operates at a 2x-4y (i.e.,

dox = 2 and doy = 4) resolution. On the other hand, The
::
the

:
M36 configuration includes 36 variables, with 10 atmospheric

modes (na = 10) and 8 oceanic modes (no = 8), identical to M56. The atmospheric component in M36 operates at a 2x-2y

resolution (dax = 2, day = 2), while the ocean component matches that of M56. Figure ?? displays the attractors of the
:
1120

:::::::
displays

::::
time

:::::
series

::
of three key variables in our

:::
the true model M56 and our dynamical

:::
the

::::::::
dynamical

:::::::
climate model M36 in

the spectral space, showing they evolve differently
:::::::::
illustrating

::::
their

:::::::
different

::::::::
evolution

:::::::
patterns (De Cruz et al., 2016).

It is important to note that the key distinction between M36 and M56 lies in the atmosphere, where M36 has a reduced

number of atmospheric modes, specifically 10 mode less
:::::
modes

:::::
fewer

:
than M56 in the y-direction. This difference leads to

a lack of higher-order atmospheric modes in M36, thereby unable to capture small-scale variability. The atmospheric error125

could then propagate to all the components and variables of the system
:
in

:::
the

::::::::::
y-direction

:::::::::
propagates

::
to

:::
the

::::::::::
atmosphere

::
in

:::
the

:::::::::
x-direction

:::
and

:::
the

:::::
ocean

::::::::::
component through the coupling terms in the equations. Consequently, the primary source of model

error in this study is attributed to the coarse resolution of atmospheric part of the model
::
the

:::::::::::
atmospheric

:::::::::
component

:::
in

:::
the

:::::::::
y-direction.

2.2 Ensemble Kalman Filter130

The Ensemble Kalman Filter (EnKF) is a flow-dependent and multivariate DA method and has been implemented for climate

prediction (e.g., Karspeck et al., 2013; Wang et al., 2019; Zhang et al., 2007)
:::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Zhang et al., 2007; Karspeck et al., 2013; Wang et al., 2019)

. The EnKF constructs the background error covariance from the dynamical ensemble. The utilization of an ensemble-based

error covariance ensures that the assimilation updates approximately respect to the model dynamics, thereby mitigating assim-

ilation shocks (Evensen, 2003).135
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In this study , we utilize
::
All

:::::::::::
experiments

::
in
::::

this
:::::

study
::::

are
:::::::::
conducted

:::::
using

:
the DAPPER package (Raanes, 2018)for

conducting all experiments, as .
::::
The

::::::
overall

:::::::::::
experimental

:::::
setup

:
is
:

described in section 2.4 and depicted in Fig. 2. Specifically,

we employ the finite-size ensemble Kalman filter (EnKF-N) method proposed by Bocquet et al. (2015). This method reducing

the amount of experimentation required in tuning the EnKF DA system, thereby
:::::::::
adaptively

::::::
adjusts

:::
the

:::::::
inflation

:::::
factor,

:::::::
thereby

:::::::
reducing

:::
the

::::
need

:::
for

::::::::
extensive

:::::::
manual

::::::
tuning

:::
and

:
enhancing the performance of the assimilation experiments, especially in140

case of the presence of model error, which we do in our setting. It is worth mentioning that we expect no significant alterations

in the conclusions of this paper when using the traditional EnKF methods instead of EnKF-N.

2.3 Artificial Neural Network Architecture

We consider the dynamical
::::::
climate

:
model (described in section 2.1) in the following form:

xk+1 =M(xk), (2)145

where xk+1 represents the full model state at tk+1, xk represents the full model state at tk and M represents the dynamical

::::::
climate model integration from time tk to tk+1. The model error at time tk+1 is defined as:

εk+1 = xt
k+1 −xk+1, (3)

where xt
k+1 represents the true state at time tk+1.

We aim to use ANN to emulate the model error ε
::::
εk+1. Since the truth is not known in practice, the training of ANN is using150

:::
uses

:
the analysis increments produced by the EnKF (Gregory et al., 2024).

::::::::::::::::::::::::::::::::::::::::::::::::::
(Brajard et al., 2021; Farchi et al., 2021b; Gregory et al., 2024)

:
. The architecture of ANN used in this study consists of four layers:

– The input layer includes a batch normalization layer (Ioffe, 2017), which helps to regularize and normalize the training

process.

– The second layer is a dense layer with 100 neurons. It applies the rectified linear unit (ReLU) activation function, which155

introduces non-linearity into the network.

– The third layer has the same configuration as the second layer, with 50 neurons and ReLU activation function.

– The output layer, which is a dense layer with a linear activation function and produces the final predictions, is optimized

using the “RMSprop” optimizer (Hinton et al., 2012) and includes an L2 regularization term with a value of 10−4.

During training, the ANN model is trained with a batch size of 128 and for a total of 300 epochs.160

The error surrogate model can be expressed as follows:

ε′k+1 =MANN(xk), (4)

where MANN represents the data-driven model built by ANN and ε′k+1 represents the model error estimated by ANN. The full

state at time tk+1 of the hybrid model can be expressed as follows:

xh
k+1 =M(xk)+MANN(xk) (5)165
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Figure 2. Schematic of experiments.

2.4 Experimental
::::::::::
Experiment settings

We present the experimental setup in Fig. 2. The experiments are conducted using two configurations of MAOOAM, as de-

scribed in section 2.1. The configuration with 56 variables (M56, section 2.1) represents the true climate system, while the

configuration with 36 variables (M36, section 2.1) represents a dynamical
::::::
climate prediction system. The experiments de-

picted in Fig. 2 are performed as follows:170

– We integrate the M56 configuration with a time step of approximately 1.6 minutes for a spin-up period of 30726.5 years,

as specified in De Cruz et al. (2016). Following the spin-up period, we continue the simulation for an additional 249

years, which we refer to as the “truth". To generate observations, we perturb the “truth" state using a Gaussian random

noise. The standard deviation
::::
(σhf) of the noise is set to 10% of the temporal standard deviation of the true state σhf

:::
(xt)

:
after subtracting the one-month running average. Observations are generated at intervals of approximately

::::
every

:
27175

hours
::
in

::::::
spectral

::::::
space,

:::::
while

:::
the

:::::::::
observation

::::::::
operator

::
H

::
is

:::
the

::::::
identity

:::::::
operator

::::::::
(H = I)

:::
and

::
is

::::
also

::::::
applied

::
in

:::::::
spectral

::::
space.

– We assimilate synthetic observations into the dynamical
::::::
climate

:
model (M36) and generate a reanalysis

:::::::
analysis with

50 ensemble members over the same period of
:
as

:
the truth. The initial conditions of the ensemble are randomly sampled

from a long free-run simulation of M36 after the spin-up period.180
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– We generate several sets of ensemble predictions with the dynamical
::::::
climate

:
model (M36) or the hybrid model. The

prediction experiments start in each second year from the year 125 to the year 185, with each prediction lasting for 60

years. Each prediction consists of 50 ensemble members. The initial conditions for these ensembles are taken from the

analysis (Fig. 2).

::::
Note

:::
that

::::
both

:::
the

:::::::::::
observations

:::
and

:::
DA

:::
are

:::::::::
conducted

::
in

:::
the

:::::::
spectral

:::::
space.

:::::::::::
Accordingly,

:::
the

:::::
hybrid

::::::
model

::
is

::::::::
developed

::::::
within185

::
the

:::::::
spectral

::::::
space.

We split the analysis into two parts:

– Training data: The former 124.6 years of the dataset are used to train the ANN parameters to build the hybrid model

(Fig. 2).

– Test data: The latter 124.6 years of the dataset are used to initialize prediction experiments (Fig. 2).190

We utilized
:
It
:::

is
:::::
worth

::::::
noting

::::
that

:::::
since

:::
we

:::::::
employ the same ANN configurations as described in Brajard et al. (2021),

although their study focused on a different objective within the MAOOAM framework. In our approach, the ANN parameters

were trained in a single run of 300 epochs without incorporating validation data to adjust the ANN model during training .

Upon completion of training, we analyzed
:::::::
outlined

::
in

:::::::::::::::::
Brajard et al. (2021),

:
the

::::
ANN

:::::::::
parameters

::
in
::::
this

:::::
study

:::
are

::::::
trained

::::
only

::::
once,

:::::::
without

:::
any

:::::::::::
modifications

::::::::::
throughout

::
the

:::::::
training

:::::::
process

::
by

:::::
using

:
a
:::::::
separate

::::::::
validation

::::
set.

:::
We

::::::::
examined

:::
the loss curves195

for both the training and test datasets. These loss curves confirmed
:::
(not

::::::
shown

::
in

::::
this

:::::
study)

::
to
::::::
assess

:::
the

:::::::
training

::::::::
behavior.

:::
The

::::
loss

:::::
curves

::::::::
provided

::::::::
evidence that the network continued to improve

:::
was

:::::::::
continuing

::
to

::::
learn

:::::::
without

:::::
signs

::
of

:::::::::
overfitting

throughout the training processwithout signs of overfitting (not shown in the paper). .
:

:::::::::::::::::
Brajard et al. (2021)

::::::
focused

:::
on

:::::::::
developing

::::
the

::::::
hybrid

:::::
model

::::::::::::
methodology;

::::
our

:::::
study

:::::
aims

::
to

:::::::
explore

:::
the

::::::::
evolution

:::
of

::::::::
prediction

::::
skill

:::
as

:
a
::::::::
function

::
of

::::
lead

:::::
time.

:::
We

::::::
assess

:::
the

:::::::::
prediction

::::
skill

::::
over

::
a
:::::
wider

:::::
range

:::
of

::::
lead

:::::
times,

::::::::::
specifically

:::
up200

::
to

::
50

::::
days

:::
for

::::::::::
atmospheric

::::::::
variables

:::
and

:::
up

::
to

::
60

:::::
years

:::
for

:::::::
oceanic

::::::::
variables.

:::
By

:::::::::
examining

::
the

::::
skill

::
at
:::::::
various

::::
lead

:::::
times,

:::
we

:::
can

::::
gain

::::::
insights

::::
into

:::
the

:::::::
temporal

::::::::
evolution

::::
and

::::::::
long-term

:::::::::::
performance

::
of

:::
the

:::::
hybrid

::::::
model,

::::::::
providing

::
a

::::
more

:::::::::::::
comprehensive

:::::::::::
understanding

::
of

:::
its

:::::::::
capabilities

::::
and

:::::::::
limitations.

:::
To

::
do

:::
so,

:::
our

:::::::::::
experimental

:::::
setup

:
is
::::::::
different

::::
from

:::
that

:::
of

:::::::::::::::::
Brajard et al. (2021)

::
in

:::
the

:::::::::
following

:::::
ways:

–
:::
We

:::::::
extended

:::
the

::::::::::
simulation

::::
time

::
to

:::::
219.2

:::::
years,

:::::
while

::::::::::::::::::
Brajard et al. (2021)

::::::::
generated

::
an

:::::::
analysis

::::::
dataset

::::::::
spanning

:::
62205

::::
years

:::
for

:::::::
training,

::::::::
validation

::::
and

::::::
testing.

:::
We

::::::
divided

::::
our

::::::
analysis

::::::
dataset

::::
into

:::
two

:::::::
distinct

::::
parts:

::::
one

::
for

:::::::
training

:::
the

:::::
ANN

:::
and

:::
the

:::::
other

:::
for

::::::
testing

::::::::
purposes.

::::
This

:::::::::
separation

::::::
allows

::
us

::
to

::::::::::::
independently

:::::::
evaluate

:::
the

:::::::::::
performance

::
of
::::

the
::::::
trained

::::
ANN

:::::
using

::::
data

:::
that

::::
was

:::
not

::::
used

::::::
during

:::
the

:::::::
training

:::::
phase.

:

–
:::
Our

::::::::::
experiments

::::::
utilize

:::
the

:::::::
analysis

::
as

:::::
initial

::::::::::
conditions,

:::::
while

:::::::::::::::::
Brajard et al. (2021)

:::
uses

::::::
perfect

::::::
initial

:::::::::
conditions

::::
(i.e.,

::
the

:::::
truth)

::
to

::::::::
initialize

::::::::::
predictions.

::::
This

:::::
choice

::::::
reflects

::
a

::::
more

:::::::
realistic

::::::::
scenario,

::
as

::::::
perfect

:::::::::
knowledge

::
of

:::::
initial

:::::::::
conditions210

:
is
::::::

rarely
::::::::
available

::
in

:::
the

::::
real

::::::::::
framework.

:::
By

:::::
using

:::
the

:::::::
analysis

::
as

::::::
initial

:::::::::
conditions,

:::
we

::::
aim

::
to
:::::::

capture
:::
the

::::::::
practical

::::::::
challenges

:::::::::
associated

::::
with

::::::::
imperfect

::::::::::
knowledge

::
of

:::
the

:::::
initial

::::
state

::
in

::::::
climate

::::::::::
prediction.
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–
:::
Our

:::::
study

::::::::::
incorporates

::
an

::::::::
ensemble

:::::::::
prediction

::::::
strategy

::::
with

:::
50

::::::::
members,

:::::
while

:::::::::::::::::
Brajard et al. (2021)

::::::::
performed

::::::::::
predictions

::::
using

::
a
:::::
single

::::::::
member

::::
(i.e.,

:::::::::::
deterministic

::::::::::
prediction).

:::
In

:::
the

::::::
climate

:::::::::
prediction

::::::::::
community,

:::::::::::
probabilistic

::::::::::
predictions

:::::
based

::
on

:::::::::
ensembles

:::
are

::::::
widely

::::::::::
recognized.

:::::::::
Ensembles

:::::::
provide

:
a
::::::::

valuable
:::::
means

:::
of

::::::::::
quantifying

:::::::::
uncertainty

::
in

:::::::
climate215

:::::::::
predictions

::
by

:::::::::
generating

:::::::
multiple

::::::::::
realizations

:::::
rather

::::
than

::
a
:::::
single

:::::::::::
deterministic

:::::::::
prediction.

:

2.5 Validation metrics

To evaluate the prediction skill
::
of

::::
each

:::::::
variable, we employ the correlation and root mean square error

:::::::
(RMSE) skill score

(RMSE-SS), which are commonly used metrics in weather forecasting and climate prediction. The correlation is defined as:

Correlation =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2

∑N
i=1(xi − x̄)(yi − ȳ)√∑N

i=1(xi − x̄)2
∑N

i=1(yi − ȳ)2
,

:::::::::::::::::::::::::::

(6)220

where x represents the prediction (ensemble mean) and y represents the truth. n
::
N is the total number of prediction experiments

:::
and

::
is

:::::
equal

::
to

::
30

:::::::
(section

::::
2.4).

The
:::::
RMSE

::
is

::::::::
calculated

:::
as

:::::::
follows:

RMSE =

√√√√ 1

N

N∑
i=1

(xi − yi)2,

::::::::::::::::::::::::

(7)

:::::
where

:
x
:::::::::
represents

:::
the

::::::::
prediction

:::::::::
(ensemble

::::::
mean),

::
y

::::::::
represents

:::
the

:::::
truth,

:::
and

::
N

::
is

:::
the

::::
total

::::::
number

::
of
:::::::::
prediction

:::::::::::
experiments.225

:::
The

:
RMSE-SS compares the root mean square error (RMSE )

::::::
RMSE of the prediction to the RMSE of a persistence prediction.

It is defined as:

RMSE-SSRMSE-SS
::::::::

= 1− RMSEprediction

RMSEpersistence
, (8)

where RMSEprediction represents the RMSE between the prediction (ensemble mean) and the truth and RMSEpersistence

represents the RMSE between a persistence prediction (where the state remains the same as the initial conditions) and the230

truth. A positive RMSE-SS indicates that the prediction outperforms the persistence and demonstrates skill. On the other hand,

a negative RMSE-SS indicates that the prediction performs worse than the persistence and lacks skill.

By utilizing the correlation and RMSE-SS, we can assess and compare the skill of the predictions generated by the dynamical

::::::
climate model and the hybrid model across different variables within the same panel, as shown in Fig. 4(correlation) and Fig.

?? (RMSE-SS).
:
.235

To assess the
:::::::
statistical

:
significance of the correlation and RMSE-SSresults, we employ ,

:::
we

:::::::
perform a two-tailed Student’s

t-test . This statistical test helps determine if the prediction skill is statistically significant at different lead times.
:::::
based

:::
on

::
the

:::::::
p-value.

::::
For

:::
the

:::::::::
correlation,

:::
the

::::
null

:::::::::
hypothesis

::
is

::::
that

:::
the

:::::::::
correlation

::
is

:::
not

::::::::::
significantly

::::::::
different

::::
from

::::
zero,

::::::::
implying

:::
no

:::::::::
relationship

::::::::
between

:::
the

:::::::::
predictions

:::
and

:::::
truth.

:::
For

::::::::::
RMSE-SS,

:::
we

:::::::
perform

:
a
:::::::::
hypothesis

:::
test

:::
to

::::::::
determine

:::::::
whether

:::
the

:::::::
squared

:::::
errors

::::
(SE)

::::
from

:::
the

:::::::::
prediction

:::
and

::::::::::
persistence

:::::::
methods

:::::
differ

:::::::::::
significantly.

:::
We

:::::::
compute

:::
the

:::
SE

::::
and

:::
use

:
a
:::::::::
two-tailed

:::::
t-test

::
to240

9



:::::
assess

:::::::
whether

::::
they

:::
are

::::::::::
significantly

::::::::
different.

:::::::::
Assuming

:::::::::
sufficiently

:::::
large

::::::
sample

:::::
sizes,

:::
the

::::::::
difference

:::::::
between

:::
the

:::::
mean

::::
SEs

:::
can

::
be

::::::::::::
approximated

::
as

::::::::
normally

:::::::::
distributed:

:

MSEprediction −MSEpersistence ∼N

(
0,
s2prediction

Nprediction
+
s2persistence

Npersistence

)
,

:::::::::::::::::::::::::::::::::::::::::::::::::::

:::::
where

:::::::
s2prediction::::

and
::::::::
s2persistence :::

are
:::
the

::::::
sample

::::::::
variances

::
of

:::
the

:::::::
squared

::::::
errors,

::::
and

::::::::
Nprediction,

:::::::::
Npersistence :::

are
:::
the

::::::::::::
corresponding

::::::
sample

:::::
sizes.

::::
The

:::::::
resulting

:::::::
p-value

:::::::::
represents

:::
the

::::::::::
probability

::
of

:::::::::
observing

:::
the

:::::
given

:::::::::
difference

:::
(or

::::::
larger)

::::::
under

:::
the

::::
null245

:::::::::
hypothesis.

::
A

::::::
p-value

::::::
below

::::
0.05

::
is

:::::::::
considered

::::::::::
statistically

:::::::::
significant,

::::::::
indicating

::::
that

:::
the

:::::::::
prediction

:::
and

:::::::::
persistence

::::::::
methods

::::::
exhibit

:::::::::::
meaningfully

:::::::
different

::::
error

:::::::::::::
characteristics.

To estimate the uncertainties of the correlation and RMSE-SS, we utilize the bootstrap method. We randomly select, with

replacement, 30 data points from the 30 prediction experiments and calculate the correlation and RMSE-SS based on this

sampled data. This procedure is repeated 10,000 times, resulting in a sample of 10,000 correlation and RMSE-SS values. The250

standard deviation of this sample is then used to estimate the uncertainties associated with the correlation and RMSE-SS. By

conducting the t-test and utilizing the bootstrap method, we can obtain a more comprehensive understanding of the significance

and reliability of the correlation and RMSE-SS values obtained from the prediction experiments.

::
In

::::::
climate

:::::::::
prediction,

:::::::::
time-mean

::::::::
quantities

::::
such

::
as

:::::::
monthly

::::::::::::::::
(Wang et al., 2019)

::
or

::::::
annual

:::::::
averages

::::::::::::::::::::::::::::::::
(Boer et al., 2016; Bethke et al., 2021)

::
are

:::::
often

::::
used

:::::::
because

::::
time

::::::::
averaging

:::::::
reduces

:::
the

::::::
impact

::
of

::::::
chaotic

:::::::
weather

:::::::::
variability,

::::::
making

:::
the

:::::::::
underlying

:::::::
climate

::::::
signals255

::::
more

::::::::
apparent.

::::
They

::::
also

:::::
better

::::
meet

:::
the

:::::::
practical

:::::
needs

::
of

::::::
sectors

::::
such

::
as

:::::::::
agriculture

::::
and

::::::
energy,

:::::
where

::::::::
planning

:
is
:::::
often

:::::
based

::
on

:::::
mean

::::::::::
conditions.

::
In

::::::::
contrast,

::::::::
predicting

:::::::::::
higher-order

::::::::
statistics

:::::::::
accurately

:::::::
remains

::::::::::
challenging

:::
due

:::
to

:::::
model

::::::::::
limitations

:::
and

::::::::::::
computational

:::::
costs,

::::::::::
particularly

:::::
when

:::::::::::::
high-resolution

::::
Earth

:::::::
system

::::::
models

:::
are

::::::::
required.

:::::::::::
Nevertheless,

:::::
there

::
is

:::::::
growing

::::::
interest

::
in

:::::::::::
representing

:::::::
complex

:::::::::
statistical

::::::::
properties

:::
to

:::::::
improve

:::
the

:::::::::
prediction

::
of

:::::::
extreme

::::::
events

::::
and

::::::
support

:::::::
climate

::::
risk

::::::::::
assessments.

:
260

::
To

:::::::
evaluate

:::::::::
prediction

::::
skill

:::::
across

:::::::
different

::::
time

::::::
scales,

:::
we

:::::
apply

:::
two

:::::::::::::
complementary

:::::::::
strategies.

:::
For

:::::::::
short-term

::::::::::
predictions,

:::::::::::
instantaneous

::::::
outputs

:::::::
sampled

:::::
every

:::
27

:::::
hours

:::
are

::::
used

::
to

::::::::
represent

::::
daily

:::::::::
variations.

::::
For

::::::::
long-term

::::::::::
predictions,

:::::
model

:::::::
outputs

::
are

::::::::
averaged

:::::::
annually

:::
to

:::::
assess

:::
the

:::::
ability

:::
to

::::::
capture

::::::::::::
low-frequency

:::::::::
variability.

:

3 Results

3.1 Prediction skill265

:::
The

:::::::::
distinction

::::::::
between

:::::::::
short-term

::::::
(daily)

:::
and

:::::::::
long-term

:::::::::::::::
(yearly-averaged)

:::::::::
prediction

:::::
scales

:::
in

:::
this

:::::
study

::
is
::::::

based
:::
on

:::
the

::::::::::::
fundamentally

:::::::
different

::::
error

::::::
growth

::::::::::::
characteristics

::
of

:::::::::::
atmospheric

:::
and

:::::::
oceanic

::::::::
variables.

::
As

:::::::::
illustrated

::
in

::::
Fig.

:
3,
:::::::::::
atmospheric

:::::::
variables

::::::
exhibit

:::::
rapid

::::
error

:::::::::::
amplification,

::::
with

::
a
:::::::
doubling

:::::
error

::::
time

::
of

::::::::::::
approximately

:::
one

:::
day

::::
and

::::::::
saturation

::::::::
occurring

::::::
within

::::
about

::::
ten

::::
days.

:::
In

:::::::
contrast,

:::::::
oceanic

::::::::
variables

::::::::::
demonstrate

:::::
much

::::::
slower

:::::
error

::::::
growth,

:::::
with

:::::
errors

:::::::
roughly

::::::::
doubling

::::
over

:::
the

:::
first

::::
year

:::
and

:::::::::
continuing

:::
to

::::
grow

::::::::
gradually

::::
over

:::
the

:::::::::
subsequent

:::::::
decade.

:
270
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Figure 3.
:::::
RMSE

::
of

::::::::
dynamical

::::::::
prediction

::
as

:
a
:::::::
function

::
of

:::
lead

::::
time

::
for

::::
three

:::
key

:::::::
variables

::
in

::::::
spectral

:::::
space:

:::
(a)

::::
ψa,1,

::
(b)

::::
ψo,2,

:::
and

:::
(c)

::::
θo,2.

:::
The

:::::::::
atmospheric

::::::
variable

:::::
(ψa,1)

::
is

:::::::
evaluated

:::::
based

::
on

::::::::::
instantaneous

::::::
outputs

:::::::
sampled

::::
every

::
27

:::::
hours,

:::::
while

::
the

::::::
oceanic

:::::::
variables

:::::
(ψo,2 :::

and

:::
θo,2)

:::
are

:::::::
evaluated

:::::
using

::::
yearly

::::::::
averages.

::::::
Shading

:::::::
indicates

:::
one

::::::
standard

::::::::
deviation,

:::::::::
representing

::
the

:::::::::
uncertainty

::
of

:::::::
prediction

::::
skill,

::::::::
estimated

::::
using

:::
the

:::::::
bootstrap

::::::
method.

:::
The

::::::
vertical

::::::
dashed

:::
lines

:::::::
represent

:::
the

::::
time

::
of

:::::::
doubling

::::
error.

:::::
Within

::::
the

:::::::
coupled

:::::
model

::::::::::
framework,

::::
the

:::::
hybrid

::::::
model

::
is
:::::::::
developed

::
to
::::::::

enhance
::::::::
prediction

:::::
skill

:::::
across

:::::
both

:::::::::
short-term

:::
and

:::::::::
long-term

:::::::::
timescales.

:::
To

:::::::
evaluate

:::
its

:::::::::::
performance,

:::
we

:::::
adopt

:::::::
50-day

:::
and

:::::::
60-year

:::::::::
prediction

:::::::
horizons

:::
as

::::::::::::
representative

::::::::::
benchmarks

:::
for

:::
the

::::::::::::::::::::
subseasonal-to-seasonal

:::
and

:::::::
decadal

:::::::::
prediction

:::::::
regimes,

:::::::::::
respectively.

:::
The

::::::
50-day

:::::::::
prediction

:::::::
reflects

:::
the

::::::
model’s

:::::::::
capability

::
in
:::::::::

capturing
:::::::::::
fast-evolving

:::::::::::
atmospheric

:::::::::
processes,

:::::
while

:::
the

:::::::
60-year

:::::::::
prediction

:::::::
assesses

:::
its

:::::::
capacity

:::
to

:::::::
maintain

:::::::::::
predictability

::::
over

::::::
longer

::::::
oceanic

::::::::::
timescales.275

Same as Fig. 4, but for RMSE-SS.

Figures 4a and ??a
::
4c

:
show respectively the correlation and RMSE-SS of the dynamical

::::::
climate

:
model for both atmospheric

temperature θa and streamfunction ψa in the spectral space. We find that the variables in low-order atmospheric modes, such

as ψa,2, ψa,3, θa,2 and θa,3, have significant prediction skills over 10 days. While most variables in high-order modes have

significant skills within a few days, some do not have prediction skills all the time (i.e. ψa,9, ψa,10 and θa,10). Figures 4b and280

??b
::
4d show the correlation and RMSE-SS of the hybrid model for atmospheric variables. For atmospheric temperature, the

hybrid model is skillful for up to 50 days for most modes (Fig. 4b), with a significant reduction in prediction error beyond

ten
::
10

:
days for most modes (Fig. ??b

::
4d). For atmospheric streamfunction, the hybrid model is skillful in predicting low-

order atmospheric modes for up to 50 days and high-order modes for up to 15 days. Overall, the hybrid model has higher

correlations and RMSE-SS than the dynamical
:::::
climate

:
model for atmospheric variables. And the hybrid model exhibits greater285

improvements in lower-order modes compared to higher-order modes (Fig
::::
Figs. 4aand

:
, 4b, Fig. ??a and ??b

::
4c,

:::
and

:::
4d).

In the coupled model, the purpose of introducing ML to correct model errors is not only to improve the short-term atmospheric

prediction skills (e.g., less than 20 days) but also to improve the long-term prediction skills (e.g., over 10 years).

Figures 4c and ??c
::::::
Figures

::
4e

::::
and

:::
4g show the correlation and RMSE-SS of the dynamical

::::::
climate

:
model for oceanic

temperature and streamfunction. Since the ocean has
::::::
exhibits

:
slower variability than the atmosphere, the dynamical model290
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Figure 4. Correlation
:::
and

::::::::
RMSE-SS

:
as a function of the prediction lead time for different variables. (a,c

:
e) The correlation between the

dynamical
:::::
climate

:
model and truth.

:
(
:::
c,g)

:::
The

:::::::::
RMSE-SS

::::::
between

:::
the

::::::::
dynamical

::::::
climate

:::::
model

:::
and

:::::
truth.

:
(b,d

:
f) The correlation between

the hybrid model and truth.
:::
(d,h)

:
The

::::::::
RMSE-SS

::::::
between

:::
the

:::::
hybrid

:::::
model

::::
and

::::
truth.

::::
The atmospheric variables are calculated based on

daily data, while the oceanic variables are based on annual average data. The black dot indicates the correlation does not exceed the 95%

significance test.

has significant prediction skills
::
we

::::::::
compute

::::::
annual

::::::
means

:::
for

:::::::
oceanic

:::::::
variables

:::
to

:::::::
evaluate

:::
the

:::::::
model’s

:::::::::
prediction

::::
skill

:::
on

:::::::::
interannual

:::::::::
timescales.

::::
The

::::::::
dynamical

:::::::
climate

:::::
model

:::::::::::
demonstrates

:::::::::
significant

::::::::
prediction

::::
skill

:
for up to 60 years in oceanic tem-

perature in most modesand
:::::
across

:::::
most

::::::
modes,

:::
and

::
in

:
oceanic streamfunction in some

:::::
certain

:
modes. Overall, odd-numbered

modes exhibit higher predictive
::::::::
prediction

:
skill than even-numbered modes, related to our experimental design (i.e., the dif-

ference in atmospheric y-direction mode resolution between M56 and M36). In addition, the oceanic temperature is more295

predictable than the oceanic streamfunction in the spectral space. Figures 4d and ??d f
::::
and

::
4h

:
present the prediction skills

of the hybrid model. The hybrid model has significant prediction skills in both oceanic temperature and streamfunction in all

modes for up to 60 years. It is worth noting that the hybrid model has higher correlations and RMSE-SS than the dynamical

::::::
climate model, in particular, for oceanic temperature in the first and last modes and oceanic streamfunctions in some modes in

which the dynamical
::::::
climate

:
model has no prediction skill at all (e.g., φo,2 and φo,6::::

ψo,2 :::
and

::::
ψo,6).300

To further demonstrate the advantages of the hybrid model, we use a ten-day
:::::
10-day

:
lead time for atmospheric variables

and a forty-year
::::::
40-year lead time for oceanic variables as examples to show the prediction skills of the hybrid model in the

physical space (Fig. 5 and Fig. 6for correlation, Fig. ?? and Fig. ?? for RMSE-SS).

Same as Fig. 5, but for RMSE-SS.

For atmospheric variables, both atmospheric streamfunction and temperature exhibit similar spatial characteristics (Figs.305

5and ??
::::
Fig.

:
5). We find that the hybrid model has similar spatial patterns but outperforms the dynamical

::::::
climate model in most

grid points.
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Figure 5. Correlation
:::::
Spatial

:::::::::
distributions

::
of

::::::::
correlation

:::
and

::::::::
RMSE-SS at the prediction lead day 10 for atmospheric variables.

::::
Panels

:
(a,b

::
–d)

The correlation between
::::
show

:::::
results

::::
from the dynamical

:::::
climate

:
model

:
:
::
(a)

::::::::
correlation

:::::::
between

:::::::
predicted and the truth for

::::::
observed

:
atmo-

spheric temperature,
:
; (c,d

:
b) The correlation between the dynamical model

::
for

:::::::::
atmospheric

::::::::::::
streamfunction;

:::
(c)

::::::::
RMSE-SS

::
for

::::::::::
atmospheric

:::::::::
temperature;

:
and the truth

:::
(d)

::::::::
RMSE-SS for atmospheric streamfunction.

:::::
Panels

::::
(e–h)

::::
show

:::::::::::
corresponding

:::::
results

::::
from

:::
the

:::::
hybrid

::::::
model.

The black dot indicates the correlation
:::
and

::::::::
RMSE-SS does not exceed the 95% significance test.

Figure 6. Correlation
:::::
Spatial

::::::::::
distributions

::
of

::::::::
correlation

:::
and

::::::::
RMSE-SS

:
at the prediction lead year 40 for oceanic variables.

:::::
Panels

:
(a,b

::
–d)

The correlation between
::::
show

:::::
results

::::
from

:
the dynamical

::::::
climate model:

:::
(a)

::::::::
correlation

:::::::
between

:::::::
predicted and the truth

:::::::
observed

::::::
oceanic

:::::::::
temperature;

:::
(b)

::::::::
correlation

:
for oceanic streamfunction, ;

:
(c,d) the correlation between the dynamical model and the truth

:::::::
RMSE-SS

:
for

oceanic temperature;
::::

and
::
(d)

:::::::::
RMSE-SS

:::
for

::::::
oceanic

:::::::::::
streamfunction. The white areas in the temperature map result

:::::
Panels

::::
(e–h)

:::::
show

::::::::::
corresponding

:::::
results

:
from consistently zero temperature anomalies at the western and northern boundaries, which prevents the calculation

of correlation
::::
hybrid

:::::
model. The black dot indicates the correlation

:::
and

::::::::
RMSE-SS does not exceed the 95% significance test.

13



Same as Fig. 6, but for RMSE-SS.

Due to the slow nature of oceanic variability in the MAOOAM, at a lead time of 40 years, the dynamical model still maintains

high predictive skills at all
:::
For

::::::
oceanic

:::::::::::
temperature,

:::
the

::::::::::
dynamical

::::::
climate

::::::
model

:::::
loses

:::::::::
prediction

::::
skill

::::
over

:::
the

::::::::
majority310

::
of grid points (Figures

:::
Fig.

:
6a and ??a). Compared to the dynamical model

:::
Fig.

::::
6c).

:::
In

:::::::
contrast, the hybrid model exhibits

higher correlations and RMSE-SS at all grid points , outperforming the dynamical model (Figures 6b and ??d
:::::::::::
demonstrates

::::::::::
significantly

::::::
higher

::::::::
prediction

::::
skill

::::::
across

::::
most

::::
grid

::::::
points

:::::
(Figs.

::
6e

::::
and

::
6g). For oceanic temperature, the dynamical model

has higher correlations and significant RMSE-SS in the northwest region
::::::::::::
streamfunction,

::::::
owing

::
to

::
the

:::::
slow

:::::
nature

::
of

:::::::::
variability

::
in

::::::::::
MAOOAM,

:::
the

:::::::::
dynamical

::::::
climate

::::::
model

::::::
retains

::::
high

:::::::::
prediction

::::
skill

::
at

:::
all

::::
grid

:::::
points

::::
even

:::
at

:
a
:::::::
40-year

::::
lead

::::
time

:::::
(Figs315

::
6b

::::
and

:::
6d). The hybrid model shows higher prediction skills which are statistically significant at most grids. For example,

the dynamical model lacks prediction skills in the northeast region, while the hybrid model has high skills (Figures 6d

and ??d
:::::
further

::::::::
improves

:::::
upon

::::
this,

:::::::
showing

::::::
higher

::::::::::
correlations

:::
and

:::::::::
RMSE-SS

::
at
:::
all

::::
grid

::::::
points,

::::::
thereby

:::::::::::::
outperforming

:::
the

::::::::
dynamical

:::::::
climate

:::::
model

:::::
(Figs.

::
6f
::::
and

::
6h).

For long-term climate prediction, there are additional requirements that the hybrid model must meet. Specifically, the model320

should be capable of running for extended periods without diverging or exhibiting significant physical instability. In our study,

we find that the hybrid model maintains stability and does not experience significant physical instability during the 60-year

prediction period.

In summary, the overall performance of the hybrid model surpasses that of the dynamical
::::::
climate model in both spectral

and physical space, demonstrating the advantages of incorporating a data-driven error correction model constructed by the325

ML. This result highlights the potential benefits of leveraging data-driven approaches to improve dynamical
::::::
climate

:
prediction

skills.

3.2 Importance of atmospheric or oceanic error correctionin climate prediction

In this section, we extend our analysis by constructing two additional hybrid models to explore the influence of correcting

atmospheric and oceanic errors separately. These models are trained using the same inputs as in the previous section
:
, but are330

designed to correct either atmospheric errors or oceanic errors. By comparing the prediction skills of the regional averaged

variables in physical space among these hybrid models, we aim to determine which error is more important for prediction on

different time scales. Through this analysis, we gain insights
:::
gain

:::::
some

::::::
insight into the relative importance of atmospheric and

oceanic error correction for the overall prediction performance
::::::::::
performance

::
of

:::
the

::::::
climate

:::::::::
prediction

::
on

::::::::
different

::::
time

:::::
scales.

Same as Fig. 7, but for RMSE-SS.335

In Figures
:
In

:::::
Figs. 7a, 7b, ??a, and ??b

:::
7e,

:::
and

::
7f, we present the correlation and RMSE-SS of different models specifically

for the atmospheric streamfunction and temperature. We observe that there is minimal difference in prediction skill between

correcting only the atmospheric errors (green line) and correcting both the atmospheric and oceanic errors (red line). However,

in the early forecast
::::::::
prediction

:
period (less than 20 days), correcting only atmospheric errors has slightly higher skills than

correcting both atmospheric and oceanic errors simultaneously. When comparing the hybrid models with the dynamical
::::::
climate340

model (blue line), we find that correcting only the oceanic errors (cyan line) does not lead to improvements in atmospheric
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Figure 7. Correlation
:::
(a-d)

:::
and

::::::::
RMSE-SS

::::
(e-h)

:
as a function of lead time (50 days for the atmospheric variable and 60 years for the oceanic

variables). Shading shows one standard deviation calculated by the bootstrap method described in section 2.5. The red line is the correla-

tion
::::::::
/RMSE-SS of the hybrid model built by correcting both atmospheric and oceanic model errors, the green line is the correlation

::::::::
/RMSE-SS

of the hybrid model built by only correcting atmospheric model errors, the cyan line is the correlation
::::::::
/RMSE-SS

:
of the hybrid model built

by only correcting oceanic model errors and the blue line is the correlation
::::::::
/RMSE-SS of the dynamical

:::::
climate model.

prediction. It is related to the fact in MAOOAM that the atmosphere mostly drives the ocean but the ocean has too weak

influences in
:::::::
influence

::
on

:
the atmosphere for short-term climate prediction (Jung and Vitart, 2006).

In Figures
::::
Figs. 7c, 7d, ??c and ??d

::
7g

::::
and

::
7h, we focus on the long-term prediction skill of various hybrid models for the

oceanic streamfunction and temperature. Our results reveal that the highest prediction skill over 60 years is achieved when345

both atmospheric and oceanic errors are corrected (red line). The hybrid models constructed by correcting only atmospheric or

oceanic model errors exhibit different performances. For
::
the

:
oceanic streamfunction (Fig. 7c), solely correcting

:::
,g),

:::::::::
correcting

::::
only oceanic errors (cyan line) does not improve the prediction skill. Specifically, as the

:::
As lead time increases, it exhibits lower

skills compared to the dynamical
::::
both

:::
the

:::::::::
correlation

:::
and

:::::::::
RMSE-SS

::::::
metrics

:::::::
indicate

::
a

::::::::::
degradation

::
in

:::::::::::
performance,

::::
with

::::
skill

:::::
levels

::::
even

:::::
lower

::::
than

:::
the

::::::::
dynamical

:::::::
climate model (blue line). When only correcting

::
In

:::::::
contrast,

::::::::
correcting

::::
only

:
atmospheric350

errors (green line) , the improvement in prediction skill occurs in
::::::::::
significantly

::::::::
improves

:::::::::
prediction

::::
skill

::::::
within

:
the first 20

yearsof lead time. However, after
::::::
beyond

:
20years, while the skill of correcting atmospheric errors starts to decline

:::
–30

:::::
years,

:::
the

:::
skill

::::::::
gradually

:::::::
declines

:
and becomes comparable to the skill

:::
that

:
of the dynamical model (blue line), simultaneously correcting

::::::
climate

::::::
model.

:::::::
Notably,

:::
the

::::::
hybrid

::::::::
correction

::::
that

::::::::::::
simultaneously

:::::::::
addresses both atmospheric and oceanic model errors is still

better than the dynamical model. For RMSE-SS (Fig. ??c), correcting only oceanic errors (cyan line) also consistently yields355

the lowest RMSE-SS compared to other predictions, including the dynamical model (blue line). Correcting only atmospheric
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Figure 8. A case study based on the ensemble mean and monthly mean average illustrating the simulation results of four variables averaged

over the
:::::
whole domain

::
in

::
the

:::::::
physical

::::
space. (a) atmospheric streamfunction, (b) atmospheric temperature, (c) oceanic streamfunction, (d)

oceanic temperature.

errors (green line) achieves the best RMSE-SS within the first 20 years of lead time. However, while the skill of correcting

atmospheric errors alone begins to decline
::::
(red

::::
line)

::::::::::
consistently

:::::::::::
outperforms

:::
the

:::::::::
dynamical

:::::::
climate

:::::
model

:
after 30 years,

reaching a level similar to that of the dynamical model, the hybrid model that simultaneously corrects both atmospheric and

oceanic errors (red line) continues to outperform the dynamical model
::
in

::::
both

:::::::::
correlation

:::
and

:::::::::
RMSE-SS

:::::::
metrics.360

Regarding oceanic temperature (Figs. 7d and ??d
::
7h), correcting only atmospheric errors does not improve the prediction of

oceanic temperatures, while only correcting oceanic errors can enhance the prediction skill of oceanic temperatures. Addition-

ally, simultaneously correcting both atmospheric and oceanic errors (red line) can achieve the highest prediction skills all the

lead time
::
at

::
all

::::
lead

:::::
times.

To better illustrate the advantages of the hybrid model, we use a set of experimental results
:::
one

:::::::::
prediction

:::::::::
experiment

:
as an365

example to demonstrate the benefits of correcting model errors for long-term simulations (Fig. 8). For atmospheric variables

(Fig. 8a and 8b), correcting only one component does not effectively simulate the slow frequency atmospheric processes (i.e.,

low-frequency signals around lead time 20 years), while simultaneously correcting both atmospheric and oceanic model errors
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(red lines) can better capture this variation. For
:::
the oceanic streamfunction (Fig. 8c), solely correcting oceanic errors (cyan

lines) causes a phase change compared to the truth. However, the phase of the other models still matches the truth, with370

some differences in magnitude and timing. For oceanic temperature (Fig. 8d), correcting only atmospheric errors leads to the

largest deviation from the truth (grey lines) in the first 20 years, which is similar to the dynamical
::::::
climate model. Correcting

the oceanic errors is better, but still poorer than correcting both atmospheric and oceanic errors (red lines), which leads to

predictions very close to the truth.

In summary, for short-term atmospheric predictions, correcting atmospheric model errors yields better results, while for375

long-term simulations, correcting both oceanic and atmospheric errors provides the best predictions.

4 Summary and discussions

In this study, we applied a method to online correct the error in a simplified atmosphere-ocean coupled model (MAOOAM).

The errors in the MAOOAM setup stem from resolution limitations in the atmospheric model
:::::::::
component. We constructed a

data-driven predictor of dynamical
:::::
climate

:
model error with the ML techniques and integrated it with the dynamical

::::::
climate380

model, creating a hybrid statistical-dynamical model. By incorporating the model error correction through the hybrid model, we

significantly enhanced the prediction skills for both atmospheric and oceanic variables at different lead times in both spectral

and physical space. This approach allowed us to mitigate the limitations of the dynamical
::::::
climate

:
model and achieve more

accurate climate predictions.

We also investigated the impact of individually correcting either atmospheric or
::::
This

:::::
study

:::
also

:::::::::
examined

:::
the

:::::::::
respective385

::::::
impacts

:::
of

::::::::
correcting

:::::::::::
atmospheric

::::
and oceanic model errors on prediction skills. For

::::
skill.

::::
Our

::::::
results

:::::::
indicate

:::
that

:
short-

term atmospheric prediction, its accuracy is more
:::::::::
predictions

::::
are

::::::::
primarily influenced by atmospheric

:::::
model errors, while

only correcting oceanic errors has little impact on short-term atmospheric prediction Balmaseda and Anderson (2009)
:::::
alone

:::
has

:
a
::::::
limited

:::::
effect

::::::::::::::::::::::::::::::::
(e.g., Balmaseda and Anderson, 2009). For long-term ocean prediction, correcting the atmospheric model

error is critical for oceanic streamfunction prediction, since it is sensitive to atmospheric forcings. For oceanic temperature,390

correcting the oceanic model error is more important due to the long memory of ocean heat content Griffies et al. (2015). Our

findings suggested correcting atmospheric errors for short-term atmosphere prediction while correcting both atmospheric and

::::::::::
atmospheric

:::::
errors

::
is

:::::::
essential

::::
due

::
to

::::
their

:::
role

::
in
:::::::
surface

::::::
forcing,

:::::
while

:::::::::
correcting oceanic model errors for long-term climate

prediction
::::
errors

:::::
plays

:
a
:::::
more

::::::
critical

::::
role

::
in

::::::::
predicting

:::::
ocean

:::::::::::
temperature.

::
It

::
is

:::::
worth

:::::
noting

::::
that

::
in

:::
our

::::::::::
experiment

:::::
setup,

:::
the

:::::
ocean

:::::::::
component

::
is

::::::
perfect,

::::
and

::
its

:::::::::
prediction

:::::
errors

::::::::
primarily

:::::
come

::::
from

:::
the

:::::
errors

::
in
:::
the

:::::::::::
atmospheric

::::::::::
component.

::::::::
However,395

::::::::
correcting

:::
the

:::::
ocean

::::::
model

:::::
errors

:::
can

::::::::
influence

:::
the

::::::::::
atmosphere

:::::::
through

:::
the

::::::::
coupling

:::::::
between

:::
the

:::::
ocean

:::
and

:::
the

:::::::::::
atmosphere.

::::::::
Although

::
the

:::::::::::
experimental

:::::
setup

::
is

:::
not

:::::
ideal,

:::
our

:::::
results

::::
still

::::::
provide

:::::
some

:::::::
insights

:::
into

:::
the

::::::
relative

::::::::::
importance

::
of

::::::
oceanic

:::::
error

::::::::
correction

:::
for

:::
the

::::::::
prediction

:::
on

:::::::
different

::::
time

::::::
scales.

This study serves as a proof of concept, demonstrating the potential of using ML to learn and correct errors in
:::::::::
dynamical

climate models, thereby enhancing their prediction skills. Although conducted in the simplified atmosphere-ocean coupled400

model MAOOAM, this study contributes to the understanding of the impact of correcting model errors on climate prediction in
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the atmosphere-ocean coupling process. It emphasizes the importance of errors in different components of coupled models and

highlights how correcting errors in various components can improve predictions on different time scales. Future applications

involve applying this method to realistic climate models, which are inherently more complex than MAOOAM, and exploring

the prediction skills under such conditions.405
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