

1 **Petrogenesis and tectonic setting of late Paleoproterozoic diorites in the**

2 **Trans-North China Orogen**

3

4 Zhiyi Wang ^{a, b}, Jun He ^{a*}, Wolfgang Siebel ^b, Shuhao Tang ^a, Yiru Ji ^a, Jianfeng He ^a, Fukun Chen ^a

5

6 a: State Key Laboratory of Lithospheric and Environmental Coevolution, School of Earth and
7 Space Sciences, University of Science and Technology of China, Hefei 230026, China

8

9 b: Institute of Earth and Environmental Sciences, Albert-Ludwig University Freiburg, Freiburg
10 79104, Germany

11

12

13 *Corresponding author: jhe1989@ustc.edu.cn (J. He)

14

15

16 **Abstract:** Unravelling the tectonic setting and evolution of cratons during the late
17 Paleoproterozoic has long been a major focus of geological research. As one of Earth's
18 principal cratonic blocks, the North China Craton (NCC) preserves extensive
19 magmatism during this period. Recent investigations have identified numerous 1.78
20 Ga dioritic intrusions along the southern margin and the center of the NCC. The NCC
21 experienced a widespread magmatic event at 1.78 Ga, and the tectonic setting of this
22 period remains a central and actively debated topic, demanding further interpretation
23 and understanding. Diorites of the NCC provide critical petrogenetic and geological
24 significances. In this paper we report zircon U-Pb ages of \sim 1.78 Ga and geochemical
25 data of the Jiguanshan diorite. The diorites in the Trans-North China Orogen and the
26 southern margin of the NCC, including the Jiguanshan diorite, have similar element
27 and isotopic characteristics. The weighted mean averages of initial $^{87}\text{Sr}/^{86}\text{Sr}$ and $\varepsilon_{\text{Nd}}(t)$
28 values are 0.7052 ± 0.0003 and -6.5 ± 0.2 , respectively. The initial Pb isotope
29 compositions of the diorite samples do not show significant enrichment of radiogenic
30 lead. In terms of Sr-Nd-Pb isotope compositions and Nb/Ta, Ba/Th, and Sr/Th ratios,
31 the diorites differ from the coeval Xiong'er volcanic rocks and mafic dike swarms.
32 Our results suggest that the diorites originated from the basaltic lower crust, rather
33 than from the enriched subcontinental lithospheric mantle. Whole-rock and zircon
34 trace element tectonic diagrams indicate that the diorites formed in a rift-related
35 environment. The formation of the diorites indicates a potential transition from
36 orogenic-related magmatism towards intraplate magmatism.

37 **Key words:** Late Paleoproterozoic, North China, Diorite, Zircon, Sr-Nd-Pb isotopes

38

39 **1 Introduction**

40 Formation and evolution of the North China Craton (NCC) provide critical insights
41 into Precambrian geological processes (e.g., [Geng et al., 2012](#); [Liu et al., 1992](#)). The
42 NCC was stabilized by the collision and amalgamation of several continental blocks
43 in the late Paleoproterozoic ([Fig. 1a](#); e.g., [Zhao and Zhai, 2013](#); [Zhao et al., 2000a, b](#)).
44 Subsequent widespread magmatic activity across the NCC records the cratonization
45 process, providing critical insights into its stabilization and maturation (e.g., [Zhai,](#)
46 [2011](#)). The petrogenesis of the Paleoproterozoic magmatic rocks preserves key
47 information about regional tectonic evolution and has been linked to the assembly or
48 breakup of the Columbia supercontinent (e.g., [Peng et al., 2007, 2008](#); [Zhao et al.,](#)
49 [2009](#)). Among these events, the ~1.78 Ga magmatism is particularly distinctive due to
50 its large scale, producing numerous rock types including the Xiong'er Group, A-type
51 granite and mafic dykes (e.g., [Cui et al., 2010](#); [Hu et al., 2010](#); [Peng et al., 2007, 2008](#);
52 [Wang et al., 2004](#); [Wang et al., 2014](#)). These rocks are extensively distributed across
53 both the southern margin and Trans-North China Orogen of the NCC. However, the
54 petrogenesis and tectonic setting of these rocks is controversially debated, which
55 revolves around post-collisional/orogenic extension (e.g., [Wang et al., 2004, 2008,](#)
56 [2014](#)), continental arc magmatism (e.g., [He et al., 2009](#); [Zhao et al., 2009](#)), rifting
57 (e.g., [Cui et al., 2010](#); [Zhao et al., 2007](#)), and the involvement of mantle plumes (e.g.,
58 [Hou et al., 2008](#); [Peng et al., 2007, 2008](#)). Clarifying the tectonic setting during this
59 period is essential for understanding the geological evolution that followed the late
60 Paleoproterozoic amalgamation of the NCC.

61 In recent years, numerous diorites with ages of *c.* 1780 Ma along the southern margin
62 of the NCC and the Shanxi region ([Fig. 1b](#)) have attracted significant attention,
63 potentially offering new perspectives for understanding the tectonic evolution of the

64 craton during the late Paleoproterozoic. These rocks include diorites intruding into the
65 Xushan Formation (at *c.* 1789 Ma; [Zhao et al., 2004](#)), the East-West Group dykes (*c.*
66 1780 Ma; [Peng et al., 2007](#)), the Shizhaigou diorite (*c.* 1780 Ma; [Cui et al., 2011](#)), the
67 Wafang diorite (*c.* 1750 Ma; [Wang et al., 2016](#)), the Gushicun diorite (*c.* 1780 Ma; [Ma](#)
68 [et al., 2023a](#)), the Muzhijie diorite (*c.* 1780 Ma; [Ma et al., 2023b](#)), the Fudian diorite
69 (*c.* 1780 Ma; [Ma et al., 2023b](#)), and the Jiguanshan diorite (*c.* 1780 Ma; this study).

70 The diorites are widely distributed in an approximate east-west trending belt and
71 possess similar zircon ages. [Peng et al. \(2007\)](#) and [Cui et al. \(2011\)](#) proposed that
72 some of them share identical source with the Xiong'er Group volcanic rocks or dyke
73 swarms, formed by fractional crystallization of enriched mantle material. Other
74 authors interpret some of them resulting from fractional crystallization ([Ma et al.,](#)
75 [2023a, b](#)) or from crustal melting with limited mantle influence ([Wang et al., 2016](#)).
76 Systematic research of their genesis is crucial for clarifying their formation and
77 constraining the regional geological evolution.

78 The present study focuses on the Jiguanshan diorite and other diorites with ages
79 between 1.78 and 1.75 Ga from the NCC. These diorites have similar geochemical
80 characteristics, suggesting their formation during a single magmatic episode. By
81 evaluating whole rock geochemical and Sr-Nd-Pb isotopic compositions, as well as
82 Hf isotopic compositions of zircons, a better understanding of the tectonic
83 environment and evolution of the NCC during the late Paleoproterozoic is provided.

84

85 **2 Geological background and sample material**

86 The NCC records a 3.8 Ga lasting geological evolution (e.g., [Geng et al., 2012](#); [Liu et](#)
87 [al., 1992](#)). It consists of an Archean to Paleoproterozoic metamorphic basement
88 overlain by Mesoproterozoic unmetamorphosed sedimentary cover (e.g., [Lu et al.,](#)

89 2008; Zhao and Zhai, 2013). The crystalline basement is composed of several
90 microcontinental blocks (Fig. 1a; Zhao et al., 2005). Between 1.95 and 1.92 Ga, the
91 Yinshan and Ordos blocks collided along the Khondalite belt to form the Western
92 Block (e.g., Li et al., 2011; Lu et al., 2008; Zhao et al., 2005). Around 1.9 Ga, the
93 Longgang and Nangrim blocks amalgamated along the Jiao-Liao-Ji belt, forming the
94 Eastern Block (e.g., Luo et al., 2004; Zhao et al., 2005). The NCC ultimately formed
95 by the assembly of the eastern and western blocks along the central orogenic belt at *c.*
96 1.85 Ga (e.g., Zhao and Zhai, 2013; Zhao et al., 2000a, b, 2005). The southern margin
97 of the NCC is separated from the North Qinling Orogen by the Luonan–Luanchuan
98 Fault (Fig. 1b). Prior to the Mesozoic, the southern margin of the NCC experienced a
99 similar geological evolution as the NCC itself, which makes it an ideal object for
100 studying the Precambrian geological evolution (e.g., Zhai, 2010).

101 The study area is located within the eastern part of the southern margin of the NCC
102 (Fig. 1b). The most frequent basement rocks in this area are metamorphic basement
103 rocks of the Archean Taihua Group. The Taihua Group extends in an east-west
104 direction from Lantian in the west to Wuyang in the east (e.g., Diwu et al., 2014, 2018;
105 Wang et al., 2020). It is primarily composed of medium- to high-grade metamorphic
106 rocks and has been divided into the Lower Taihua Complex and the Upper Taihua
107 Complex (e.g., Kröner et al., 1988; Shen, 1994; Wan et al., 2006; Xue et al., 1995;
108 Zhang et al., 1985). The lower part is dominated by metamorphic mafic rocks and
109 TTG gneisses (e.g., Kröner et al., 1988; Zhang et al., 1985). The upper part is
110 characterized by supracrustal sequences and metamorphic mafic rocks (e.g., Wan et
111 al., 2006; Xue et al., 1995). During the Archean, the rocks of the Taihua Group record
112 two significant stages of crustal growth (e.g., Diwu et al., 2014, 2018). During the late
113 Paleoproterozoic (1.97–1.80 Ga), the Taihua Group underwent widespread

114 amphibolite to granulite facies metamorphism and intense deformation, reflecting
115 collisional orogenic events in the NCC (e.g., [Diwu et al., 2018](#); [Sun et al., 2017](#)).

116 The upper part of the basement contains 1780 million years old volcanic rocks
117 Xiong'er Group (e.g., [Zhao et al., 2004, 2007](#)). The Xiong'er volcanic rocks consist
118 mainly of basalts and andesites that are widely distributed along the southern margin
119 of the NCC, and extend as far north as Taiyuan City in Shanxi Province ([Zhao et al.,](#)
120 [2007](#)). The Xiong'er Group represents the largest magmatic unit of the NCC since the
121 Neoarchean period. At the same time, a large mafic dyke swarm intruded into the
122 NCC. These mafic rocks are interpreted as products of crustal extension during the
123 Colombia supercontinent era (e.g., [Hou et al., 2008](#); [Peng et al., 2008](#)).

124 During fieldwork, seven diorite samples were collected from the Jiguanshan diorite on
125 the eastern side of the Jiguanshan Hill (or the Jiguan Mountain), about 30 km south of
126 Ruyang County, Henan Province ([Fig. 1c](#) and [Table S1](#)). The Jiguanshan diorite forms
127 several east-west striking bodies that are cut by the Mesozoic Taishanmiao A-type
128 granite to the west. The Taishanmiao intrusion, located at the southern margin of the
129 NCC in the western Henan region, covers an area of *c.* 290 km² (e.g., [He et al., 2021](#)).
130 The northern and eastern part of the Taishanmiao intrusion penetrates the volcanic
131 rocks of the Xiong'er Group ([Fig. 1c](#)).

132 The collected rock samples of the Jiguanshan diorite are fresh and greyish with
133 massive textures ([Fig. 2a](#)). They are fine-grained with a grain sizes between 0.1–2 mm
134 ([Fig. 2b](#)). The main mineral is plagioclase (~60 vol.%), with lamellar and euhedral
135 shape and variable grain size. Under the microscope, the partially sericitized crystals
136 show simple contact twinning and polysynthetic twinning. Some plagioclase crystals
137 show zonal and resorption textures ([Fig. 2c-e](#)) and Carlsbad-albite twinning with
138 zoned texture ([Fig. 2d](#)). Clinopyroxene (~15 vol.%) formed earlier than plagioclase.

139 Most of the clinopyroxenes have zonal and resorption textures (Fig. 2f). Euhedral
140 opaque minerals (~3 vol.%), such as ilmenite, are often encased in clinopyroxene.
141 Alkali-feldspar (~10 vol.%) shows hypidiomorphic to xenomorphic texture with
142 imprints of kaolinization (Fig. 2c, e). The mineral occurs as K-feldspar and perthite.
143 Quartz (~5 vol.%) occurs as an anhedral crystal. Biotite (~3 vol.%) shows
144 xenomorphic texture or is altered into chloride (Fig. 2c, e). In addition, accessory
145 minerals such as zircon and ilmenite account for about 3 vol.% (Fig. 2f).

146

147 **3 Analytical methods**

148 **Major and trace elements:** Seven representative fresh rock samples were grinded
149 into powders less than 200 mesh. Major element composition of whole rock was
150 obtained by X-ray fluorescence (XRF) from ALS Chemex (Guangzhou) using a
151 PANalytical PW2424 instrument. Following sample digestion, whole-rock trace
152 element concentrations were determined using an Agilent 7700 inductively coupled
153 plasma mass spectrometry (ICP-MS) at the University of Science and Technology of
154 China (USTC). Quality control assurance was achieved by using GSR-1, BCR-2, and
155 AGV-2 standard material. The analytical uncertainties are <5%.

156 **Whole-rock Sr-Nd-Pb isotopes:** Whole-rock Sr-Nd-Pb isotope analysis was
157 performed in the ultra-clean laboratory of the Laboratory of Radiogenic Isotope
158 Geochemistry, USTC. Whole-rock powders of *c.* 100 mg were weighed in 7 ml Teflon
159 cups in a solution of purified HF and HNO₃ acids for Pb isotopic analysis and in a
160 solution of purified HF and HClO₄ acids for Sr-Nd isotopic analysis. Sr and Nd were
161 separated by AG 50W-X12 resin in 200–400 mesh purposes and purified using the
162 Sr-Spec® ion-exchange resin for Sr and Ln-Spec® resin for Nd. All isotopic

163 measurements were done on a Triton Plus mass spectrometer of Thermo ScientificTM.
164 Measured Sr and Nd ratios were normalized to $^{86}\text{Sr}/^{88}\text{Sr} = 0.1194$ and $^{143}\text{Nd}/^{144}\text{Nd} =$
165 0.7219, respectively. Pb isotope ratios were corrected for mass fractionation using a
166 fractionation factor of 0.1% per atomic mass unit based on repeated measurements of
167 reference material NIST NBS 981 (Wang et al., 2023b). Total procedure blanks for Sr,
168 Nd, and Pb were <200 pg. Description of detailed analytical procedures can be found
169 elsewhere (Chen et al., 2000, 2007). Errors of the initial values of Sr and Nd isotopes
170 were obtained by the error transfer formula, which is shown in Table 2 for Sr and
171 Table 3 for Nd. Detailed formulas can be found in Siebel et al. (2005). A 5% age error,
172 a 2‰ $^{87}\text{Rb}/^{86}\text{Sr}$ measurement error, and a 0.3‰ $^{87}\text{Sr}/^{86}\text{Sr}$ measurement error were
173 used for the error of the initial Sr values for calculation. A 5% age error, a 0.3‰
174 $^{147}\text{Sm}/^{143}\text{Nd}$ error, and the $^{143}\text{Nd}/^{144}\text{Nd}$ measurement error were used for the
175 calculation of the error of initial Nd isotope values.

176 **Zircon U-Pb geochronology and trace element composition:** Zircon crystals were
177 isolated from the rocks by standard mineral separation procedures. Grains with intact
178 crystal shape and no obvious inclusions were selected under a binocular microscope.
179 The zircons were embedded in epoxy resin. The upper and lower planes of each
180 zircon target were polished with sandpaper from coarse to fine. Most of the zircon
181 gains were polished to 2/3 of the position and then cleaned in ultra-pure water by
182 ultrasonic waves. The grains were treated with dust-free paper in a certain direction to
183 ensure that the zircon was clean and bright without impurities under the microscope
184 for carbon plating. Cathodoluminescence (CL) image analysis was done on a scanning
185 electron microscope (SEM) located at the USTC. Zircon U-Pb isotopic and trace
186 element compositions were obtained by laser-ablation inductively-coupled plasma
187 mass spectrometry (LA-ICP-MS) using an Agilent 7700 ICP-MS with a 193 nm ArF

188 laser-ablation system at the USTC. The beam spot diameter was 32 μm , operating at a
189 repetition rate of 10 Hz. Helium served as the carrier gas. Zircon 91500 was used as a
190 standard for age calculation. The NIST SRM 610 and 612 were utilized as reference
191 materials for element content adjustment. U-Pb ratios and uranium and lead
192 concentration data were calculated by the ICPMSDataCal software (Liu et al., 2010).
193 Concordia and weighted mean age plots were made using IsoplotR (Vermeesch,
194 2018).

195

196 **4 Analytical results**

197 Whole-rock compositions of the Jiguanshan diorite are given in Table 1, and
198 Sr-Nd-Pb isotope compositions and error calculations are shown in Tables 2 to 4. Age
199 results of zircon grains from four samples are given in Table S1, and zircon trace
200 element composition in Table S2.

201

202 **4.1 Zircon U–Pb isotopic ages**

203 Zircon grains from the Jiguanshan diorite are transparent to pale yellow with
204 subhedral to euhedral habitus. They measure *c.* 100–300 μm in length and have aspect
205 ratios between 1:1 and 3:1. Most of them show oscillatory zoning in the CL images
206 (Fig. 3), which suggests a magmatic origin.

207 Twenty-nine zircon grains from sample ZY2202 yield $^{207}\text{Pb}/^{206}\text{Pb}$ ages varying from
208 1885 ± 44 Ma to 1643 ± 42 Ma giving a weighted mean age of 1772 ± 16 Ma (2σ , $n=29$,
209 $\text{MSWD}=2.2$, Fig. 4a). Thirty-two zircon grains from sample ZY2204 yield $^{207}\text{Pb}/^{206}\text{Pb}$
210 ages varying from 1902 ± 54 Ma to 1635 ± 47 Ma with a weighted mean age of 1742
211 ± 15 Ma (2σ , $n=32$, $\text{MSWD}=1.6$, Fig. 4b). Twenty-six out of twenty-seven zircon

212 grains from sample ZY2205 yield $^{207}\text{Pb}/^{206}\text{Pb}$ ages varying from 1933 ± 52 Ma to 1692 ± 44 Ma and a weighted mean age of 1760 ± 18 Ma (2σ , $n=26$, MSWD=0.66, [Fig. 4c](#)).
213 One zircon with a $^{207}\text{Pb}/^{206}\text{Pb}$ age of 1639 ± 46 Ma (96% concordance) was excluded
214 from the calculation ([Fig. 4c](#)). Thirty zircon grains of sample ZY2207 yield
215 $^{207}\text{Pb}/^{206}\text{Pb}$ ages ranging from 1900 ± 54 Ma to 1700 ± 36 Ma with a weighted mean
216 age of 1771 ± 17 Ma (2σ , $n=30$, MSWD=1, [Fig. 4d](#)).
217
218 Most zircon grains have Th/U ratios >1 , supporting their magmatic origin ([Table S1](#)).
219 Some grains deviate from the Concordia line, which is related to lead loss ([Fig. 4a-d](#)).
220 The weighted mean age of the Jiguanshan diorite of *c.* 1780 Ma suggest that the
221 diorite body formed in the late Paleoproterozoic.
222

223 **4.2 Whole-rock chemical composition**

224 SiO₂ contents of the Jiguanshan diorite vary between 55.57 wt. % and 59.44 wt. %
225 and the sum of K₂O+Na₂O from 5.57 wt. % to 6.03 wt. %, corresponding to gabbroic
226 diorite to diorite composition according to the TAS diagram ([Fig. 5a](#)). K₂O contents
227 range from 2.97 wt. % to 3.21 wt. % and fall within the high-K calc-alkaline fields
228 ([Fig. 5b](#)). The samples from the Jiguanshan diorite have consistent A/CNK ratios
229 ranging from 0.78 to 0.81 and A/NK >1 , which classify them as metaluminous rocks
230 ([Fig. 5c](#)). Mg[#] ($\text{Mg}^{\#} = (\text{MgO} + \text{FeO}_{\text{total}}) / \text{MgO} \times 100$) values range from 34 to 39 ([Fig. 5d](#)).
231 The Jiguanshan diorite depicts enrichment of large ion lithophile elements (LILE),
232 such as Rb, Ba, and K, and negative anomalies of Sr, Ti, Nb, and Ta ([Fig. 6a](#)). $\sum\text{REE}$
233 contents range from 361 to 393 ppm. Light rare earth elements (LREE) exhibit
234 stronger enrichment, while heavy rare earth elements (HREE) are relatively depleted
235 ([Fig. 6b](#)). (La/Yb)_N ratios range from 12.2 to 15.0 (subscript N denotes normalization

236 against chondrite La and Yb contents) with Eu/Eu^{*} (Eu/Eu^{*}=2Eu_N/(Sm_N+Gd_N),
237 subscript N denotes normalization against chondrite Sm and Gd contents) ratios
238 ranging from 0.57 to 0.68 (Table 1).

239

240 **4.3 Whole-rock Sr-Nd-Pb isotopic compositions**

241 All initial radiogenic isotopic values and the errors of the initial values of Sr, Nd and
242 Pb isotopes reported herein are calculated back to an age of 1780 Ma. The measured
243 ⁸⁷Sr/⁸⁶Sr ratios of the Jiguanshan diorites vary from 0.715177 ±0.000011 to 0.724714
244 ±0.000012 (2σ). Initial Sr ratios range from 0.7020 ±0.0007 to 0.7058 ±0.0010 (2σ,
245 Fig. 7a). Measured ¹⁴³Nd/¹⁴⁴Nd values vary from 0.511129 ±0.000008 to 0.511329
246 ±0.000007 (2σ). Initial ¹⁴³Nd/¹⁴⁴Nd isotope compositions range from 0.509924
247 ±0.000061 to 0.510090 ±0.000063 (2σ), corresponding to initial ε_{Nd} values of -8.04
248 ±1.20 to -4.80 ±1.23 (2σ, Fig. 7b) and two-stage Nd model ages (T_{DM2}) of 2.94 Ga to
249 2.68 Ga. Pb isotopic compositions are as follows: ²⁰⁶Pb/²⁰⁴Pb = 15.832–16.167,
250 ²⁰⁷Pb/²⁰⁴Pb = 15.170–15.243, and ²⁰⁸Pb/²⁰⁴Pb = 36.046–37.324. Initial Pb isotope
251 ratios are significantly lower: ²⁰⁶Pb/²⁰⁴Pb_i ratios ranging from 14.965 to 15.295,
252 ²⁰⁷Pb/²⁰⁴Pb_i ratios ranging from 15.090 to 15.150, ²⁰⁸Pb/²⁰⁴Pb_i ratios ranging from
253 34.398 to 35.825, with ²³⁸U/²⁰⁴Pb and ²³²Th/²³⁸U ratios ranging from 2.3 to 2.9 and 5.3
254 to 7.8, respectively (Fig. 8a, b).

255

256 **5 Discussion**

257 **5.1 Compositional characteristics of late-Paleoproterozoic diorites of the NCC**

258 The late Paleoproterozoic diorites in the NCC occur along east-west (EW) strike
259 direction, different from the north-northwest (NNW) strike of most contemporaneous

260 mafic dykes (Hou et al., 2008; Peng et al., 2007, 2008). Intrusion ages of the diorites
261 are concentrated between 1780 and 1750 Ma. All diorites have similar geochemical
262 and isotopic compositions and can be regarded as a compositional homogeneous rock
263 group.

264 Most of the late-Paleoproterozoic diorites of the NCC have silica contents in the range
265 of 52 wt. % to 62 wt. % (Fig. 5a). Total alkali content (K_2O+Na_2O) of 5 wt. % to 7
266 wt. % suggests a subalkaline character (Fig. 5a). K_2O contents range from 2 wt. % to
267 5 wt. % in accordance with a high-K calc-alkaline to shoshonite composition (Fig. 5b).
268 The ASI and $Mg^{\#}$ values of the samples, except for a few data points that deviate
269 significantly, are mostly homogeneous, with weighted average values of 0.81 and 37,
270 respectively (Figs. 5c, d). In primitive mantle normalization diagrams, all diorites
271 display enrichment of LILEs, such as Rb, Ba, and K, and depletion of high field
272 strength elements (HFSEs), such as Na, Ta, Th, U, and Ti (Fig. 6). On the rare earth
273 element normalization diagrams, they display negative Eu anomalies with enrichment
274 in LREEs and flat distribution of HREEs (Fig. 6).

275 All diorites have similar Nd isotopic compositions with a mean initial ϵ_{Nd} value of
276 -6.51 ± 0.2 (2σ , $n=41$, Fig. 7b), when calculate back to 1780 Ma (Table 3). The overall
277 range of initial ϵ_{Nd} values is from -10.2 ± 1.21 to -4.80 ± 1.23 (2σ , Fig. 7b). Some
278 samples from the Wafang diorite (or Muzhijie diorite, Ma et al, 2023b; Wang et al,
279 2016) have enriched Nd isotope composition, which can be explained by assimilation
280 or contamination of continental crust due to their higher zirconium (Fig. 7b; Table 3).
281 Overall, the initial ϵ_{Nd} values and the corresponding two-stage Nd model ages (T_{DM2})
282 of the diorites are consistent with each other except for the Wafang diorite (Table 3).

283 The initial ϵ_{Hf} values of zircons from the diorites in the NCC have a wide but
284 consistent range of variations, i.e., from -17 to -2.5 in the Gushicun diorite (Ma et al,

285 2023a; Fig. 7c), from -14 to 0.55 in the Muzhijie diorite (Ma et al., 2023b; Fig. 7c),
286 and from -17 to 0.95 in the Fudian diorite (Ma et al., 2023b; Fig. 7c). The diorites
287 have similar Nd-Hf isotopic compositions and form a coherent group in geochemical
288 diagrams, indicating a close genetic relationship.

289

290 **5.2 Initial Sr isotope composition and magma source**

291 The late Paleoproterozoic diorites of the NCC show a large range in whole-rock initial
292 Sr isotopic compositions (Fig. 7a; Jiguanshan diorite: 0.7020 to 0.7058; Wafang
293 diorite: 0.7004 to 0.7050; Shizhaigou diorite: 0.7005 to 0.7053; East-West group dikes:
294 0.7011 to 0.7053). Determining magma sources for rocks with widely varying initial
295 Sr ratios is complex, as Sr isotopes can be affected by magma mixing, assimilation,
296 contamination, and melting degrees. (e.g., Gao et al., 2015; Wolf et al., 2019; Zeng et
297 al., 2005).

298 The whole-rock Nd and Sr isotope compositions of the diorites suggest a
299 heterogeneous magma source (Fig. 7b). It might be argued that this could be the effect
300 of mixing between crustal and mantle sources. However, mantle-derived rocks often
301 have high MgO contents and elevated compatible element concentrations such as Ni
302 and Cr, which is inconsistent with the elemental content characteristics of the diorites
303 (Table 1, see previous references). Variability in Sr isotope ratios can result from
304 different degrees of source melting. However, a mica- and feldspar-rich source with
305 high Rb/Sr ratios produces melts with more radiogenic $^{87}\text{Sr}/^{86}\text{Sr}$ ratios (e.g., Hu et al.,
306 2018). Melts affected by the dehydration of amphibole typically have low $^{87}\text{Sr}/^{86}\text{Sr}$
307 ratios with adakitic characteristics (e.g., Rapp and Watson, 1995; Wolf et al., 1993).
308 The different degrees of source melting are unlikely to be the main cause for the
309 isotopic composition of the diorites.

310 Initial $^{87}\text{Sr}/^{86}\text{Sr}$ values <0.704 are negatively correlated with the $^{87}\text{Rb}/^{86}\text{Sr}$ ratios (Fig.
311 7a). For initial $^{87}\text{Sr}/^{86}\text{Sr}$ values >0.704 , such correlation does no longer exist. A reason
312 for this could be the large uncertainty propagation of the initial whole-rock Sr isotope
313 ratios especially for old samples. Among all diorites there are samples with initial
314 $^{87}\text{Sr}/^{86}\text{Sr}$ ratios greater than 0.704. Excluding outliers, the mean average initial
315 $^{87}\text{Sr}/^{86}\text{Sr}$ ratio is 0.7052 ± 0.0003 (2σ , $n=8$), which might represent the most likely
316 initial Sr isotope composition of the magma source (Fig. 7a).

317 The initial Sr ratios of the Xiong'er Group rocks vary widely and tend to be more
318 radiogenic (Fig. 7d). The initial Sr ratios of the diorites are more similar to lower
319 crustal Archean xenoliths from the southeastern NCC (initial $^{87}\text{Sr}/^{86}\text{Sr}$ values: 0.7039–
320 0.7068, $t=1780$ Ma, e.g., Huang et al., 2004), suggesting that they are more likely
321 associated with lower crustal rocks of the NCC rather than an enriched mantle source
322 like the volcanic rocks of the Xiong'er Group.

323

324 **5.3 Petrogenetic considerations**

325 Several models have been proposed for the petrogenesis of intermediate dioritic rocks
326 including partial melting of metasomatized mantle (e.g., Chen et al., 2021), partial
327 melting of subducted oceanic crust and subsequent melt-peridotite reaction (e.g.,
328 Kelemen, 1995; Stern and Kilian, 1996), magma mixing/mingling (e.g., Reubi and
329 Blundy, 2009; Streck et al., 2007), melting of basaltic rocks (e.g., Jackson et al., 2003;
330 Petford and Atherton, 1996), as well as fractional crystallization of basaltic magmas
331 (e.g., Castillo et al., 1999).

332 The diorites from the NCC have low compatible element concentrations, suggesting
333 that they were not derived directly from a mantle source (Fig. 9a). Larger contribution

334 of mantel material can also be excluded due to their relatively homogeneous initial Nd
335 isotope compositions (Fig. 7b), and consistent silica and Mg[#] values (Fig. 5d).

336 Partial melting of the oceanic crust in the subducted slab can also form rocks of
337 intermediate composition, such as adakites, which often exhibit high Sr/Y ratios (>20)
338 and low Y contents (<18 ppm) (e.g., Defant and Drummond, 1990; Peacock et al.,
339 1994). The Jiguanshan and other diorites from the NCC have relatively high Y and Sr
340 contents with Sr/Y ratios <15. Thus, partial melting of the oceanic crust does not
341 appear to have played a role during the genesis of the diorites.

342 As can be seen from the Harker variation diagrams, Cr contents decrease with
343 decreasing MgO, indicating fractionation of clinopyroxene (Fig. 9a). CaO contents
344 decrease with increasing SiO₂, suggesting crystallization of minerals, such as
345 plagioclase or clinopyroxene (Fig. 9b). However, Al₂O₃ and Na₂O contents do not
346 significantly decrease with increasing SiO₂, indicating that plagioclase and
347 clinopyroxene were not significant fractionation phases (Figs. 9c-d). The increase in
348 K₂O contents with increasing SiO₂ suggests no biotite and/or K-feldspar fractionation
349 during magmatic evolution (Fig. 9e). The increasing SiO₂ and decreasing TiO₂
350 indicate crystallization and fractionation of Ti-bearing minerals, such as ilmenite (Fig
351 9f). The Eu/Eu^{*} values of the diorites do not show significant changes with Sr
352 contents, which provides evidence that fractionation of plagioclase from the melt was
353 not significant (Fig. 9g). From the above discussion, it can be concluded that the
354 petrogenesis of the diorites in the NCC was associated with minor fractional
355 crystallization processes. Whole-rock La/Yb versus La and Zr/Sm versus Zr
356 correlations are as expected for a partial melting process (Figs. 9h-i). This implies that
357 the formation of the diorites may be closely related to the partial melting of a basaltic
358 protolith.

359 Basement rocks of the lower Taihua Group at the southern margin of the NCC consist
360 of amphibolite (e.g., [Diwu et al., 2014, 2018; Wang et al., 2020](#)). Partial melting of
361 amphibolite can also lead to the production of intermediate to acidic magmas (e.g.,
362 [Beard and Lofgren, 1991; Rapp and Watson, 1995](#)). The amphibolites of the Taihua
363 Group are characterized by low K content and low K_2O/Na_2O ratios (<0.5, [Wang et al.,](#)
364 [2019](#)), making it difficult to generate high- K_2O rocks. ([Beard and Lofgren, 1991;](#)
365 [Roberts and Clemens, 1993](#)). Partial melting of amphibolite typically results in the
366 formation of peraluminous melts (e.g., [Beard and Lofgren, 1991; Rapp and Watson,](#)
367 [1995](#)), whereas the diorites in the NCC have low Al_2O_3 content with metaluminous
368 character ([Fig. 5c](#); weight average A/NCK values of 0.81). Additionally, the ε_{Nd} values
369 of the Taihua Group amphibolites at $t=1780$ Ma show a wide range from -6.7 to 0.4,
370 different from those of the diorites ([Wang et al., 2019](#)). Therefore, it seems unlikely
371 that the diorites formed by the partial melting of Taihua Group amphibolites.

372 Mafic rocks in the Xiong'er Group or the mafic dyke swarms were argued to be the
373 source of the diorites ([Cui et al., 2011; Ma et al., 2023b; Peng et al., 2007](#)). The mafic
374 dyke swarms and Xiong'er Group rocks possess a relatively large range of initial Sr
375 and Nd isotopic compositions ([Fig. 7d](#)), while the initial Nd isotopic compositions of
376 the diorites are relatively homogeneous ([Fig. 7b](#)). Whole-rock initial Nd ratios and the
377 zircon initial Hf isotope ratios of the Xiong'er Group rocks are also enriched ([Fig. 7c](#)).
378 The initial Pb isotopic compositions of the mafic dykes and Xiong'er Group rocks are
379 very radiogenic and variable ([Figs. 8a, b](#)), which is due to the high U and Th contents
380 of the protolith, indicating the presence of an enriched subcontinental lithospheric
381 mantle source (e.g., [Hou et al., 2008; Peng et al., 2004, 2007; Wang et al., 2004, 2010;](#)
382 [Zhao et al., 2007](#)). Based on the previous discussion, the geochemical characteristics
383 of the diorites are more compatible with a crustal origin and the isotopic compositions

384 of the diorites indicate that they were not derived from an enriched mantle source.
385 Additionally, the Xiong'er volcanic rocks have lower Nb/Ta ratios and Nb contents
386 compared to the diorites (Fig. 10a). Nb and Ta share a similar valence state and
387 atomic radii, but they can undergo fractionation during the subduction process
388 (Jochum et al., 1986; Shannon, 1976). The Xiong'er volcanic rocks, with higher and
389 positively correlated Ba/Th and Sr/Th ratios (Figs. 10a, b), likely originated from a
390 source influenced by early subduction component, whereas the diorites appear to be
391 less affected by early subduction-related materials. Therefore, it seems likely that the
392 diorites were formed by partial melting of a mafic lower crustal protolith on top of an
393 enriched subcontinental lithospheric mantle beneath the NCC.

394

395 **5.4 Tectonic setting**

396 After the Paleoproterozoic collisional amalgamation, the NCC was intruded by
397 diverse magmatic rocks, which have been interpreted as products of continental arc
398 magmatism, post-collisional extension, or continental rift/mantle plume magmatism.

399 The volcanic rocks of the Xiong'er Group along the southern margin of the NCC are
400 dominated by andesites, exhibiting calc-alkaline characteristics and negative Nb-Ta-Ti
401 anomalies (Jia, 1987; He et al., 2009; Zhao et al., 2009). These signatures together
402 with Nd isotopic evidence for ancient crustal assimilation and multiphase volcanic
403 activities, support a continental arc environment for the formation of the Xiong'er
404 Group (He et al., 2009; Zhao et al., 2009).

405 The radially distributed mafic dike swarms, accompanied by A-type granite intrusions
406 and rift-related sedimentary sequences, are indicative of a continental rift setting (e.g.,
407 Fan et al., 2024; Xu et al., 2008; Zhao et al., 2002; Zhao et al., 2002, 2007). The

408 Xiong'er Group is dominated by andesites, dacites and rhyolites with minor basaltic
409 andesites, which some researchers interpret as an atypical bimodal suite suggestive of
410 a continental rift setting (Zhao et al., 2002, 2007). Furthermore, the 1.80 to 1.75 Ga
411 old mafic dike swarms can be distributed in a radial or concentric pattern centered on
412 the Xiong'er Rift and extending northward (Peng et al., 2007). They share
413 geochemical characteristics, such as high TiO₂ and MgO contents, enrichment in
414 LREEs, Ba, and K, and depletion in Nb-Ta which is interpreted as evidence for
415 lithospheric extension induced by mantle plume upwelling (e.g., Hou et al., 2008;
416 Peng et al., 2007, 2008).

417 The post-collisional extension model emphasizes that the late Paleoproterozoic
418 magmatism occurred during lithospheric delamination and possibly slab detachment
419 (e.g., Wang et al., 2004, 2008, 2014, 2023a). The mafic dikes are enriched in LILEs
420 and LREEs but depleted in HFSEs, and show negative $\epsilon_{\text{Nd}}(t)$ and $\epsilon_{\text{Hf}}(t)$ values. This
421 suggests derivation from an enriched lithospheric mantle previously metasomatized
422 by subduction zone fluids (e.g., Hu et al., 2010; Wang et al., 2004, 2008, 2014). The
423 dikes are concentrated in the Trans-North China Orogen and nearby areas, consistent
424 with extensional fractures caused by rising asthenosphere (Wang et al., 2004, 2008,
425 2014). Their geochemical features, lacking OIB or asthenospheric mantle affinities,
426 do not support a mantle plume origin. (Wang et al., 2014).

427 Calk-alkaline diorites are important intermediate rock that typically form at island
428 arcs, subduction zones, and continental collision orogenic belts along convergent plate
429 boundaries. Island arc intermediate rocks, such as boninites and low MgO, high Al₂O₃,
430 and Na₂O/K₂O > 1 andesites are generally characterized by high MgO, Cr, and Ni
431 contents (Hickey et al., 1982; Rapp and Watson, 1995) whereas continental arc
432 intermediate rocks typically show high Al₂O₃ content with a wider range of ⁸⁷Sr/⁸⁶Sr

433 and $^{143}\text{Nd}/^{144}\text{Nd}$ isotope compositions, reflecting an obvious influence of continental
434 crust or more enriched sources (Hawkesworth et al., 1979; Peacock et al., 1994). The
435 Paleoproterozoic diorites of the NCC lack the compositional features of arc-related
436 rocks, meanwhile, their trace element distributions differ from those of island arc and
437 continental arc intermediate rocks. For example, the diorites do not show significant
438 enrichment in Sr, Th, and U in the primitive mantle-normalized diagram as arc-related
439 rocks (Fig. 6a). The diorites also exhibit a negative Eu anomaly in the REE diagram,
440 which is different from arc-related rocks (Fig. 6b). Diorites in collisional orogenic
441 belts have high MgO and K₂O contents and adakite-like characteristics with high Sr/Y
442 and La/Yb ratios (Yang et al., 2015). However, Paleoproterozoic diorites of the NCC
443 do not show the typical arc-related element and isotopic signatures, suggesting
444 formation in a non-subduction environment.

445 Diorites can also form during crustal extension (Asmerom et al., 1990; Liu et al.,
446 2024). The NCC was in a post-collisional extensional environment after its final
447 amalgamation (e.g., Zhai, 2010). During this stage magmatism becomes more
448 complex (Bonin, 2004). Zircon is a very stable mineral and its trace elements offer
449 significant potential for distinguishing between different tectonic environments.
450 Zircon samples with La contents less than 1 ppm were selected for discussion to
451 ensure accurate information from zircon trace element contents without interference
452 from the inclusion of other accessory phases (Zou et al., 2019). All zircons from the
453 diorites plot within the continental area in the U/Yb versus Y diagram (Fig. 11a), and
454 most of them fall into a rift-controlled tectonic environment in tectonic discrimination
455 diagrams (Figs. 11b, c; Carly et al., 2014).

456 Furthermore, HFSE elements, such as Zr, Nb, Ta, Hf, and Th, are important tectonic
457 discriminators. The distinctive Th content in arc magmas is primarily due to its low

458 solubility in subduction zone fluids and its contribution from sedimentary components
459 (e.g., Bailey and Ragnasdottir, 1994; Pearce and Peate, 1995). Arc-related/orogenic
460 magmas usually have less Nb than those of within-plate settings (e.g., Pearce and
461 Peate, 1995; Sun and McDonough, 1989). Nb in zircon is thought to be incorporated
462 through xenotime-type substitution (Schulz et al., 2006) and is suggested to reflect the
463 magma composition with minimal influence of magmatic fractionation (Hoskin et al.,
464 2000; Schulz et al., 2006). In the Nb/Hf versus Th/U and Hf/Th versus Th/Nb
465 diagrams, zircons from the Fudian and Gushicun diorites plot both within or close to
466 the arc-related/orogenic area (Figs. 11d, e). The Jiuganshan and Muzhijie diorites plot
467 both in the arc-related/orogenic and within-plate/anorogenic areas (Figs. 11d, e).
468 Whole-rock Ta/Yb and Th/Yb ratios of these diorites are uniform (Fig. 11f), all falling
469 within the overlapping area of the ACM (active continental margins) and WPVZ
470 (Within-Plate Volcanic Zone). This may indicate that the post-collisional extension
471 during this period proceeded continuously and progressively into a rift evolution.
472 Nevertheless, the diorites preserve a record of the superimposition of representative
473 components from multiple tectonic settings.

474 After the ~1.85 Ga collisional event, the NCC entered a prolonged post-collisional
475 extensional stage. During this stage, magmatism was primarily controlled by crustal
476 thickening and remelting, leading to the widespread formation of various
477 crust-derived granites (e.g., Geng et al., 2006; Zhao et al., 2008, 2018). Subsequent
478 slab breakoff and gravitational collapse of the thickened crust triggered extension in
479 the mid-upper crust and emplacement of felsic magmas (Deng et al., 2016a; Wang et
480 al., 2023a; Xu et al., 2024). At 1.78 Ga, further lithospheric thinning induced
481 upwelling of the asthenosphere, causing further partial melting of previously
482 subduction-fluid-metasomatized lithospheric mantle (e.g., Peng et al., 2007, 2008;

483 Wang et al., 2010, 2014; Zhao et al., 2002, 2007). Following this event, the magmatic
484 activity in this region became dominated by A-type granites and alkaline rocks,
485 marking a transition to an anorogenic intracontinental extensional setting (e.g., Deng
486 et al., 2016b; Wang et al., 2024). The 1.78 Ga old crust-derived diorites show
487 transitional features in their tectonic setting, retaining some remnant effects of
488 orogenic magmatism while gradually evolving toward intraplate magmatism. It
489 reflects the ongoing extension of the NCC after its amalgamation.

490

491 **6 Conclusions**

492 The Jiguanshan diorite yields a U-Pb zircon age of *c.* 1.78 Ga. The intrusion displays
493 geochemical features in common with other diorite intrusions within the NCC. The
494 diorite emplaced contemporaneous with the Xiong'er volcanic rocks and the mafic
495 dyke swarms, representing a significant period of magmatism in the NCC.

496 The late Paleoproterozoic diorites were produced by partial melting of a mafic
497 protolith. The Sr-Nd-Pb-Hf isotopic characteristics indicate that the source was not the
498 same as that for the Xiong'er volcanic rocks or the mafic dyke swarms. Instead, the
499 diorites were likely derived from the lower crust of the NCC.

500 The formation of Paleoproterozoic diorites in the NCC is not related to arc
501 magmatism. Instead, it is associated with a rift setting. The formation of diorite
502 records the transition of crustal origin rocks from orogenic-related magmatism to
503 intraplate magmatism during the post-collision extensional stage. It reflects the
504 ongoing extension of the NCC after its amalgamation.

505

506 **Acknowledgements**

507 This study was financially supported by the Strategic Priority Research Program of
508 the Chinese Academy of Sciences (grant Nos. XDA0430203) and the National
509 Natural Science Foundation of China (grant Nos. 42202069 and 41872049). Zhiyi
510 Wang was financially supported by China Scholarship Council (202306340065). We
511 thank P. Xiao and Z.-H. Hou for assistance with the analysis.

512 **References**

513 Asmerom, Y., Snow, J. K., Holm, D. K., Jacobsen, S. B., Wernicke, B. P., and Lux, D. R.: Rapid uplift
514 and crustal growth in extensional environments: An isotopic study from the Death Valley region,
515 California. *Geology*, 18, 223–226.
516 [https://doi.org/10.1130/0091-7613\(1990\)018<0223:RUACGI>2.3.CO;2](https://doi.org/10.1130/0091-7613(1990)018<0223:RUACGI>2.3.CO;2), 1990.

517 Bailey, E.H., and Ragnarsdottir, K.V.: Uranium and thorium solubilities in subduction zone fluids.
518 *Earth Planet. Sci. Lett.*, 124, 119–129. [https://doi.org/10.1016/0012-821X\(94\)00071-9](https://doi.org/10.1016/0012-821X(94)00071-9), 1994.

519 Beard, J.S., and Lofgren, G.E.: Dehydration melting and water-saturated melting of basaltic and
520 andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. *J. Petrol.* 32, 365-401.
521 <https://doi.org/10.1093/petrology/32.2.365>, 1991.

522 BGMRH (Bureau of Geology and Mineral Resources of Henan Province): Geological map of the
523 Henan Province. Sheet I-49-(23) (Lushan) scale 1:200,000 (in Chinese), 1994.

524 Bonin, B.: Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily
525 imply two contrasting, mantle and crustal sources? A review. *Lithos*, 78, 1–24.
526 <https://doi.org/10.1016/j.lithos.2004.04.042>, 2004.

527 Carley, T.L., Miller, C.F., Wooden, J.L., Padilla, A.J., Schmitt, A.K., Economos, R.C., Bindeman, I.N.,
528 and Jordan, B.T.: Iceland is not a magmatic analog for the Hadean: evidence from the zircon record.
529 *Earth Planet. Sci. Lett.*, 405, 85-97. <https://doi.org/10.1016/j.epsl.2014.08.015>, 2014.

530 Castillo, P., Janney, P., and Solidum, R.: Petrology and geochemistry of Camiguin Island, southern
531 Philippines: insights to the source of adakites and other lavas in a complex arc setting. *Contrib.
532 Mineral. Petrol.*, 134, 33–51. <https://doi.org/10.1007/s004100050467>, 1999.

533 Chen, F., Hegner, E., and Todt, W.: Zircon ages, Nd isotopic and chemical compositions of
534 orthogneisses from the Black Forest, Germany - evidence for a Cambrian magmatic arc. *Int. J. Earth
535 Sci.*, 88, 791-802. <https://doi.org/10.1007/s005310050306>, 2000.

536 Chen, F., Li, X. H., Wang, X. L., Li, Q. L., and Siebel, W.: Zircon age and Nd-Hf isotopic composition
537 of the Yunnan Tethyan belt, southwestern China. *Int. J. Earth Sci.*, 96, 1179-1194.
538 <https://doi.org/10.1007/s00531-006-0146-y>, 2007.

539 Chen, L., Zheng, Y.F., Xu, Z., and Zhao, Z.F.: Generation of andesite through partial melting of basaltic
540 metasomatites in the mantle wedge: Insight from quantitative study of Andean andesites. *Geosci.
541 Front.*, 12, 101124. <https://doi.org/10.1016/j.gsf.2020.12.005>, 2021.

542 Cui, M.L., Zhang, B.L., Peng, P., Zhang, L.C., Shen, X.L., Guo, Z.H., and Huang, X.F.:
543 Zircon/baddeleyite U-Pb dating for the Paleoproterozoic intermediate-acid intrusive rocks in
544 Xiaoshan Mountains, west of Henan Province and their constraints on the age of the Xiong'er
545 Volcanic Province. *Acta Petrol. Sin. (in Chinese with English abstract)*, 26, 1541-1549, 2010.

546 Cui, M.L., Zhang, B.L., and Zhang, L.C.: U-Pb dating of baddeleyite and zircon from the Shizhaigou
547 diorite in the southern margin of North China Craton: Constraints on the timing and tectonic setting
548 of the Paleoproterozoic Xiong'er group. *Gondwana Res.*, 20, 184-193.
549 <https://doi.org/10.1016/j.gr.2011.01.010>, 2011.

550 Defant, M., and Drummond, M.: Derivation of some modern arc magmas by melting of young
551 subducted lithosphere. *Nature*, 347, 662-665. <https://doi.org/10.1038/347662a0>, 1990.

552 Deng, X. Q., Peng, T. P., and Zhao, T. P.: Geochronology and Geochemistry of the Late
553 Paleoproterozoic Aluminous A-Type Granite in the Xiaoqinling Area along the Southern Margin of
554 the North China Craton: Petrogenesis and Tectonic Implications. *Precambrian Res.*, 285: 127-146.
555 <https://doi.org/10.1016/j.precamres.2016.09.013>, 2016a

556 Deng, X.Q., Zhao, T.P., and Peng, T.P.: Age and geochemistry of the early Mesoproterozoic A-type
557 granites in the southern margin of the North China Craton: Constraints on their petrogenesis and
558 tectonic implications, *Precambrian Research*, 283, 68-88,
559 <https://doi.org/10.1016/j.precamres.2016.07.018>, 2016b.

560 Diwu, C.R., Liu, X., and Sun, Y.: The composition and evolution of the Taihua Complex in the southern
561 North China Craton. *Acta Petrol. Sin.* (in Chinese with English abstract), 34, 999-1018, 2018.

562 Diwu, C.R., Sun, Y., Zhao, Y., and Lai, S.C.: Early Paleoproterozoic (2.45-2.20 Ga) magmatic activity
563 during the period of global magmatic shutdown: Implications for the crustal evolution of the
564 southern North China Craton. *Precambrian Res.*, 255, 627-640.
565 <https://doi.org/10.1016/j.precamres.2014.08.001>, 2014.

566 Fan, Y. H., Zhu, X. Y., Duan, Q. S., Ma, J. F., Jia, C. Y., Liu, S. Q., and Zhao, T. P.: Discovery of 1.79
567 Ga dacite porphyry in the Taiyueshan Mts: Constraints on the genesis of the southern rift system in
568 the North China Craton, *Acta Petrologica Sinica* (in Chinese with English abstract), 40(4), 1327-
569 1342, <https://doi.org/10.18654/1000-0569/2024.04.17>, 2024.

570 Gao, J.F., Zhou, M.F., Robinson, P.T., Wang, C.Y., Zhao, J.H., and Malpas, J.: Magma mixing recorded
571 by Sr isotopes of plagioclase from dacites of the Quaternary Tengchong volcanic field, SE Tibetan
572 Plateau. *J. Asian Earth Sci.*, 98, 1-17. <https://doi.org/10.1016/j.jseaes.2014.10.036>, 2015.

573 Geng, Y.S., Du, L.L., and Ren, L.D.: Growth and reworking of the early Precambrian continental crust
574 in the North China Craton: Constraints from zircon Hf isotopes. *Gondwana Res.*, 21, 517-529.
575 <https://doi.org/10.1016/j.gr.2011.07.006>, 2012.

576 Geng, Y. S., Yang, C. H., and Wan, Y. S.: Paleoproterozoic granitic magmatism in Lüliang area, North
577 China Craton: constraint from isotopic geochronology, *Acta Petrologica Sinica* (in Chinese with
578 English abstract), 22, 305-314, 2006.

579 Gorton, M.P., and Schandl, E.S.: From continents to island arcs: A geochemical index of tectonic
580 setting for arc-related and within-plate felsic to intermediate volcanic rocks. *Can. Mineral.*, 38,
581 1065-1073. <https://doi.org/10.2113/gscanmin.38.5.1065>, 2000.

582 Grimes, C.B., John, B.E., Kelemen, P.B., Mazdab, F., Wooden, J.L., Cheadle, M.J., Hanghøj, K., and
583 Schwartz, J.J.: Trace element chemistry of zircons from oceanic crust: a method for distinguishing
584 detrital zircon provenance. *Geology*, 35, 643-646. <https://doi.org/10.1130/G23603A.1>, 2007.

585 Hawkesworth, C.J., Norry, M.J., Roddick, J.C., Baker, P.E., Francis, P.W., and Thorpe, R.S.:
586 $^{143}\text{Nd}/^{144}\text{Nd}$, $^{87}\text{Sr}/^{86}\text{Sr}$, and incompatible element variations in calc-alkaline andesites and
587 plateau lavas from South America. *Earth Planet. Sci. Lett.*, 42, 45-57.
588 [https://doi.org/10.1016/0012-821X\(79\)90189-4](https://doi.org/10.1016/0012-821X(79)90189-4), 1979.

589 Hawkesworth, C.J., and Kemp, A.I.S.: Using hafnium and oxygen isotopes in zircons to unravel the
590 record of crustal evolution. *Chem. Geol.*, 226, 144-162.
591 <https://doi.org/10.1016/j.chemgeo.2005.09.018>, 2006.

592 He, J., Qi, Y., Fan, X., and Chen, F.: Petrogenesis of the Taishanmiao A-type granite in the eastern
593 Qinling orogenic belt: Implications for tectonic transition and mineralization in the Late Cretaceous.
594 *J. Geol.*, 129, 97-114. <https://doi.org/10.1086/713726>, 2021.

595 He, Y.H., Zhao, G.C., Sun, M., and Wilde, S.A.: Geochemistry, isotope systematics and petrogenesis of
596 the volcanic rocks in the Zhongtiao Mountain: An alternative interpretation for the evolution of the
597 southern margin of the North China Craton. *Lithos*, 102, 158-178.
598 <https://doi.org/10.1016/j.lithos.2007.09.004>, 2008.

599 He, Y.H., Zhao, G.C., Sun, M., and Xia, X.: SHRIMP and LA-ICP-MS zircon geochronology of the
600 Xiong'er volcanic rocks: Implications for the Paleo-Mesoproterozoic evolution of the southern
601 margin of the North China Craton. *Precambrian Res.*, 168, 213-222.
602 <https://doi.org/10.1016/j.precamres.2008.09.011>, 2009.

603 He, Y.H., Zhao, G.C., Sun, M., and Han, Y.G.: Petrogenesis and tectonic setting of volcanic rocks in the
604 Xiaoshan and Waifangshan areas along the southern margin of the North China Craton: Constraints
605 from bulk-rock geochemistry and Sr-Nd isotopic composition. *Lithos*, 114, 186-199.
606 <https://doi.org/10.1016/j.lithos.2009.08.008>, 2010.

607 Hickey, R.L., and Frey, F.A.: Geochemical characteristics of boninite series volcanics: implications for
608 their source. *Geochim. Cosmochim. Acta*, 46(11), 2099-2115.
609 [https://doi.org/10.1016/0016-7037\(82\)90188-0](https://doi.org/10.1016/0016-7037(82)90188-0), 1982.

610 Hou, G.T., Li, J.H., Yang, M.H., Yao, W.H., Wang, C.C., and Wang, Y.X.: Geochemical constraints on
611 the tectonic environment of the Late Paleoproterozoic mafic dyke swarms in the North China
612 Craton. *Gondwana Res.*, 13, 103-116. <https://doi.org/10.1016/j.gr.2007.06.005>, 2008.

613 Hoskin, P.W.O., Kinny, P.D., Wyborn, D., and Chappell, B.W.: Identifying accessory mineral saturation
614 during differentiation in granitoid magmas: an integrated approach. *J. Petrol.*, 41, 1365-1396.
615 <https://doi.org/10.1093/petrology/41.9.1365>, 2000.

616 Hu, G. H., Hu, J. L., Chen, W., and Zhao, T. P.: Geochemistry and tectonic setting of the 1.78 Ga mafic
617 dyke swarms in the Mt. Zhongtiao and Mt. Song areas, the southern margin of the North China
618 Craton, *Acta Petrologica Sinica* (in Chinese with English abstract), 26, 1563-1576, 2010.

619 Hu, G.Y., Zeng, L.S., Gao, L.E., Liu, Q.P., Chen, H., and Guo, Y.S.: Diverse magma sources for the
620 Himalayan leucogranites: Evidence from B-Sr-Nd isotopes. *Lithos*, 314-315, 88-99.
621 <https://doi.org/10.1016/j.lithos.2018.05.022>, 2018.

622 Huang, X.L., Xu, Y.G., and Liu, D.Y.: Geochronology, petrology and geochemistry of the granulite
623 xenoliths from Nushan, east China: implication for a heterogeneous lower crust beneath the
624 Sino-Korean Craton. *Geochim. Cosmochim. Acta*, 68, 127-149.
625 [https://doi.org/10.1016/S0016-7037\(03\)00416-2](https://doi.org/10.1016/S0016-7037(03)00416-2), 2004.

626 Jackson, M.D., Cheadle, M.J., and Atherton, M.P.: Quantitative modeling of granitic melt generation
627 and segregation in the continental crust. *J. Geophys. Res. Solid Earth*, 108, 2332.
628 <https://doi.org/10.1029/2001JB001050>, 2003.

629 Jia, C.Z., Petro-geochemistry of volcanic rocks in the Xiong'er Group: implications for tectonic setting.
630 *Henan Geol.* 2:39-43 (in Chinese with English abstract), 1985.

631 Jochum, K.P., Seufert, H.M., Spettel, B., and Palme, H.: The solar-system abundances of Nb, Ta, and Y,
632 and the relative abundances of refractory lithophile elements in differentiated planetary bodies.
633 *Geochim. Cosmochim. Acta*, 50, 1173-1183. [https://doi.org/10.1016/0016-7037\(86\)90400-X](https://doi.org/10.1016/0016-7037(86)90400-X), 1986.

634 Kelemen, P.B.: Genesis of high Mg[#] andesites and the continental crust. *Contrib. Mineral. Petrol.*, 120,
635 1-19. <https://doi.org/10.1007/BF00311004>, 1995.

636 Kröner, A., Compston, W., Zhang, G.-W., Guo, A.-L., and Todt, W.: Age and tectonic setting of Late
637 Archean greenstone-gneiss terrain in Henan Province, China, as revealed by single-grain zircon
638 dating. *Geology*, 16, 211-215,
639 [https://doi.org/10.1130/0091-7613\(1988\)016<0211:AATSOL>2.3.CO;2](https://doi.org/10.1130/0091-7613(1988)016<0211:AATSOL>2.3.CO;2), 1988.

640 Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., and Zanettin, B.: A Chemical Classification of
641 Volcanic-Rocks Based on the Total Alkali Silica Diagram. *J. Petrol.*, 27, 745-750.
642 <https://doi.org/10.1093/petrology/27.3.745>, 1986.

643 Li, X. P., Yang, Z. Y., Zhao, G. C., Grapes, R., and Guo, J. H.: Geochronology of khondalite-series
644 rocks of the Jining Complex: Confirmation of depositional age and tectonometamorphic evolution
645 of the North China craton, *Int. Geol. Rev.*, 53, 1194-1211, doi:10.1080/00206810903548984, 2011.

646 Liu, A.L., Hai, L.F., Liu, J.K., Zhang X.J., Li H.F., Zhao F.S., Zhao G.L., and Bai J.H.: Geochronology,
647 Geochemistry, and Sr-Nd-Hf Isotopes of the Diorite Porphyrites from the Weining Beishan Area,
648 Ningxia Hui Autonomous Region: Constraints on Their Source and Tectonic Implications. *J. Earth
649 Sci.* 35, 462-475. <https://doi.org/10.1007/s12583-021-1491-2>, 2024.

650 Liu, D.Y., Nutman, A.P., Compston, W., Wu, J.S., and Shen, Q.H.: Remnants of ≥ 3800 Ma crust in the
651 Chinese part of the Sino-Korean Craton. *Geology*, 20, 339-342.
652 [https://doi.org/10.1130/0091-7613\(1992\)020<0339:ROMCIT>2.3.CO;2](https://doi.org/10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2), 1992.

653 Liu, Y.S., Hu, Z.C., Zong, K.Q., Gao, C.G., Gao, S., Xu, J.A., and Chen, H.H.: Reappraisal and
654 refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. *Chin. Sci. Bull.* (in
655 Chinese with English abstract), 1535-1546, 2010.

656 Lu, S.N., Zhao, G.C., Wang, H.C., and Hao, G.J.: Precambrian metamorphic basement and sedimentary
657 cover of the North China Craton: A review. *Precambrian Res.*, 160, 77–93, 2008.

658 Luo, Y., Sun, M., Zhao, G. C, Li, S.Z., Xu, P., Ye, K., and Xia, X.P.: LA-ICP-MS U-Pb zircon ages of
659 the Liaohe Group in the Eastern Block of the North China Craton: constraints on the evolution of
660 the Jiao-Liao-Ji Belt, *Precambrian Research*, 134(3 – 4), 349 – 371,
661 <https://doi.org/10.1016/j.precamres.2004.07.002>, 2004.

662 Ma, J.F., Qu, C.H., Zhou, Y.Y., and Zhao, T.P.: The genesis of *ca.* 1.78 Ga granitoids in the Xiong'er
663 large igneous province: Implications for continental crust generation. *Geol. Soc. Am. Bull.*, 135,
664 3213-3227. <https://doi.org/10.1130/B36694.1>, 2023a.

665 Ma, J.F., Wang, X.L., Yang, A.Y., and Zhao, T.P.: Tracking crystal-melt segregation and accumulation
666 in the intermediate magma reservoir. *Geophys. Res. Lett.*, 50, e2022GL102540.
667 <https://doi.org/10.1029/2022GL102540>, 2023b.

668 Maniar, P.D., and Piccoli, P.M.: Tectonic discrimination of granitoids. *Geol. Soc. Am. Bull.*, 101,
669 635-643. [https://doi.org/10.1130/0016-7606\(1989\)101<0635:TDOG>2.3.CO;2](https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2), 1989.

670 Pan, Z.J., Zhang, Q., Chen, G., Jiao, S.T., Du, X.L., Miao, X.Q., Wang, J.R., and An, Y.: Relation
671 between Mesozoic magmatism and plate subduction in eastern China: Comparison among
672 Zhejiang-Fujian, Japan arc and Andes arc. *Acta Petrol. Sin.* (in Chinese with English abstract), 33,
673 1507–1523, 2017.

674 Peacock, S.M., Rushmer, T., and Thompson, A.B.: Partial melting of subducting oceanic crust. *Earth*
675 *Planet. Sci. Lett.*, 121, 227-244. [https://doi.org/10.1016/0012-821X\(94\)90042-6](https://doi.org/10.1016/0012-821X(94)90042-6), 1994.

676 Pearce, J.A.: Role of the sub-continental lithosphere in magma genesis at active continental margins.
677 In: Hawkesworth, C.J., Norry, M.J. (Eds.): *Continental Basalts and Mantle Xenoliths*. Shiva
678 Publishing Ltd., Nantwich, 230–249. ISBN: 978-0906812341, 1983.

679 Pearce, J.A., and Peate, D.W.: Tectonic implications of the composition of volcanic arc magmas. *Annu.*
680 *Rev. Earth Planet. Sci.*, 23, 251–285. <https://doi.org/10.1146/annurev.ea.23.050195.001343>, 1995.

681 Peccerillo, A., and Taylor, S.R.: Geochemistry of Eocene calc-alkaline volcanic rocks from the
682 Kastamonu area, northern Turkey. *Contrib. Mineral. Petrol.*, 58, 130–143.
683 <https://doi.org/10.1007/BF00384745>, 1976.

684 Peng, P., Zhai, M.G., Zhang, H.F., Zhao, T.P., and Ni, Z.Y.: Geochemistry and geological significance
685 of the 1.8 Ga mafic dyke swarms in the North China Craton: an example from the juncture of
686 Shanxi, Hebei and Inner Mongolia. *Acta Petrol. Sin.* (in Chinese with English abstract), 20,
687 439-456, 2004.

688 Peng, P., Zhai, M.G., Guo, J.H., Kusky, T., and Zhao, T.P.: Nature of mantle source contributions and
689 crystal differentiation in the petrogenesis of the 1.78 Ga mafic dykes in the central North China
690 craton. *Gondwana Res.*, 12, 29-46. <https://doi.org/10.1016/j.gr.2006.10.022>, 2007.

691 Peng, P., Zhai, M.G., Ernst, R.E., Guo, J.H., Liu, F., and Hu, B.: A 1.78 Ga large igneous province in
692 the North China craton: The Xiong'er Volcanic Province and the North China dyke swarm. *Lithos*,
693 101, 260-280. <https://doi.org/10.1016/j.lithos.2007.07.006>, 2008.

694 Petford, N., and Atherton, M.: Na-rich partial melts from newly underplated basaltic crust: the
695 Cordillera Blanca Batholith, Peru. *J. Petrol.*, 37, 1491-1521.
696 <https://doi.org/10.1093/petrology/37.6.1491>, 1996.

697 Rapp, R.P., and Watson, E.B.: Dehydration melting of metabasalt at 8-32 kbar: Implications for
698 continental growth and crust-mantle recycling. *J. Petrol.*, 36, 891-931.
699 <https://doi.org/10.1093/petrology/36.4.891>, 1995.

700 Reubi, O., and Blundy, J.: A dearth of intermediate melts at subduction zone volcanoes and the
701 petrogenesis of arc andesites. *Nature*, 461, 1269-1273. <https://doi.org/10.1038/nature08510>, 2009.

702 Roberts, M.P., and Clemens, J.D.: Origin of high-potassium, calc-alkaline, I-type granitoids. *Geology*,
703 21, 825-828. [https://doi.org/10.1130/0091-7613\(1993\)021<0825:OOHPTA>2.3.CO;2](https://doi.org/10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2), 1993.

704 Schulz, B., Klemd, R., and Brätz, H.: Host rock compositional controls on zircon trace element
705 signatures in metabasites from the Austroalpine basement. *Geochim. Cosmochim. Acta*, 70, 697-
706 710. <https://doi.org/10.1016/j.gca.2005.10.001>, 2006.

707 Shannon, R.D.: Revised effective ionic-radii and systematic studies of interatomic distances in halides
708 and chalcogenides. *Acta Crystallogr. A*, 32, 751-767. <https://doi.org/10.1107/S0567739476001551>,
709 1976.

710 Shen, F.N.: The discovery of unconformity within the Taihua Group and definition of its stratigraphic
711 sequence in the Lushan area, Henan. *Reg. Geol. China* (in Chinese with English abstract), 2,
712 135-140. doi: 10.12097/gbc.ZQYD402.005, 1994.

713 Siebel, W., Reitter, E., Wenzel, T., and Blaha U.: Sr isotope systematics of K-feldspars in plutonic rocks
714 revealed by the Rb-Sr microdrilling technique. *Chem. Geol.*, 222, 183-199.
715 <https://doi.org/10.1016/j.chemgeo.2005.06.012>, 2005.

716 Stern, C., and Kilian, R.: Role of the subducted slab, mantle wedge and continental crust in the
717 generation of adakites from the Andean Austral Volcanic Zone. *Contrib. Mineral. Petrol.*, 123,
718 263-281. <https://doi.org/10.1007/s004100050155>, 1996.

719 Streck, M.J., Leeman, W.P., and Chesley, J.: High-magnesian andesite from Mount Shasta: A product of
720 magma mixing and contamination, not a primitive mantle melt. *Geology*, 35, 351-354.
721 <https://doi.org/10.1130/G23286A.1>, 2007.

722 Sun, Q.Y., Zhou, Y.Y., Wang, W., Li, C.D., and Zhao, T.P.: Formation and evolution of the
723 Paleoproterozoic meta-mafic and associated supracrustal rocks from the Lushan Taihua Complex,

724 southern North China Craton: Insights from zircon U-Pb geochronology and whole-rock
725 geochemistry. *Precambrian Res.*, 303, 428-444. <https://doi.org/10.1016/j.precamres.2017.05.018>,
726 2017.

727 Sun, S.S., and McDonough, W.F.: Chemical and isotopic systematics of oceanic basalts: implications
728 for mantle composition and processes. *Geol. Soc. London, Spec. Publ.*, 42, 313-345.
729 <https://doi.org/10.1144/GSL.SP.1989.042.01.19>, 1989.

730 Vermeesch, P.: IsoplotR: A free and open toolbox for geochronology. *Geoscience Frontiers*, 9,
731 1479-1493. <https://doi.org/10.1016/j.gsf.2018.04.001>, 2018.

732 Wan, Y.S., Wlide, S., Liu, D.Y., Yang, C.X., Song, B., and Yin, X.Y.: Further evidence for ~1.85 Ga
733 metamorphism in the Central Zone of the North China Craton: SHRIMP U-Pb dating of zircon
734 from metamorphic rocks in the Lushan area, Henan Province. *Gondwana Res.*, 9, 189-197,
735 <https://doi.org/10.1016/j.gr.2005.06.010>, 2006

736 Wang, C.M., Lu, Y.J., He, X.Y., Wang, Q.H., and Zhang, J.: The Paleoproterozoic diorite dykes in the
737 southern margin of the North China Craton: Insight into rift-related magmatism. *Precambrian Res.*,
738 277, 26-46. <https://doi.org/10.1016/j.precamres.2016.02.009>, 2016.

739 Wang, J.L., Zhang, H.F., Zhang, J., Santosh, M., and Bao, Z. A.: Highly heterogeneous Pb isotope
740 composition in the Archean continental lower crust: Insights from the high-grade metamorphic suite
741 of the Taihua Group, Southern North China Craton. *Precambrian Res.*, 350, 105927.
742 <https://doi.org/10.1016/j.precamres.2020.105927>, 2020.

743 Wang, M.X., Wang Z.Y., Zhao J.X., Qi Z.Q., He J., and Chen F.K.: Petrogenesis and Geologic
744 Implication of the Late Paleoproterozoic A-type Xiaohe Pluton along the Southern Margin of the
745 North China Craton. *Geol. J. China Univ. (in Chinese with English abstract)*, 29(6): 809-830, 2023a.

746 Wang, X., Huang X., and Yang F.: Revisiting the Lushan-Taihua Complex: New perspectives on the
747 Late Mesoarchean-Early Neoarchean crustal evolution of the southern North China Craton:
748 *Precambrian Res.*, 325, 132–149. <https://doi.org/10.1016/j.precamres.2019.02.020>, 2019.

749 Wang, X.W., Zhu, M. Luo, X. Ren, and X. Cui.: Approximately 1.78 Ga mafic dykes in the Lüliang
750 Complex, North China Craton: Zircon ages and Lu-Hf isotopes, geochemistry, and implications,
751 *Geochem. Geophys. Geosyst.*, 15, 3123–3144. doi:10.1002/2014GC005378, 2014.

752 Wang, X.L., Jiang, S.Y., and Dai, B.Z.: Melting of enriched Archean subcontinental lithospheric
753 mantle: Evidence from the *ca.* 1760 Ma volcanic rocks of the Xiong'er Group, southern margin of
754 the North China Craton. *Precambrian Res.*, 182, 204–216.
755 <https://doi.org/10.1016/j.precamres.2010.08.007>, 2010.

756 Wang, Y.J., Fan, W.M., Zhang, Y., Guo, F., Zhang, H., and Peng, T.: Geochemical, $40\text{Ar}/39\text{Ar}$
757 geochronological and Sr-Nd isotopic constraints on the origin of Paleoproterozoic mafic dikes from
758 the southern Taihang Mountains and implications for the *ca.* 1800 Ma event of the North China
759 Craton. *Precambrian Res.*, 135, 55-77. <https://doi.org/10.1016/j.precamres.2004.07.005>, 2004.

760 Wang, Y., Zhao, G., Cawood, P. A., Fan, W., Peng, T., and Sun, L.: Geochemistry of Paleoproterozoic
761 (~1770 Ma) mafic dikes from the Trans-North China Orogen and tectonic implications, *J. Asian*
762 *Earth Sci.* 33(1–2), 61–77, <https://doi.org/10.1016/j.jseaes.2007.10.018>, 2008.

763 Wang, Z.Y., Zhao, J.X., Qi, Z.Q., Huo, D.Y., Siebel, W., He, J., Li, S.Q., and Chen, F.C.: Two stages of
764 late Paleoproterozoic A-type granites at the southern North China Craton: Geochemical constraints
765 and implications for supercontinent breakup, *Precambrian Research*, 411, 107500,
766 <https://doi.org/10.1016/j.precamres.2024.107500>, 2024.

767 Wang, Z.Y., Cheng, H., Zhao, J.X., Ye R.S., Li W.Y., He J.F., and Chen F.K.: Sr-Nd-Pb isotopic
768 composition of the Chinese national standard igneous rock powders measured by thermal ionization
769 mass spectrometry. *Geol. J. China Univ. (in Chinese with English abstract)*, 29, 679–692, 2023b.

770 Wolf, M.B., and Wyllie, P.J.: Garnet growth during amphibolite anatexis: Implications of a
771 garnetiferous restite. *J. Geol.*, 101, 357–373. <https://doi.org/10.1086/648229>, 1993.

772 Wolf, M., Romer, R.L., and Glodny, J.: Isotope disequilibrium during partial melting of
773 metasedimentary rocks. *Geochim. Cosmochim. Acta* 257, 163–183.
774 <https://doi.org/10.1016/j.gca.2019.05.008>, 2019.

775 Xu, J.H., Jiang, Y.P., Hu, S.L., Zhang Z.W., Wu C.Q., Zheng C.F., Li X.Y., Jin Z.R., Zhang S.S., and
776 Zhou Y.T.: Petrogenesis and Tectonic Implications of the Paleoproterozoic A-Type Granites in the
777 Xiong’ershan Area along the Southern Margin of the North China Craton. *J. Earth Sci.*, 35, 416–
778 429. <https://doi.org/10.1007/s12583-021-1424-0>, 2024.

779 Xu, Y.H., Zhao, T.P., Zhang, Y.X., and Chen, W.: Geochemical characteristics and geological
780 significance of the detrital rocks from the Dagushi Formation of the Paleoproterozoic Xiong’er
781 Group in the southern North China Craton, *Geological Review*, 54(3), 316–326,
782 <https://doi.org/10.3321/j.issn:0371-5736.2008.03.004>, 2008.

783 Xue, L.W., Yuan, Z.L., Zhang, M.S., and Qiang. L.Z.: The Sm-Nd isotope ages of Tai-hua Group in the
784 Lushan area and their implications. *Geochimica (in Chinese with English abstract)*, 24, 92–97, 1995.

785 Yang, J.H., Cawood, P.A., Du, Y.S., Huang, H., Huang, H.W., and Tao, P.: Large Igneous Province and
786 magmatic arc sourced Permian–Triassic volcanogenic sediments in China. *Sedimentary Geol.*
787 261–262, 120–131. <https://doi.org/10.1016/j.sedgeo.2012.03.018>, 2012.

788 Yang, Z.M., Lu, Y.J., Hou, Z.Q., and Chang, Z.S.: High-Mg diorite from Qulong in southern Tibet:
789 implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in
790 collisional orogens. *J. Petrol.*, 56, 227–254. <https://doi.org/10.1093/petrology/egu076>, 2015.

791 Zeng, L.S., Asimow, P.D., and Saleeby, J.B.: Coupling of anatetic reactions and dissolution of
792 accessory phases and the Sr and Nd isotope systematics of anatetic melts from a metasedimentary
793 source. *Geochim. Cosmochim. Acta*, 69, 3671–3682. <https://doi.org/10.1016/j.gca.2005.02.035>,
794 2005.

795 Zhai, M.G.: Tectonic evolution and metallogenesis of North China Craton. *Mineral Deposits* (in
796 Chinese with English abstract), 29, 24-36, 2010.

797 Zhai M G.: Cratonization and the Ancient North China Continent: A summary and review. *Sci China*
798 *Earth Sci* (in Chinese with English abstract), 54: 1110–1120, doi: 10.1007/s11430-011-4250-x,
799 2011.

800 Zhao, G.C., Cawood, P.A., Wilde, S.A., Min, S., and Lu, L.Z.: Metamorphism of basement rocks in the
801 Central Zone of the North China Craton: implications for Paleoproterozoic tectonic evolution.
802 *Precambrian Res.*, 103, 55-88. [https://doi.org/10.1016/S0301-9268\(00\)00076-0](https://doi.org/10.1016/S0301-9268(00)00076-0), 2000a.

803 Zhao, G.C., He, Y.H., and Sun, M.: Xiong'er volcanic belt at the North China Craton: The Xiong'er
804 volcanic belt at the southern margin of the North China Craton: Petrographic and geochemical
805 evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent.
806 *Gondwana Res.*, 16, 170–181. <https://doi.org/10.1016/j.gr.2009.02.004>, 2009.

807 Zhao, G.C., Wilde, S.A., Cawood, P.A., and Lu, L.Z.: Petrology and P-T path of the Fuping mafic
808 granulites: implications for tectonic evolution of the central zone of the North China Craton. *J.*
809 *Metamorphic Geol.*, 18, 375-391. <https://doi.org/10.1046/j.1525-1314.2000.00264.x>, 2000b.

810 Zhao, G.C., Wilde, S.A., Cawood, P.A., and Sun, M.: Archean blocks and their boundaries in the North
811 China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution.
812 *Precambrian Res.* 107, 45-73. [https://doi.org/10.1016/S0301-9268\(00\)00154-6](https://doi.org/10.1016/S0301-9268(00)00154-6), 2001.

813 Zhao, G.C., Wilde, S. A., Sun, M., Li, S., Li, X., and Zhang, J.: SHRIMP U–Pb zircon ages of granitoid
814 rocks in the Lüliang Complex: Implications for the accretion and evolution of the Trans-North
815 China Orogen, *Precambrian Research*, 160(3–4), 213–226,
816 <https://doi.org/10.1016/j.precamres.2007.07.004>, 2008.

817 Zhao, G.C., Sun, M., Wilde, S.A., and Li Sanzhong.: Late Archean to Paleoproterozoic evolution of the
818 North China Craton: key issues revisited. *Precambrian Res.*, 136, 177-202
819 <https://doi.org/10.1016/j.precamres.2004.10.002>, 2005.

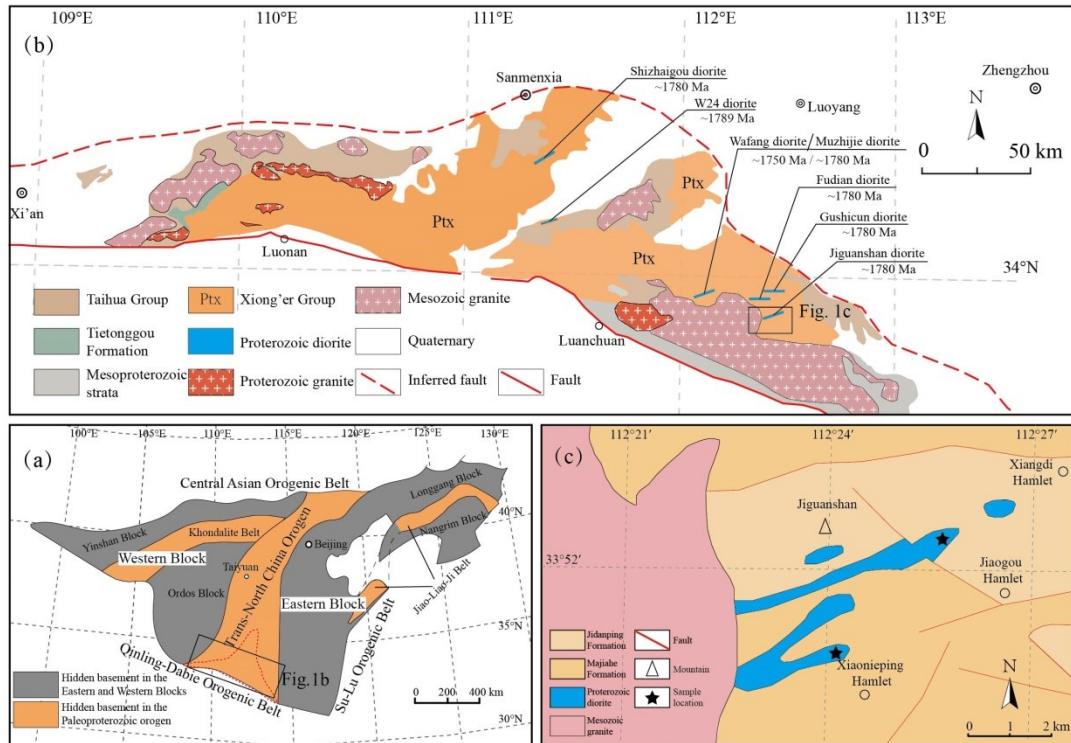
820 Zhao, G.C., and Zhai, M.G.: Lithotectonic elements of Precambrian basement in the North China
821 Craton: Review and tectonic implications. *Gondwana Res.*, 23, 1207-1240.
822 <https://doi.org/10.1016/j.gr.2012.08.016>, 2013.

823 Zhao, J., Zhang, C., Guo, X., and Liu, X.: The late-Paleoproterozoic I- and A-type granites in Lüliang
824 Complex, North China Craton: New evidence on post-collisional extension of Trans-North China
825 Orogen, *Precambrian Research*, 318, 70–88, <https://doi.org/10.1016/j.precamres.2018.09.007>, 2018.

826 Zhao, T.P.: The characteristic and genesis of Proterozoic potassic volcanic rock in southern margin of
827 the North plate. Doctoral dissertation, Institute of Geology and Geophysics, Chinese Academy of
828 Sciences, Beijing, 102p, 2000.

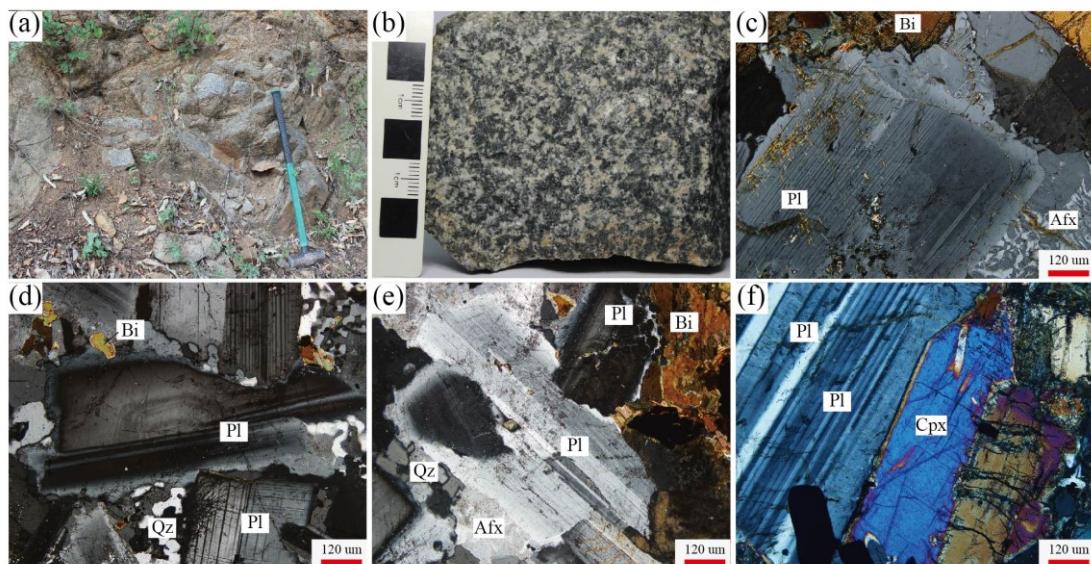
829 Zhao, T.P., Xu, Y.H., and Zhai, M.G.: Petrogenesis and tectonic setting of the Paleoproterozoic
830 Xiong'er Group in the southern part of the North China Craton: A review. *Geol. J. China Univ.* (in
831 Chinese with English abstract), 13, 191–206, 2007.

832 Zhao, T.P., Zhou, M.F., Zhai, M.G., and Xia, B.: Paleoproterozoic rift-related volcanism of the Xiong'er
833 Group, North China Craton: Implications for the breakup of Columbia. *Int. Geol. Rev.*, 44, 336-351.
834 <https://doi.org/10.2747/0020-6814.44.4.336>, 2002

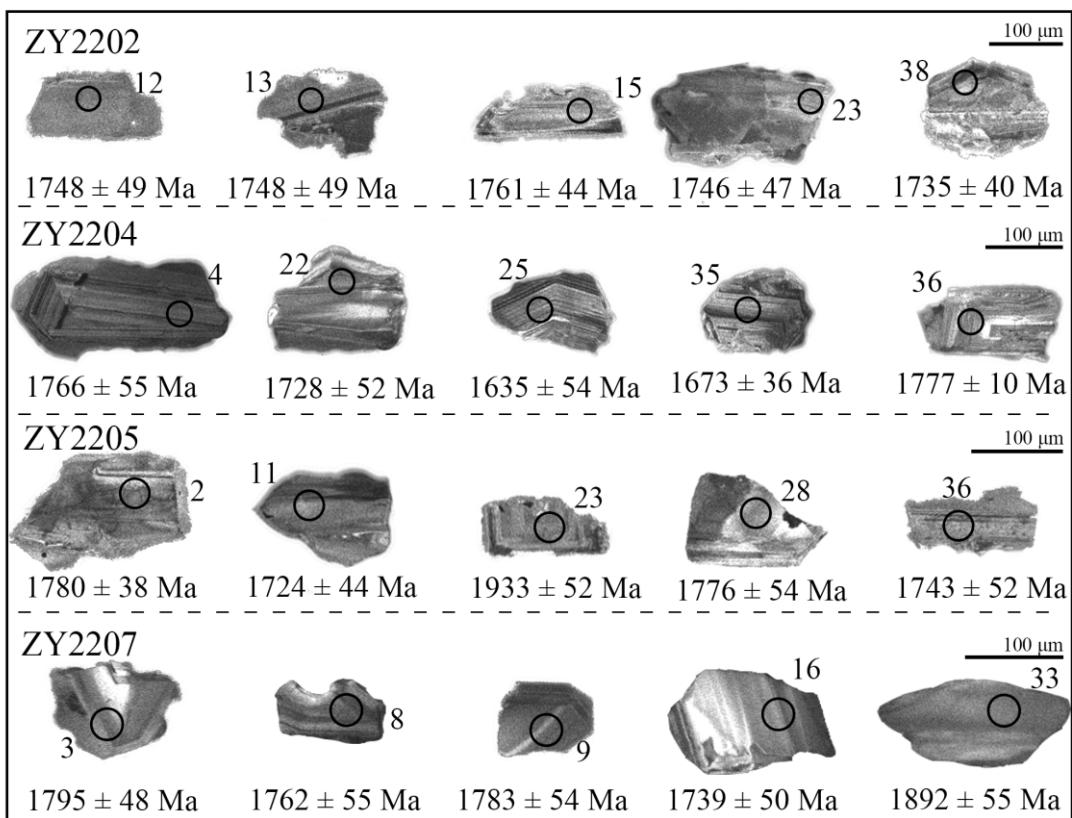

835 Zhao, T.P., Zhai, M.G., Xia, B., Li, H.M., and Zhang, Y.X.: Zircon U-Pb SHRIMP dating for the
836 volcanic rocks of the Xiong'er Group: Constraints on the initial formation age of the cover of the
837 North China Craton. *Chin. Sci. Bull.* (in Chinese with English abstract), 49, 2495–2502, 2004.

838 Zhang, G.W., Bai, Y.B., Sun, Y., Guo, A.L., Zhou, D.W., and Li, T.H.: Composition and evolution of
839 the archaean crust in central Henan, China. *Precambrian Res.*, 27, 7-35.
840 [https://doi.org/10.1016/0301-9268\(85\)90004-X](https://doi.org/10.1016/0301-9268(85)90004-X), 1985.

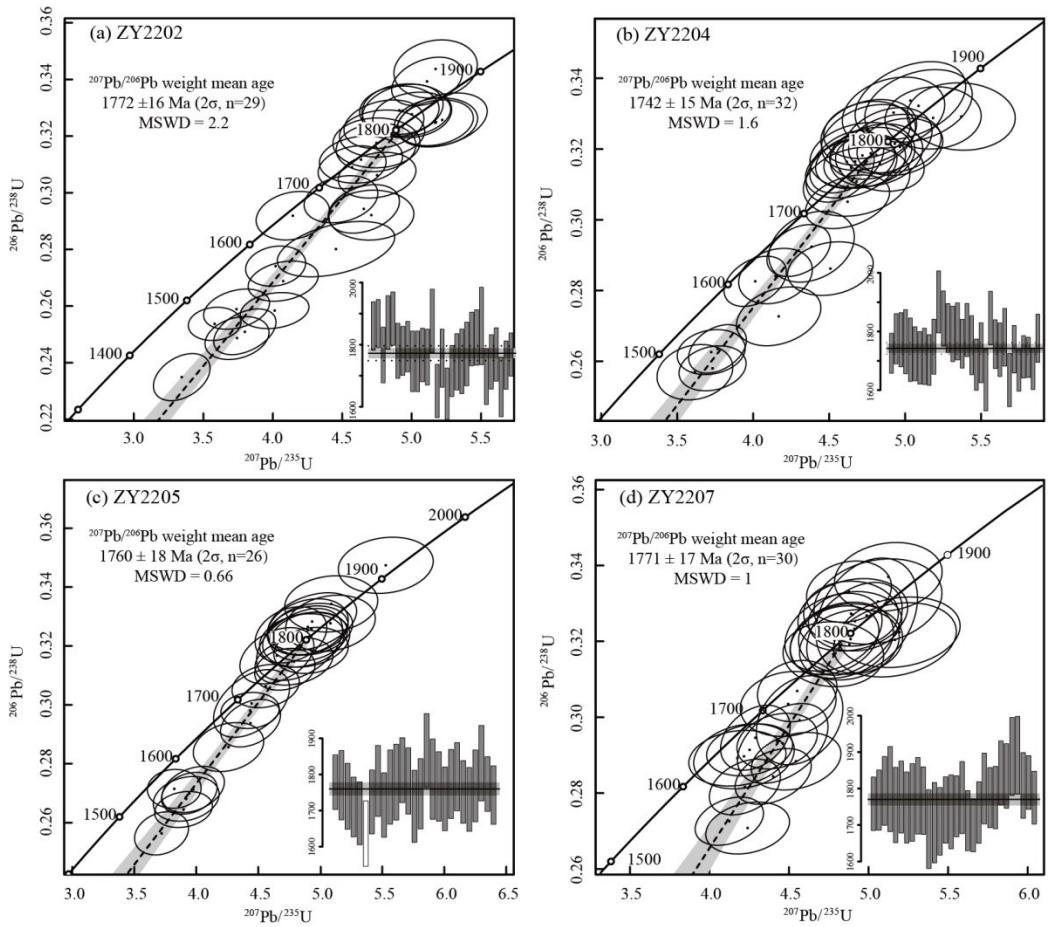
841 Zou, X.Y., Qin, K.Z., Han, X.L., Li, G.M., Evans, N.J., Li, Z.Z., and Yang, W.: Insight into zircon REE
842 oxy-barometers: A lattice strain model perspective. *Earth Planet. Sci. Lett.*, 506, 87-96.
843 <https://doi.org/10.1016/j.epsl.2018.10.031>, 2019.


844

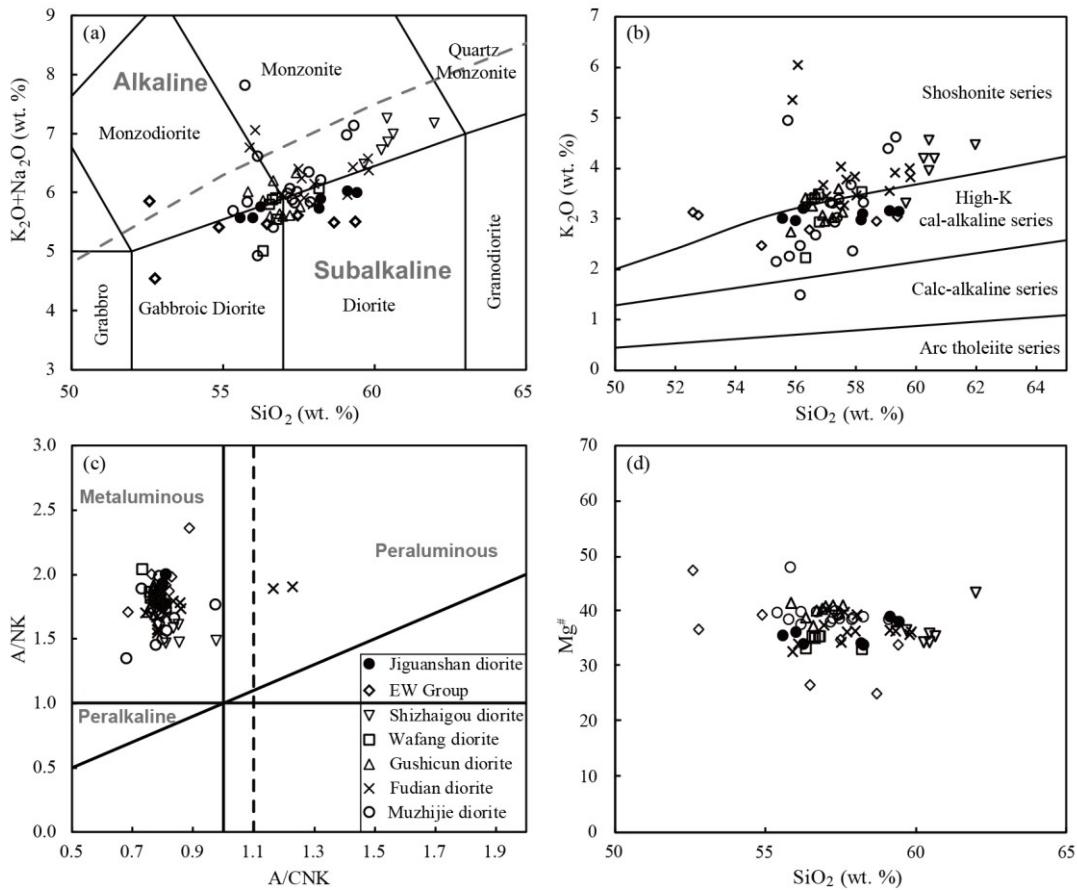
845 **Figure**


846

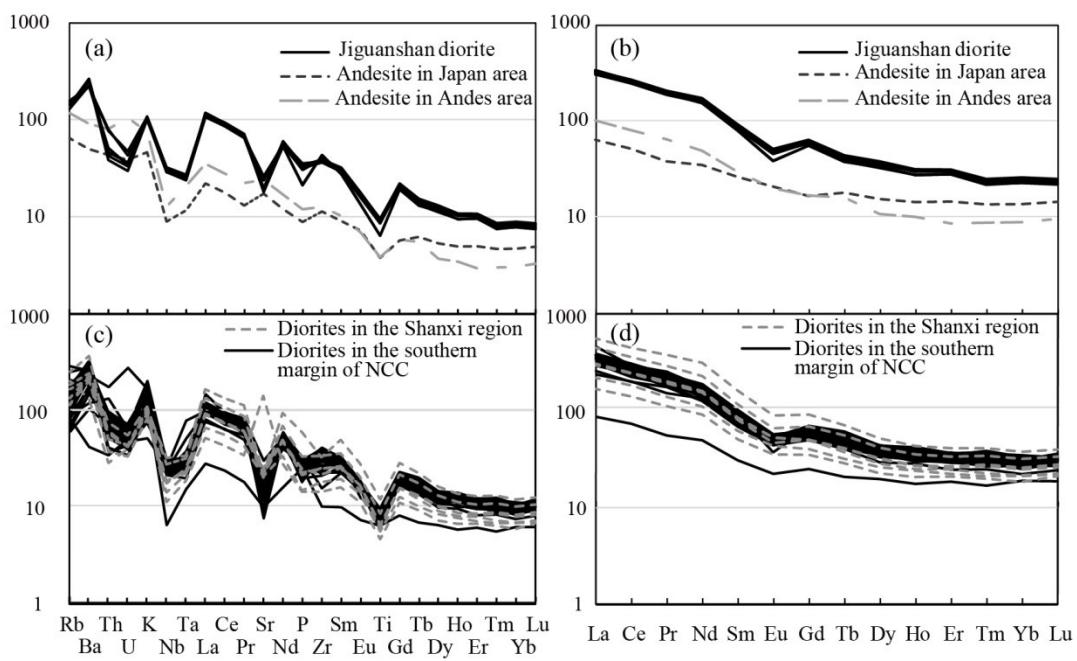
847 **Figure 1** (a) Tectonic sketch of the North China Craton (after Zhao et al., 2001); (b) Geological map of
 848 the southern margin of the North China Craton (after Diwu et al., 2014; diorites from Cui et al.,
 849 2011; Ma et al 2023a, b; Wang et al., 2016; Zhao et al., 2004); (c) Geological map of the Jiguanshan
 850 diorite (after BGMRH, 1994)


851

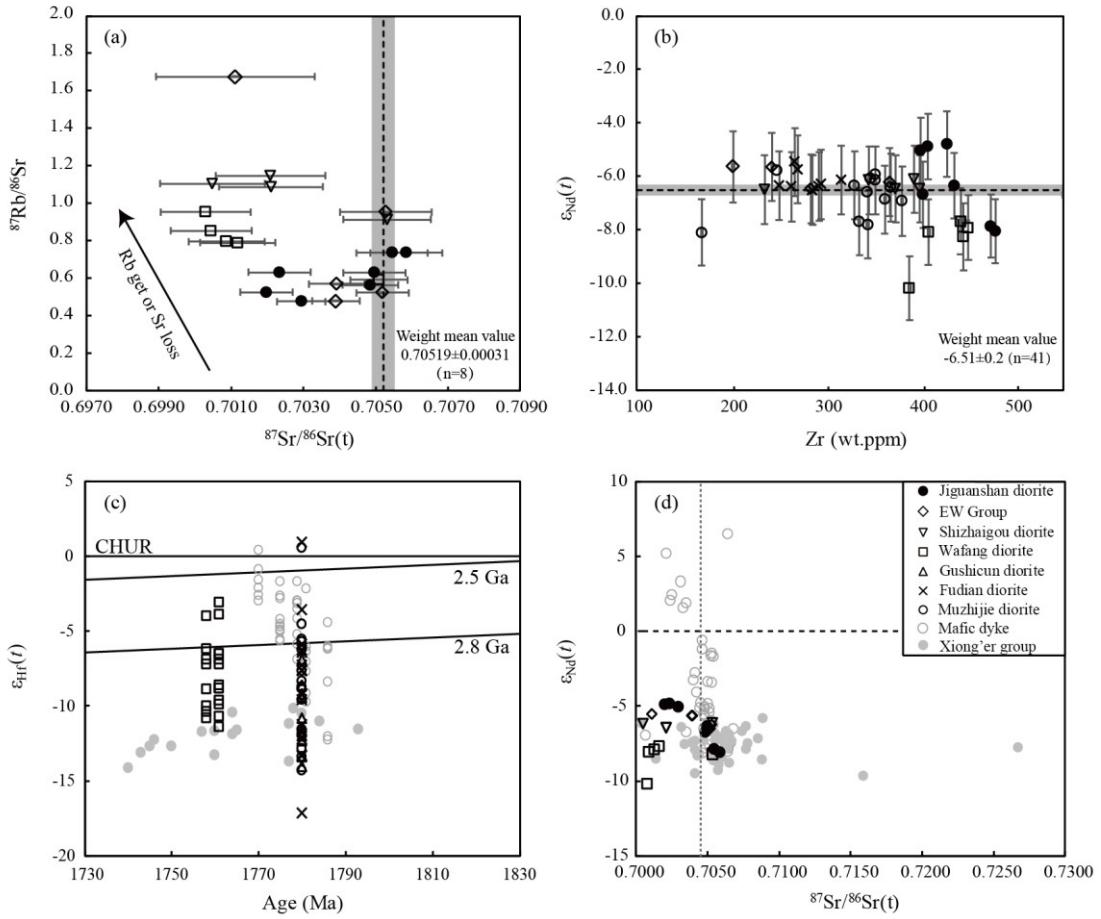
852 **Figure 2** (a-b) Field photographs and representative hand specimens of the Jiguanshan diorite; (c-f)
 853 Microphotographs under plane-polarized light of the Jiguanshan diorite. Mineral abbreviations:
 854 Afs, alkali feldspar; Bi, biotite; Cpx, Clinopyroxene; Pl, plagioclase; Qz, quartz


855

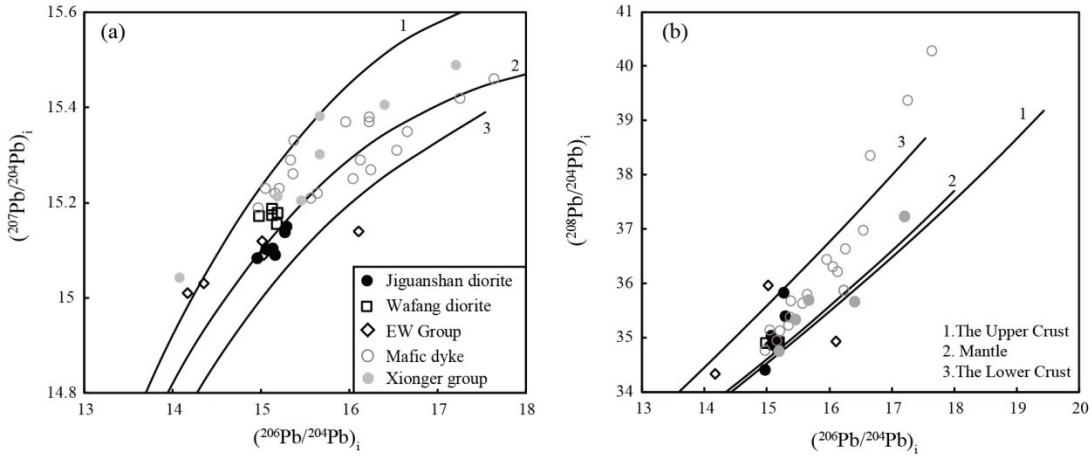
856 **Figure 3** Cathodoluminescence (CL) images of representative zircon grains from the Jiguanshan
 857 diorite


858

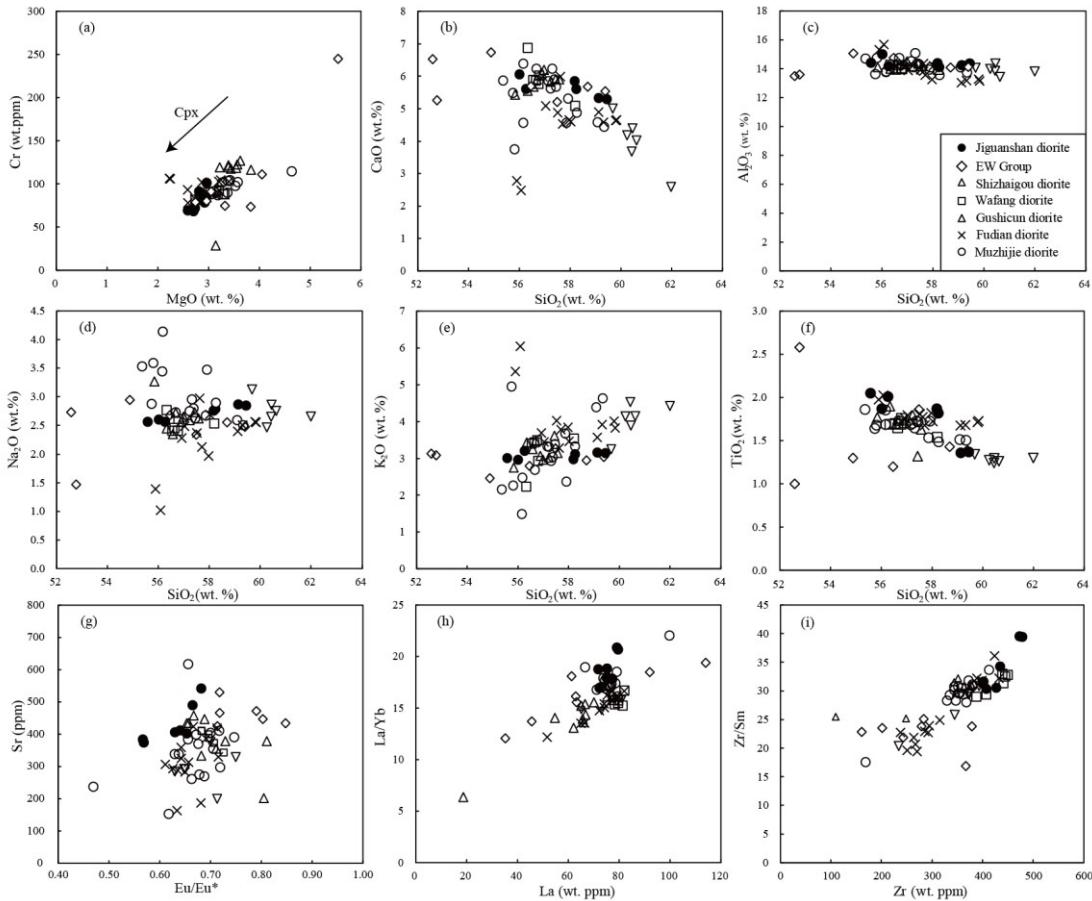
859 **Figure 4 (a-d)** Zircon U-Pb Concordia diagrams of the Jiguanshan diorite


860

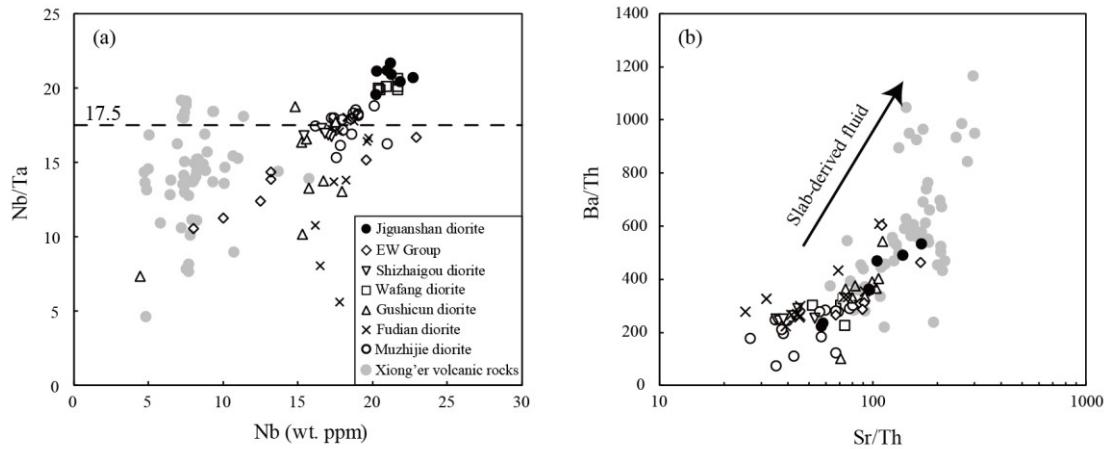
861 **Figure 5** Plots of major elements for the diorites: (a) TAS diagram (after [Le Bas et al., 1986](#)); (b)
 862 K_2O content versus SiO_2 content (after [Peccerillo and Taylor, 1976](#)); (c) A/NK versus A/CNK
 863 values (after [Maniar and Piccoli, 1989](#)) (d) $Mg^{\#}$ value versus SiO_2 content (wt. %)


864

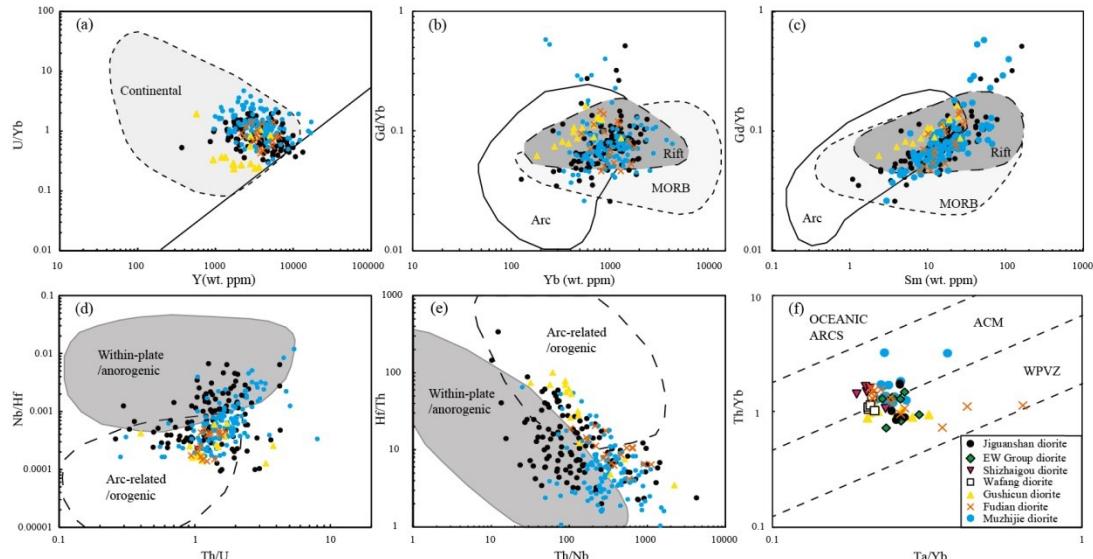
865 **Figure 6** Primitive-mantle normalized trace element spider diagrams and chondrite-normalized
 866 REE patterns for the diorites. Normalization values from [Sun and McDonough \(1989\)](#);
 867 Diorites in Shanxi region from [Peng et al. \(2007\)](#), diorites in the southern margin of the NCC
 868 from [Cui et al. \(2011\)](#), [Ma et al. \(2023a, b\)](#), [Wang et al. \(2016\)](#), and [Zhao et al. \(2004\)](#). Average
 869 trace element compositions of intermediate rocks in the Japan and Andes arc are from [Pan et](#)
 870 [al. \(2017\)](#).


871

872 **Figure 7** (a) $^{87}\text{Rb}/^{86}\text{Sr}$ value versus $^{87}\text{Sr}/^{86}\text{Sr(t)}$ ratio; (b) $\epsilon_{\text{Nd}}(t)$ value versus Zr content (ppm); (c)
 873 $\epsilon_{\text{Nd}}(t)$ value versus age (Ma); (d) $\epsilon_{\text{Nd}}(t)$ value versus $^{87}\text{Sr}/^{86}\text{Sr(t)}$ ratio. Data source for
 874 Xiong'er Group (Hf isotope composition from [Wang et al., 2010](#); initial Sr isotope
 875 composition and initial ϵ_{Nd} value from [He et al., 2008, 2010](#); [Peng et al., 2008](#); [Wang et al.,](#)
 876 [2010](#); [Zhao et al., 2002](#)); mafic dyke swarms (initial Sr isotope composition and initial ϵ_{Nd}
 877 value from [Hu et al., 2010](#); [Peng et al., 2007](#); [Wang et al., 2004](#))


878

879 **Figure 8** (a) $(^{207}\text{Pb}/^{204}\text{Pb})_i$ versus $(^{206}\text{Pb}/^{204}\text{Pb})_i$; (b) $(^{208}\text{Pb}/^{204}\text{Pb})_i$ versus $(^{206}\text{Pb}/^{204}\text{Pb})_i$. Data for
880 Xiong'er Group from [Zhao \(2000\)](#), for mafic dyke swarms from [Hu et al. \(2010\)](#), [Peng et al.](#),
881 ([2007](#)) and for diorites from [Peng et al. \(2007\)](#), [Wang et al. \(2016\)](#)


882

883 **Figure 9** (a) Cr (wt. ppm) content versus MgO content (wt. %); (b) CaO (wt. %) content versus SiO₂
884 content (wt. %); (c) Al₂O₃ (wt. %) content versus SiO₂ content (wt. %); (d) Na₂O (wt. %)
885 content versus SiO₂ content (wt. %); (e) K₂O (wt. %) content versus SiO₂ content (wt. %); (f)
886 TiO₂ (wt. %) content versus SiO₂ content (wt. %); (g) Eu/Eu* value versus Sr content (ppm);
887 (h) La/Yb value versus La content (ppm); (i) Zr/Sr value versus Zr content (ppm)

888

889 **Figure 10** (a) Nb/Ta versus Nb content (ppm); (b) Ba/Th value versus Sr/Th values; Data for
 890 Xiong'er Group from [He et al. \(2008, 2010\)](#), [Wang et al. \(2010\)](#), [Zhao et al. \(2002\)](#)

891

892 **Figure 11** (a) Zircon trace element U/Yb value versus Y (ppm) (after [Grimes et al., 2007](#)); (b)
 893 Zircon trace element Gd/Yb value versus Yb (ppm) (after [Carley et al., 2014](#)); (c) Zircon
 894 trace element Gd/Yb value versus Sm (ppm) (after [Carley et al., 2014](#)); (d) Zircon trace
 895 element Nb/Hf value versus Th/U value (after [Hawkesworth and Kemp, 2006](#)); (e) Zircon trace
 896 element Hf/Yb value versus Th/Nb value (after [Yang et al., 2012](#)); (f) Whole-rock trace
 897 element Th/Yb value versus Ta/Yb value (after [Pearce, 1983](#); [Gorton and Schandl, 2000](#));
 898

899 **Tables**900 **Table 1** Major (wt. %) and trace element contents (ppm) of the Jiguanshan diorite

Sample No.	ZY2201	ZY2202	ZY2203	ZY2204	ZY2205	ZY2206	ZY2207
(wt.%)							
SiO ₂	58.18	59.44	59.13	58.24	56.26	56.01	55.57
TiO ₂	1.87	1.37	1.36	1.82	2.01	1.87	2.05
Al ₂ O ₃	14.38	14.37	14.24	14.11	14.18	15.00	14.41
^T Fe ₂ O ₃	10.38	9.04	9.17	10.00	10.35	10.18	10.50
MnO	0.15	0.14	0.14	0.14	0.17	0.14	0.15
MgO	2.73	2.81	2.96	2.59	2.70	2.92	2.94
CaO	5.85	5.29	5.33	5.60	5.61	6.06	5.81
Na ₂ O	2.76	2.85	2.87	2.79	2.56	2.60	2.56
K ₂ O	2.98	3.15	3.16	3.11	3.21	2.97	3.01
P ₂ O ₅	0.71	0.46	0.45	0.65	0.73	0.68	0.76
LOI	0.48	1.31	0.67	0.36	1.53	1.60	1.67
Total	100.47	100.23	99.48	99.41	99.31	100.03	99.43
(ppm)							
Li	11.2	19.8	19.9	14.8	18.6	20.7	18.2
Be	2.66	2.80	2.76	2.94	3.06	2.70	2.97
Sc	22.7	20.1	20.4	23.3	24.3	24.0	23.8
V	163	141	147	168	179	165	164
Cr	72.1	91.3	101.3	69.5	68.6	78.6	83.5
Ni	21.3	22.3	24.0	20.7	19.2	20.2	21.6
Cu	20.8	19.8	19.9	20.9	27.0	22.2	23.3
Zn	131	128	122	133	148	139	141
Ga	21.9	21.9	21.8	22.9	23.3	23.8	22.7
Rb	80.3	95.2	97.8	88.4	88.0	89.5	88.9
Sr	412	374	384	406	403	542	490
Y	47.5	44.4	43.8	48.4	49.3	44.8	46.7
Zr	402	478	474	435	428	400	407
Nb	20.2	21.2	21.0	21.2	22.7	20.3	21.8
Cs	0.60	0.77	0.74	0.95	2.98	3.63	4.44
Ba	1543	1515	1504	1544	1814	1714	1737
La	72.2	79.0	79.5	75.0	77.3	71.7	75.2
Ce	149	161	161	154	163	150	159
Pr	17.6	18.3	18.1	18.2	19.4	18.0	18.9
Nd	72.3	71.2	70.9	73.2	80.0	72.9	77.1
Sm	12.7	12.1	12.0	12.7	14.0	12.8	13.4
Eu	2.63	2.21	2.18	2.59	2.93	2.78	2.87
Gd	12.1	11.2	11.2	12.1	13.0	11.7	12.5
Tb	1.53	1.39	1.40	1.51	1.63	1.47	1.56
Dy	8.99	8.32	8.11	8.92	9.50	8.53	9.00
Ho	1.67	1.54	1.53	1.67	1.75	1.53	1.65
Er	4.97	4.56	4.54	4.95	5.09	4.55	4.87
Tm	0.62	0.55	0.55	0.60	0.63	0.55	0.58

Yb	4.26	3.79	3.84	4.18	4.33	3.82	3.99
Lu	0.61	0.55	0.56	0.60	0.63	0.55	0.58
Hf	7.97	9.09	9.15	8.20	8.46	7.59	7.98
Ta	1.03	0.98	0.99	1.01	1.10	0.96	1.07
Pb	16.4	21.2	18.0	16.3	18.9	15.2	14.2
Th	4.28	6.43	6.71	4.27	3.87	3.22	3.55
U	0.70	0.98	0.88	0.71	0.75	0.61	0.68
K ₂ O/Na ₂ O	1.08	1.11	1.10	1.11	1.25	1.14	1.18
K ₂ O+Na ₂ O (Wt.%)	5.74	6.00	6.03	5.90	5.77	5.57	5.57
Mg#	34.5	38.3	39.2	34.1	34.3	36.5	35.9
A/CNK	0.78	0.81	0.80	0.78	0.79	0.81	0.80
A/NK	1.85	1.77	1.75	1.77	1.84	2.00	1.93
ΣREE	361.5	375.8	375.1	370.4	393.2	361.2	381.3
Eu/Eu*	0.64	0.57	0.57	0.63	0.65	0.68	0.66
(La/Yb) _N	12.2	15.0	14.8	12.9	12.8	13.5	13.5

901 Mg[#]=(MgO+FeO_{total})/MgO×100

902 Eu/Eu^{*}=2Eu_N/(Sm_N+Gd_N); (La/Yb)_N=chondrite-normalized La/Yb ratio

903

Table 2 Whole-rock Sr isotopic compositions of the late Paleoproterozoic diorites in the NCC

Sample	Age (Ma)	Rb (ppm)	Sr (ppm)	Rb/Sr	$^{87}\text{Rb}/^{86}\text{Sr}$	$^{87}\text{Sr}/^{86}\text{Sr}$	$\pm 2\text{SE}$	$^{87}\text{Sr}/^{86}\text{Sr}$ (t)	Error (abs.)	Data source
Jiguanshan diorite										
ZY2201	1780	80.3	412	0.20	0.5648	0.71931	0.000010	0.70485	0.00 077	
ZY2202	1780	95.2	374	0.25	0.7371	0.72471	0.000012	0.70584	0.00 099	
ZY2203	1780	97.8	384	0.25	0.7377	0.72434	0.000011	0.70546	0.00 099	
ZY2204	1780	88.4	406	0.22	0.6307	0.72111	0.000011	0.70496	0.00 085	This study
ZY2205	1780	88.0	403	0.22	0.6334	0.71856	0.000011	0.70235	0.00 086	
ZY2206	1780	89.5	542	0.17	0.4780	0.71518	0.000011	0.70294	0.00 066	
ZY2207	1780	88.9	490	0.18	0.5252	0.71542	0.000013	0.70198	0.00 072	
Wafang diorite										
WF1307 -3	1780	107.0	389	0.28	0.7969	0.72131	0.000013	0.70091	0.00 106	
WF1307 -4	1780	109.0	400	0.27	0.7895	0.72144	0.000014	0.70123	0.00 105	
WF1307 -5	1780	84.0	411	0.20	0.5921	0.72024	0.000016	0.70508	0.00 080	
WF1307 -8	1780	113.0	343	0.33	0.9548	0.72479	0.000016	0.70035	0.00 127	
WF1307 -9	1780	110.0	373	0.29	0.8545	0.72236	0.000014	0.70048	0.00 114	
Shizhaigou diorite										
Ln-1	1780	103.7	272	0.38	1.1040	0.72874	0.000012	0.70048	0.00 146	
Ln-2	1780	101.5	322	0.31	0.9125	0.72868	0.000015	0.70532	0.00 121	
Ln-3	1780	136.4	200	0.68	1.9758	0.72509	0.00001	0.67452	0.00 259	Cui et al. (2011)
Ln-4	1780	116.6	295	0.40	1.1479	0.73149	0.000015	0.70210	0.00 152	
Ln-5	1780	112.5	300	0.38	1.0885	0.72997	0.000014	0.70211	0.00 144	
E-W Group dyke										
02SX00 1	1780	154.8	470	0.33	0.9542	0.72970	0.000014	0.70528	0.00 127	
02SX00 7	1780	81.2	450	0.18	0.5231	0.71858	0.000014	0.70519	0.00 072	Peng et al.
03LF01	1780	74.4	449	0.17	0.4801	0.71619	0.000013	0.70390	0.00 066	(2007)
03FS04	1780	131.8	229	0.58	1.6748	0.74399	0.000012	0.70112	0.00	

03FS07	1780	106.0	539	0.20	0.5699	0.71852	0.000013	0.70393	220 0.00 078
Weight mean value							0.70519	0.00 031	(n=8, calculate d by IsoplotR)

905 $(^{87}\text{Sr}/^{86}\text{Sr})_s = (^{87}\text{Sr}/^{86}\text{Sr})_0 + (^{87}\text{Rb}/^{86}\text{Sr})_s \times (e^{\lambda t} - 1)$

906 $\lambda_{^{87}\text{Rb}} = 1.42 \times 10^{-11} \text{ a}^{-1}$

907 Error of initial ratio is calculated from the measurement error of the isotope ratio, the estimated
908 concentration error and the age error. The decay constant is considered to be a fixed value.

909 $\sigma_{\text{Sr}(t)}$ is mean-square deviation of $(^{87}\text{Sr}/^{86}\text{Sr})_t$

910 σ_{Rb} is mean-square deviation of $(^{87}\text{Rb}/^{86}\text{Sr})_s$

911 σ_t is mean-square deviation of age

912
$$\sigma_{\text{Sr}(t)} = \sqrt{\sigma_{\text{Sr}}^2 + \sigma_{\text{Rb}}^2 (e^{\lambda t} - 1)^2 + \sigma_t^2 (\lambda e^{\lambda t} (\frac{^{87}\text{Rb}}{^{86}\text{Sr}}))^2}$$

913

Table 3 Whole-rock Nd isotopic compositions of the late Paleoproterozoic diorites in the NCC

Sample	Age (Ma)	Nd (ppm)	Sm (ppm)	$^{147}\text{Sm}/^{144}\text{Nd}$	$^{143}\text{Nd}/^{144}\text{Nd}$	Error (2s)	$^{143}\text{Nd}/^{144}\text{Nd(t)}$
Jiguanshan diorite							
ZY2201	1780	72.3	12.7	0.1063	0.511238	0.000007	0.509994
ZY2202	1780	71.2	12.1	0.1029	0.511129	0.000008	0.509924
ZY2203	1780	70.9	12.0	0.1022	0.511131	0.000005	0.509934
ZY2204	1780	73.2	12.7	0.1049	0.511240	0.000007	0.510011
ZY2205	1780	80.0	14.0	0.1058	0.511329	0.000007	0.510090
ZY2206	1780	72.9	12.8	0.1058	0.511317	0.000005	0.510078
ZY2207	1780	77.1	13.4	0.1054	0.511320	0.000006	0.510086
E-W Group dyke							
02SX001	1780	113	20.3	0.1084	0.511287	0.000009	0.510018
02SX007	1780	62.6	11.3	0.1093	0.511285	0.000010	0.510005
03LF01	1780	45.1	8.36	0.1120	0.511358	0.000017	0.510047
03FS04	1780	102	17.5	0.1039	0.511270	0.000010	0.510053
03FS07	1780	62.7	11.1	0.1068	0.511297	0.000013	0.510047
Shizhaigou diorite							
Ln-1	1780	69.0	12.3	0.1075	0.511280	0.000012	0.510021
Ln-2	1780	66.4	11.7	0.1065	0.511270	0.000011	0.510023
Ln-3	1780	61.9	11.2	0.1090	0.511280	0.000011	0.510003
Ln-4	1780	71.1	12.6	0.1072	0.511260	0.000011	0.510005
Ln-5	1780	69.4	12.3	0.1072	0.511260	0.000012	0.510005
Wafang diorite							
WF1307-3	1780	78.4	13.7	0.1056	0.511169	0.000008	0.509953
WF1307-4	1780	78.5	14.1	0.1086	0.511215	0.000008	0.509965
WF1307-5	1780	75.9	13.7	0.1091	0.511192	0.000008	0.509936
WF1307-8	1780	77.6	13.4	0.1044	0.511039	0.000007	0.509837
WF1307-9	1780	77.5	13.9	0.1084	0.511193	0.000005	0.509945
Gushicun diorite							
20XRδ-1	1780	58.0	10.9	0.1134	0.511327	0.000004	0.509999
20XRδ-3	1780	63.3	11.7	0.1118	0.511334	0.000006	0.510025
20XRδ-4	1780	59.1	10.9	0.1118	0.511341	0.000006	0.510032
20XRδ-5	1780	53.1	9.9	0.1122	0.511354	0.000006	0.510041

The Muzhijie
diorites

20δPt2-1	1780	63.5	11.5	0.1090	0.511297	0.000004	0.510021
20δPt2-3	1780	64.2	11.7	0.1100	0.511300	0.000004	0.510012
20δPt2-5	1780	66.4	12.3	0.1122	0.511295	0.000007	0.509982
20δPt2-7	1780	72.1	13.1	0.1101	0.511297	0.000008	0.510007
20δPt2-9	1780	54.2	9.6	0.1076	0.511181	0.000006	0.509922
20δPt2-11	1780	64.5	11.4	0.1073	0.511199	0.000006	0.509943
20δPt2-13	1780	62.9	11.2	0.1076	0.511196	0.000008	0.509937
20δPt2-16	1780	67.9	12.3	0.1098	0.511270	0.000007	0.509984

Fudian diorite

20XRSC-1	1780	65.8	12.1	0.1110	0.511309	0.000006	0.510009
20XRSC-2	1780	67.1	12.3	0.1111	0.511315	0.000006	0.510014
20XRSC-3	1780	69.5	12.8	0.1113	0.511314	0.000004	0.510011
20XRSC-4	1780	67.5	12.5	0.1117	0.511311	0.000007	0.510002
20XRSC-5	1780	70.1	12.9	0.1111	0.511311	0.000006	0.510010
20XRSC-6	1780	68.9	12.7	0.1112	0.511324	0.000005	0.510022
20XRSC-8	1780	71.7	12.9	0.1089	0.511331	0.000006	0.510056
20XRSC-9	1780	76.6	13.9	0.1096	0.511325	0.000005	0.510042

Weight mean value

915

916

Error (abs.)	$\varepsilon_{\text{Nd}}(t)$	Error (ε_{Nd})	T_{DM2} (Ga)	Data source
0.000063	-6.69	1.24	2.83	
0.000061	-8.04	1.20	2.94	
0.000060	-7.85	1.19	2.93	
0.000062	-6.35	1.22	2.80	This study
0.000063	-4.80	1.23	2.68	
0.000063	-5.03	1.23	2.70	
0.000062	-4.88	1.22	2.68	
0.000065	-6.21	1.27	2.79	
0.000065	-6.47	1.28	2.81	
0.000068	-5.64	1.34	2.75	Peng et al. (2007)
0.000062	-5.53	1.22	2.74	
0.000064	-5.65	1.26	2.75	
0.000065	-6.15	1.26	2.79	
0.000064	-6.10	1.25	2.78	
0.000065	-6.50	1.28	2.82	Cui et al. (2011)
0.000064	-6.46	1.26	2.81	
0.000064	-6.46	1.26	2.81	
0.000062	-7.90	1.23	2.93	
0.000063	-7.67	1.26	2.91	
0.000064	-8.24	1.27	2.96	Wang et al. (2016)
0.000061	-10.2	1.21	3.11	
0.000063	-8.07	1.26	2.94	
0.000067	-6.58	1.31	2.82	
0.000066	-6.08	1.30	2.78	Ma et al. (2023a)
0.000066	-5.94	1.30	2.77	
0.000066	-5.77	1.30	2.76	
0.000064	-6.15	1.26	2.79	Ma et al. (2023b)

0.000065	-6.33	1.27	2.80
0.000067	-6.92	1.30	2.85
0.000065	-6.42	1.28	2.81
0.000064	-8.09	1.25	2.95
0.000064	-7.69	1.25	2.91
0.000064	-7.80	1.25	2.92
0.000065	-6.87	1.28	2.85

0.000066	-6.39	1.29	2.81
0.000066	-6.30	1.29	2.80
0.000066	-6.35	1.29	2.80
0.000066	-6.52	1.30	2.82
0.000066	-6.37	1.29	2.81
0.000066	-6.14	1.29	2.79
0.000065	-5.46	1.26	2.75
0.000065	-5.74	1.27	2.75

-6.51 0.20 (n = 41, calculated by IsoplotR)

917 $(^{143}\text{Nd}/^{144}\text{Nd})_s = (^{143}\text{Nd}/^{144}\text{Nd})_0 + (^{147}\text{Sm}/^{144}\text{Nd})_s \times (e^{\lambda t} - 1)$

918 $\varepsilon_{\text{Nd}}(t) = [(^{143}\text{Nd}/^{144}\text{Nd})_t / (^{143}\text{Nd}/^{144}\text{Nd})_{\text{CHUR}(t)} - 1] \times 10000$

919 $T_{\text{DM}2} = 1/\lambda \times \ln \{1 + [(^{143}\text{Nd}/^{144}\text{Nd})_{\text{DM}} - (^{143}\text{Nd}/^{144}\text{Nd})_s + ((^{147}\text{Sm}/^{144}\text{Nd})_s - (^{147}\text{Sm}/^{144}\text{Nd})_{\text{CC}}) \times (e^{\lambda t} - 1)]\}$

920 $\varepsilon_{\text{Nd}}(t) = [(^{143}\text{Nd}/^{144}\text{Nd})_t / (^{143}\text{Nd}/^{144}\text{Nd})_{\text{CHUR}(t)} - 1] \times 10000 / ((^{147}\text{Sm}/^{144}\text{Nd})_{\text{DM}} - (^{147}\text{Sm}/^{144}\text{Nd})_{\text{CC}})$

921 $\lambda_{^{147}\text{Sm}} = 0.654 \times 10^{-11} / \text{a}^{-1}$

922 $^{143}\text{Nd}/^{144}\text{Nd}_{\text{DM}} = 0.51315$

923 $^{147}\text{Sm}/^{144}\text{Nd}_{\text{DM}} = 0.2137$

924 $^{147}\text{Sm}/^{144}\text{Nd}_{\text{CC}} = 0.12$

925 Error of initial ratio is calculated from the measurement error of the isotope ratio, the estimated
926 concentration error and the age error. The decay constant is considered to be a fixed value.

927 $\sigma_{\text{Nd}(t)}$ is mean-square deviation of $(^{143}\text{Nd}/^{144}\text{Nd})_t$

928 σ_{Sm} is mean-square deviation of $(^{143}\text{Sm}/^{144}\text{Nd})_s$

929 σ_t is mean-square deviation of age

930
$$\sigma_{\text{Nd}(t)} = \sqrt{\sigma_{\text{Nd}}^2 + \sigma_{\text{Sm}}^2 (e^{\lambda t} - 1)^2 + \sigma_t^2 (\lambda e^{\lambda t} (\frac{^{147}\text{Sm}}{^{144}\text{Nd}}))^2}$$

931

932 **Table 4** Whole-rock Pb isotopic compositions of the Jiguanshan diorite

Spon.no	U (ppm)	Th (ppm)	Pb (ppm)	$^{206}\text{Pb}/^{204}\text{Pb}$	$\pm 2\text{SE}$	$^{207}\text{Pb}/^{204}\text{Pb}$	$\pm 2\text{SE}$
ZY2201	0.70	4.28	16.38	15.867	0.0005	15.189	0.0005
ZY2202	0.98	6.43	21.20	16.167	0.0008	15.243	0.0009
ZY2203	0.88	6.71	18.03	15.882	0.0006	15.182	0.0006
ZY2204	0.71	4.27	16.29	16.097	0.0010	15.225	0.0009
ZY2205	0.75	3.87	18.90	15.832	0.0007	15.179	0.0006
ZY2206	0.61	3.22	15.22	15.914	0.0010	15.170	0.0010
ZY2207	0.68	3.55	14.22	16.036	0.0008	15.199	0.0007

933

934

$^{208}\text{Pb}/^{204}\text{Pb}$	$\pm 2\text{SE}$	$^{206}\text{Pb}/^{204}\text{Pb}$	$^{207}\text{Pb}/^{204}\text{Pb}$	$^{208}\text{Pb}/^{204}\text{Pb}$	$^{238}\text{U}/^{204}\text{Pb}$	$^{232}\text{Th}/^{204}\text{Pb}$	$^{232}\text{Th}/^{238}\text{U}$
		initial	initial	initial	μ	ω	
36.502	0.0014	15.063	15.103	35.027	2.6	16.0	6.3
37.126	0.0022	15.295	15.150	35.392	2.8	18.8	6.8
36.494	0.0013	14.965	15.084	34.398	2.9	22.8	7.8
37.324	0.0023	15.271	15.137	35.825	2.6	16.3	6.2
36.046	0.0016	15.095	15.100	34.901	2.3	12.4	5.3
36.124	0.0024	15.164	15.090	34.939	2.4	12.9	5.4
36.338	0.0016	15.136	15.103	34.931	2.9	15.3	5.4

935 Initial Pb isotopic ratios are calculated back to 1780 Ma.

936

937 **Supplementary material/Appendix:**

938 **Table S1** Zircon U–Pb isotopic data for the Jiguanshan diorite obtained by the LA-ICP-MS
939 technique

940 **Table S2** Zircon trace element data for the Jiguanshan diorite obtained by the LA-ICP-MS
941 technique

942

943