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Abstract:_Unravelling the tectonic setting and evolution of cratons during the late

Paleoproterozoic has long been a major focus of geological research. As one of Earth's

principal cratonic blocks, the North China Craton (NCC) preserves extensive

magmatism_during this period. Recent investigations have identified numerous 1.78

Ga dioritic intrusions along the southern margin and the center of the NCC. The NCC

experienced a widespread magmatic event at 1.78 Ga, and the tectonic setting of this

period remains a central and actively debated topic, demanding further interpretation

and understanding. Diorites of the NCC provide critical_petrogenetic and geological

significances. In this paper we, report zircon U-Pb ages of ~1.78 Ga and geochemical

data of the Jiguanshan diorite. The diorites in the Trans-North China Orogen_and the

southern margin of the NCC, including the Jiguanshan diorite, have similar element

and isotopic characteristics. The weighted mean average of initial *’Sr/**Sr and exq(t)
values is 0.7052 +0.0003 and -6.5 +0.2, respectively. The initial Pb isotope
compositions of the diorite samples do not show significant enrichment of radiogenic
lead. In terms of Sr-Nd-Pb isotope compositions and Nb/Ta, Ba/Th, and Sr/Th ratios,
the diorites differ from the coeval Xiong’er volcanic rocks and mafic dike swarms.

Our results suggest that the, diorites originated from the basaltic lower crust, rather

than from the enriched subcontinental lithospheric mantle. Whole-rock and zircon

trace element tectonic diagrams indicate that the diorites formed in a rift-related

environment. The formation of the diorites indicates a potential transition from

orogenic-related magmatism towards intraplate magmatism,

JKey words: Late Paleoproterozoic, North China, Diorite, Zircon, Sr-Nd-Pb isotopes

(MBRERE:

HBRAY A 2 The Xiong’er volcanic
rocks and mafic dike swarms mark a
significant magmatic event after the
amalgamation of the North China
Craton (NCC) in the Paleoproterozoic,
yet their tectonic origins remain
controversial. Several Paleoproterozoic
diorite intrusions have received
widespread attention recently. Their
genesis and geological significance are
crucial for understanding the evolution
of the NCC. In this study, we

( BBREOPIZ: se

MR AR 2 Whole-rock and zircon
trace element geological tectonic
diagrams indicate that the diorites
formed in a rift environment. These
diorites mark a crustal-origin rock shift
from orogenic-related magmatism to
intraplate magmatism during the
post-collisional extensional stage. .
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1 Introduction

Formation and evolution of the North China Craton (NCC) provide critical insights

into Precambrian Earth processes (e.g., Geng et al., 2012; Liu et al., 1992). The NCC

(EBaEA) [1] )

was stabilized by the collision and amalgamation of continental blocks in the late

Zhao and Zhai, 2013; Zhao et al., 2000a, b).

Paleoproterozoic,

Subsequent widespread magmatic activity across the NCC recorded the cratonization

process, providing critical insights into its stabilization and maturation (e.g., Zhai,

2011). The petrogenesis of these Paleoproterozoic magmatic rocks preserves key

information about regional tectonic evolution and has been linked to the assembly or

breakup of Columbia supercontinents (e.g., Peng et al., 2007, 2008; Zhao et al., 2009).

Among these events, the ~1.78 Ga magmatism is particularly distinctive due to its

large scale, producing numerous rock types including the Xiong’er Group, A-type

granite and mafic dykes (e.g., Cui et al., 2010; Hu et al., 2010; Peng et al., 2007, 2008;

Wang et al., 2004; Wang et al., 2014). These rocks are extensively distributed across

both the southern margin and Trans-North China Orogen of the NCC. However, the

petrogenesis and tectonic setting of these rocks is controversially debated, which

revolves around post-collisional/orogenic extension (e.g., Wang et al., 2004, 2008

2014), continental arc magmatism (e.g., He et al., 2009; Zhao et al., 2009), rifting

(e.g.. Cui et al., 2010; Zhao et al., 2007), and the involvement of mantle plumes (e.g.,

Hou et al., 2008; Peng et al., 2007, 2008). Clarifying the tectonic setting during this

period is essential for understanding evolution that followed the late Paleoproterozoic |

amalgamation of the NCC.

In recent years, numerous diorites with ages of ¢. 1780 Ma along the southern margin

of the NCC and the Shanxi region (Fig. 1b) have attracted significant attention,

potentially offering new perspectives for understanding the tectonic evolution of the

| 2013; Zhao et al., 2000a, b

||| MIBEEIAZ: . Subsequently, the

| with the Xiong’er rift being the first
||| rift formed after the assembly,
| | resulting in the formation of the c.

| provide crucial insights into the
‘ L Precambrian geological evolution

| BEF 1] (e.g.,Gengetal,2012;
I Liu et al., 1992)

| | MERAIA A . The main assembly of

| ‘3‘ the NCC took place after the collision

|| of eastern and western land masses in
IIe the late Paleoproterozoic
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[ HBXAY A 2 The ancient basement
| rocks in the North China Craton (NCC)

L
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E2.E# [2]: (e.g., Zhao and Zhai,

J

craton experienced multiple rift phases,

1780 Ma Xiong’er volcanic rocks and
contemporaneous mafic dyke swarms
(e.g., Hou et al., 2008; Peng et al.,
2007, 2008; Zhai, 2010). However, the
origin and tectonic setting of the
Xiong’er volcanic rocks and
contemporaneous mafic dyke swarms
of the NCC remains controversial. The
debate mainly revolves around
subduction (e.g., He et al., 2009; Wang
et al., 2004; Zhao et al., 2009), rifting
(e.g., Cui et al., 2010; Zhao et al.,
2007), and the involvement of mantle
plumes (e.g., Hou et al., 2008; Peng et
al., 2007, 2008). Clarifying the
tectonic setting during this period is
essential for understanding the
post-collisional orogenic evolution that
followed the late Paleoproterozoic
amalgamation of the North China
Craton. .

& A KA In recent years,

numerous c¢. 1780 Ma diorites along

the southern margin of the NCC and
L the Shaanxi region
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craton during the late Paleoproterozoic. These rocks include the diorites intruding into
the Xushan Formation (¢, 1789 Ma; Zhao et al., 2004), the East-West Group dykes (c,
1780 Ma; Peng et al., 2007), the Shizhaigou diorite (¢, 1780 Ma; Cui et al., 2011), the
Watang diorite (¢, 1750 Ma; Wang et al., 2016), the Gushicun diorite (¢, 1780 Ma; Ma

et al., 2023a), the Muzhijie diorite (¢, 1780 Ma; Ma et al., 2023b), the Fudian diorite

(¢, 1780 Ma; Ma et al., 2023b), and the Jiguanshan diorite (¢, 1780 Ma; this study).

The diorites are widely distributed in an approximate east-west trending belt and

possess similar zircon ages. Peng et al. (2007) and Cui et al. (2011) proposed that

some of them share identical source with the Xiong'er Group volcanic rocks or dyke

swarms, formed by fractional crystallization of enriched mantle material, Others

authors interpret some of them resulting from the fractional crystallization (Ma et al.,

2023a, b) or from crustal melting with limited mantle influence (Wang et al., 2016).

Systematic research into their genesis is crucial for clarifying their formation and

constraining regional geological evolution.

The present study focuses on the Jiguanshan diorite and other diorites with ages

between 1.78 and 1.75 Ga from the NCC. These diorites have similar geochemical

characteristics, suggesting their formation during a single magmatic episode. By
evaluating whole rock geochemical and Sr-Nd-Pb isotopic compositions, as well as
Hf isotopic compositions of zircons, a better understanding of the tectonic

environment and evolution of the NCC during the late Paleoproterozoic is provided.

2 Geological background and sample, material

The NCC records a 3.8 Ga lasting geological evolution (e.g., Geng et al., 2012; Liu et

al.,, 1992). It consists of an Archean to Paleoproterozoic metamorphic basement

overlain by Mesoproterozoic unmetamorphosed sedimentary cover (e.g., Lu et al.,

4
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2008:; Zhao and Zhai, 2013). The crystalline basement is composed of serval

microcontinental blocks (Fig. la; Zhao et al., 2005). Between 1.95 and 1.92 Ga, the

Yinshan and Ordos blocks collided along the Khondalite belt to form the Western

Block (e.g.. Li et al., 2011: Lu et al., 2008: Zhao et al., 2005). Around 1.9 Ga, the

Longgang and Nangrim blocks amalgamated along the Jiao-Liao-Ji belt, forming the

Eastern Block (e.g., Luo et al., 2004: Zhao et al., 2005). The NCC ultimately formed

by the assembly of the eastern and western blocks along the central orogenic belt at c.

1.85 Ga _ (e.g., Zhao and Zhai, 2013; Zhao et al., 2000a, b, 2005). The southern

margin of the NCC is separated from the North Qinling Orogen by the Luonan—

Luanchuan Fault (Fig. 1b). Prior to the Mesozoic, the southern margin of the NCC

experienced a similar geological evolution as the NCC itself, which makes it an ideal

object for studying the Precambrian geological evolution (e.g., Zhai, 2010).

The study area is located within the eastern part of the southern margin of the NCC

(Fig. 1b). The most frequent basement rocks in this area are metamorphic basement
rocks of the Archean Taihua Group. The Taihua Group extends in an east-west
direction from Lantian in the west to Wuyang in the east (e.g., Diwu et al., 2014, 2018;

Wang et al., 2020). It is primarily composed of medium- to high-grade metamorphic

rocks and has been divided into the Lower Taihua Complex and the Upper Taihua

Complex (e.g., Kroner et al., 1988: Shen, 1994; Wan et al., 2006; Xue et al., 1995:

Zhang et al., 1985). The lower part is dominated by metamorphic mafic rocks and

TTG gneisses (e.g., Kroner et al., 1988; Zhang et al., 1985). The upper part is

characterized by supracrustal sequences and metamorphic mafic rocks (e.g., Wan et

al., 2006; Xue et al., 1995). During the Archean, the rocks of the Taihua Group record

two significant stages of crustal growth (e.g., Diwu et al., 2014, 2018). During the

late Paleoproterozoic (1.97 — 1.80 Ga), the Taihua Group underwent widespread

5
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amphibolite to granulite facies metamorphism and intense deformation, reflecting

collisional orogenic events in the NCC (Diwu et al., 2018; Sun et al., 2017).

The upper part of the basement contains 1780 million years old volcanic rocks Xiong'
er Group, (e.g., Zhao et al., 2004, 2007). The Xiong’er volcanic rocks consist mainly
of basalts and andesites that are widely distributed along the southern margin of the
NCC, and extend as far north as Taiyuan City in Shanxi Province (Zhao et al., 2007).
The Xiong’er Group represents the largest magmatic unit of the NCC since the
Neoarchean period. At the same time, a large mafic dyke swarm emplaced the NCC.
These mafic rocks are interpreted as products of crustal extension during the

Colombia supercontinent era (e.g., Peng et al., 2008; Wang et al., 2004).

During fieldwork, seven diorite samples were collected from the Jiguanshan diorite on
the eastern side of the Jiguanshan Hill (or the Jiguan Mountain), about 30 km south of
Ruyang County, Henan Province (Fig. 1¢ and Table S1). The Jiguanshan diorite forms
several east-west striking bodies that are cut by the Mesozoic Taishanmiao A-type
granite to the west. The Taishanmiao intrusion, located at the southern margin of the
NCC in the western Henan region, covers an area of ¢, 290 km? (e.g., He et al., 2021).

The northern and eastern part of the Taishanmiao intrusion penetrates the volcanic

rocks of the Xiong'er Group  (Fig. Ic).

The collected rock samples of the Jiguanshan diorite are fresh and greyish with

massive textures (Fig. 2a), They are fine-grained with a particle size of 0.1-2 mm (Fig.

2b). The main mineral is plagioclase (~60 vol.%), with lamellar and euhedral shape

and variable grain size, Under the microscope, the partially sericitized crystals show

simple contact twinning and polysynthetic twinning. Some plagioclase crystals show

zonal and resorption textures (Figs. 2c-e) and the Carlsbad-albite twinning with zoned

MIB& B9 A2 The upper part of the
basement contains volcanic rocks of
the Xiong’er Group that formed ca.
1780 Ma
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texture, (Fig. 2d). Clinopyroxene (~15 vol.%) formed earlier than plagioclase. Most of
the clinopyroxenes have zonal and resorption textures (Fig. 2f). Euhedral opaque
minerals (~3 vol.%), such as ilmenite, are often encased in clinopyroxene.
Alkaline-feldspar (~10 vol.%) shows hypidiomorphic to xenomorphic texture with
imprints of kaolinization (Figs. 2c, e). The mineral occurs as K-feldspar and perthite.
Quartz (~5 vol.%) occurs as an anhedral crystal. Biotite (~3 vol.%) shows
xenomorphic texture or is altered into chloride (Figs. 2c, e). In addition, accessory

minerals such as zircon and ilmenite account for about 3 vol.% (Fig. 2f).

3 Analytical methods,

Major and trace elements: Seven representative fresh rock samples were_grinded
intg, powders less than 200 mesh. Major element composition of whole rock was
obtained by X-ray fluorescence (XRF) from ALS Chemex (Guangzhou) using a
PANalytical PW2424 instrument. Following sample digestion, whole-rock trace
element concentrations were determined using an Agilent 7700 inductively coupled
plasma mass spectrometry (ICP-MS) at the University of Science and Technology of
China (USTC). Quality control assurance was achieved by using GSR—1, BCR-2, and

AGV-2 standard material. The analytical uncertainties are <5%.

Whole-rock Sr-Nd-Pb isotopes:_Whole-rock Sr-Nd-Pb isotope analysis was

performed in the ultra-clean laboratory of the Laboratory of Radiogenic Isotope
Geochemistry, USTC. Whole-rock powders of c. 100 mg were weighed in 7 ml Teflon
cups in a solution of purified HF and HNO; acids for Pb isotopic analysis and in a
solution of purified HF and HCIO4 acids for Sr-Nd isotopic analysis. Sr and Nd were

separated by AG 50W-X12 resin in 200400 mesh purposes and purified using the
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Sr—Spec® ion-exchange resin for Sr and Ln—Spec® resin for Nd. All isotopic
measurements were done on a Triton Plus mass spectrometer of Thermo Scientific™.
Measured Sr and Nd ratios were normalized to **Sr/**Sr = 0.1194 and '*Nd/'*Nd =
0.7219, respectively. Pb isotope ratios were corrected for mass fractionation using a
fractionation factor of 0.1% per atomic mass unit based on repeated measurements of
reference material NIST NBS 981 (Wang et al., 2023b). Total procedure blanks for Sr,

Nd, and Pb were <200 pg. Description of detailed analytical procedures can be found

elsewhere (Chen et al., 2000, 2007). Errors, of the initial values of Sr and Nd isotopes
were obtained by the error transfer formula, which is shown in Table 2 for Sr and
Table 3 for Nd. Detailed formulas can be found in Siebel et al. (2005). A 5% age error,
a 2%o YRb/*°Sr measurement error, and a 0.3%o 731/*°Sr measurement error were
used for the error of initial Sr values for calculation. A 5% age error, a 0.3%o
“7Sm/"Nd error, and the '*Nd/'**Nd measurement error were used for the

calculation of the error of initial Nd isotope values.

Zircon U-Pb geochronology and trace element composition; Zircon crystals were

isolated from the rocks by standard mineral separation procedures. Grains with intact
crystal shape and no obvious inclusions were selected under a binocular microscope.
The zircons were embedded in epoxy resin. The upper and lower planes of each
zircon target were polished with sandpaper from coarse to fine. Most of the zircon
gains were polished to 2/3 of the position and then cleaned in ultra-pure water by
ultrasonic waves. The grains were cleaned with dust-free paper in a certain direction

to ensure that the zircon was clean and bright without impurities under the microscope

for carbon plating. Cathodoluminescence (CL) image analysis was done on a scanning
electron microscope (SEM) located at the USTC. Zircon U-Pb isotopic and trace

element compositions were obtained by laser-ablation inductively-coupled plasma

8

 BIBREIRIZ: 2023

[ BB HA2: Detailed

[ MBS A A The errors

MBS A: Zircon U-Pb age and
trace elements

MBREAZ: without impurities

under the




322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

mass spectrometry (LA-ICP-MS) using an Agilent 7700 ICP-MS with a 193 nm ArF
laser-ablation system at the USTC. The beam spot diameter was 32 pm, operating at a
repetition rate of 10 Hz. Helium served as the carrier gas. Zircon 91500 was used as a
standard for age calculation. The NIST SRM 610 and 612 were utilized as reference
materials for element content adjustment. U-Pb ratios and uranium and lead
concentration data were calculated by the ICPMSDataCal software (Liu et al., 2010).
Concordia and weighted mean age plots were made using IsoplotR (Vermeesch,

2018).

4 Analytical results

Whole-rock compositions of the Jiguanshan diorite are given in Table 1, and
Sr-Nd-Pb isotope compositions and error calculations are shown in Tables 2 to 4. Age
results of zircon grains from four samples are given in Table S1, and trace element

composition in Table S2.

4.1 Zircon U-Pb isotopic ages

Zircon grains from the Jiguanshan diorite are transparent to pale yellow with
subhedral to euhedral habitus. They measure ¢, 100-300 pm in length and have aspect
ratios of 1:1 to 3:1. Most of them show oscillatory zoning in the CL images (Fig. 3),

which suggests their magmatic origin.

Twenty-nine zircon grains from sample ZY2202 yield 207pp2%pp ages varying from
1885 +44 Ma to 1643 £42 Ma and giving a weighted mean age of 1772 £16 Ma (20,

n=29, MSWD=2.2, Fig. 4a). Thirty-two zircon grains from sample ZY2204 yield

207pp/2%pp ages varying from 1902 +54 Ma to 1635 +47 Ma with a weighted mean

[ IS B9 A 2 elemental contents
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age of 1742 £15 Ma (20, n=32, MSWD=1.6, Fig. 4b). Twenty-six out of twenty-seven

EEALSAAE_—ANE T '3

zircon grains from sample ZY2205 yield **’Pb/*"*Pb ages varying from 1933 +52 Ma

to 1692 +44 Ma and a weighted mean age of 1760 18 Ma (20, n=26, MSWD=0.66

Fig. 4c). One zircon with a‘zml’b/‘ml’b age of 1639 +46 Ma (96% concordance) was

excluded from the calculation (Fig. 4c). Thirty zircon grains of sample ZY2207 yield

207pb/2%Ph ages ranging from 1900 +54 Ma to 1700 £36 Ma with a weighted mean

age of 1771 £17 Ma (26, n=30, MSWD=1, Fig. 4d).

Most zircon grains have Th/U ratios >1, supporting their magmatic origin (Table S1).
Some grains deviate from the concordant line, which is related to lead loss (Fig. 4a-d).
The weighted mean ages of the Jiguanshan diorite near 1780 Ma suggest that the

diorite body formed in the late Paleoproterozoic.

4.2 Whole-rock chemical composition

Si0;, contents of the Jiguanshan diorite vary between 55.57 wt. % and 59.44 wt. %

and the sum of K,O+NaO from 5.57 wt. % to 6.03 wt. %, corresponding to gabbroic

diorite to diorite composition according to the TAS diagram (Fig. 5a). K,O contents

range from 2.97 wt. % to 3.21 wt. % and fall within the high-K calc-alkaline fields

(Fig. 5b). The samples from the Jiguanshan diorite have consistent A/CNK ratios
ranging from 0.78 to 0.81 and A/NK >1, which classify them as metaluminous rocks

(Fig. 5¢). Mg" (Mg"=(MgO+FeO,01a))/MgOx100) values range from 34 to 39 (Fig. 5d).

The Jiguanshan diorite depicts the enrichment of large ion lithophile elements (LILE),
such as Rb, Ba, and K, and negative anomalies of Sr, Ti, Nb, and Ta (Fig. 6a). Y REE
contents range from 361 _fo 393 ppm. Light rare earth elements (LREE) exhibit

stronger enrichment, while heavy rare earth elements (HREE) are relatively depleted
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(Fig. 6b). (La/Yb)xratios range from 12.2 to 15.0 (subscript N denotes normalization
against chondrite La and Yb contents) with Euw/Eu’ (Eu/Eu*=2EuN/(SmN—I—GdN),
subscript N denotes normalization against chondrite Sm and Gd contents) ratios

ranging from 0.57 to 0.68 (Table 1).

4.3 Whole-rock Sr-Nd-Pb isotopic compositions

All initial radiogenic isotopic values and the errors of the initial values of Sr, Nd and

Pb isotopes reported herein are calculated back to an age of 1780 Ma. The measured

¥7S1/%Sr ratios, of the Jiguanshan diorite yary from 0.715177 £0.000011 to 0.724714

+0.000012 (20). Initial Sr ratios range from 0.7020 +0.0007 to 0.7058 +0.0010 (20,
Fig. 7a). Measured '*Nd/'**Nd values vary from 0.511129 £0.000008 to 0.511329
+0.000007 (20). Initial '*Nd/"**Nd isotope compositions range from 0.509924
+0.000061 to 0.510090 +£0.000063 (20), corresponding to initial exg values of -8.04
+1.20 to -4.80 £1.23 (20, Fig. 7b) and two-stage Nd model ages (Tpyz) of 2.94 Ga to
2.68 Ga. Pb isotopic compositions are as follows: 206pp2%py = 15.832-16.167,
27pp/2Mph = 15.170-15.243, and **Pb/**Pb = 36.046-37.324. Initial Pb isotope
ratios are significantly lower: 206py20ph,; ratios ranging from 14.965 to 15.295,
27ppy2%ppy; ratios ranging from 15.090 to 15.150, 208py2%ppy; ratios ranging from
34.398 to 35.825, with 2**U/***Pb and ***Th/**U ratios ranging from 2.3 to 2.9 and 5.3

to 7.8, respectively (Fig. 8a, b).

5 Discussion

5.1 Compositional characteristics of late-Paleoproterozoic diorites of the NCC

The late Paleoproterozoic diorites in the NCC have uniform east-west (EW) strike
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direction, different from the north-northwest (NNW) strike of most contemporaneous

mafic dykes (Hou et al., 2008; Peng et al., 2007, 2008). Intrusion ages of the diorites

are concentrated between 1780 and 1750 Ma. All the diorites have similar
geochemical and isotopic compositions and can be regarded as a compositional

homogeneous rock group.

Most of the late-Paleoproterozoic diorites of the NCC have silica contents in the range

of 52 wt. % to 62 wt. % (Fig. 5a). Total alkali content (K,O+Na,O) of 5_wt. % to 7

wt. % suggests a subalkaline character, (Fig. 5a). K20 contents range from 2 wt. % to

5 wt. % in accordance with a high-K calc-alkaline to shoshonite composition (Fig. 5b).

The ASI and Mg" values of the, samples, except for a few data points that deviate
significantly, are mostly homogeneous, with weighted average values of 0.81 and 37,

respectively (Fig. 5c¢, d). In primitive mantle normalization diagrams, all_diorites

display enrichment of LILEs, such as Rb, Ba, and K, and depletion of high field
strength elements (HFSEs), such as Na, Ta, Th, U, and Ti (Fig. 6). On the rare earth

element normalization diagrams, they display negative Eu anomalies with enrichment

in LREEs and flat distribution of HREEs (Fig. 6).

All diorites have similar Nd isotopic compositions with the mean initial exg value of

-6.51 £0.2 (20, n=41, Fig. 7b), when calculate back to 1780 Ma, (Table 3). The overall

range of initial exg values is from -10.2 £1.21 to -4.80 +1.23 (20, Fig. 7b). Some

samples from Wafang diorite (or Muzhijie diorite, Ma et al, 2023b; Wang et al, 2016)

have enriched Nd isotope composition, which can be explained by assimilation or
contamination of the continental crust due to their higher zirconium (Fig. 7b; Table 3).
Overall, the initial exg values and the corresponding two-stage Nd model ages (Tpwmz)

of the diorites are consistent with each other except for the Wafang diorite (Table 3).

The initial eys values of zircons from the diorites in the NCC have a wide but
12
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consistent range of variations, i.e., from -17 to -2.5 in the Gushicun diorite (Ma et al, [M*JB,%E(JV\]& :

2023a; Fig. 7¢), from -14 to 0.55 in the Muzhijie diorite (Ma et al, 2023b; Fig. 7c),

and from -17 to 0.95 in the Fudian diorite (Ma et al., 2023b; Fig. 7¢). The diorites [ﬂﬂﬂﬁa’gwg:msummary,t

e MV VO

have similar Nd-Hf isotopic compositions and form a coherent group in geochemical

diagrams, indicating a close genetic relationship. MBS B 2 he diorites in the NCC
have similar Nd-Hf isotopic
compositions and form a coherent
group in geochemical diagrams,

indicating a close genetic relationship. .

5.2 Initial Sr isotope composition and magma source

The late Paleoproterozoic diorites in the NCC show a large range in whole-rock initial
Sr isotopic compositions (Fig. 7a; Jiguanshan diorite: 0.7020 to 0.7058; Wafang
diorite: 0.7004 to 0.7050; Shizhaigou diorite: 0.7005 to 0.7053; East-West group dikes:
0.7011 to 0.7053). Determining magma sources for rocks with widely varying initial
Sr ratios is complex, as Sr isotopes can be affected by magma mixing, assimilation,
contamination, and melting degrees. (e.g., Gao et al., 2015; Wolf et al., 2019; Zeng et

al., 2005).

The whole-rock Nd isotopic compositions of the diorites suggest a heterogeneous

magma source_(Fig. 7b). It might be argued that this could be the effect of mixing MBRAIANE: without mixing with the
mantle

between crustal and mantle sources. However, mantle-derived rocks often have a high MEXEIPAZ: On the other hand, m

MgO content and elevated, compatible elements concentrations such as Ni and Cr, MBREIRZE: levels of

HIERAIA B es

which is inconsistent with the elemental content characteristics of the diorites (Table 1, [MI@E’\J A% are

see previous references). Variability in Sr isotopic compositions can result from MR

different degrees of source melting. However, a mica- and feldspar-rich source with
high Rb/Sr ratios produces melts with more radiogenic 8731/*Sr ratios (e.g., Hu et al.,
2018). Melts affected by the dehydration of amphibole typically have low *’Sr/*°Sr
ratios with adakitic characteristics (e.g., Rapp and Watson, 1995; Wolf et al., 1993).

The different degrees of source melting are unlikely to be the main cause for the
13
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isotopic composition of the diorites,

Initial *’Sr/*°Sr values <0.704 are negatively correlated with the $Rb/*%sr ratios (Fig.

7a). _ For initial 7S1/%°Sr values >0.704. such correlation no longer exists. A reason

for this could be the large uncertainty propagation of the initial whole-rock Sr isotope

ratios especially for old samples,, All diorites have samples with the initial 7S1/*0Sr

values greater than 0.704. Excluding outliers, the mean average initial 7Sr/%Sr value
is 0.7052 +0.0003 (20, n=8), which might represent the most likely initial Sr isotopic

composition of the source (Fig. 7a).

The initial Sr ratios of the Xiong'er Group rocks vary widely and tend to be more

radiogenic (Fig. 7d). The initial Sr ratios of these diorites are more similar to_Jower

crustal Archean xenoliths from the southeastern NCC (initial ¥7Sr/%Sr values: 0.7039—
0.7068, t=1780 Ma, e.g., Huang et al., 2004), suggesting that they are more likely
associated with lower crustal rocks of the NCC rather than an enriched mantle source

like the volcanic rocks of the Xiong’er Group.

5.3 Petrogenetic considerations

Several models have been proposed for the petrogenesis of intermediate dioritic rocks
including partial melting of metasomatized mantle (e.g., Chen et al., 2021), partial
melting of subducted oceanic crust and subsequent melt-peridotite reaction (e.g.,
Kelemen, 1995; Stern and Kilian, 1996), magma mixing/mingling (e.g., Reubi and
Blundy, 2009; Streck et al., 2007), melting of basaltic rocks (e.g., Jackson et al., 2003;
Petford and Atherton, 1996), as well as fractional crystallization of basaltic magmas

(e.g., Castillo et al., 1999).

The diorites from the NCC have low compatible element concentrations, suggesting
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that they were not derived directly from a mantle source (Fig. 9a). Larger contribution

of mantel material can also be excluded due to their relatively homogeneous initial Nd

isotope compositions _ (Fig. 7b), and consistent silica, and Mg” values (Fig. 5d).

Partial melting of the oceanic crust in the subducted slab can also form rocks of

intermediate composition, such as adakites, which often exhibit high St/Y ratios (>20)

and low Y contents (<18 ppm) (e.g., Defant and Drummond, 1990; Peacock et al.,
1994). The Jiguanshan and other diorites from the NCC have relatively high Y and Sr

contents with Sr/Y ratios <15. Thus, partial melting of the oceanic crust does not

appear to have played a role during the genesis of the diorites.,

As can be seen from the Harker variation diagrams, the Cr contents decrease with
decreasing MgO, indicating fractionation of clinopyroxene (Fig. 9a). CaO contents
decrease with increasing SiO,, suggesting crystallization of minerals, such as
plagioclase or clinopyroxene (Fig. 9b). However, Al,O; and Na,O contents do not
significantly decrease with increasing SiO,, indicating that plagioclase and
clinopyroxene were not significant fractionation phases (Figs. 9c-d). The increase in
K,O contents with increasing SiO, suggests no biotite and/or K-feldspar fractionation
during magmatic evolution (Fig. 9e¢). The increasing SiO, and decreasing TiO,
indicate the crystallization and fractionation of Ti-bearing minerals, such as ilmenite
(Fig 9f). The Ew/Eu" values of the diorites do not show significant changes with Sr
contents, which_proves that fractionation of plagioclase from the melt was not
significant (Fig. 9g). From the above discussion, it can be concluded that the
petrogenesis of the diorites in the NCC was associated with minor fractional
crystallization processes. Whole-rock La/Yb versus La and Zr/Sm versus Zr
correlations are as expected for a partial melting process (Figs. 9h-i). This implies that

the formation of the diorites may be closely related to the partial melting of a basaltic
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protolith.

Basement rocks of the lower Taihua Group in the southern margin of the NCC consist
of amphibolite (e.g., Diwu et al., 2014, 2018; Wang et al., 2020). Partial melting of
amphibolite can also lead to the production of intermediate to acidic magmas (e.g.,
Beard and Lofgren, 1991; Rapp and Watson, 1995). The amphibolites of the Taihua
Group are characterized by low K content and low K,0/Na,O ratios (<0.5, Wang et al.,
2019), making it difficult to generate high-K,O rocks. (Beard and Lofgren, 1991;
Roberts and Clemens, 1993). Partial melting of amphibolite typically results in the
formation of peraluminous melts (e.g., Beard and Lofgren, 1991; Rapp and Watson,
1995), whereas the diorites in the NCC have low Al,O3; content with metaluminous
character (Fig. 5¢; weight average A/NCK values of 0.81). Additionally, the exg values
of the Taihua Group amphibolites at t=1780 Ma show a wide range from -6.7 to 0.4,

different from those of the diorites (Wang et al., 2019). Therefore, it seems unlikely

that the diorites formed by the partial melting of Taihua Group amphibolites.

Maﬁc rocks in the Xiong'er Group or the mafic dyke swarms were argued to be the

source of the diorites (Cui et al., 2011; Ma et al., 2023b; Peng et al., 2007). The mafic

dyke swarms and Xiong’er Group rocks possess a relatively large range of initial Sr
and Nd isotopic compositions (Fig. 7d), while the initial Nd isotopic compositions of
the diorites are relatively homogeneous (Fig. 7b). Whole-rock initial Nd ratios and the
zircon initial Hf isotope ratios of the Xiong’er Group rocks are also enriched (Fig. 7c).
The initial Pb isotopic compositions of the mafic dykes and Xiong’er Group rocks are
very radiogenic and variable (Fig. 8a, b), which is due to the high U and Th contents
of the protolith, indicating the presence of an enriched subcontinental lithospheric
mantle source (e.g., Hou et al., 2008; Peng et al., 2004, 2007; Wang et al., 2004, 2010;

Zhao et al., 2007). Based on the previous discussion, the geochemical characteristics
16
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of the diorites are more compatible with a crustal origin_and the isotopic compositions

of the diorites indicate that they were not derived from an enriched mantle source

Additionally, the Xiong’er volcanic rocks have lower Nb/Ta ratios and Nb contents

compared to the diorites (Fig. 10a). Nb and Ta share a similar valence state and

atomic radii, but they can undergo fractionation during the subduction process.
(Jochum et al., 1986; Shannon, 1976). The Xiong’er volcanic rocks, with higher and
positively related Ba/Th and Sr/Th ratios (Fig. 10a, b), likely originated from a source
influenced by early subduction components, whereas the diorites appear to be less

affected by early subduction-related materials. Therefore, jt seems likely that the

diorites were formed by the partial melting of the mafic protolith on top of an

( BRI Z: . These

MBI A Z: their sources might not
have been derived from the enriched
mantle.

(MR ERE: o

[ﬂﬂ"]lﬁﬂ"l R 2 could be

enriched subcontinental lithospheric mantle beneath the NCC,,

5.4 Tectonic setting

After the Paleoproterozoic collisional amalgamation, the NCC was intruded by

diverse magmatic rocks, which have been interpreted as products of continental arc

magmatism, post-collisional extension, or continental rift/mantle plume magmatism.

The volcanic rocks of the Xiong'er Group along the southern margin of the NCC are

dominated by andesites, exhibiting calc-alkaline characteristics, Nb-Ta-Ti anomalie

(Jia, 1987, He et al., 2009; Zhao et al., 2009). These signatures together with Nd

isotopic evidence for ancient crustal assimilation and multiphase volcanic activities,

support a continental arc environment for the formation of the Xiong'er Group (He

et al., 2009: Zhao et al.. 2009s).

The radially distributed mafic dike swarms, accompanied by A-type granite intrusions

and rift-related sedimentary sequences, are indicative of a continental rift setting (e.g.,
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Fan et al., 2024: Xu et al., 2008: Zhao et al., 2002: Zhao et al., 2002, 2007). The

Xiong'er Group is dominated by andesite and dacite-rhyolite with minor basaltic

andesite, which some researchers interpret as an atypical bimodal suite suggestive of a

continental rift setting (Zhao et al., 2002, 2007). Furthermore, the 1.80 to 1.75 Ga old

mafic dike swarms can be distributed in a radial or concentric pattern centered on the

Xiong’er Rift and extending northward (Peng et al., 2007). They shared geochemical

characteristics, such as high TiO, and MgO contents, enrichment in LREEs, Ba, and K,

and depletion in Nb-Ta are interpreted as evidence for lithospheric extension induced

by mantle plume upwelling (e.g., Peng et al., 2007, 2008; Hou et al., 2008).

The post-collisional extension model emphasizes that the late Paleoproterozoic

magmatism occurred during lithospheric delamination and possibly slab detachment

(e.g.., Wang et al.. 2004, 2008, 2014, 2023a). The mafic dikes are enriched in LILEs

and LREEs but depleted in HFSEs, and show negative eng(t) and epqt) values. This

suggests derivation from an enriched lithospheric mantle previously metasomatized

by subduction fluids (e.g., Hu et al., 2010; Wang et al., 2004, 2008, 2014) These dikes

are concentrated in the Trans-North China Orogen and nearby areas, consistent with

extensional fractures caused by rising asthenosphere (Wang et al., 2004, 2008, 2014).

Their geochemical features, lacking OIB or asthenospheric mantle affinities, do not

support a dominant mantle plume origin. (Wang et al., 2014).

Calk-alkaline diorites are, important intermediate rock that typically forms in island -

[ HIER A9 & Diorite

arcs, subduction zones, and continental collision orogenic belts along the convergent

plate boundaries. Island arc intermediate rocks. such as boninites and low MgO, high

Ni contents (Hickey et al., 1982; Rapp and Watson, 1995). whereas, continental arc ~

[ #HERe: T
RECET

Al Os, and Na,O/K»>O > 1 andesites are generally characterized by high MgQO. Cr, and )

intermediate rocks typically show high Al,O3 content with a wider range of 87Gr/80Sr
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and "®Nd/"“Nd isotope compositions, reflecting an obvious influence of continental
crust more complex and enriched source (Hawkesworth et al., 1979; Peacock et al.,

1994)._The Paleoproterozoic diorites in the NCC lack the compositional features of]

arc-related rocks, meanwhile, their trace element distributions differ from those of
island arc and continental arc intermediate rocks. For example, the, diorites do not
show_significant enrichment in Sr, Th, and U in the primitive mantle-normalized
diagram as arc-related rocks (Fig. 6a). These diorites also exhibit a negative Eu
anomaly in the REE diagram, which is different from the arc-related rocks (Fig. 6b).
Diorites in collisional orogenic belts have high MgO and K,O contents and
adakite-like characteristics with high Sr/Y and La/Yb ratios (Yang et al., 2015).

However, Paleoproterozoic diorites of the NCC do not show the typical arc-related

element and isotopic signatures, suggesting formation in a non-subduction

environment,

Diorites can also form during crustal extension (Asmerom et al., 1990; Liu et al.,
2024). The NCC was in a post-collisional extensional environment after the

amalgamation (e.g., Zhai, 2010), During this stage magmatism becomes more

complex (Bonin, 2004). Zircon is a very stable mineral and its trace elements offer

significant potential for distinguishing between different tectonic environments.

Zircon samples with La contents less than 1 ppm were selected for discussion to
ensure accurate information from zircon trace element contents without interference
from the inclusion of other accessory phases (Zou et al., 2019). All zircons from the
diorites plot within the continental area in the U/Yb versus Y diagram (Fig. 11a), and

most of them, fall into a rift-controlled tectonic environment in tectonic discrimination

diagrams (Fig. 11b, c; Carly et al., 2014).

Furthermore, HFSE elements, such as Zr, Nb, Ta, Hf, and Th, are important in
19
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tectonic discriminators, The distinctive Th content in arc magmas is primarily due to
its low solubility in subduction zone fluids and its contribution from sedimentary
components (e.g., Bailey and Ragnasdottir, 1994; Pearce and Peate, 1995).
Arc-related/orogenic magmas usually have less Nb than those in within-plate settings
(e.g., Pearce and Peate, 1995; Sun and McDonough, 1989). Nb in zircon is thought to
be incorporated through xenotime-type substitution (Schulz et al., 2006) and is
suggested to reflect the magma composition with minimal influence from magmatic
fractionation (Hoskin et al., 2000; Schulz et al., 2006). In the Nb/Hf versus Th/U and
Hf/Th versus Th/Nb diagrams, zircons from the Fudian and Gushicun diorites plot
both within or close to the arc-related/orogenic area(Fig. 11d, e). The Jiuganshan and
Muzhijie diorites plot both in the arc-related/orogenic and within-plate/anorogenic
areas (Fig. 11d, e). Whole-rock Ta/Yb and Th/Yb ratios of these diorites are uniform
(Fig. 11f), all falling within the overlapping area of the ACM (active continental
margins) and WPVZ (Within-Plate Volcanic Zone). This may indicate that the

post-collisional extension during this period proceeded continuously and

progressively into a rift evolution. Nevertheless, the diorites preserve a record of the

superimposition of representative components from multiple tectonic settings.,

After the ~1.85 Ga collisional event, the North China Craton entered a prolonged

post-collisional extensional stage. During this stage, magmatism was primarily

controlled by crustal thickening and remelting, leading to the widespread formation of

various crust-derived granites_(e.g., Geng et al., 2006; Zhao et al., 2008, 2018),

Subsequent slab breakoff and gravitational collapse of the thickened crust triggered

extension in the mid-upper crust and emplacement of felsic magmas (Deng et al.,

2016a; Wang et al., 2023a; Xu et al., 2024). At 1.78 Ga, further lithospheric thinning

induced upwelling of the asthenosphere, causing further partial melting of previously
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subduction-fluid-metasomatized lithospheric mantle (e.g., Peng et al.. 2007, 2008:

Wang et al., 2010, 2014; Zhao et al., 2002, 2007). Following this event, magmatic

activity in the region became dominated by A-type granites and alkaline rocks,

marking a transition to an anorogenic intracontinental extensional setting (e.g., Deng

et al., 2016b; Wang et al., 2024), The 1.78 Ga crust-derived diorites show transitional

features in their tectonic setting, retaining some remnant effects of the orogenic
magmatism while gradually evolving toward intraplate magmatism. It reflects the

ongoing extension of the North China Craton after its amalgamation.

6 Conclusions

The Jiguanshan diorite yields a zircon U-Pb age of ¢, 1.78 Ga. The intrusion displays

geochemical features in common with other diorite intrusions within the NCC, The

diorite emplaced, contemporaneous with the Xiong’er volcanic rocks and the mafic

dyke swarms, representing a significant period of magmatism_in the NCC..

The late Paleoproterozoic diorites_were produced by partial melting of a mafic

protolith, The Sr-Nd-Pb-Hf isotopic characteristics indicate that the source was not the
same as that for the Xiong’er volcanic rocks or mafic dyke swarms. Instead, they are

more likely derived from the lower crust of the NCC.

The formation of Paleoproterozoic diorites in the NCC is not related to arc

magmatism, Instead, it is associated with a rift setting. The formation of diorite
records the transition of crustal origin rocks from orogenic-related magmatism to
intraplate magmatism during the post-collision extensional stage. It reflects the

ongoing extension of the North China Craton after its amalgamation.
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1184

1185 Figure 1 (a) Tectonic sketch of the North China Craton (after Zhao et al., 2001); (b) Geological map of

1186 the southern margin of the North China Craton (after Diwu et al., 2014; diorites from Cui et al.,
1187 2011; Ma et al 2023a, b; Wang et al., 2016; Zhao et al., 2004); (c¢) Geological map of the Jiguanshan
1188 diorite (after BGMRH, 1994)

1189

1190 Figure 2 (a-b) Field photographs and representative hand specimens of the Jiguanshan diorite; (c-f)
1191 Microphotographs under plane-polarized light of the Jiguanshan diorite. Mineral abbreviations:
1192 Afs, alkali feldspar; Bi, biotite; Cpx, Clinopyroxene; Pl, plagioclase; Qz, quartz
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Figure 3 Cathodoluminescence (CL) images of representative zircon grains from the Jiguanshan
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1238  Figure 4 (a-d) Zircon U-Pb Concordia diagrams of the Jiguanshan diorite
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1240  Figure 5 Plots of major elements for the diorites: (a) TAS diagram (after Le Bas et al., 1986); (b)

1241 K,O content versus SiO, content (after Peccerillo and Taylor, 1976); (c) A/NK versus A/CNK
1242 values (after Maniar and Piccoli, 1989) (d) Mg" value versus SiO, content (wt. %)
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Figure 6 Primitive-mantle normalized trace element spider diagrams and chondrite-normalized

REE patterns for the diorites. Normalization values from Sun and McDonough (1989);

Diorites in Shanxi region from Peng et al. (2007), diorites in the southern margin of the NCC

from Cui et al. (2011), Ma et al. (2023a, b), Wang et al. (2016), and Zhao et al. (2004). Average

trace element compositions of intermediate rocks in the Japan and Andes arc are from Pan et

al. (2017).
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Xiong’er Group (Hf isotope composition from Wang et al., 2010; initial Sr isotope

composition and initial eyq value from He et al., 2008, 2010; Peng et al., 2008; Wang et al.,

2010; Zhao et al., 2002); mafic dyke swarms (initial Sr isotope composition and initial exg

value from Hu et al., 2010; Peng et al., 2007; Wang et al., 2004)
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1262  Figure 9 (a) Cr (ppm) content versus MgO content (wt. %); (b) CaO (wt. %) content versus SiO,

1263 content (wt. %); (c) AlL,O; (wt. %) content versus SiO, content (wt. %); (d) Na,O (wt. %)
1264 content versus SiO, content (wt. %); (e) K,O (wt. %) content versus SiO; content (wt. %); (f)
1265 TiO, (wt. %) content versus SiO, content (wt. %); (g) Eu/Eu*value versus Sr content (ppm);
1266 (h) La/YDb value versus La content (ppm); (i) Ztr/Sm value versus Zr content (ppm)
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1268  Figure 10 (a) Nb/Ta versus Nb content (ppm); (b) Ba/Th value versus St/Th values; Data for

1269 Xiong’er Group from He et al. (2008, 2010), Wang et al. (2010), Zhao et al. (2002)
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1271  Figure 11 (a) Zircon trace element U/Yb value versus Y (ppm) (after Grimes et al., 2007); (b)
1272 Zircon trace element Gd/Yb value versus Yb (ppm) (after Carley et al., 2014); (c) Zircon
1273 trace element Gd/Yb value versus Sm (ppm) (after Carley et al., 2014); (d) Zircon trace
1274 element Nb/Hf value versus Th/U value (after Hawkesworth and Kemp, 2006); (e) Zircon
1275 trace element Hf/Th value versus Th/Nb value (after Yang et al., 2012); (f) Whole-rock trace
1276 element Th/YD value versus Ta/Yb value (after Pearce, 1983; Gorton and Schandl, 2000);
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1278  Tables

1279  Table 1 Major (wt. %) and trace element contents (ppm) of the Jiguanshan diorite

Sample No. 7ZY2201 ZY2202 ZY2203 ZY2204 ZY2205 ZY2206 ZY2207
(Wt.%)
SiO, 58.18 59.44 59.13 58.24 56.26 56.01 55.57
TiO, 1.87 1.37 1.36 1.82 2.01 1.87 2.05
AL Os 14.38 14.37 14.24 14.11 14.18 15.00 14.41
TFe,04 10.38 9.04 9.17 10.00 10.35 10.18 10.50
MnO 0.15 0.14 0.14 0.14 0.17 0.14 0.15
MgO 2.73 2.81 2.96 2.59 2.70 2.92 2.94
CaO 5.85 5.29 5.33 5.60 5.61 6.06 5.81
Na,O 2.76 2.85 2.87 2.79 2.56 2.60 2.56
K,0 2.98 3.15 3.16 3.11 3.21 2.97 3.01
P,0Os 0.71 0.46 0.45 0.65 0.73 0.68 0.76
LOI 0.48 1.31 0.67 0.36 1.53 1.60 1.67
Total 100.47 100.23 99.48 99.41 99.31 100.03 99.43
(ppm)
Li 11.2 19.8 19.9 14.8 18.6 20.7 18.2
Be 2.66 2.80 2.76 2.94 3.06 2.70 2.97
Sc 22.7 20.1 20.4 233 243 24.0 23.8
A% 163 141 147 168 179 165 164
Cr 72.1 91.3 101.3 69.5 68.6 78.6 83.5
Ni 21.3 22.3 24.0 20.7 19.2 20.2 21.6
Cu 20.8 19.8 19.9 20.9 27.0 22.2 23.3
Zn 131 128 122 133 148 139 141
Ga 21.9 21.9 21.8 229 233 23.8 22.7
Rb 80.3 95.2 97.8 88.4 88.0 89.5 88.9
Sr 412 374 384 406 403 542 490
Y 47.5 44.4 43.8 48.4 493 44.8 46.7
Zr 402 478 474 435 428 400 407
Nb 20.2 21.2 21.0 21.2 22.7 20.3 21.8
Cs 0.60 0.77 0.74 0.95 2.98 3.63 4.44
Ba 1543 1515 1504 1544 1814 1714 1737
La 72.2 79.0 79.5 75.0 77.3 71.7 75.2
Ce 149 161 161 154 163 150 159
Pr 17.6 18.3 18.1 18.2 194 18.0 18.9
Nd 72.3 71.2 70.9 73.2 80.0 72.9 77.1
Sm 12.7 12.1 12.0 12.7 14.0 12.8 13.4
Eu 2.63 2.21 2.18 2.59 2.93 2.78 2.87
Gd 12.1 11.2 11.2 12.1 13.0 11.7 12.5
Tb 1.53 1.39 1.40 1.51 1.63 1.47 1.56
Dy 8.99 8.32 8.11 8.92 9.50 8.53 9.00
Ho 1.67 1.54 1.53 1.67 1.75 1.53 1.65
Er 4.97 4.56 4.54 4.95 5.09 4.55 4.87
Tm 0.62 0.55 0.55 0.60 0.63 0.55 0.58
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1281
1282

Yb
Lu
Hf
Ta
Pb
Th
U

K,0/Na,O
K,0+Na,0 (Wt.%)
Mg#

A/CNK

A/NK

2REE

Eu/Eu*

(La/Yb)y

4.26
0.61
7.97
1.03
16.4
4.28
0.70

1.08
5.74
34.5
0.78
1.85
361.5
0.64
12.2

3.79
0.55
9.09
0.98
21.2
6.43
0.98

1.11
6.00
383
0.81
1.77
375.8
0.57
15.0

3.84
0.56
9.15
0.99
18.0
6.71
0.88

1.10
6.03
39.2
0.80
1.75
375.1
0.57
14.8

4.18
0.60
8.20
1.01
16.3
4.27
0.71

1.11
5.90
34.1
0.78
1.77
370.4
0.63
12.9

433
0.63
8.46
1.10
18.9
3.87
0.75

1.25
5.77
343
0.79
1.84
393.2
0.65
12.8

3.82
0.55
7.59
0.96
15.2
3.22
0.61

1.14
5.57
36.5
0.81
2.00
361.2
0.68
13.5

3.99
0.58
7.98
1.07
14.2
3.55
0.68

1.18
5.57
359
0.80
1.93
381.3
0.66
13.5

Mg"=(MgO+FeO0)/MgOx 100

Eu/Eu*=2EuN/(SmN+GdN); (La/Yb)y=chondrite-normalized La/YDb ratio
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Table 2 Whole-rock Sr isotopic compositions of the late Paleoproterozoic diorites in the NCC

Sample Age Rb  Sr Rb/Sr “Rb/™Sr Ysr/*Ssr +2SE ¥'St/*°Sr Error sl()):llrt?e
() PP PP o

Jiguanshan diorite

Zy2201 1780 803 412 020 05648 071931 0000010 070485 )

Zy2202 1780 952 374 025 07371 072471 0000012 070584 o0

Zy2203 1780 978 384 025 07377 072434 0000011 070546 o0

ZY2204 1780 884 406 022 06307 072111 0000011 0.70496 %gg Sf:ésy

ZY2205 1780 880 403 022  0.6334 071856 0.000011 0.70235 %gg

ZY2206 1780 89.5 542 0.7 04780 071518 0.000011 0.70294 %gg

ZY2207 1780 889 490 0.8 05252 071542 0.000013 0.70198 %Sg

Wafang diorote

WEBYT i780 1070 389 028 07969 072131 0000013 070091 907

WEBROT 1980 1000 400 027 07895 072144 0000014 070123 (07

WEDOT 1780 840 411 020 05921 072024 0000016 070508 00 M

WF1307 000 (2016

h 1780 1130 343 033 09548 072479 0000016 070035

}ng13o7 1780 1100 373 029 08545 072236 0.000014 0.70048 ?‘?‘?

Shizhaigou diorite

Ln-1 1780 1037 272 038 11040 0.72874 0.000012  0.70048 ?'fg

Ln-2 1780 1015 322 031 09125 072868 0000015 070532 3

Ln-3 1780 1364 200 068 19758 072509 000001 0.67452 o0 Céioitla;l'

Ln-4 1780 1166 295 040  1.1479 073149 0.000015 0.70210 ?gg

Ln-5 1780 1125 300 038 10885 072997 0.000014 070211 0D

E-W Group dyke

‘1)2SX°° 1780 1548 470 033 09542 072970 0.000014  0.70528 ?gg

225X00 1780 812 450 0.18 05231 0.71858 0.000014 0.70519 %'%) Pegfet

03LFOI 1780 744 449 017 04801 071619 0.000013 0.70390 %gg (2007)

03FSO4 1780 1318 229 058  1.6748 074399 0.000012 0.70112  0.00
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1285

1286
1287

1288

1289

1290

1291
1292

220

03FS07 1780 106.0 539 0.20 0.5699 0.71852 0.000013  0.70393 %%?
(n=8,
Weight mean value 0.00 calculate
0.70519 031 d by
IsoplotR)

*7St/*sr) = (F7Sr/*°Sr) +(*'Rb /*°Sr), X (€ - 1)
As7ro = 1.42x107 /2!

Error of initial ratio is calculated from the measurement error of the isotope ratio, the estimated

concentration error and the age error. The decay constant is considered to be a fixed value.
. - 87q../86
Osr(p) 18 mean-square deviation of (*'St/™ Sr),

ORp 1S mean-square deviation of (87Rb/868r) s

ot is mean-square deviation of age

87
865‘7’

O-Sr(t) = O-Szr + O-f%b (eﬂt _ 1)2 + of(xle“(

))?
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1293  Table 3 Whole-rock Nd isotopic compositions of the late Paleoproterozoic diorites in the NCC

Sample Age Nd Sm  "Sm/*Nd '""Nd/"**Nd Error INA/MNA(L)
(Ma)  (ppm)  (ppm) (2s)

Jiguanshan diorite

7Y2201 1780 72.3 12.7 0.1063 0.511238 0.000007 0.509994
7Y2202 1780 71.2 12.1 0.1029 0.511129 0.000008 0.509924
7Y?2203 1780 70.9 12.0 0.1022 0.511131 0.000005 0.509934
7Y?2204 1780 73.2 12.7 0.1049 0.511240 0.000007 0.510011
7Y?2205 1780 80.0 14.0 0.1058 0.511329 0.000007 0.510090
7Y?2206 1780 72.9 12.8 0.1058 0.511317 0.000005 0.510078
7Y2207 1780 77.1 13.4 0.1054 0.511320 0.000006 0.510086

E-W Group dyke

02SX001 1780 113 20.3 0.1084 0.511287 0.000009 0.510018
02SX007 1780 62.6 11.3 0.1093 0.511285 0.000010 0.510005
03LF01 1780  45.1 8.36 0.1120 0.511358 0.000017 0.510047
03FS04 1780 102 17.5 0.1039 0.511270 0.000010 0.510053
03FS07 1780 62.7 11.1 0.1068 0.511297 0.000013 0.510047

Shizhaigou diorite

Ln-1 1780 69.0 12.3 0.1075 0.511280 0.000012 0.510021
Ln-2 1780 66.4 11.7 0.1065 0.511270 0.000011 0.510023
Ln-3 1780 61.9 11.2 0.1090 0.511280 0.000011 0.510003
Ln-4 1780 71.1 12.6 0.1072 0.511260 0.000011 0.510005
Ln-5 1780 69.4 12.3 0.1072 0.511260 0.000012 0.510005
Wafang diorote

;VFBW_ 1780 78.4 13.7 0.1056 0.511169 0.000008 0.509953
XVFBO% 1780 78.5 14.1 0.1086 0.511215 0.000008 0.509965
;.NFBO% 1780 75.9 13.7 0.1091 0.511192 0.000008 0.509936
\8VF1307_ 1780 77.6 134 0.1044 0.511039 0.000007 0.509837
;VF1307_ 1780 77.5 13.9 0.1084 0.511193 0.000005 0.509945

Gushicun diorite

20XR3-1 1780  58.0 10.9 0.1134 0.511327 0.000004 0.509999
20XR8-3 1780  63.3 11.7 0.1118 0.511334 0.000006 0.510025
20XRé-4 1780  59.1 10.9 0.1118 0.511341 0.000006 0.510032
20XRs-5 1780  53.1 9.9 0.1122 0.511354 0.000006 0.510041
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1295

The Muzhijie
diorites

200Pt2-1 1780
208Pt2-3 1780
206Pt2-5 1780
206Pt2-7 1780
206Pt2-9 1780
200Pt2-11 1780
206Pt2-13 1780
206Pt2-16 1780

Fudian diorite

%OXRSC- 1780
gOXRSC- 1780
§0XRSC- 1780
ZOXRSC- 1780
§0XRSC- 1780
éOXRSC- 1780
éOXRSC— 1780
SOXRSC- 1780

Weight mean value

63.5
64.2
66.4
72.1
54.2
64.5
62.9
67.9

65.8

67.1

69.5

67.5

70.1

68.9

71.7

76.6

11.5
11.7
12.3
13.1
9.6

11.4
11.2
123

12.1

12.3

12.8

12.5

12.9

12.7

12.9

13.9

0.1090
0.1100
0.1122
0.1101
0.1076
0.1073
0.1076
0.1098

0.1110

0.1111

0.1113

0.1117

0.1111

0.1112

0.1089

0.1096

0.511297
0.511300
0.511295
0.511297
0.511181
0.511199
0.511196
0.511270

0.511309

0.511315

0.511314

0.511311

0.511311

0.511324

0.511331

0.511325

0.000004
0.000004
0.000007
0.000008
0.000006
0.000006
0.000008
0.000007

0.000006

0.000006

0.000004

0.000007

0.000006

0.000005

0.000006

0.000005

0.510021
0.510012
0.509982
0.510007
0.509922
0.509943
0.509937
0.509984

0.510009

0.510014

0.510011

0.510002

0.510010

0.510022

0.510056

0.510042
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Error ena(?) Error Tome Data source

(abs.) (eNd) (Ga)
0.000063 -6.69 1.24 2.83
0.000061 -8.04 1.20 2.94
0.000060 -7.85 1.19 2.93
0.000062 -6.35 1.22 2.80 This study
0.000063 -4.80 1.23 2.68
0.000063 -5.03 1.23 2.70
0.000062 -4.88 1.22 2.68
0.000065 -6.21 1.27 2.79
0.000065 -6.47 1.28 2.81
0.000068 -5.64 1.34 2.75 Peng et al. (2007)
0.000062 -5.53 1.22 2.74
0.000064 -5.65 1.26 2.75
0.000065 -6.15 1.26 2.79
0.000064 -6.10 1.25 2.78
0.000065 -6.50 1.28 2.82 Cuietal. (2011)
0.000064 -6.46 1.26 2.81
0.000064 -6.46 1.26 2.81
0.000062 -7.90 1.23 2.93
0.000063 -7.67 1.26 291
0.000064 -8.24 1.27 2.96 Wang et al. (2016)
0.000061 -10.2 1.21 3.11
0.000063 -8.07 1.26 2.94
0.000067 -6.58 1.31 2.82
0.000066 -6.08 1.30 2.78

Ma et al. (2023a)

0.000066 -5.94 1.30 2.77
0.000066 -5.77 1.30 2.76
0.000064 -6.15 1.26 2.79 Ma et al. (2023b)
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1297

1298

1299

1300

1301

1302

1303

1304
1305

1306

1307

1308

1309
1310

0.000065 -6.33 1.27 2.80

0.000067 -6.92 1.30 2.85
0.000065 -6.42 1.28 2.81
0.000064 -8.09 1.25 2.95
0.000064 -7.69 1.25 291
0.000064 -7.80 1.25 2.92
0.000065 -6.87 1.28 2.85
0.000066 -6.39 1.29 2.81
0.000066 -6.30 1.29 2.80
0.000066 -6.35 1.29 2.80
0.000066 -6.52 1.30 2.82
Ma et al. (2023b)
0.000066 -6.37 1.29 2.81
0.000066 -6.14 1.29 2.79
0.000065 -5.46 1.26 2.75
0.000065 -5.74 1.27 2.75
-6.51 0.20 (n =41, calculated by IsoplotR)

(143Nd/144Nd)5 _ (143Nd/144Nd)0 +(147Sm/144Nd)5 % (eh -1

ena(®) = [("Nd/™*Nd)/("*Nd/**Nd)cpurg -11X 10000

Tove=1/AX Lo {1+[("“*Nd/"“**Nd)py -(“*Nd/**Nd)s+(("'Sm/**Nd)s-("'Sm/ *Nd) ) X (€-1)]
ena(®) = [(“*Nd/**Nd)/( "*Nd/"*Nd)cure -11X 10000/ Sm/ **Nd)pp -(**'Sm/ **Nd) o)}
Marsm = 0.654x107"/a™!

"Nd/*Nd)py=0.51315

YSm/ **Nd)py=0.2137

S m/ *Nd)ec=0.12

Error of initial ratio is calculated from the measurement error of the isotope ratio, the estimated

concentration error and the age error. The decay constant is considered to be a fixed value.
ONd(y 1S mean-square deviation of (143Nd/ 144Nd)1

Osm is mean-square deviation of (‘*Sm/"**Nd),

ot is mean-square deviation of age

147
Ona(r) = |Ong + Oam (€t —1)2 + 07 (ﬂe“(ﬁ))z
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Table 4 Whole-rock Pb isotopic compositions of the Jiguanshan diorite

Spon.no U Th Pb 296pp/22*pp +2SE 27pb/2pPh +2SE
(ppm) (ppm) (ppm)
7Y2201 0.70 428 16.38 15.867 0.0005 15.189 0.0005
7Y2202 0.98 6.43 21.20 16.167 0.0008 15.243 0.0009
7Y2203 0.88 6.71 18.03 15.882 0.0006 15.182 0.0006
ZY2204 0.71 427 16.29 16.097 0.0010 15.225 0.0009
7Y2205 0.75 3.87 18.90 15.832 0.0007 15.179 0.0006
ZY2206 0.61 3.22 15.22 15914 0.0010 15.170 0.0010
Y2207 0.68 3.55 14.22 16.036 0.0008 15.199 0.0007
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1315

W8pp204py  19QE  206pp2¥pp  207pp2Mpp,  208pp,204pp,  238204py  232py 204py 232y 238
initial initial initial n ®
36.502 0.0014 15.063 15.103 35.027 2.6 16.0 6.3
37.126 0.0022 15.295 15.150 35.392 2.8 18.8 6.8
36.494 0.0013 14.965 15.084 34.398 2.9 22.8 7.8
37.324 0.0023 15.271 15.137 35.825 2.6 16.3 6.2
36.046 0.0016 15.095 15.100 34.901 2.3 12.4 5.3
36.124 0.0024 15.164 15.090 34.939 2.4 12.9 5.4
36.338 0.0016 15.136 15.103 34.931 2.9 15.3 5.4

Initial Pb isotopic ratios are calculated back to 1780 Ma.
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1316  Supplementary material/Appendix:

1317  Table S1 Zircon U-Pb isotopic data for the Jiguanshan diorite obtained by the LA-ICP-MS

1318 technique

1319  Table S2 Zircon trace element data for the Jiguanshan diorite obtained by the LA-ICP-MS

1320 technique

1321

1322
1323
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