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Abstract. Climate change impacts forest functioning and dynamics, but large uncertainties remain regarding the 

interactions between species composition, demographic processes and environmental drivers. While the effects of 

changing climates on individual plant processes are well studied, few tools dynamically integrate them, which 

precludes accurate projections and recommendations for long-term sustainable forest management. Forest gap 

models present a balance between complexity and generality and are widely used in predictive forest ecology, but 25 

their lack of explicit representation of some of the processes most sensitive to climate changes, like plant 

phenology and water use, puts into question the relevance of their predictions. Therefore, integrating trait- and 

process-based representations of climate-sensitive processes is key to improving predictions of forest dynamics 

under climate change. 

 30 

In this study, we describe the PHOREAU model, a new semi-empirical forest dynamic model resulting from the 

coupling of a gap model (FORCEEPS), with two process-based models: a phenology-based species distribution 

model (PHENOFIT) and a plant hydraulics model (SurEAU), each parametrized for the main European species. 

The performance of the resulting PHOREAU model was then evaluated over many processes, metrics and time-

scales, from the ecophysiology of individuals to the biogeography of species. 35 

 

PHOREAU reliably predicted fine hydraulic processes at both the forest and stand scale for a variety of species 

and forest types. This, alongside an improved capacity to predict stand leaf areas from inventories, resulted in 

better annual growth compared to ForCEEPS, and a strong ability to predict potential community compositions.  

 40 

By integrating recent advancements in plant hydraulic, phenology, and competition for light and water into a 

dynamic, individual-based framework, the PHOREAU model, developed on the Capsis platform, can be used to 
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understand complex emergent properties and trade-offs linked to diversity-effects effects under extreme climatic 

events, with implications for sustainable forest management strategies. 

 45 

1 Introduction 
 
Forests cover approximately 30% of the Earth's land surface, hosting the majority of terrestrial biodiversity. They 

are crucial carbon sinks (Pan et al., 2011), play a vital role in climate regulation (Chapin III et al., 2008), and 

provide essential ecosystem services to humans (Nadrowski et al., 2010). However, climate change poses 50 

significant risks to forests, including disruptions to forest dynamics (McDowell et al., 2020a), as increasingly 

extreme environmental conditions have profound effects on forest structure and composition as well as on forest 

functioning, including massive mortality events (Allen et al., 2010). Such impacts are assessed through 

experimental (Decarsin et al., 2024; Gavinet et al., 2019a) and empirical (McDowell et al., 2020a) studies. Yet, 

although such approaches are key to understanding and anticipating forests’ response to climate change, they 55 

cannot cover the entire spectrum of environmental contexts, species compositions, and forest history. By filling 

those gaps in knowledge, forest models represent key complementary tools to effectively investigate the combined 

impacts of species composition and climate change on forest dynamics and functioning (Bugmann, 2001; 

Maréchaux et al., 2021). 

  60 

Yet the robustness of such models — most often calibrated on historical data — is often questioned when used to 

make predictions for the uncertain transition period of the coming decades (Parmesan, Morecroft and Trisurat, 

2022; Van der Meersch et al., 2025). Focusing on Europe, climate projections generally describe drier conditions, 

with might lead to a shift from light to soil water as the main limiting resource over which individual trees compete 

(McDowell et al., 2020a). In this context, the accuracy of forest projections might depend in large part on whether 65 

models are able to account for causal relationships between water stress and stand composition (Brodribb et al., 

2020; McDowell et al., 2022; Van der Meersch et al., 2025). For example, instead of postulating general a priori 

species complementarity effects in resource use, process-based modelling must strive to capture how individual 

trees harness and compete for light and water in natura. 

 70 

Furthermore, depicting and understanding the role of diversity in ecosystem functioning has been a key focus of 

ecological studies for at least two decades (Hooper et al., 2012; Kinzig et al., 2002; van der Plas, 2019). In forest 

ecosystems, the importance of the role of diversity — both structural and compositional — on productivity and 

wood biomass has been firmly established by numerous studies over a wide range of conditions and methods 

(Liang et al., 2016; Morin, 2011; Nadrowski et al., 2010; Paquette and Messier, 2011; Ratcliffe et al., 2017). In 75 

addition, there is some evidence that tree diversity could modulate the resistance and recovery of forest 

productivity under stress or disturbance (Ammer, 2019; Blondeel et al., 2024; Jourdan et al., 2019; Schnabel et al., 

2021), although the level of consensus varies with the type of stress or disturbance considered (Decarsin et al., 

2024; Messier et al., 2022). Yet despite these patterns, there remains a scarcity of data regarding the actual 

differences in functioning of monospecific and mixed forests, and their relative response to changing climate 80 

conditions. In fact, while the diversity-productivity relationship is well evidenced — a global meta-analysis has 

shown mixed-species stands were on average 25% more productive than their respective species’ monocultures 

(Zhang, Chen and Reich, 2012) —, data regarding the link between species diversity and the ability to withstand 
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extreme climatic events is more scarce and contradictory. Where some studies have linked forest diversity to a 

lessened sensitivity of tree growth to drought (Lebourgeois et al., 2013; Anderegg et al., 2018; Serrano-León et 85 

al., 2024), others have found this relationship to be strongly context-dependent (Grossiord et al., 2014; Forrester 

et al., 2016; Jactel et al., 2017), and restricted to dry environments. Moreover, with the rapid shift in climatic 

conditions, it would be a mistake to assume that the same patterns of diversity-productivity and diversity-resilience 

relationships used to support the stress-gradient hypothesis (Bertness and Callaway, 1994) will apply in the next 

decades to newly drought-prone sites, where water resource limitation has not had the chance to shape the co-90 

evolution of the local species over the past millennia. In fact, the same structural and specific complementarities 

that are currently responsible for increasing the productivity of existing mixed temperate forests through a better 

usage of the light resource could become a source of vulnerability, as competition for water intensifies 

proportionally to the density and foliage areas of the stands (Decarsin et al., 2024; Haberstroh and Werner, 2022; 

Jucker et al., 2014; Moreno et al., 2024). 95 

 

For these reasons, and because experimenting composition effects in mature forests is especially difficult, the 

evaluation of diversity effects in forest ecosystems has also increasingly relied on forest models, particularly gap 

models based on processes (Bohn and Huth, 2017; Jonard et al., 2020; Maréchaux and Chave, 2017; Morin et al., 

2021). Indeed, the prospective power of such models make them key tools in testing various hypotheses on the 100 

diversity-functioning link (De Cáceres et al., 2023a; Maréchaux et al., 2021), but also in evaluating forest 

management practices that incorporate species mixing (Jourdan et al., 2021) and more generally in simulating 

forest-response to the long-term impacts of climate change (Reyer, 2015). 

 

To improve our ability to forecast the impact of climate change on forests and to better test adaptation solutions 105 

related to composition and management, we have thus identified, through a review of the available literature and 

consistently with recent studies (Bugmann and Seidl, 2022), two main weaknesses common in forest gap models: 

their modelling of regeneration (Price et al., 2001), and of tree mortality (Keane et al., 2001). These shortcomings 

can respectively be traced to a lack of explicit representation of phenological processes on the one hand, and 

hydraulic processes on the other. 110 

 

In fact, there is a lack of knowledge regarding the effects of species mixing on forest resistance and resilience to 

drought, although trait-data describing the hydraulic functioning of tree species has been steadily accumulating in 

the last years. A great variety of water-stress adaptation and drought response strategies among species have been 

identified (Choat et al., 2018; Martin-StPaul et al., 2017): these include traits linked to the allocation between 115 

transpiring and conducting surfaces, stomatal control and conductance (Johnson et al., 2012), water storage, root-

to-shoot ratio, specific leaf area, safety margins (Martin-StPaul, Delzon and Cochard, 2017), and rooting depths 

(del Castillo et al., 2016). These traits and their variability ultimately account for many of the plant-to-plant 

interactions responsible for water-competition reduction and facilitation (De Cáceres et al., 2021; Moreno-de-Las-

Heras et al., 2023; Moreno et al., 2024; Mas et al., 2024). However, understanding their net impact in existing 120 

forests is complicated by environmental and structural variability among stands, and more generally by the fact 

that the most common available indicators — growth and mortality — integrate over time many processes that are 

difficult to unravel. Therefore, although the dynamic and integrative effect of species-mixing on medium-term 
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drought-resilience most directly concerns forest management strategies elaborated today, it is difficult to formulate 

a priori recommendations. Decoupling the effects of hydraulic trait diversity from forest structure (foliage area, 125 

tree density) involves significant methodological difficulties (Forrester and Pretzsch, 2015), and is further 

complicated by the feedbacks between traits and stand structure (Guillemot and Martin-StPaul, 2024), as trees 

have been shown to adapt hydraulic to the forest structure (Limousin et al., 2012, 2022; Martin-StPaul et al., 2013; 

Moreno et al., 2024).  

 130 

Furthermore, even disregarding species diversity, the relationship between forest structure, density and 

productivity is itself poorly understood: there is no consensus on the link between tree-size heterogeneity and 

productivity (Bourdier et al., 2016; Dănescu et al., 2016; Pretzsch and Biber, 2010), and while stand density has 

been statically correlated with increased growth (Forrester, 2014; Reineke, 1933), it is the overall dynamic 

interactions between these factors that must be understood (Morin et al., 2025). The prohibitive cost of testing all 135 

the factors affecting forest functioning (species diversity, stand structure and density, response to climate and soil 

conditions, effect of management…) in experimental or observational studies further justifies the use of forest 

ecosystem models (Pretzsch et al., 2017), which are able to replicate in silico the complex plant-to-plant 

interactions that regulate competition for above- and belowground resources, evaluate potential facilitation and 

competition reduction processes, and integrate them over time in stand structure dynamics that account for trade-140 

offs between drought-resistance and productivity. 

 

Recent gap models (Maréchaux and Chave, 2017; Morin et al., 2021) by explicitly modelling crown sizes and 

species shade tolerances, have focused on capturing the processes through which canopy packing and spatial niche 

partitioning can emerge. However, space is not only the dimension through which plant species partition resources 145 

– time is also an important vector of asymmetry through which different species can coexist in by exploiting 

different niches (Gotelli and Graves, 1996). Relative shifts of even a few days in leaf phenology – either through 

earlier budding or later senescence – have been shown to have major impacts on plant growth, by allowing 

otherwise shaded understory plants to receive full sunlight (Jolly, Nemani and Running, 2004). As warming 

climate conditions advances the phenology of most species, increasing productivity (Park et al., 2016) at the 150 

expense of additional vulnerability to spring frosts (Lopez et al., 2008), accurately integrating phenological 

responses of individual species is an important next step in improving the ability of gap models to represent 

competition for light.  

 

In addition, phenological processes (including seed production, leaf dormancy and resistance to frost) have been 155 

shown to be major factors in determining species distribution (Chuine, 2010). Indeed, while many studies highlight 

the role of species diversity in forest functioning, it is important not to lose sight of the fact that the presence of a 

species in a given forest is itself the result of a complex historical process conditioned both by site conditions and 

species coexistence mechanisms. By directly integrating trait-based phenology, gap models can therefore more 

accurately capture this dynamic by making species diversity an emerging factor of the modelling framework.  160 

 

Process-based forest models like gap models — originally inspired by the pioneering JABOWA model (Botkin et 

al., 1972) — are part of a broader class of vegetation demography models (VDMs) that explicitly simulate the 
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birth, growth, and death of trees within forest stands (Bugmann and Seidl, 2022; Fisher et al., 2018; Scheiter et al., 

2013). These models aim to bridge physiological processes at the plant scale with ecosystem and land surface 165 

dynamics, offering a detailed, mechanistic representation of vegetation dynamics under changing environmental 

conditions. VDMs have been increasingly used in Earth system modelling because they allow for the exploration 

of how shifts in species composition, resource competition, and trait diversity influence ecosystem resilience and 

carbon balance (Fisher et al., 2015). However, demographic processes such as tree mortality and regeneration — 

long recognized as critical drivers of ecosystem resilience, biogeochemistry, and post-disturbance recovery (Seidl 170 

and Turner, 2022) — remain underrepresented in many models whose development has primarily been focused 

on growth (Bugmann and Seidl, 2022). As climate change leads to no-analog environmental conditions (Williams 

and Jackson, 2007) the robustness of model projections will depend largely on how well these demographic 

responses are captured, particularly in relation to competition, drought, and disturbance. 

 175 

Here we introduce PHOREAU, a new process-based forest gap model that extends the capabilities of classical 

models by incorporating key demographic processes with fine-grained physiological realism. Developed within 

Capsis (Dufour-Kowalski et al., 2012), a modular software platform designed to simulate the growth and 

management of forest stands, PHOREAU integrates and builds upon three well-established models — ForCEEPS, 

PHENOFIT, and SurEau — to simulate forest dynamics under changing climate conditions. In particular, the 180 

model extends the scope of classic gap models by including a detailed representation of plant water use and 

competition for the water resource as well as a detailed representation of plant phenology and its impact on 

reproduction and frost leaf damage. The PHOREAU model thus presents a coupling between recent advances in 

the process-based modelling of plant water relations under conditions of extreme drought (Cochard et al., 2021a; 

Ruffault et al., 2022) with state-of-the art phenology (Chuine and Beaubien, 2001) and light competition (Morin 185 

et al., 2021) models, in an individual-based gap-model capable of simulating most types of forest structures (Morin 

et al., 2025) and forest management (Jourdan et al., 2021). The validity of this approach is underpinned by its 

reliance on species-specific hydraulic, allometric and phenological traits, grounded in decades of experimental 

research (Cochard et al., 2021a; Kattge et al., 2020; Leinonen, 1996). 

 190 

The PHOREAU model has been designed to shed light on some of the many pending issues regarding the effects 

of species diversity on forest functioning, such as the impact of extreme droughts (Piedallu et al., 2023) or the role 

of complementarity in leaf phenology on growth in mixed stands (Morin, 2011). More generally, the model offers 

the opportunity to tackle issues ranging from the physiology of individuals to the biogeography of species. 

Therefore, our multi-stage validation protocol, presented here, involves daily hydraulic processes, yearly 195 

productivity, pluri-annual mortality, and long-term species composition. 
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2 Presentation of the model 
 
The PHOREAU model builds on three process-based models, which have been presented in previous publications. 200 

For the sake of clarity, we have chosen to summarize only the main processes of each model, and to focus on the 

integration methodology and the new processes allowed by the coupling. These notably include detailed 

representations of competition for light and water, with multi-layered representations of both tree canopies (Fig. 

W1) and rooting systems (Fig. W2) disaggregated at respectively daily and hourly time-steps, with the resulting 

aggregated shade and drought stress factors of individual trees being integrated in the yearly regeneration, growth 205 

and mortality equations presented in the following section. Refer to Fig. 1 for a schematic representation of the 

PHOREAU model, to Fig. 3 for a more detailed breakdown of the coupling between the ForCEEPS, PHENOFIT 

and SurEau models which constitute PHOREAU, and to table Z1 for a summary of the main processes’ time steps 

and models of origin. 

 210 

 

 
  

Figure 1 | Schematic representation of the PHOREAU model. The principle of the three main demographic 
processes (growth, mortality, regeneration) and competition for light are inherited from the ForCEEPS forest 
dynamics model. Tree hydraulics and competition for water and tree foliar phenology come from the 
coupling with the SurEau and PHENOFIT models, respectively. 
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2.1 The forest community gap-model  
 215 

2.1.1 Core demography equations  
 
In PHOREAU, forest dynamic processes (growth, mortality and recruitment) retain the overall structure of those 

at the core of the ForCEEPS model (Morin et al., 2021). ForCEEPS (Forest Community Ecology and Ecosystem 

Processes) is a gap model that relies on a few ecological assumptions to simulate the dynamics of tree 220 

establishment, growth and mortality in independent small patches of land, that are aggregated to derive properties 

at the forest scale. While the model is not spatially explicit at the patch level, it is individual-based: two trees of 

the same species and the same age can have different growth rates under the same climate, depending on the 

specific patch-level biotic constraints of light-competition. Derived from the FORCLIM model (Bugmann, 1996 

; Didion et al., 2009) the ForCEEPS model was developed with the aim of simulating forest dynamics under a 225 

wide range of environmental conditions while limiting the need for prior calibration, and was designed to be 

equally able to simulate planted, managed, or natural forests (Morin et al., 2020, 2025). 

 

Tree growth is computed at a yearly time-step in two phases. First maximum diameter increment is calculated 

using an empirical equation shown in Eq. 1, as a function of trunk diameter at breast height at the start of the year, 230 

and a maximum species growth rate 𝑔!. 𝑏! and 𝑐! are species specific allometric parameters (respectively derived 

from 𝐻"#$ and 𝑠), and 𝐻"#$ the maximum height reachable by that species. Height is directly linked to diameter 

following another species-specific allometric parameter. 

 

∆𝐷&'( =	𝑔) 	× 	
*×,-. !

!"#$,&
/

0.2"#$,&.3&	×	5()&.+)×()&.+./)
																																																																	Eq. 1         235 

 
Then, realized growth is determined from optimal growth after reduction by a series of growth-reduction factors 

(bounded between 0 and 1) following a modified geometric mean, as shown in Eq. 2. 

 

∆𝐷 = 	∆𝐷!"# 	× 	 &𝐺𝑅$%&'# × 𝐺𝑅&(( × 𝐺𝑅()!*&'# × 𝐺𝑅+!%$% 	× 𝐺𝑅,)!-.																														 Eq. 2   240 

 

Drought, growing degree days, and soil reduction factors are determined by site soil and climatic conditions, and 

modulated by species-specific parameters. The other factors represent biotic constraints related to light availability. 

𝐺𝑅&'()* represents the immediate effect of competition for light, and depends on the cumulated leaf area above or 

at the same level as the considered tree. 𝐺𝑅+,-./ represents the long-term effects of crown size reduction on the 245 

capacity of trees to grow and assimilate carbon. With the exception of 𝐺𝑅+,-./, the reductors are calculated by 

comparing fixed species response parameters to yearly aggregated biotic or abiotic factors. 𝐺𝑅!-'& is unchanged 

from ForCEEPS, with a set site richness parameter constant throughout the simulation. While the formulas for 

𝐺𝑅(00 and 𝐺𝑅&'()* are also unchanged, the underlying growing degree-days (GDD) and light availability (LA) 

values are calculated at a much finer grain taking advantage of newly integrated leaf phenology (see Sect. 2.4.3) 250 

and stand microclimate (see Appendix F). Likewise, 𝐺𝑅0,-1()* is now the result of a detailed representation of 
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stand hydraulics presented in Sections 2.2 and 2.4.2. Finally, 𝐺𝑅2,-./ remains the ratio of realized to potential 

tree crown size; but trees in PHOREAU can see their crown reduced through drought-stress and frost damage 

components, on top of the light-suppression mechanism already implemented in ForCEEPS, as shown in Eq. 3. 

This is a first approach, following Wang, Zhou and Wang, (2021). We are aware this representation is incomplete, 255 

and does not account for leaf regrowth, or differential effects according to tree age and size: the absence of an 

explicit representation of source and sink compartments, and the lack of tree age data to implement an age-

differentiated response to leaf loss, was a limiting factor. Refer to Eq. 25 and Eq. 26 in Section 2.4.3 for definitions 

of the new 𝑓𝑟𝑜𝑠𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 and 𝑑𝑟𝑜𝑢𝑔ℎ𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡.  

 260 

𝐺𝑅01234 = 𝑀𝑖𝑛(𝑙𝑖𝑔ℎ𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡	 × 𝑓𝑟𝑜𝑠𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 × 	𝑑𝑟𝑜𝑢𝑔ℎ𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡, 1)										 Eq. 3 

 

Similarly, tree establishment is regulated by winter temperature, growing degree days, light availability, and stand 

browsing intensity. First, a yearly number of potential seedlings 𝑛3-*4/*'#&5440&'/(!,!	for a given species is 

determined, by multiplying a species shade tolerance parameter k𝐿𝑎 (shade intolerant species having a greater 265 

regeneration potential) with a new reproductive success factor 𝑅!, which is calculated at a yearly time-step for 

each species as the product of the proportion of uninjured flowers and the proportion of fruits that reach maturity 

(see Sect. 2.3 for a presentation of the underlying phenology model). Once the number of potential seedlings for 

a given species has been determined (Eq. 4), the probability of establishment of each individual seedling 𝑃4!*,! is 

formally unchanged from the ForCEEPS framework (Eq. 5, with details in Morin et al., 2021), but indirectly 270 

integrate the refinements presented in below in the calculation of phenology and microclimate (through 𝑃788), 

light availability at soil level (through 𝑃9:), and soil water balance (through 𝑃8,). Finally, each selected sapling is 

initialized with a DBH of 1.27 cm. 

 

𝑛/!#0.#%1$200($%.&+,+ = 0.006 × 𝑝𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒4; × 𝑘𝐿𝑎 × 𝑅+																																																								Eq. 4 275 

𝑃0+#,+ = 𝑃5< + 𝑃677 + 𝑃7) + 𝑃8) + 𝑃9: + 𝑐0+#																																																																												Eq. 5 

 

Tree mortality is the combination of a stochastic background process combining stand density and tree longevity, 

and a growth-related mortality that represents stress-caused tree death linked to biotic and abiotic constraints. In 

addition, PHOREAU mortality also integrates a new cavitation mortality mechanism (𝑃2#='*#*'-/>-,*#&'*?) 280 

described in Section 2.4.2 and Eq. 20. With 𝑃@	and 𝑃( respectively the background and growth-related mortality 

components described in Morin et al., (2021), the chance that a given tree dies on a given year is such that: 

 

𝑃4!)# = 𝑃,1;%#1#%!.<!)#1$%#= + :1 − 𝑃,1;%#1#%!.<!)#1$%#== 	× 𝑚𝑎𝑥:𝑃>, 𝑃&=																												Eq. 6 

 285 

A full description of the ForCEEPS model developed on the Capsis modeling platform (Dufour-Kowalski et al., 

2012) that was used as a base for this study can be found in Morin et al., (2021). In the following section, we 

present new developments to the representation of canopy structure and light competition that have been included 

in the ForCEEPS model, before the coupling with SurEau and PHENOFIT. 
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2.1.2 Improvements to canopy structure and light-competition 290 
 
In anticipation of the coupling with SurEau and PHENOFIT, a number of modifications were made to the 

ForCEEPS model, focusing on microclimate, light-dependent height plasticity, and improvements to the light-

competition module. This proved necessary when integrating transpiration-driven water fluxes, as stand leaf area 

is one the main driver of embolism in the SurEau model (Cochard et al., 2021b), and preliminary results indicated 295 

a poor capability of the ForCEEPS to reproduce observed leaf area indices from stand inventory, in both relative 

and absolute terms. These refinements are summarized below and in Fig. 2, with more in-depth descriptions in 

supplementary information. 

 

Light-dependent height plasticity: ForCEEPS infers tree height from trunk diameter using fixed allometric 300 

relationships, limiting its ability to capture site effects and competition-driven height-diameter variations. In 

reality, understory trees allocate more growth to height, while trees in low-density stands prioritize diameter 

growth (Oliver and Larson, 1996), especially in shade-intolerant species (Delagrange et al., 2004). Recognizing 

this, we have incorporated dynamic height growth in PHOREAU, by adjusting height increments based on 

competition-driven parameters and species shade tolerance parameter. Refer to appendix A for further details. 305 

 

Crown-length reversion: The PHOREAU model changes the representation of crown length dynamics by allowing 

an increase of the crown ratio when tree light availability increases, unlike the ForCEEPS model, which only 

permitted decline. This modification thus aims to account for the beneficial impact of the death or removal of a 

tree on neighboring trees, which find themselves with greater access to light than before, and can therefore re-310 

grow the lower parts of their crown previously self-pruned due to light competition. This yearly crown ratio 

increase for previously suppressed trees is capped at 5% of the difference between the previous year’s crown ratio, 

and the potential crown ratio based on light conditions. Refer to appendix B for further details. 

 

Species-dependent crown shapes: The PHOREAU model improves crown-shape representation by allowing for a 315 

greater range of crown shapes than the default ForCEEPS inverse-cone, including ellipsoidal and conical shapes. 

This in turn allows for a better representation of inter-specific competition, with complementarities arising from 

differences in crown structure. Refer to appendix C for further details. 

 

Density-dependent light availability: PHOREAU maintains ForCEEPS' balance between predictive power and 320 

computational efficiency by simplifying light dispersion calculations, using a vertical stratification approach 

without explicit tree positioning. However, this method reduces light competition to a single leaf area index (LAI) 

value, overlooking horizontal canopy structure and gaps that influence tree growth. To address this, PHOREAU 

integrates a clumping factor (Ω) into its light extinction coefficient, capturing variations in foliage aggregation and 

improving realism (Nilson, 1971; Black et al., 1991; Bréda, Soudan and Bergonzini). This approach reflects 325 

observed trends, such as the inverse relationship between LAI and light extinction (Dufrêne and Bréda, 1995), and 

aligns with methods used in remote sensing (Chen et al., 2012; Demarez et al., 2008; Zhu et al., 2018). Refer to 

appendix D for further details. 
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Incorporation of Specific Leaf Area (SLA): ForCEEPS crown size allometric relationships, originally calibrated 330 

for a few temperate European species (Bugmann, 1996; Burger, 1951), led to inaccurate predictions when applied 

to a broader range of species, particularly Mediterranean and understory trees. PHOREAU addresses this by 

recalculating tree foliage area using species-specific leaf area (SLA) values, improving the model’s ability to 

represent interspecific differences in drought resistance, in addition to other traits described in table S13, as tree 

water use is driven by leaf area. Refer to appendix E for further details. 335 

 

Microclimate derived from stand-structure: Forest canopies buffer climatic conditions in the understory, resulting 

in cooler, more stable daytime temperatures and warmer nighttime temperatures compared to the canopy. This 

microclimate effect is especially pronounced in dense, structurally complex canopies (De Frenne et al., 2021), 

helping young understory trees resist drought despite shallow root systems (Forrester and Bauhus, 2016). Because 340 

the PHOREAU model integrates fine-scale hydraulic and phenological mechanisms within a forest-structure gap 

model, it is able to capture these effects of microclimate on plant functioning. In particular, we integrate 

microclimatic temperatures and vapor-pressure deficits derived from macroclimate data using a statistical model 

based on a slope and equilibrium approach presented in Gril et al., (2023) and Gril, Laslier, et al., (2023), 

incorporating patch characteristics like leaf area index (LAI), maximum tree height, and vertical complexity index 345 

(VCI). Hourly microclimate temperatures are then used to calculate vapor pressure deficits for transpiration 

computations, as well as degree-day accumulation for tree growth and regeneration. Refer to appendix F for further 

details. 

 

Crown-length Bootstrapping. To avoid initial oscillations in stand leaf area resulting from year-wise adjustments 350 

of tree crown length based on above leaf area, an algorithm, presented in Appendix M, was developed to initialize 

all tree crown lengths at equilibrium values at the beginning of the simulation. This allows modeled forest 

inventories to immediately start simulations with realistic foliage areas, which, in ForCEEPS and earlier models, 

would have taken several years of iterations to achieve. 
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1 Crown plasticity: realised
crown length is calculated
from potential crown length
and light availability

2

2 Equilibrium state : The
model calculates the
equilibrium combination of
crown lengths at the beginning
of the simulation.

3 Real tree height: Tree
height-diameter trajectories
depend on light availability, or
from inventory data.

4 Temporal partitioning:
Light availabilities are
computed at the daily time-
step to account for
differences in phenology.

5 Temperature-correction:
Annual tree light
availabilities are averaged
over the year, weighed by
daily temperatures.

The light-competition module 

6 Crown shape : more
realistic crown shapes for
each species

7 Density-dependent
light-attenuation :
denser plots block more
light for a given LAI.

8 Real Specific leaf areas :
SLA values derived from
TRY are used for each
species

Figure 2 | Presentation of the modifications in the light-competition module between ForCEEPS (Morin et 
al., 2021) and PHOREAU, with a description of the main changes 
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2.2 SurEau: a plant hydraulics model 
 
The SurEau model (Cochard et al., 2021; Ruffault et al., 2022) is a model of the SPA family (soil-plant-

atmosphere, Mencuccini et al., 2019), dedicated to model plant response during extreme drought, which describes 

water flows in a soil, plant and atmosphere system. It was developed with the idea (1) simulating the water status 365 

of plants throughout a complete drying sequence going beyond stomatal closure, including plant desiccation and 

hydraulic failure (Choat et al., 2018); and (2) of being able to be initialized from accessible environmental data 

(climate, description of the structure of the forest stand by inventory or remote sensing) and hydraulic “traits” at 

fine taxonomic grains (species, provenance, etc.) which are increasingly available in global databases (e.g. Martin-

StPaul, Delzon and Cochard, 2017; Guillemot et al., 2022). The SurEau model uses daily meteorological data as 370 

inputs, which are then disaggregated into hourly values; among its outputs are the time to full stomatal closure, 

and the hourly level of cavitation of each organ. There are two published versions of SurEau and their detailed 

presentation can be found in Cochard et al., (2021) and Ruffault et al., (2022). These two versions differ in the 

complexity of the hydraulic architecture of the plant and the numerical scheme used to solve the equations of 

transport (Ruffault et al., 2022). 375 

 

We describe below in a synthetic manner the main principles of the model, the equations used for the coupling, 

and its implementation in Phoreau. For the purpose of the coupling, we have recently implemented a highly 

modular version of SurEau into the Capsis platform using Java object-oriented programming, which includes the 

main aspects of both previous versions of SurEau. The specific functioning of each compartment is elegantly 380 

implemented using object-oriented principles, allowing for modularity and clarity in the model design. 

 

SurEau includes principles of forest water balance such as transpiration, rainfall interception, soil evaporation, 

rain infiltration into different soil layers, and water drainage into deep reservoirs. The specificity of SurEau is to 

explicitly represent water transport within the tree through a system of resistance and capacitance (Fig. 3). This 385 

hydraulic architecture makes it possible to calculate the water status (water potential and water content) at different 

levels of the tree and the soil. The tree's organs (e.g., roots, trunk, branches, leaves) are represented by a water 

compartment separated into a symplasm and an apoplasm. The symplasm corresponds to the water reservoir made 

up of living tissues (parenchyma, phloem, etc.); it is elastic and can exchange water with the vascular system under 

the effect of tissue volume variations. The apoplasm, in contrast, consists of non-living tissues such as xylem 390 

vessels and cell walls, forming a rigid, low-capacitance pathway that facilitates bulk water transport but stores 

little water. 

 

The soil-plant-atmosphere system is modeled through different compartments (“hydraulic cells”), considered as 

“computational entities” and implemented as classes in Java, which are interconnected and exchange water fluxes 395 

through specific functions which model ecophysiological processes. This Capsis version builds on the 

implementation of generic computational entities that we call SPH (Soil-Plant-Hydraulic) compartments, which 

can be attributed a specific type (soil, symplasm, apoplasm). Each type is defined by specific functions to compute 

water potential and water quantities. These SPH compartments can be connected together to build a tree of any 

possible complexity. The fluxes between cells are determined with Fick’s law by using the water potential 400 

gradients between cells and their hydraulic conductances. The water content of each cell is therefore described as 
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the result of inflows and outflows; and the water potential of each cell is calculated with the appropriate 

formulation according to the nature of these cells (soil, symplasm, apoplasm). For the soil a water retention curve 

is used (Van Genuchten, 1980). For the symplasm, the law of pressure-volume curves (Tyree and Hammel, 1972), 

which expresses the relationship between water content and water potential, is used to describe loading and 405 

unloading dynamics. These laws can be parameterized using abundant pressure-volume curve data (Bartlett et al., 

2012). The effect of cavitation is to alter the hydraulic conductance of the apoplasm, and can lead to hydraulic 

failure. However, cavitation also releases apoplastic water into the transpiration stream, which can temporarily 

attenuate the drop in water potential (i.e., water stress). Both phenomena are irreversible (but see Sect. 2.4.2). The 

percentage loss of conductance (PLC) through vessel embolism is calculated using the water potential of the 410 

organ’s apoplasm (𝜓:A-) and an empirical sigmoid function described by species-specific inflexion and slope 

parameters (𝑃B@, s𝑙𝑜𝑝𝑒2#=) as shown in Eq. 7: 

 

𝑃𝐿𝐶 = ?>>

?@A0
CDEFGHIJ

;K ×MNOFEPQKRSB
																																																																																																												Eq.7 

 415 

PLC is a key indicator of the risk of mortality by hydraulic failure, and has been elected a key variable for the 

coupling with ForCEEPS (see Sect. 2.4.2).  

 

The main fluxes from the plant to the atmosphere are the stomatal and the cuticular transpirations. Cuticular and 

stomatal transpirations are computed using gas-phase conductance, and the vapor pressure deficit between the 420 

organ and the atmosphere. The leaf stomatal and cuticular conductance are connected in parallel to produce the 

leaf conductance, itself connected in series to other boundary and crown conductances to produce the overall 

canopy conductance. Leaf cuticular conductance varies with leaf temperature and photosynthetic activity. 

Meanwhile, stomatal conductance is calculated as the product of a maximum stomatal conductance without water 

stress 𝑔!*-",2&'"_"#$ (which ranges between species specific parameters 𝑔!*-"_"#$ and 𝑔!*-"_/'()* depending on 425 

light, temperature, and CO2 concentration), with a regulation factor 𝛾 based on plant water status, as shown in Eq. 

8.  

 

𝑔+#!4 = 𝑔+#!4,,$%4_41D × 𝛾																																																																																																																Eq. 8   

 430 

In particular 𝛾 represents the degree of stomatal closure between 0 and 1, computed using leaf symplasm water 

potential 𝜓95?" and a sigmoid function described by inflexion and shape parameters 𝜓(!B@ and s𝑙𝑜𝑝𝑒(! as shown 

in Eq. 9 (these parameters are themselves derived from species-specific pressure-volume curve parameters 𝑃(!UV 

and 𝑃(!WW : refer to Ruffault et al., (2022), for more details).  

 435 

𝛾 = 1 − ?

?@0
CDEFGXC

;K ×MNYZ[\PNXCKR	S
																																																																																																					   Eq. 9 
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Numerical resolution of the plant water balance is based either on the explicit or the faster semi-implicit method 

presented in Ruffault et al., 2022. This first version of PHOREAU v1.0 uses the same simplified tree hydraulic 

architecture as in Ruffault et al., (2022) and uses the faster and generic semi-implicit solver, which solves the 440 

water balance equations by assuming that certain variables — cell water potential and stomatal or cuticular 

transpiration fluxes — stay constant during each small time step; this has the effect of reducing numerical 

instabilities and increasing runtime by a factor of 10 000. Before performing the coupling, we verified this new 

implementation could provide nearly identical results as the previous version under the same initial conditions. 

 445 
2.3 PHENOFIT: a phenology-based distribution model 
 
The PHENOFIT model (Chuine & Beaubien 2001) is a process-based species distribution model for temperate 

trees which calculates the probability of presence over several years of a given species for a particular set of 

environmental conditions. This probability is derived from the estimated fitness of an average adult individual of 450 

that species, which is itself the product of the probability to survive until the next reproductive season, and the 

probability to produce viable seeds by the end of the annual cycle. The model assumes that survival and 

reproduction depend on the synchronization of tree development to seasonal climatic variations, with the plasticity 

of key phenological events such as leaf unfolding, flowering, fruit maturation, and leaf senescence. The model 

uses soil data and daily meteorological data (minimum and maximum temperature, rainfall, relative humidity, 455 

global radiation, and wind speed) as inputs. It is composed of several sub-models: phenological models for leafing, 

flowering, fruiting and leaf senescence (for reviews refer to Chuine and Régnière, 2017, and Chuine et al., 2024); 

a frost injury model (Leinonen, 1996); a survival model; and a reproductive success model calculated as the 

proportion of uninjured fruits that reach maturation considering photosynthetic ability and the proportion of leaves 

not killed by frost (Chuine and Beaubien, 2001). A visual representation of the model can be found in Fig. 3. 460 

 

In PHENOFIT, both the leafing and the flowering dates (𝑡 ) are calculated with a two-phase phenology model. In 

the first phase of endodormancy (Eq. 10), the bud must be exposed to a certain amount (𝐶2) of chilling units (𝑅2,*) 

from the onset of dormancy (𝑡@) in order to break this endodormancy at date 𝑡U. In the second phase of 

ecodormancy, or quiescence (Eq. 12), the bud cells elongate in response to forcing temperatures. They must 465 

accumulate forcing units (𝑅^,*) until a threshold value (𝐹2) is reached, that corresponds to the leafing or flowering 

date. The type of response functions to temperature are identical for leafing and flowering, only the parameters of 

these functions differ between the two. Calculations are done at daily time-step, using mean daily temperatures 

(𝑇*) and species-specific parameters (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) as shown in Eq. 11 and Eq. 13. Leaf senescence dates 𝑡2 are 

calculated following the model of Delpierre et al., (2009).  470 

 

Flowering and leafing dates are then used, alongside the daily minimum temperature (𝑇') between bud onset and 

leaf senescence or fruit maturation, to determine proportions of leaves and flower-fruits (𝐼&,𝐼 ) uninjured by frost. 

The probability that fruits reach maturation (𝐼,) is calculated on the basis of the proportion of uninjured leaves 

which produce the assimilates accumulated in the fruits, the date of flowering from which thermal energy can 475 

begin to be accumulated (𝑡 &-.4,'/(), and a species-specific parameter 𝐸2	representing the average amount of 

energy needed to reach maturation (Eq. 11). Finally, a yearly probability of producing viable seeds, or reproductive 
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success (𝑅), is calculated as the product of the probability that fruits will ripen and the proportion of uninjured 

fruits reaching maturation, as shown in Eq. 17.  

 480 

 

𝐶, = ∑ 𝑅,,#
𝒕𝟏
#R 																																																																																																																																							  Eq. 10

          

𝑅,,# =
?

?@0H(abPG);de(abPG)
																																																																																																																					Eq. 11

        485 

𝐹, = ∑ 𝑅F,#
𝒕𝒇
#g

																																																																																																																	                     Eq. 12 

𝑅F,# =
?

?@0I(abPh)
																																																																																																													                   Eq. 13

            

𝐼$ = 𝑓:𝑡$01F%.&, 𝑇%=																																																																																																									                   Eq. 14 

𝐼F = 𝑓(𝑡F$!-0)%.&, 𝑇%)																																																																																																																										Eq. 15 490 

           
 
𝐼) = 𝑓(𝑡F$!-0)%.&, 𝐼$ , 𝐸,)																																																																																																                  Eq. 16 

 
𝑅 = 	 𝐼F𝐼) 																																																																																																																																																Eq. 17 495 

 
For each organ and each species, parameters are inferred statistically using time series of phenological 

observations from native populations (dates of leaf unfolding, senescence, flowering, and fruit maturation) for 

different sites and different years, or from experimental results found in the literature (resistance of plant organs 

to frost). 500 

 

As the model simulates one average individual, it does not take into account demography or biotic interactions 

with other species. It also does not represent the impacts of plant growth on survival and resource allocation, but 

takes into account the effect of a reduction of leaf area on survival. While it can (by calibrating parameters from 

phenological data of different provenances) represent the way phenological plasticity can vary from one site to 505 

another due to genetic differentiation and eventual local adaptation, we have chosen here to use only one 

calibration set per species: in other words, we account for the plastic response of a species to varying climate 

conditions, but not for the genetic differentiation of this response. As a result, species performance may be under-

estimated at the limits of its distribution due to non-representative parameter estimates. 

 510 

Our main concern when coupling the PHENOFIT into PHOREAU was avoiding that some processes shared by 

the models be taken into account more than once. For example, we could not directly use the global plant fitness 

output of PHENOFIT, nor its plant survival output, which integrates drought-effects already represented by the 



 16 

SurEau model. In the end, we used four main yearly PHENOFIT outputs: leaf unfolding and senescence dates (𝑡 , 

𝑡2), the percentage of uninjured leaves not damaged by frost (𝐼&) and reproductive success (𝑅). 515 

 
2.4 PHOREAU: the coupled model 
 
2.4.1 Model-coupling framework 
 520 
At the heart of the PHOREAU model is the integration of the ForCEEPS, SurEau and PHENOFIT models. This 

integration was made possible by the presence of all three models on the Capsis Java platform (Dufour-Kowalski 

et al., 2012). The Capsis simulation platform has been continuously developed since 1994, hosting many models 

pertaining to various aspects of forest dynamics. Its generic and flexible architecture allows modelers to integrate 

various aspects of forest dynamics, while its interactive simulation mode facilitates applications in teaching and 525 

decision support for forest stakeholders. 

 

Two major considerations guided the coupling of the models: avoiding overlapping processes, and minimizing the 

increase in computing time that might arise when integrating models operating at different time-scales. In its 

simplest state, the connection between the three models can be described as follows. Independent PHENOFIT 530 

simulations are first run for each species and climate year, whose outputs (dates of leaf unfolding and senescence, 

probability of reproduction) are then read and fed into the main PHOREAU simulation.  

 

At the beginning of each PHOREAU simulation year, all the trees currently present in the plot are used to initialize 

a separate SurEau simulation. This simulation lasts exactly one year, using the same daily climate as the main 535 

simulation, albeit with a further hourly disaggregation required by the Sureau numerical scheme. In addition to 

species hydraulic traits parameters (see Ruffault et al., 2022), morphological (i.e. size dependent) variables 

(including tree volume computed from height and diameter, as well as leaf area, PLC, and light availability), are 

retrieved directly from the main ForCEEPS simulation; leafing and senescence dates are obtained from 

PHENOFIT; and the initial state of the soil is retrieved from its state at the end of the previous SurEau simulation 540 

for year n-1. Throughout the simulation data is collected and sent back to the main ForCEEPS simulation to 

determine the effects of drought stress on growth, mortality, and defoliation, as detailed in the following sections. 

 

However, the sub-hourly time-scales of the SurEau processes, which represent a roughly tenfold increase in 

computation time, warranted the implementation of two major optional simplifications to this framework. They 545 

are summarized below, with more in-depth descriptions in supplementary information (Appendices G and H) 

 

Treewise aggregation for SurEau module. SurEau simulation runtimes are primarily influenced by the number of 

distinct SPH-compartments, and particularly the number of trees. To optimize runtime, PHOREAU reduces the 

number of trees simulated by SurEau each year, while maintaining the overall stem volumes and foliage areas at 550 

the stand, species and cohort level. This is achieved through an aggregation method that groups trees into a 

predefined number of classes per species (set to 3 in our model evaluation), preserving structural integrity while 

simplifying competition for water by reducing the number of trees. Trees are distributed into a configurable 

number of classes based on trunk diameter, separating for example mature and juvenile trees. As trees grow, they 
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may shift between classes, and some classes may remain empty in certain years. Each class is represented by a 555 

single aggregate tree, whose characteristics are determined by summing (volume, foliage area, biomass) or 

averaging (height, root depth, light availability) the corresponding attributes of the individual trees. At the end of 

each year, aggregated class results are uniformly distributed among the trees that make them up, informing yearly 

growth and mortality equations (trees of a given class suffer the same growth reduction due to stress, and have the 

same probability of dying due to cavitation). This method significantly reduces computational complexity, while 560 

maintaining key ecological dynamics in SurEau. 

 

 
 
 565 
 

 

2.4.2 Drought-stress integration 
 
PHOREAU accounts for drought impacts on tree growth and mortality thanks to the integration of the SurEau 570 

plant hydraulics model. Drought-induced mortality can occur either directly — in response to extreme drought 

through high level of xylem embolism leading to hydraulic failure — or as a long-term consequence of reduced 

growth related to consecutive low intensity drought and defoliation. As a result, the model effectively represents 

the interplay between the short term extreme drought effect of hydraulic failure, and the longer term drought effect 

carbon starvation (McDowell et al., 2008).  575 

 

Drought feedback on growth in PHOREAU is assessed by using the factor of stomatal aperture 𝛾 computed by 

SurEau at the tree level. This replaces the ForCEEPS formulation, where a growth reduction factor 𝐺𝑅0,-1()* was 

Figure 3 | Detailed representation of the processes included in the SurEau, ForCEEPS and PHENOFIT models. 
Red circles indicate outputs used for the coupling, and red lines their destination in the ForCEEPS simulation. 
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computed by comparing a drought index (𝐷𝑟𝐼) based on a simple monthly water budget with an empirical species-

specific drought tolerance index (Bugmann and Solomon, 2000). The factor of stomatal aperture 𝛾 is computed 580 

(Eq. 18) from the leaf water potential on the basis of a sigmoid curve described by two species-specific traits (𝑃(!UV 

the water potential causing 12% stomatal closure, and 𝑃(!WW the water potential causing 88% stomatal closure, 

Cochard et al., 2021b, Ruffault et al., 2022). Daily stomatal apertures are then integrated annually, over the 

vegetation period, to compute the D𝑟𝐼 (Eq. 19). Refer to Appendix I for more details. 

 585 

𝛾 = 1 − *1 + 𝑒
56,&7"89.:×(5;&</.5;&==)

9./:×(5;&</85;&==) -
.-

                                                    Eq. 18

  

𝐷𝑟𝐼 = 1 − -
S
∗ ∑ 2𝛾T3																																																																								S

TU-                    Eq. 19
   

 590 

 
Drought feedback on mortality and defoliation. Two additional drought stress mechanisms derived from the level 

of embolism were implemented in PHOREAU. First, drought-induced defoliation was computed on a daily basis 

for each tree by using the percentage of the leaf xylem embolism (Cakpo et al., 2024). The defoliation rate was set 

proportional to the embolism rate, with a minimal threshold set at 10% (Eq. 26). The resulting defoliation 595 

percentage is applied to the maximum leaf area of the tree for the given day (itself the result of the species crown 

allometry, reduction of crown length due to competition for light, and the phenological stage of the leaf derived 

from PHENOFIT) to obtain the effective daily leaf areas used throughout the model, from plant water usage to 

light competition and rain interception (refer to Sect. 2.4.3 for details and equations). Furthermore, an average 

yearly defoliation percentage is computed for integration in the 𝐺𝑅2,-./ growth-reductor, which represents the 600 

impact of leaf-loss on carbon assimilation and tree growth reduction (Eq. 3), and which, in PHOREAU, is 

computed as the result of leaf-loss induced by light-suppression, frost, and drought (see Eq. 25 to 27). Finally, the 

longer-term adaptation between water stress and reduced leaf area is partially captured by the fact cavitation is 

carried over from year to year, with a specific repair mechanism described below. Refer to Appendix J for more 

details. 605 

 

Second the rate of embolism (assessed through the percent loss of cavitation, PLC) is used to estimate extreme 

drought induced mortality. The PLC computed by SurEau is retrieved for each tree at the end of the year. Because 

no cavitation-repair mechanism is implemented at this intra-yearly timescale, the end-of-year value is also 

necessarily the maximal reached PLC. Then, the resulting 𝑃𝐿𝐶% is converted into a probability of death, which is 610 

applied at the end of the year like the other death probabilities in the model (Eq. 6). When the tree aggregation 

option (see Appendix G) is used, each individual tree of a class receives the drought-induced death probability of 

its corresponding aggregate tree, and death events are drawn independently among them. The actual conversion 

of the level of cavitation into a death-probability follows a logistic distribution fitted using data from Hammond 

et al. (2019). The probability distribution is parametrized using a constant steepness parameter, and a species-615 

n : days in year ; j : day of year 
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specific 𝐿𝐷B@ parameter which corresponds of a point of no return, the lethal dose of cavitation at which exactly 

50% of individuals of the species are expected to die (see Eq. 20). As a first approach this 𝐿𝐷B@ was fixed 

parameterized at respectively 50% and 80% for gymnosperm and angiosperm species (Choat et al., 2012); Delzon 

and Cochard, 2014), reflecting the capacity of the latter species to operate at water potentials below the 𝑃B@line. 

This is a result of differences in strategies between embolism-tolerant and embolism-avoidant species, as 620 

gymnosperms tend to operate at wider safety margins with vessels more resistant to embolism (Choat et al., 2012). 

Finally, an additional threshold parameter was added to avoid spurious mortality events for low PLC values, 

considering even well-watered trees show some degree of embolism throughout the year (Cruiziat, Cochard and 

Amiglio, 2002). Refer to Appendix K for more details. 

 625 

𝑃,1;%#1#%!.<!)#1$%#= = L (1 + 𝑒
GH∗J/9K%G97KR,CL)G?										𝑃𝐿𝐶% > 𝑃𝐿𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

	0																																																						𝑃𝐿𝐶% ≤ 𝑃𝐿𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑	
													Eq. 20 

 

 

 

 630 
Year-to-year cavitation memory and repair. The impact of cavitation on tree functioning can continue long after 

the end of the initial drought event, and is one of the main causes for the increased vulnerability to future drought 

events of previously weakened trees (Anderegg et al., 2013; Feng et al., 2021). On the other hand, internal repair 

mechanisms linked to plant growth (formation of new vessels) can allow the recovery of initial conductance over 

time (Brodribb et al., 2010). As such, the recovery from embolism in PHOREAU is driven by basal area growth 635 

— or, more precisely, by the relative increase of sapwood area, which contains the living conductive vessels. 

While all new growth is naturally sapwood, as a tree becomes larger the relative proportion of sapwood to 

heartwood tends to decreases. It follows that to evaluate the rate of replacement of the conductive vessels, the 

model must first know the pre-existing area of sapwood. PHOREAU uses the foliage area to determine this 

quantity, through the application of a species-specific, constant, leaf-to-sapwood ratio, also known as the inverse 640 

of the Huber value (Cruiziat et al., 2002). The leaf-to-sapwood ratio is applied to the potential one-sided leaf area 

of the tree, derived solely from its DBH and allometry parameters, and not its actual leaf area after defoliation 

through competition, frost or drought. This approach, presented in Eq. 21, assumes the Huber value to be constant: 

we know that this is in fact an important simplification, and that many species adapt their leaf mass per area to site 

conditions (Lopez et al., 2008). 645 

 
 

𝑃𝐿𝐶)SV- = 𝑀𝑎𝑥(0	, 𝑃𝐿𝐶)S − 100 ∗
∆XY)YZ[\5Y>.<
]['>.<∗	][:`[&	

)																																															Eq. 21 

 

 650 

2.4.3 Leveraging leaf phenology to temporalize light-competition, growth, and rain interception 
 

s : species ; 𝑃𝐿𝐶%: end-of-year loss of conductance percentage ; 𝐿𝐷"#,%	: species cavitation 
sensibility parameter ; 𝜆 : steepness parameter (default 0.12) ; 𝑃𝐿𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 : default 20%  

s : species; n : year ; 𝑃𝐿𝐶: end-of-year loss of conductance percentage 𝐿𝐴𝑝 : 
potential one-sided leaf area ; 𝐿𝐴: 𝑆𝐴%: species leaf area to sapwood ratio 
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Daily competition for light.  In ForCEEPS, the way the light availability of each canopy layer is determined by the 

above total leaf area of the above layers, combined with differentiated shade tolerances between species, allows 

emergent complementarities in a multi-specific context between shade tolerant and intolerant species, resulting on 655 

average in greater total stand leaf area and productivity at the stand level (Morin et al., 2025). But alongside spatial 

complementarities, there exist temporal complementarities in species usage of light related to different leaf 

phenology (Gotelli and Graves, 1996). 

 

The PHOREAU model, by integrating leaf phenology simulated by the PHENOFIT model (see Sect. 2.3), accounts 660 

for these temporal effects. In particular, the PHENOFIT model calculates two dates based on temperature and 

photoperiod conditions: the unfolding date (𝑡 ,!,/) when 50% of the buds show at least one unfolded leaf (BBCH 

15), and the senescence date (𝑡2,!,/) when 50% of the leaves have changed color or have fallen (BBCH 95). This 

gives us the range of days when each tree bears leaves. In practice, the maximum daily foliage area of a given tree 

(𝐿𝐴!,'
/,j) is derived from its maximum yearly foliage 𝐿𝐴𝑝!,'/  (itself the result of species-specific crown allometry 665 

and the light availability of the tree, Eq. 22 and 23) , by using the dates of leaf unfolding 𝑡 ,!,/	and leaf senescence 

𝑡2,!,/ calculated by PHENOFIT for a given species 𝑠 for a given year 𝑛, as described in Eq. 24. 

 

Using this information required an in-depth reworking of the light-competition module: instead of calculating each 

layer’s light availability at the yearly time-step, daily light availability is now calculated by summing the crown 670 

areas of all leaf-bearing trees in the above layers. The final tree light availability is calculated by summing, over 

all its layers, for all the days for which it is itself bearing leaves, each daily layer light availability. To correct for 

the fact that tree growth is dependent on heat as well as sunlight, this sum is weighed using daily growing degree 

days (GDD) values, defined as the difference between the average daily temperature and the 𝑇@ base temperature 

fixed at 5.5°C. This is a first approach, which heavily weighs summer months where growth may be limited by 675 

drought: further developments of the model will take advantage of the coupling with SurEau to incorporate tree 

drought-stress in the weights. Finally, in addition to being temporalized, this formulation integrates all the 

refinements to canopy representation described in Sect. 2.1.2. 
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 680 

 

𝐿𝐴𝑝),bS =	𝑐0) × 𝑐𝑟𝑜𝑤𝑛𝑠𝑖𝑧𝑒b,S ×	𝐷𝐵𝐻b,S
[/& 								                                                   Eq. 22 

 

𝑐N+ = 0.35 ∗ 	𝑆𝐿𝐴+ ∗ 2  (Deciduous)       

𝑐N+ = 0.45 ∗ 	𝑆𝐿𝐴+ ∗ 2  (Evergreen) 685 

 

𝑐𝑟𝑜𝑤𝑛𝑠𝑖𝑧𝑒b,S = 	𝑓(𝐿𝑖𝑔ℎ𝑡𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦	b)				                                                   Eq. 23 

𝐿𝐴+,%
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⎩
⎪⎪
⎨

⎪⎪
⎧

0
𝐿𝐴𝑝+,%. ∗ (OG#k,C,l)

RSC
𝐿𝐴𝑝+,%.

𝐿𝐴𝑝+,%. ∗ (OG#H,C,lGKSC)
KSC

0

_

_

	𝑗 ≤ 𝑡F,+,.
𝑡F,+,. < 𝑗 < (𝑡F,+,. + 𝑈𝐼+)
(𝑡F,+,. + 𝑈𝐼+) ≤ 𝑗 ≤ 	 𝑡,,+,.
𝑡,,+,. < 𝑗 < (𝑡,,+,. + 𝐶𝐼+)

𝑗 ≥ 	 (𝑡,,+,. + 𝐶𝐼+)

																																																								Eq. 24 

 

 690 

 

 

Stress-induced defoliation. While ForCEEPS implements a mechanism for competition-driven loss of foliage area, 

representing the reduction of the crown height of dominated trees as their lower branches die off, it does not 

incorporate mechanisms of leaf-loss driven by extreme meteorological or hydraulic conditions. Unlike 695 

competition-driven branch dieback, leaf-loss caused by extreme weather conditions is not usually accompanied 

by branch death, does not preferentially target the leaves located in the lower parts of the crown, and can be more 

quickly reverted with shoot regrowth. These differences justified the implementation in PHOREAU of a new 

mechanism for transitory leaf-loss, distinct from the reduction of crown size, with no memory from one year to 

the next. The variables used to drive this leaf-loss are derived from the yearly percentage of frost-damaged leaves 700 

(𝐼&) and daily leaf cavitation (𝑃𝐿𝐶&) values calculated respectively in the PHENOFIT and SurEau models (see 

Sect. 2.2 and 2.3. The PHENOFIT leaf loss index is calculated using the frost injury model of Leinonen (1996), 

based on the leaf-phenology, temperature and photoperiod conditions. The SurEau drought-induced leaf-loss is 

presented in Sect. 2.4.2. The values of frost-induced (𝑓𝑟𝑜𝑠𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡!,/, Eq. 25) and drought-induced leaf loss 

(𝑑𝑟𝑜𝑢𝑔ℎ𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡',!,/, Eq. 26) are integrated in an overall daily tree-specific defoliation percentage (Eq. 27), 705 

allowing the model to reflect strategies of drought acclimation, where defoliation can help some species tolerate 

drought events (Bréda et al., 2006; Limousin et al., 2022) at the cost of a lowered growth potential. This transitory 

stress-induced defoliation is combined with the maximum daily foliage area of a given tree (𝐿𝐴!,'
/,j) to obtain the 

effective daily leaf area 𝐿𝐴!,'
/,j,4^^42*'=4, as shown in Eq. 28. It is this daily leaf area that is in fine used in all 

PHOREAU processes, from transpiration, GDD accumulation for growth, to light-competition.  710 

 

 

s : species; i : tree ; n : year ; j : day of year ; 𝐿𝐴𝑝!,'/ : maximum tree yearly leaf area ; 𝑡 ,!,/ : species leaf 
unfolding date ; 𝑡2,!,/ : species leaf senescence date ; 𝑈𝐼! : species leaf unfolding interval ; 𝐶𝐼! : species leaf 
coloration interval; 𝐼&,! species year leaf-loss percentage 
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𝑓𝑟𝑜𝑠𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡+,. = 	1 −	 (?GSD)
>.U

																																																																																																	Eq. 25 

𝑑𝑟𝑜𝑢𝑔ℎ𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡%,+,.,O = e
1 − ?

J#HG#kL
× 𝑃𝐿𝐶	%,+,.,O 																					𝑃𝐿𝐶% > 10%

	1																																																											𝑃𝐿𝐶% ≤ 10%	
                 Eq. 26 715 

𝐷𝑒𝑓𝑜𝑙𝑖𝑎𝑡𝑖𝑜𝑛𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒%,.,+,O = 𝑓𝑟𝑜𝑠𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡+,. × 𝑑𝑟𝑜𝑢𝑔ℎ𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡%,+,.,O      Eq. 27 

 

𝐿𝐴𝑝),b
S,T,5dd5e(bf5 =	𝐿𝐴),b

S,T × P1 − *5d&ZbY(b&Sg5\e5S(Yh5?,>,&,@
-ii

Q								                    Eq. 28 

 
       720 

 
This simplified formulation has the disadvantage of disregarding intra-specific differences in phenology arising 

from differences in size or competition-status (Augspurger and Bartlett, 2003; Gill et al., 1998; Gressler et al., 

2015; Vitasse, 2013). Furthermore, it does not yet take full advantage of the PHOREAU hydraulic submodule to 

account for the effects of drought on leaf development, either through earlier leaf coloration (Xie et al., 2018) or 725 

shifted unfolding (Cleland et al., 2007). Further developments of the PHOREAU model should therefore strive to 

use information from the light competition and water stress modules to inform the calculation of phenology dates. 

 

Growing-degree-days. Furthermore, in addition to plant fluxes and light-competition, leaf phenology was also 

used to inform the period during which growing degree days (GDD) are accumulated for deciduous species. 730 

Evergreen species are assumed to accumulate energy throughout the year. As the ForCEEPS framework worked 

at a monthly time-step, it was necessary to update the model to calculate GDD using daily temperature data. This 

introduces both inter-species variability in growth, but also intra-species variability between sites and years. This 

change impacts both growth (through the temperature growth-reduction factor 𝐺𝑅(00) and probability of 

establishment (𝑃788). See Eq. 29 or the updated calculation of annual GDD sums, including phenology and 735 

microclimate, of a tree of species 𝑠 and average weighted foliage height ℎ, with 𝑇@ the base temperature (𝑇@ =

5.5°𝐶). 

 

𝐺𝐷𝐷'+ =	∑ 𝑚𝑎𝑥	(𝑇'
O#H,C

OV#k,C
− 𝑇>)																																																																																																						Eq. 29 

 740 

The rain interception module. In addition, PHOREAU integrates a rain interception module that reduces incoming 

rainfall based on daily foliage area, accounting for allometry, competition, frost, phenology, and drought-

defoliation effects. Canopy storage volume, derived from daily foliage area, accumulates rainfall and releases 

water through evaporation, with throughfall calculated using a simplified Beer-Lambert formula. Refer to 

Appendix L for more details and model equation. 745 

 

s : species; i : tree ; n : year ; j : day of year ; 𝑡  : species leaf unfolding date 
; 𝑡2 : species leaf senescence date ;𝐼&,! species year leaf-loss percentage 
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2.4.4 Rooting system representation in PHOREAU 
 
The explicit representation of root and their related processes is crucial for any model aiming to simulate the 

response of vegetation to climate change (Woodward and Osborne, 2000). Because of this, the framework for 750 

representing roots in PHOREAU had to be considerably expanded compared to the parent model where the rooting 

system was reduced to a simple fine root surface. In particular, we built upon the original SurEau framework 

(Cochard et al., 2021; Ruffault et al., 2022) by integrating coarse root depth alongside fine root surface, having 

the roots of different trees share the same soil to compete for water, and implementing plastic responses of root 

biomass and root depth to drought stress and aboveground growth.  755 

 

The modelling of the root compartment in PHOREAU is based on the same major hypothesis as that of the canopy 

and light competition module: an implicit homogenous horizontal distribution of trees, with an explicit vertical 

stratification. In the same way the aggregated vertical distribution of foliage area entirely determines the light 

availability of each tree, competition for soil water between trees in PHOREAU is the result of the vertical 760 

distribution of their root systems. The underlying hypothesis is that all trees in a given patch compete for the same 

water reserves, provided their roots go deep enough; and the user must take care to select a patch stand area small 

enough to verify this constraint, which will itself vary according to the size and rooting structure of the trees 

present in the stand. 

 765 

In PHOREAU the rooting system of a tree is split between fine roots and coarse roots: this distinction is essential 

as the root types have different functional roles and responses to external factors (Pregitzer, 2002). Schematically, 

fine roots extend horizontally to absorb water in the available soil, while coarse roots explore deeper layers and 

make them available to fine root exploration. Because in PHOREAU the soil is segmented in a number of layers, 

this has been translated in the following way: the fine root area of a tree in a given soil layer determines the 770 

conductance between this tree and the soil layer, while the rooting depth determines which layers the tree has 

access to. For a given rooting depth, fine root area is distributed between the soil layers following the negative  

exponential model presented in (Jackson et al., 1996), using a species-specific root distribution parameter. 

 

In practice this means that, for a given set of soil parameters, certain trees are able to extract water from the full 775 

soil profile, while others are restricted to only a fraction (see Fig. W2, extracted from the PHOREAU evaluation 

on the ICOS sites). This framework is intended to reflect the crucial role of rooting depth in resilience to drought 

stress (Canadell et al., 1996), as trees with deeper rooting systems are able to make use of relatively untouched 

water reserves in deeper soil layers. Furthermore, because this is implemented in a forest dynamics model where 

many trees share the same soil, PHOREAU is able to use the differential rooting depths to explore the contrasting 780 

intra and inter-specific drought responses observed in nature (Johnson et al., 2018). 

 

Rooting depth is a notoriously difficult trait to measure, and involves costly, time-consuming, usually destructive 

techniques (Maeght et al., 2013). While some rooting depth data is available in the literature (Guerrero-Ramírez 

et al., 2021), its scarcity makes it difficult to disentangle environmental, allometric, and genetic factors; what is 785 

driven by aboveground biomass, from what is driven by water availability and groundwater table depth (Fan et al., 

2017; Freschet et al., 2021; Li et al., 2022). To circumvent this difficulty in obtaining accurate rooting depth traits, 
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we take advantage of the fact PHOREAU does not explicitly represent the position of a tree in the plot and ignores 

lateral distribution, by using coarse root biomass — an extensively studied trait — as a proxy for rooting depth, 

thereby implicitly aggregating the lateral and vertical extension of the root system in an integrative rooting extent 790 

variable, which is driven by shoot size and site aridity (Tumber‐Dávila et al., 2022). 

 

Coarse root biomass and fine root biomass in PHOREAU are calculated independently. Fine root area is derived 

on a 1:1 basis from leaf area. Meanwhile, coarse root biomass is calculated as the product to above-ground biomass 

with a root-shoot ratio, this root-shoot itself calculated as ratio of realized tree height to maximum species height, 795 

positively modulated by the mean of past drought indices (Morin et al., 2021). This formulation, shown in Eq. 30 

to 32, follows the conclusions of Ledo et al., 2018 which identifies size and past droughts as the main factors 

driving root-shoot. These simple equations allow PHOREAU to capture several well-established characteristics of 

the evolution of coarse and fine root biomass.  

 800 

𝑅/𝑆		1ABCDEAF,E	4 =	𝑅/𝑆GD4,E +
H
I
∗ 𝐴𝑙𝑙𝑜𝑚𝑒𝑡𝑟𝑦𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 +	H

I
∗ 𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡														Eq.30 

𝐴𝑙𝑙𝑜𝑚𝑒𝑡𝑟𝑦𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = :𝑅/𝑆41D,+ −	𝑅/𝑆4%.,+= ∗ i1 − j
W0%&'#l

W41DC
kl																																	Eq. 31 

𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = :𝑅/𝑆41D,+ −	𝑅/𝑆4%.,+= ∗ ∑ (𝐷𝑟𝑜𝑢𝑔ℎ𝑡𝐼𝑛𝑑𝑒𝑥%).
%V(.G?>) 									Eq. 32            

 

 805 

Similarly to leaf shedding, fine root area tends to decrease in response to past drought events (Brunner et al., 2015; 

Hartmann, 2011). Meanwhile, total root biomass relative to aboveground biomass (the root-shoot ratio) has 

repeatedly been shown to be positively correlated to past drought events (Mokany, Raison and Prokushkin, 2006), 

and tree species adapted to more xeric climates have higher root-shoot ratios and deeper roots than those adapted 

to wetter conditions. These patterns, captured by PHOREAU (Fig. W17), are in accordance with Optimal Resource 810 

Partitioning theory (OPT), which predicts trees should increase their absorptive capacity relative to their 

transpiring surface under short water supply (Coomes and Grubb, 2000; Hertel et al., 2013). 

 

Another observation captured by deriving root biomass from relative height in PHOREAU is the negative 

correlation between root-shoot ratio and above-ground biomass (Ledo et al., 2018; Mokany et al., 2006). Because 815 

tree height in PHOREAU tends asymptotically towards the species’ maximum height following a parabolic curve, 

as trees become older they allocate proportionally more growth to their diameter than to their height — and to 

their roots in the new formulation. Following Konôpka et al., 2010, the maximum root-shoot was set to be greater 

for angiosperms than coniferous trees, who tend to have shallower roots (Schenk and Jackson, 2002) and less 

variation between juvenile and adult individuals. Another implication of this formulation is that the proportion of 820 

fine roots exponentially decreases with total root biomass (Li et al., 2003). 

 

An emergent property of this framework is that for a given magnitude of water stress, a site which has already 

suffered past drought events will suffer less mortality and growth loss than a previously wet site, because of the 

n : simulation year ; s : species 
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rooting depth adaptation mechanism (Fuchs et al., 2020). This type of plastic adjustment is concurrent with spatial 825 

variability in tree dieback related to the level of past drought acclimatization (Piedallu et al., 2023). Fig. W17 

shows an example of this emergent behavior, by comparing simulations with two different climatic trajectories. 

 

This integration of root plasticity, coupled with leaf shedding, is an important first step in the modelling of tree 

adaptation to drought conditions. However, it by no means provides a complete picture of the various strategies 830 

used by trees in natura. To refine our approach, the relative importance of past drought conditions relative to that 

of tree allometry in determining total rooting depth could be determined on a species by species basis, instead of 

a simple angiosperm/coniferous split. Even then, root plasticity is only one among many plastic responses to 

drought conditions: regulatory responses have been identified in the ectomycorrhizal network, non-structural 

carbohydrate concentration, differential gene transcription and pathways, increased suberin and lignin formation 835 

in roots, and decreased fine-root turnover rate (Bréda et al., 2006 ; Brunner et al., 2015). 

 

2.5 Model calibration and simulation initialization 
 
 840 
Species parameters. Species parameters were not tuned on the basis of the evaluation datasets, and, for the 

majority, correspond to traits determined a priori from the literature and experimental results. A full list of the 

species parameters used in PHOREAU can be found in Table S13, with accompanying descriptions, examples, 

and data source references. 

 845 

Site parameters. Site climatic and edaphic conditions were constructed using a mix of on-site measurements, and 

publicly available European datasets (see Sect. 3.1).  

  

5 
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3 Model Evaluation 
 850 

 
 

 
The key novelty of the PHOREAU model is that it is designed to predict a wide range of forest characteristics and 

ecosystem functioning features, occurring at various scales. Therefore, we evaluated the model across a broad 855 

spectrum of outputs, ranging from daily plant physiological measurements to long-term species composition 

predictions. This comprehensive approach allowed us to avoid one of the common drawbacks of earlier generation 

forest gap-models for temperate forests, which were often evaluated against high-level integrative metrics — such 

as long-term predicted total stand basal area, species distribution or potential natural vegetation composition 

(Botkin et al., 1972; Bugmann, 1996; Kienast, 1987) — which limits the robustness of their predictions under 860 

future conditions. By directly assessing the model’s ability to reproduce intermediary variables, such as leaf area 

indices or soil water fluxes, we could control for common biases that may arise from errors offsetting each other 

under current conditions, which may not hold true when projecting into future climatic scenarios. 

 

Depending on the targeted variable (and especially the available data to characterize it), the model evaluation was 865 

conducted on certain sites in France, or on many sites over Europe. Because PHOREAU is intended to be 

continuously improved and refined over time, the validation protocol and all associated data — summarized in 

Fig. 4 — will serve as a baseline to evaluate any future modifications to the model. 
  

Framework for PHOREAU validation

ICOS
Validation1

Simulation Length

Input data requirements

Indication of global performance

Usefulness for calibration

ICP II
Validation2 PNV

Validation3

v Evapotranspiration
v Soil water quantity
v Stem water potential
v Stand mortality

v Leaf area index
v Tree growth
v Stand productivity

v Long-term species 
composition

Figure 4 | Framework for PHOREAU validation. In red the evaluation dataset (described in Sect. 3.1), in 
green the evaluated model outputs. Line direction indicate relative strengths and weaknesses of each method. 
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3.1 Data sources 870 
 
 
3.1.1 ICOS sites 
 
We used data from the Integrated Carbon Observation System (ICOS) for our most in-depth validation protocol 875 

that includes hydrological, growth, and mortality components. In particular, we selected four forested sites from 

the terrestrial ICOS Ecosystem network: Puéchabon, Font Blanche, Hesse, and Barbeau. Together these sites 

represent a diversity of the climatic, edaphic, and biotic conditions that can be found in France (Fig. 6). Refer to 

Appendix N for general details on the ICOS network.  

 880 

A preliminary task was building an exhaustive database of all relevant input and output variables over the selected 

sites. This was made possible by the collaboration of each of the site PIs, especially for non-flux data that was not 

always readily available on the ETC database (Papale et al., 2006; Reichstein et al., 2005). Table 1 provides a 

summary of the ICOS data sources used in the model evaluation, as well as some of the main site characteristics, 

while a more in-depth description of each site can be found in supporting information (Appendices O, P, Q and 885 

R). Eventual gaps in data were corrected by selecting, for each of our four sites, the simulation period where the 

most harmonized data was available. Fig. 5 shows a simulated representation of the initial state of each inventory, 

highlighting the structural diversity across sites, and Fig. W1 a vertical representation of leaf area distribution. 

 

 890 

Figure 5 | 3D 
vizualisation of 
ICOS stands used 
for in-depth 
validation. 
Visualisation 
generated by the 
PHOREAU model, 
on the basis of 
initial inventories. 
Gridlines bear no 
relation to the actual 
patches.  
 

Q. ilex

P. halepensis

Q. petraea

C. betulus

Species

F. sylvatica

B. pendula

Puéchabon Font Blanche

Barbeau Hesse

3 patches 
of 100m2

24 patches 
of 267m2

9 patches 
of 1000m2

4 patches 
of 300m2
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 895 

3.1.2 RENECOFOR and ICP II sites 
 
To evaluate our model’s predictions of tree and stand productivity, potential natural vegetations, and observed 

foliage areas, we used 250 plots spread across Europe, from 37.03° N to 69.58° N, and 8.17° W to 30.71° E, 

covering most of the major European species (Fig. 6. They cover a large range of environmental conditions, with 900 

mean annual temperatures (MAT) ranging from –1.62 to 17.6 °C, mean annual precipitation sum (MAP) ranging 

between 405 and 2707 mm, growing degree days (GDD) ranging from 475 to 4287 °C, and available water 

quantities ranging from 30 to 671 mm over the soil profile. Refer to Fig. 15 for the distribution of site abiotic 

conditions, and Table S2 for a detailed site by site breakdown. 

 905 

The RENECOFOR network. Following the framework of the ForCEEPS validation (Morin et al., 2021), the 

RENECOFOR permanent forest plot network was used as the primary validation dataset (Ulrich, 1997). 

RENECOFOR makes up the French portion of the European ICP II network. Comprised of 102 plots (ca. 0.5 ha) 

in even-aged managed forests, each composed mostly of a single dominant species, they cover most of the main 

Barbeau Font-Blanche Hesse Puéchabon
Location 48°28ʹN, 2°46ʹE 1 43°44ʹ29ʹ́ N, 3°35ʹ45ʹ́ E 1 48°40ʹ30ʹ́ N, 7°3ʹ59ʹ́ E 1 43°14ʹ27ʹ́ N, 5°40ʹ45ʹ́ E 1

Altitude 100 m above sea level 1 425 m above sea level 1 300 m above sea level 1 270 m above sea level 1

Simulation Period 2006-2021 2007 - 2020 1999 - 2010 2003 - 2020
Simulation Patch Area 9 x 1000 m2 24 x 267 m2 4 x 300 m2 3x 100 m2 (MIND control plots) 5

Available stand inventory data Basal area aggregated by size and 
species s

Individual DBH measurements s Individual DBH measurements s Individual DBH measurements s

Mean annual temperature 11.2°C 1,3 14.8°C s 10.1°C s 13.6°C 1

Mean annual precipitation 677 mm 1,3 703 mm s 948 mm s 987 mm 1

Soil Description gleyic luvisol
millstone bedrock 1

Silty clay loam 
50%-90% rock fraction
Limestone bedrock 2

Luvic cambisol with local stagnic 
tendencies
Deep loam clay layer 1,2

Silty clay loam 
75%-90% rock fraction
Limestone bedrock 3

Maximum Available Soil Water 
Quantity (over 5m profile)

405.3 mm 4 178.4 mm s 447.9 mm 3 (ESDAC prediction) 130 mm s

Dominant tree species Sessile Oak (Quercus petraea)
European hornbeam (Carpinus 
Betulus) 1

Aleppo pine (Pinus halepensis 
Mill. )
Holm oak (Quercus ilex L.) 1

European beech (Fagus Sylvatica 
L.)
European hornbeam (Carpinus 
Betulus)
Silver birch (Betula Pendula)  1

Holm oak (Quercus ilex  L.) 1

Initial Basal Area 25.4 m2 / ha s 19.6 m2 / ha s 19.4 m2 / ha s 30 m2/ ha 3

Dominant Tree Height 25 m 1 Pine : 13.5 m 1

Holm Oak : 5.5 m 1
18.3 m 1 5.5 m 1

Initial Stem Density 212 / ha 2 1008 / ha s 3297/ ha 1 4900 / ha 3

Stand thinnings 2011 : 15% of basal area s No 2005 : 25% of basal area
2010 : 15% of basal area s

No

Leaf area index (LAI) 3.5 — 6.4 s, 2 2.9 2 4.6 — 7.6 1 2.2 2

Flux data Provided by Site Manager 5,6 Provided by Site Manager Provided by Site Manager Provided by Site Manager
Tree water potentials Betsch et al. , (2011)   

Peiffer et al. , (2014)
Provided by Site Manager Provided by Site Manager Provided by Site Manager

References 1 : Delpierre et al., 2016
2 : Briere et al., 2021
3 : Davi et al ,. 2005
4 : Maysonnave et al. , 2022
5 : Cuntz et Joetzjer, 2023
6 : Reichstein et al. , 2005
s : Site Manager

1 : Monero et al.,  2021
2 : Simioni, Marie and Huc,  2016
s : Site Manager

1 : Granier et al.,  2008
2 : Dufrene et al.,  2005
3 : Tóth et al , 2017
s : Site Manager

1 : Limousin et al., 2011
2 : Limousin et al.,  2022
3 :  Rambal et al., 2014
5 : Gavinet, Ourcival and 
Limousin,  2019
s : Site Manager

Table 1  |  Selected stand characteristics for the four ICOS sites used in the in-depth PHOREAU validation, 
with associated data sources. 
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tree species and environmental conditions in France — with the notable exception of Mediterranean conditions. 910 

From the year 2000 onwards, the plots were exhaustively inventoried every five years, as well as before and after 

every eventual thinning. After the removal of the plots that had suffered the strongest perturbations — and in 

particular the 1999 windstorm — 97 plots remained. With these, we constructed 192 testing datasets, by grouping 

for each plot between 2000 and 2021 every pair of inventories that were separated by a period of at least four years 

within which no disturbance was recorded. The mean initial basal area of the plots was 28.3 m2/ha, while the time-915 

interval between inventories ranged from 4 to 15 years, averaging at 7.1 year. As a rule, we avoided longer time-

lapses, which would have made disregarding regeneration and mortality more problematic, and would also have 

masked the model’s performance in capturing the effects of yearly dynamics in productivity (which, for a model 

developed in the view of capturing the short and medium-term effects of climate change, is more important than 

representing mean aggregated past trends).  920 

 

The ICP II network. In addition, we also used 148 plots from the International Co-operative Program on 

Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests), which comprises a network of 

intensively monitored forest sites (level II plots) distributed across Europe (de Vries et al., 2003; Schwärzel et al., 

2022). These plots, located in various European countries, allowed the testing of the model over a wider range of 925 

abiotic and biotic conditions. This extension of the validation protocol was facilitated by the fact the RENECOFOR 

network is the French declination of the European-level ICP II program, with comparable protocols and 

measurements. Unlike for RENECOFOR, each plot corresponds to exactly one simulation dataset, with no repeat 

inventories separated by intervals of years. The mean initial basal area of the plots was 28.1 m2/ha, while the time-

interval between inventories ranged from 2 to 10 years, averaging at 4.6 years (refer to Table S2 for details on 930 

each individual simulation dataset). 
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 935 

3.1.3 Climate and soil data   
 
PHOREAU requires detailed daily climatic inputs, as well as comprehensive soil moisture retention measurements 

(see Table 1). To evaluate PHOREAU we used the ERA-5 Land dataset, a climate reanalysis providing various 

fields over the world at ~9km resolution (Muñoz-Sabater et al., 2021). The hourly data was aggregated to produce 940 

daily time-series from 1969 to 2021 over Europe for our study. Potential evapotranspirations were then calculated 

at the same resolution using the Penman-Monteith equation (Monteith, 1965).  

 

PHOREAU requires, for each layer of soil (in this study 30 layers, up to a total depth of 5m, see Sect. 2.4.4), the 

fraction of coarse elements, as well as the parameters of the Van Genuchten water retention curve which describes 945 

the soil texture (Van Genuchten, 1980). These parameters were obtained for several depths from the European 

Soil Hydraulic Database (ESDAC) (Tóth et al., 2017), and interpolated over the height of the soil profile. 

 

The resulting ESDAC soil and ERA-5-Land climate parameter files were used as a baseline for our European 

validation, and were directly used for the ICP II plots, for which no other climatic or soil data was available. When 950 

possible, we completed this continental-scale data with higher-resolution measurements. Field measurements were 
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Q. petraea (24)

F. sylvatica (58) 
Q. ilex (9)

P. halepensis (3)
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Q. robur (18)
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97 RENECOFOR sites
148 ICP II sites
4 ICOS sites

Fig. 2 | Spatial distribution of sites used for PHOREAU validation. Sites are color-coded based on the
dominant species identified in the inventory (see legend in top-left). Red-bordered diamonds represent the
four ICOS site (Puéchabon, Font-Blanche, Barbeau, and Hesse) selected for in-depth hydraulic validation.

Figure 6 | Spatial distribution of sites used for PHOREAU validation. Sites are color-coded based on the 
dominant species identified in the inventory (see legend in top-left). Red-bordered diamonds represent the 
four ICOS site (Puéchabon, Font-Blanche, Barbeau, and Hesse) selected for in-depth hydraulic validation.  
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available for all four ICOS sites, as well as for the RENECOFOR plots for which we used a combination of soil 

measurements and the SILVAE climate time-series (in particular fine-grain temperature and precipitation data that 

better account for site topography and exposition) to refine our validation. The mean-correction method used to 

integrate daily ERA-5 and monthly SILVAE climate time-series is presented in Appendix T. The workflow for 955 

climate reconstruction is summarized in Fig. 7. 

 

On-site climate measurements were available for 26 of the 102 RENECOFOR sites (see Table S4 for the list of 

sites). For some of the sites the measurement periods only partially matched the simulation periods, while for 

others they were continuous from 2000 to 2021. These datasets, although not directly used in our evaluation 960 

protocol (so as not to bias our results for certain sites and species) were instead used to validate our climate 

reconstruction: first through direct comparisons of climate variable means and variances, and then by comparing 

the outputs of the ForCEEPS simulations carried-out with on-site vs. reconstructed climatic data (refer to Table 

S13). 

 965 

Local measurements of SWHC were available up to a depth of 1 meter for all RENECOFOR plots (Brethes and 

Frankreich, 1997). Additional measurements were available up to 2 meters for more than half of the plots (Brethes 

and Frankreich, 1997; Lebourgeois, 2006; Guillemot, unpublished data), which were used to refine validation soil 

parameters. 

 970 
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Figure 7 | Summary of the workflow used for constructing PHOREAU evaluation inventories and climate 
datasets.  
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3.2 Evaluation Protocol 975 
 

3.2.1 Evaluation of intra-annual stand fluxes, tree hydraulics, and feedbacks on stand structure 
 
For each of the four ICOS sites, model predictions were compared to observations at two distinct levels. First for 

stand-level structure, focusing on the annual trends of leaf area, basal area, and tree mortality, for which statistical 980 

metrics were not applied, but predictions instead served as a baseline to identify discrepancies between observed 

and predicted fluxes (but refer to Sect. 3.2.2 and 3.2.3 for direct evaluations on stand leaf area and productivity).  

 

Second, for stand fluxes and tree functional dynamics, measured at the daily level. The performance of the 

PHOREAU model in reproducing the hydraulic functioning of forest stands was assessed for the following 985 

variables (from the most aggregative to the most specific): stand real evapotranspiration (ETR); evolution of soil 

water content (SWC); tree transpiration derived from sapflow; and stem water potential. Model performance was 

assessed using the Pearson correlation coefficient (r), the root mean square error (RMSE) and the mean deviation 

(MD) between observations and model predictions. 

 990 

3.2.2 Evaluation against leaf area index 
 
The evaluation of PHOREAU’s ability to predict leaf area indices from inventories was realized on two different 

levels: first, by comparing model results to those obtained from satellite data for 340 sites spread over Europe 

featuring a large range of tree species; second, by comparing model results to LAI observations inferred from litter 995 

retrieval experiments for 40 sites in France.  

 

The novelty of this kind of validation, as well as its importance when considering the fact PHOREAU predicts 

plants water use without any a priori fixing of foliage area (unlike most other tree hydraulics models), are 

presented and discussed in further detail in Appendix U.  1000 

 

The LAI satellite data used was retrieved from the Copernicus Global Land Service time series derived from daily 

PROBA-V satellite observations between 1999 and 2020 — first at a 1km resolution, then at 300m from 2014 

(Fuster et al., 2020). For all RENECOFOR and ICP II sites and dates used for productivity validation (see Table 

S2) we compared LAI values predicted from the inventories at the start of the simulation, to those observed by 1005 

PROBA-V and averaged over the summer months of the given year (but note these values are themselves uncertain 

(Fang et al., 2019) and likely underestimated for the denser sites).  

 

LAI evaluation on litter data was restricted to those RENECOFOR sites where such data was available — mostly 

beech and oak sites, excluding coniferous-dominated stands not suited to litter retrieval (Ulrich, 1997). 1010 

 

3.2.3 Evaluation against productivity 
 
For each of the 340 selected RENECOFOR and ICP II simulation plots, five patches of 1000 m2 were initialized 

using the inventory of the first inventory campaign (see Table S2). For each patch, trees were sampled at random 1015 



 33 

within the first inventory, until the basal area per hectare of the simulated patch matched that of the original 

inventory. Sampling was done without repetition within each patch, but with repetition among patches. Trees that 

were absent from the second inventory or found dead were kept in the sampling in order to match simulated plots 

to real inventories, but were removed after for growth comparison. As the time step for validation was deliberately 

kept short, model mortality — either due to stress, age or density — were deactivated for this productivity 1020 

validation protocol, so as to have for each sampled tree the observed and simulated final diameter. To evaluate the 

specific impact of the addition of tree phenology and hydraulics to the model, PHOREAU simulation results were 

compared against ForCEEPS predictions.  

 

For tree species currently not parametrized for ForCEEPS (see Table S13 for a list of the 35 parametrized species), 1025 

such as Pyrus communis or Ilex aquifolium, we used one of the generic sets of parameters. In addition to mortality, 

seedling regeneration was also deactivated in the model, due to the short time scales considered. The crown ratio 

between tree height and foliage height was initially set at the species maximum value, and initialized with the 

canopy bootstrap algorithm (see Fig. M1).  

 1030 

Simulations were run for each site over the time periods indicated in Table S2, repeated five times for each of the 

five sampled patches. We compared simulated and observed basal area growth at both the tree scale and the stand 

scale, using predicted and observed basal area increments (BAI) normalized to mean annual values. While 

comparing actual, instead of averaged, annual increments would have constituted a stronger test, this data is not 

available for size of plots and the range of species and climatic conditions considered here. For stand-level 1035 

comparisons, results were directly averaged over the five patches. The performance of both the PHOREAU and 

ForCEEPS model were assessed using the Pearson correlation coefficient (r), the root mean square error (RMSE), 

the average bias (AB), and the average absolute bias (AAB) between observations and model predictions.  

 

3.2.4 Evaluation against potential natural vegetation 1040 

To evaluate the model’s ability to predict forest composition through long term simulations for a broad range of 

climatic conditions — thus integrating the effects of all the different processes for mortality, reproduction, 

phenology, microclimate buffering effect, and competition not directly captured by shorter-term validations 

protocols —, we compared community compositions simulated by PHOREAU with the predicted potential natural 

vegetation (PNV) along an environmental gradient. Here, similarly as in Bugmann (1996) and Morin et al. (2021), 1045 

potential natural vegetation is simply defined as the assumed dominant tree species, assuming no large 

disturbances, in a space spanned by mean annual precipitations (MAP) and mean annual temperatures (MAT), 

following Ellenberg (1986), Rameau et al. (2008), and San-Miguel-Ayanz et al. (2016). For this validation, we 

used the same 250 sites (RENECOFOR and ICP II) used for the productivity validation, spanning across all the 

different PNV conditions described in Ellenberg (1986) (Fig. 15). 1050 

For each of the 250 sites, we ran 2000-year simulations starting from the bare ground. This simulation length – 

accounting for seedling establishment, tree growth and mortality – was necessary to ensure the communities were 

no longer in a transient phase, and had reached the final stage of forest succession with a pseudo-equilibrium 

composition. The 2000-year climate time series was obtained by randomizing the years for which climatic data 
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was available (1969-2020), which preserved inter-annual variability in climate, but avoided any cyclic trend. For 1055 

each site we considered 50 independent patches of 1000 m2. At the end of the simulation, aggregate species basal 

areas per hectare were extracted for each simulated site and ranked from top to bottom. A simulation was classified 

as ‘accurate’ when the top ranked species belonged to the list of dominant species of the corresponding niche; as 

‘partially accurate’ when the second ranked species matched, but not the top ranked; and as ‘inaccurate’ when 

neither the first nor the second predicted species belonged to the expected list.  1060 
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4 Results Analysis 
 
4.1 Evaluation of stand fluxes, tree hydraulics, and feedbacks on stand structure 
 
The results of the in-depth evaluation of PHOREAU at the four highly instrumented ICOS sites demonstrated a 1065 

good ability of the model of the model to reproduce observed ecophysiological and dendrological data across a 

wide range of scales. The model closely followed observed trends in stand basal area (average R2 of 0.59, see 

Table S15), despite the inherent challenge of predicting individual tree mortality (Fig. 8). It accurately captured 

both the magnitude and variability of dieback across sites, in terms of both tree density (Fig. 9) and basal area loss 

(Fig. W4), with a marked increase in the rate of basal area loss in the latter years of each simulation; however, the 1070 

model slightly overestimated mortality numbers on average and particularly at Hesse (+ 56%, see Table S17), as 

well as the share of large tree death relative to medium trees and saplings. Predicted foliage area results aligned 

well with observations in the two open evergreen sites with low mean deviations (Puéchabon: 0.19; Font-Blanche: 

0.35, Fig. W3, Table S16). PHOREAU captured the quick regrowth in foliage area observed at Hesse after the 

2005 cut (Granier et al., 2008); however, when comparing absolute values, PHOREAU noticeably underestimated 1075 

foliage area in the two denser deciduous forests, consistent with prior validation results on leaf area (see Sect. 4.2). 

Despite these biases, the overall alignment between predicted and observed forest dynamics provides a solid 

foundation for comparing stand functioning and tree physiological responses at fine temporal resolutions.  

 

The PHOREAU model predicted daily evapotranspiration (ETR) across the ICOS sites (and upscaled transpiration 1080 

for Hesse), with relatively low mean deviations (Puéchabon: 0.03; Barbeau: –0.24; Hesse: 0.8) and good Pearson 

correlations (Puéchabon: 0.64; Barbeau: 0.79; Hesse: 0.62) between observed and predicted values (Fig. 10 and 

W5). At Font-Blanche, correlation was only moderate (r = 0.48, p < 0.001), as the model underestimated summer 

ETR while overestimating winter and autumn ETR. This discrepancy, particularly the underestimation of Q. ilex 

transpiration (Fig. W8), may stem from biases in the model’s repartition of leaf area between Q. ilex and P. 1085 

halepensis and a dampened response of P. halepensis stem water potential to summer drought (Fig. W6). Over 

time, across all sites, the differences between predicted and observed monthly cumulative ETR became more 

pronounced, reflecting a drift a between predicted and observed forest structure. The model also underestimated 

ETR during the leafless winter months at Barbeau, which could result from the exclusion of understory shrubs 

from the simulations. 1090 

 
PHOREAU consistently demonstrated good performance in predicting the daily evolution of soil water content 

(SWC), with low mean deviations (Puéchabon: 15.4; Font Blanche: 1.03; Barbeau: –47; Hesse: –31.4; Table S12, 

Fig. W7) and high Pearson correlations (Puéchabon: 0.8; Font Blanche: 0.86; Barbeau: 0.92; Hesse: 0.78) between 

observed and predicted values. The model generally captured the seasonal refilling of soil water reserves well (Fig. 1095 

11). However, at Hesse, predicted SWC noticeably lagged behind observations: this is consistent with the model’s 

overestimation of F. sylvatica water stress during the 2003 drought (Bréda et al., 2006), and the overestimation of 

mortality and post-2003 stand transpiration (Fig. 10). The possible existence of a temporary aquifer present at the 

site that was not represented in the model may likely contribute to these discrepancies (Joetzjer & Cuntz, pers. 

comm.). 1100 
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The model also accurately captured the variability in measured leaf water potential across species, seasons, and 

times of day (Fig. 12 and W10). It achieved strong correlations between observed and predicted values for both 

daily minimum stem potential (r = 0.71, p < 0.001, n = 208; Table S10) and predawn stem potential (r = 0.79, p < 

0.001, n = 303; Table S9), with fair levels of prediction accuracy (RMSE = 0.92 and 0.89, respectively). Despite 1105 

these strong correlations, the model tended to attenuate the range of observed potentials, underestimating predawn 

potentials (MD = – 0.5) while simultaneously overestimating minimum potentials (MD = 0.53). This bias was 

particularly noticeable in the predawn potentials of F. sylvatica (MD = –1.5), likely in link with the lag in the soil 

water refilling, though the overall strong correlation (r = 0.99; Table S9) highlight the model’s ability to reproduce 

relative trends in tree stress. 1110 
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Figure 8 | Predicted versus observed evolution of annual 
stand basal area. For each simulation site, the bars depict 
the annual basal area projections generated by the 
PHOREAU model, broken down by species and size class 
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The dashed line represents the observed annual total basal 
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Figure 9 | Predicted versus observed annual tree mortality. For 
each simulation site, the bars depict the total annual number of dead 
trees, irrespective of cause, broken down by species and size class 
contributions. Observed values are derived from stand inventories, 
while predicted values are generated by the PHOREAU model. Also 
shown are the annual mortality rates, calculated relative to the initial 
number of trees for two distinct time periods in each simulation, along 
with the total number N of dead trees by hectare. Transparent bars 
indicate years with thinnings (see Table S17 for details), which are 
excluded from the mortality statistics. 
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 1120 Figure 10 | Predicted versus observed evolution of monthly real 
Evapotranspiration (ETR) and tree Transpiration. For each simulation 
site (except Hesse, see below), the bars depict the monthly ETR (mm) 
predictions generated by the PHOREAU model, broken down by source of 
flux. Soil and intercepted water evaporation respectively originate from the 
first layer of soil and the water stored on the surface of leaves, while the 
two other sources are transpiration from different compartments of the 
PHOREAU tree (refer to Table S11 for details). The black points indicate 
the observed monthly actual evapotranspiration (with interpolated lines) 
representing the total water vapor released from the soil and vegetation into 
the atmosphere, aggregated from hourly or sub-hourly measurements 
obtained from each site’s flux tower. For the Hesse site, tree transpiration 
has been upscaled from measured sap flux densities (site PI personal 
communication). 
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No Data

Depth : 0-150 cm

Depth : 0-50 cmDepth : 0-150 cm

Depth : 0-150 cm

Figure 11 | Predicted versus observed evolution of soil water content (SWC). For each simulation site, the 
black points indicate the observed daily actual SWC, with interpolated lines. The stacked bars depict the daily 
SWC (mm) predictions generated by the PHOREAU model, with individual contributions of each soil layer 
stacked and color-coded by soil layer (see Fig. W2 for layer details, and Table S12 for statistics). The predictions 
are confined the maximum measured depth for each site, as indicated in the upper right corner of the figure. For 
Barbeau and Font Blanche, observed SWC were directly obtained from site PIs; for Puéchabon and Hesse, they 
were interpolated from soil relative humidity (RH%) measured at different depths, using the same rock fractions 
as used in the simulation. 
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4.2 Evaluation against leaf area index 1125 

Beyond local litter-based measurements, PHOREAU also demonstrated a reasonable capacity to estimate stand 

leaf area index (LAI) from observed data across many species and site conditions throughout Europe. When 

compared to PROBA-V satellite data (Fig. 13), the model yielded a good correlation between observed and 

predicted LAI values (r = 0.55, p < 0.001, n = 340; Table S6), with acceptable prediction accuracy (RMSE = 1.41, 

AB = 0.08). Although no significant systematic bias was detected, the model tended to dampen the observed 1130 

variability in LAI, slightly underestimating LAI in denser forest canopies while overestimating it in more open 

plots. 

A species-specific analysis revealed notable biases for certain species. The model consistently overestimated the 

LAI of dense coniferous plantations, particularly for species such as P. abies, A. alba, and P. menziesii. 

Conversely, it significantly underestimated LAI for low basal area inventories dominated by P. pinaster, P. 1135 
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Figure 12 | Aggregated 
predicted versus observed 
daily stem water potential. 
All available stem water 
potentials (mPa) observations 
are plotted against the 
PHOREAU predictions for 
the corresponding day and 
species. For each species, the 
full colored lines are the 
regression lines of the linear 
model of the relationship 
between observed and 
predicted minimum water 
potential, with confidence 
interval represented with the 
grey dashed lines. The dashed 
red line is the 1:1 line. (a) 
Comparison with minimum 
water potentials. (b) 
Comparison with predawn 
water potentials. 
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sylvestris, which could partially result from discrepancies between inventories observed and simulated before and 

after thinnings. Overall, while PHOREAU presents a notable improvement in capturing inter-species LAI 

variability compared to the ForCEEPS model (RMSE = 3.42, AB = 0.49; Table S3), it proved less effective in 

predicting small variations in LAI among structurally similar plots dominated by the same species. When 

comparing predicted LAI to those inferred from litter collections (for a smaller subset of oak and beech-dominated 1140 

sites where such data was available) the model did not exhibit any significant bias (RMSE = 0.65, AB = –0.03, n 

= 40 ; Table S7, Fig. W12), but showed only middling predictive power (r = 0.3, p = 0.047; Table S7). While this 

evaluation is necessarily hampered by the fact the observed PROBA-V LAI are themselves reconstructed from 

reflectance values collected at a 300m2 scale, in the future, advances in the measurement of LAI at the local scale 

(LIDAR) will allow finer model calibration and validation.  1145 
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Fig. X | Projected (by PHOREAU) against observed satellite leaf area index (LAI) for all 340
RENECOFOR and ICP II validation inventories. The y-axis shows the LAI predicted by the model from the
stand inventory at the start of the simulation, while the x-axis represents the PROBA-V LAI value for the
maching coordinate and inventory year, averaged between July, August and September. Stand points are
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Figure 13 | Projected (by PHOREAU) against observed satellite leaf area index (LAI) for all 340 
RENECOFOR and ICP II validation inventories. The y-axis shows the LAI predicted by the model from the 
stand inventory at the start of the simulation, while the x-axis represents the PROBA-V LAI value for the 
maching coordinate and inventory year, averaged between July, August and September. Stand points are color 
coded by dominant species (see legend in bottom left). The size of points shows inventory basal area. The dashed 
red-line is the 1:1 line; the black full line represent the regression line of the linear model between observed and 
predicted LAI, with confidence interval represented by the grey shaded area. Associated statistics in Table S6. 
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4.3 Evaluation against productivity 
 
At the stand level, PHOREAU exhibited robust performance in reproducing mean annual BAI across most species 1155 

and environmental conditions. Overall, there was a strong correlation between observed and predicted values 

across all 340 simulations (r = 0.62, p < 0.001) with a small margin of error between observations and predictions 

(RMSE = 0.23, AB = 3.7%, and AAB = 0.34; Fig. 14, Table S5). However, the accuracy varied when species were 

analyzed individually. While the model generally showed no systematic bias (RMSE = 0.23; AB = –2.2% on 

average), some species exhibited notable biases and variability, particularly in the most productive plots where the 1160 

model tended to underestimate productivity. This was especially evident for P. halepensis (RMSE = 0.35, AB = –

65%) and P. menziesii (RMSE = 0.18, AB = –29%), though both had relatively small sample sizes. Even for Q. 

petraea (RMSE = 0.19, AB = –17%), where sample size was not a limitation, a similar bias was observed. 

 

When examining the relationship between prediction errors and various stand characteristics (Fig. W11), no strong 1165 

systematic biases were identified with respect to site-specific factors such as rainfall, temperature, stand density, 

or simulation duration. However, the regression analysis revealed a weak but statistically significant positive 

relationship between errors and site water-holding capacity (SWHC) (slope = 0.0034, r = 0.138, p < 0.05), 

suggesting a tendency to underestimate productivity on drier soils. Additionally, there was a strongly significant 

negative relationship between errors and initial stand basal area (slope = –0.0044, r = –0.21, p < 0.001), indicating 1170 

that the model underestimates productivity in the most productive stands. 

In comparison to the ForCEEPS model applied to the same dataset, PHOREAU demonstrated enhanced predictive 

accuracy across all evaluated metrics. PHOREAU produced a higher Pearson correlation coefficient than 

ForCEEPS (r = 0.62 vs. r = 0.53 respectively), along with lower RMSE (0.23 vs. 0.316), average bias (AB = 3.7% 

vs. 7.7%), and average absolute bias (AAB = 0.34 vs. 0.44; see Fig. W13, Table S5). These results highlight 1175 

PHOREAU’s improved capability in predicting productivity compared to ForCEEPS, and the value of integrating 

detailed phenological and hydraulic processes even for simulating productivity over short timescales. 

At the tree level PHOREAU also demonstrated robust performance, outperforming ForCEEPS by a significant 

margin (refer to Appendix Y and Fig. Y1 for more details). While the stand level is ultimately more relevant for 

evaluating the aggregated processes modeled in PHOREAU, the tree-wise analysis confirms that the model 1180 

accurately represents intra-stand competition and neighborhood interactions between trees.   
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4.4 Evaluation against potential natural vegetation 

When comparing the distribution of predicted dominant tree species after 2,000-year simulations along the 1195 

environmental gradient covered by 250 sites across Europe (Fig. 15), the model performed well, with 62% of 

predictions accurately matching observed community compositions, and 24% partially accurate predictions 

(outperforming ForCEEPS’ 43% accurate predictions). Yet, PHOREAU's ability to accurately predict potential 

natural vegetation (PNV) varied depending on site conditions, with a noticeably larger uncertainty for 

Mediterranean forest types, humid beech forests, and mixed montane spruce-beech forests. A detailed view of the 1200 

predicted dominant species (Figure W15) revealed that much of this uncertainty stemmed from PHOREAU's 

tendency to overestimate the competitive advantage of Q. robur relative to Q. petraea and F. sylvatica in both hot 

and mild climates. Despite these discrepancies, the model demonstrated strong predictive performance in extreme 

environments, accurately predicting species composition at both extremely cold and extremely warm sites. 
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Fig. X | Projected (by PHOREAU) against observed mean annual stand basal increments (BAI) for
all 340 RENECOFOR and ICP II validation inventories. Stand points are color coded by dominant species
(see legend above). The dashed red-line is the 1:1 line; other full lines represent the regression lines of the
linear model between observed and predicted stand productivity, with confidence intervals represented by
the grey shaded area (in black the overall regression; coloured lines for species-specific regressions).
Associated statistics for the global simulation in top left, while species-specific statistics can be found in
Table S2.

Figure 14 | Projected (by PHOREAU) against observed mean annual stand basal increments (BAI) for all 
340 RENECOFOR and ICP II validation inventories. Stand points are color coded by dominant species (see 
legend above). The dashed red-line is the 1:1 line; other full lines represent the regression lines of the linear 
model between observed and predicted stand productivity, with confidence intervals represented by the grey 
shaded area (in black the overall regression; colored lines for species-specific regressions). Associated statistics 
for the global simulation in top left, while species-specific statistics can be found in Table S2. 
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18 Figure 15 | (a) Distribution of the 250 
tested sites in the PNV diagram of 
supposed dominating species (built 
according to mean annual temperature and 
precipitation sum). PNV dominating 
species are Pc (P. cembra); Pa (P. abies); 
Aa (A. alba); Fs (F. sylvatica); Qp (Q. 
petraea); Qr (Q. robur); Pp (P. pinaster); 
Ph (P.halepensis); Qi (Q. ilex) Circle colors 
indicate the agreement between simulated 
and PNV dominating species after the 2000 
years PHOREAU simulations. Green: sites 
for which the dominating species (by basal 
area) was accurately predicted. Orange: 
sites for which the second-ranked species 
was accurately predicted, but not the first-
ranked. Red: sites for which neither the 
first-ranked nor second-ranked species were 
accurately predicted.  
 
(b) Geographical repartition of the 250 
sites (RENECOFOR and ICP II) used for 
PNV validation, colored by potential niche 
composition (matching the background 
colors of Fig. 15a). Shapes indicate 
prediction success, as described above. 
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5 Discussion 
 
5.1 A process-based model to investigate diversity-productivity and diversity-resilience relationships  
 1210 

The difficulties inherent in integrating trait-based processes in a semi-empiric framework justified evaluating 

PHOREAU on a variety of metrics — including predicted foliage area, soil water and stem water potentials — 

which, to our knowledge, has never been attempted before in an individual-based gap model (but see Eller et al., 

(2020), Xu et al., (2021), for cohort-based approaches). Furthermore, the bottom-up approach we have adopted 

mitigated the risk of error compensation and of equifinality, which often appear when some parameters or 1215 

processes covariate and compensate each other in respect to an integrative metric. Avoiding equifinality was 

crucial to the development of PHOREAU, because as climatic conditions deviate from the historical baseline in 

future years, correlations between processes that were equifinal for historical conditions may shift, limiting the 

ability of the model to accurately predict the impact of climate change on forest functioning. While direct 

validation on annual growth is rarely done for gap models because of the inherent difficulty of reproducing such 1220 

metrics for models not originally designed to work at such short temporal scales (Fyllas et al., 2014; Mette et al., 

2009), the more granular representation of stand functioning of PHOREAU justified our evaluation on short-term 

individual tree and stand productivity. The good performance of the model across the wide range of species and 

conditions used in the productivity and PNV validation — including Mediterranean and boreal forests — 

demonstrates its widespread applicability to European forest ecosystems. Furthermore, the state-of-the-art 1225 

validation dataset used in this study will serve as a baseline to assess any further refinements to the model, as 

additional species traits become available.  

 

In contrast to ecophysiological process-based models than can be parametrized using only physiological and 

functional traits (Davi et al., 2005b; Maréchaux and Chave, 2017), PHOREAU eschews a direct representation of 1230 

carbon assimilation and allocation, in favor of a growth-reduction based approach. While this simplification does 

distort actual tree functioning and ignores the importance of carbon reserves in buffering year-on-year growth 

(Körner, 2003), it presents a number of advantages when considering the ecological processes that shape species 

composition. In addition to a significant gain in computing time, it curtails the uncertainty in model predictions 

that can result from equifinality, by limiting the number of variables directly impacting growth. However, by 1235 

incorporating detailed physiological representations of few selected mechanisms such as tree phenology and 

hydraulics, we maintain the model’s ability to react to shifts in climatic conditions, thereby striking a balance 

compared to more simplified representations. Furthermore, by calculating tree growth, leaf area, mortality and 

establishment rates on the basis of well-established observed parameter values, to which process-based reductors 

are subsequently applied, we were able to maintain realistic stand basal and foliage areas over the length of the 1240 

simulation. This result is a prerequisite to any temporal exploration of diversity-resilience relationships in drought-

stressed forests: only by accurately predicting the evolution of forest foliage and basal area can we then study the 

effects of species-mixing (Forrester and Pretzsch, 2015) for forests functioning at eco-hydrological equilibrium. 

This is why our integrative validation on the ICOS sites is an important milestone in the development of hydrology-

based forest models: unlike usual hydrological validations (Morales et al., 2005), not only did PHOREAU provide 1245 

robust predictions of water fluxes for many years over a diverse set of conditions and species, it did so with no a 



 46 

priori fixing of stand leaf and basal area, instead calculating the evolution stand structure on the basis of water-

stress feedbacks.  

 

5.2 Limitations and future avenues of improvement 1250 
 
Despite good correlations and low average bias, PHOREAU predictions consistently underestimated the observed 

variability across almost all considered metrics, including soil water quantities, stem water potentials, tree 

productivity, stand productivity, and stand foliage areas. This attenuating effect is in itself not surprising given the 

necessary simplifications presented by any modelling approach, and results from a number of unavoidable factors: 1255 

precision of climatic and soil texture data (especially for ICP II sites); utilization of single sets of species 

parameters disregarding intra-specific genetic and phenotypic trait variability; lack of 3D representation of 

competition among trees. While climatic, soil, and species traits inputs can easily be refined for more granular 

simulations at the local and regional level, taking into account site exposition and fertility, the strong hypothesis 

of the PHOREAU model regarding the horizontal homogeneity of competition for light and water inside a patch 1260 

will always be an obstacle to capturing the individual dynamics of trees advantaged or disadvantaged by 

microtopography and spatial allocation of tree crowns and rooting systems. Despite this inherent limitation, the 

integration in PHOREAU of many previously disregarded or implicit processes, including explicit roots, 

phenology, process-based tree hydraulics, and microclimate, has allowed it to outperform the ForCEEPS model 

in better predicting both short-term growth and long-term species composition. Furthermore, the gap between the 1265 

two models’ predictions is likely to become greater under future conditions, where PHOREAU is expected to be 

more robust as it explicitly represents key processes, such as drought stress and phenology, in a more mechanistic 

way. 

 

However, by introducing a more granular representation of tree functioning, PHOREAU has induced a mismatch 1270 

between some of the parameters used in the model and the role they were originally intended and calibrated for. 

This mismatch, particularly evident for the optimal species growth rate parameter (𝑔!) and for foliage allometry 

parameters, is responsible for the difficulty in reproducing the growth of extremely productive trees, and the overall 

underestimation of the productivity of species like P. halepensis, F. excelsior, or A. pseudoplatanus (see Table 

S4). Because the optimal growth rate in ForCEEPS was calibrated for the main French species based on the top 1275 

10th percentile of annual diameter increments measured in the NFI database (IGN, 2020) and for other species 

dates back to even earlier studies (Didion et al., 2009), it is in reality more akin to a growth rate under relatively 

unconstrained conditions than an actual optimum. As we updated the model’s representation of light and water 

use constraints to a more process-based approach, we have likely introduced constraints already implicitly present 

in this aggregated growth rate parameter, essentially penalizing trees twice for the same factor. As we continue to 1280 

refine the PHOREAU model, a major challenge will therefore be recalibrating this parameter to better reflect actual 

potential growth unconstrained by competition, despite inherent difficulties in obtaining such data (Pretzsch, 

2009). 

 
Similarly, the parameters with which foliage area is derived from tree diameter have not been fully updated to 1285 

reflect the new importance of foliage area in driving modelled water fluxes. Despite the many changes introduced 

in the representation of tree crowns and the partial validation on satellite data, the model demonstrated a poor 
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ability to predict measured litter LAI for sites of similar composition and basal area. Furthermore, neither satellite 

nor litter-derived total LAI measurements can be used to properly evaluate the predicted vertical distribution of 

leaf area. However, predicted vertical LAI distribution, from which microclimate and individual light-competition 1290 

constraints are derived, is key to model ecological processes, and should therefore next be examined and validated 

against ground or airborne LIDAR and microclimate measurements. 

 

Another obvious area of improvement for the model will be a deeper integration of the plant phenology component 

with other modelled processes. In this study leaf unfolding, leaf senescence, and probability of fruit maturation 1295 

were computed yearly for an average individual of each species. This method captured inter-specific differences 

in phenology and temporal light partitioning, but did not account for intra-specific shifts in phenology caused by 

stand structure. By integrating model variables like microclimate, light availability, and water stress as inputs for 

an individual-based phenology calculation, PHOREAU will be able to capture well-established variations in leaf 

phenology between trees of different sociological status (Augspurger and Bartlett, 2003; Cole and Sheldon, 2017; 1300 

Gressler et al., 2015; Schieber, 2012), which are responsible for the persistence of shrubs and saplings in mature 

forests (Gill et al., 1998; Vitasse, 2013). However, this development would require an independent validation of 

the recalculated phenological outputs; and forest inventory datasets with measurements of both plant phenology 

and understory microclimate are still few and far between. 

 1305 

5.3 Applications and future research perspectives 
 

5.3.1 Establishing baseline available water: retro-engineering PHOREAU to predict rooting depths 
 
One of the main causes for the model’s attenuation of variability in stand and tree productivity was the uncertainty 1310 

regarding the actual quantity of soil water available to the trees. This uncertainty is itself the result of a twofold 

gap in information: lack of data for the texture of deeper soil horizons, and the extremely simplified framework 

used to estimate tree rooting depths. By choosing to reduce the wide observed differences in rooting depths across 

biomes (Canadell et al., 1996; Fan et al., 2017; Schenk and Jackson, 2002) and species (Fan et al., 2017; Sperry et 

al., 2002) to a simple equation based only on tree size and an aggregate drought index based on past climatic 1315 

conditions, we intentionally avoided any integration of model results (such as tree foliage area or percentage of 

embolism) in the calculation of rooting depths, as this would have resulted in an optimization of soil available 

water on precisely the variables we were trying to validate. Unlike other process-based models validated on stand 

hydraulic fluxes (Ruffault et al., 2023), the fact that PHOREAU produced robust multi-year predictions without 

using observations to control for stand leaf areas, rooting depths, or actual available water, confirms its possible 1320 

applications to making realistic dynamic predictions across a large range of forests where this data is not available. 

 

To overcome difficulties related to the soil water parametrization, an alternative approach could be used. For 

instance, based on the hydrological equilibrium hypothesis (HEH), which states that, in a given edaphic and 

climatic environment, trade-offs between vegetation water use and drought stress drive canopy density and forest 1325 

composition toward an optimal hydric state (Caylor et al., 2009; Eagleson, 1982), and following the well-

substantiated hypothesis that trees function near the point of catastrophic hydraulic failure with narrow safety 

margins (Choat et al., 2012; Tyree and Sperry, 1988), a retro-engineering of PHOREAU could be realized where 



 48 

rooting depths are calculated by optimizing tree available water such that, for a given inventory and soil profile 

(Kirchen et al., 2017), foliage area is maximized (Grier and Running, 1977), and plant minimum water potentials 1330 

are constrained to values to the point of catastrophic xylem failure. Compared to similar HEH-based statistical 

(Nemani and Running, 1989) or process-based (Cabon et al., 2018) modelling approaches, this retro-engineering 

of PHOREAU will natively integrate many inter- and intra-specific niche and competition processes that are 

integral to forests’ actual water use. It will furthermore be a necessary first step in establishing a historical baseline 

when using the model to predict the medium-term impact of global change on forest composition and functioning, 1335 

as available water is a major determinant in predicting drought-induced die-off events (Allen et al., 2010). 

 

5.3.2 Unraveling the effects of trait diversity on competition and coexistence 
 
The novel approach presented in this study, integrating plant functional traits in a forest dynamics model, was 1340 

developed to improve the generality of the calibration for new species, but also to cope with the difficulties 

encountered by ecologists when testing hypothesized links between trait diversity, species competition and 

coexistence. While differences in traits governing resource use should, intuitively, translate into niche differences 

that maintain coexistence through competition reduction, attempts to directly link trait dispersion with historical 

species coexistence have proven challenging (Adler et al., 2013; McGill et al., 2006). This challenge arises from 1345 

the fact most traits impact competition for several resources at the same time, and that even a temporary advantage 

in growth can actually result in a lower global fitness when considering population dynamics, with for example 

feedbacks on drought-induced mortality (Forrester and Pretzsch, 2015) or frost damage due to early onset leaf 

unfolding (Bigler and Bugmann, 2018). To overcome this difficulty, process-based models of resource competition 

with processes explicitly relying on species traits have been proposed as a way to unravel the mechanisms linking 1350 

trait diversity to forest functioning (Levine et al., 2024). Because the effects of climate change on forests will 

likewise be mediated by complex species mixing effects, the need to develop mechanistic models that bridge the 

gap between trait-based and ecology and empirical modelling has become urgent to assess the short and medium-

terms effects of global warming on existing forests, and discriminate between the possible management scenarios 

available to forest managers.  1355 

 

The PHOREAU model, having been directly evaluated for most of its processes, could be used as a relevant tool 

to identify thresholds conditions for species coexistence, dominance, or extinction. A first parsimonious approach 

could simply consist in identifying the main processes — phenology, water-use, or competition for light — 

limiting a species fitness at the edges of its predicted distribution (Morin et al., 2007). A more involved exploratory 1360 

protocol could follow the methodology outlined in Levine et al. (2024). By considering predicted species 

compositions for a wide range of climatic and edaphic conditions, and taking care to distinguish, for each set of 

condition, the different mechanistic processes which make up a species’ competitive fitness, we could establish 

relationships between aggregated model metrics (for example growth reductors) and underlying species traits. 

These relationships could then be used to predict the impacts of climate change on forest composition. In parallel 1365 

to this approach, and as a prerequisite, predicted species compositions should be compared to actual observed 

compositions, albeit for a much greater set of points than those for the potential composition validation presented 

in this study, dissipating any remaining uncertainties regarding the representation of regeneration and mortality, 

which is one of the main current challenges for forest modelling (Cailleret et al., 2017; Vanoni et al., 2019). 
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 1370 

5.3.3 Evaluating management policies under future climate scenarios 
 
A further policy-relevant application of the PHOREAU model in the coming decades lies in its ability to simulate 

forest management scenarios under different climate trajectories, and evaluate their outcomes based on key 

ecosystem service metrics, including wood production, biodiversity conservation, and carbon sequestration. As 1375 

forests play an increasingly critical role in helping countries meet sustainable development goals (Chapin III et al., 

2008), and with forests storing roughly half of terrestrial carbon (Friedlingstein et al., 2019), predicting forest 

carbon dynamics and its response to management decisions under climate change has become an essential 

consideration for forest managers. However, while policy makers — supported by the recorded increase in the 

European forest carbon sink in the early 21st century (Pan et al., 2011) — table on a continued increase in the 1380 

share of carbon emissions removed by forests (with a target of 40% in France by 2050), this dynamic has already 

shown signs of slowing (McDowell et al., 2020) as the early forcing effect of climate warming on forest 

productivity is now counterbalanced by increased drought-induced tree mortality (Allen et al., 2010; Hammond et 

al., 2022). While previous studies have evaluated the performance of different management strategies for carbon 

sequestration over the next decades based on a priori global forest biomass trends and management rules (Bastick 1385 

et al., 2024; du Bus de Warnaffe and Angerand, 2020), very few models, to our knowledge, have attempted the 

dynamic integration of forest management with stand-specific future conditions to predict the evolution of the 

forest carbon stock. By integrating management, growth, and hydraulic processes, PHOREAU is uniquely 

positioned to simulate more realistic and agile forest trajectories, and to help forest managers by giving them 

insights about how to better adapt forest to new environmental conditions through management actions. 1390 

 

In conclusion, by combining a detailed representation of plant functional traits with the flexibility required for 

large-scale simulations and species calibration, PHOREAU offers a unique compromise between ecophysiological 

realism and operational applicability — making it a valuable tool for both ecological research and forest 

management under climate change. 1395 
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6 Supplementary information 
 
 1400 
Appendix A: Decoupling tree height from diameter: light-dependent plasticity 
 
The predictive power of gaps models is tied with their representation of stand structure. Yet most classic gap 

models, including ForCEEPS, do not simulate a dynamic tree height, instead inferring it from the tree trunk 

diameter through an allometric relationship. It follows that for a given species, every individual follows the same 1405 

height-diameter trajectory. While this is consistent with the fact most forestry surveys report basal diameter 

without height, this means that the models cannot represent site effects on maximum height, as well as the effects 

of competition for light on the height-diameter relationship. In reality dominated understory trees tend to allocate 

more carbon to height growth than diameter growth. Conversely, trees in low-density or thinned forests have 

greater diameter growth and slower height growth (Oliver and Larson, 1996). Furthermore, this sensitivity of 1410 

growth allocation to competition for light is more marked in shade-intolerant species (Delagrange et al., 2004).  

 

The effects of competition for light on growth allocation are crucial for understanding stand dynamics, as small 

initial differences in height tend to increase with time unless corrected by greater height growth. Forest managers 

have long known that tree maximum height varies from site to site with tree age and density (Fortin et al., 2019), 1415 

and forest growth models often use different height-diameter depending on site conditions (Mehtätalo et al., 2015). 

Attempts to implement dynamic height growth in gap models have been shown to increase the realism of simulated 

stand structure, without reducing general applicability. For instance Rasche et al. (2012) have implemented such 

a dynamic height in the ForClim model on which ForCEEPS is originally inspired. Instead of the static relationship 

between diameter and height (ℎ), height increments are calculated at each time-step ∆𝐻 =	𝑓)	∆𝐷 through a 1420 

function 𝑓)	that distributes growth between diameter and height growth according to a competition-for-light driven 

parameter 𝑠, which replaces the original fixed species-specific allometric parameter. Since the yearly diameter 

increment uses previous-year height in its calculation, its formulation also had to be adapted to account for the fact 

that height is dynamic and no longer directly calculated from diameter. These adaptations have been used in our 

modified ForCEEPS model, albeit with two important modifications.  1425 

 

Firstly, the parameters of the growth-distribution coefficient 𝑔! were adapted to be more conservative, and better 

reflect the species-specific relationship that had already been parametrized: 

 

𝑓' = 𝑠	 ×	m1 − WG?XY
W\Im,CG?XY

n																																																																																																															Eq. A1 1430 

 

𝑠 = 𝑠!)%&%.1$ + (𝑘𝐿𝑎 ∗ 10) ∗ (1 − 𝐴𝐿W)																																																																																						 Eq. A2 

 

where 𝑘𝐿𝑎 is the species shade-tolerance, 𝐻 the tree height in centimeters, 𝐻"#$,! the maximum species height, 

and 𝐴𝐿n the light availability at the top of the tree crown. 1435 
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Secondly, we adapted the yearly growth equation. In the original formulation by Rasche et al. (2012), because 

yearly growth is calculated on the basis of total diameter at the start of the year, a tree that allocated more growth 

to height than to diameter due to competition in year n would have less total growth for year n+1 than a tree that 

had allocated more growth to diameter, all else being equal. This is a result of the simplifications of the ForClim 1440 

model, in which the diameter increment is calculated on the basis of previous year diameter instead of the previous 

year volume. This means tree biomass is only dependent on tree diameter, disregarding its height. This effect has 

major implications, as originally taller but thinner trees end up with smaller final height and diameters than in the 

original formulation. A possible solution would have been to replace trunk diameter by volume in the growth 

equations; but this would have meant reshaping the model from the ground up, and making it less applicable to 1445 

classic forestry datasets, as actual volume data are very rarely available. In the end, we adopted an ad-hoc solution 

by giving each tree two sets of heights and diameters : a static set (𝐷!*#*'2 and 𝐻!*#*'2), calculated from the old 

equations and static allometry relationships, that were only used as an ad-hoc proxy for real tree volume in the 

updated diameter increment equation (Eq. A3) and the calculation of slow-growth mortality (to avoid killing off 

trees that allocate too much growth to height); and a real set (𝐷 and 𝐻), using the updated equations and dynamic 1450 

allometry, that was used in all other cases including the light-competition module. 

∆*
∆(
= 𝑘𝐺 ∗ 𝐷)(Y(be ∗

n-.o!&J#J?)!"#$ pq

0∗2&J#J?)VdK∗*&J#J?)
																																																																					Eq. A3 

 
Appendix B: Crown-length reversion 
 1455 

The dynamic change of tree crown length was modified to better represent the feedbacks between stand structure 

and competition for light. In PHOREAU, light availability impacts growth directly and indirectly: directly through 

the shading growth reduction factor, and indirectly through the crown-length growth reduction factor, which 

represents long-term crown shrinking due to shading. Individual tree crown lengths are calculated as the product 

of tree height, and a variable ratio that depends on species characteristics and tree status. This ratio changes 1460 

according to the light exposition of the tree, between two extreme species-specific values as described in Morin et 

al. (2021). In the original ForCEEPS framework, seedlings started with a crown ratio set at the species maximum, 

which then decreased over the tree’s lifetime with shading. In particular, this formulation assumes that the crown 

ratio can only ever decrease or stay the same from one year to the next, with no possibility of reversion when more 

light becomes available. 1465 

 

Therefore, we have implemented the possibility of crown ratio reversion in PHOREAU. A constantly decreasing 

crown ratio assumes no increase in light availability over a trees lifetime, disregarding the impact that the death or 

removal of one tree can have on its neighbours by enhancing light availability and leading to larger crown sizes 

and denser canopies (see Juchheim, 2020, and Saarinen et al., 2022). We have consequently adapted the original 1470 

ForCEEPS crown ratio equation to reflect this, with a yearly increase capped at 5% of the difference between the 

previous-year crown ratio, and the potential crown ratio given current light availability. We are aware this 

approximation does not take into account the fact that younger trees recover their crowns better due to having 

more remaining growth potential (Hynynen, 1995). 
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Appendix C: Species-dependent crown shapes 
 
An accurate representation of crown shapes is an integral component to any model of light competition and canopy 

interactions between trees (Krůček et al., 2019). In reality the crown shape of any given tree is a complex 

combination of genetic, allometric, and environmental factors, as crown shape varies across species, age groups, 1480 

climate, local conditions and the shading status of the tree (Oliver and Larson, 1996). Canopy packing in mixed 

forests can be partly attributed to this heterogeneity and plasticity of crown shapes, as trees suffer relatively less 

competition for a given foliage density (Longuetaud et al., 2013). 

 

Crown-shape representation in PHOREAU iterates on the ForCEEPS framework, which already allowed for 1485 

stratified distributions of foliage area over a vertical axis (Morin et al., 2021). Compared to the previous iteration, 

PHOREAU allows trees to have other crown shapes than the default inverse-cone – such as conical or ellipsoidal 

shapes. This is meant to represent broad patrons in crown geometry observed at the European Scale, such as the 

fact species present in higher latitudes or latitudes tend to have more columnar or conical crowns to capture light 

coming from a perpendicular angle, whereas species as lower latitudes are more frequently flat-topped for 1490 

maximum exposure (Kuuluvainen and Pukkala, 1989).  

 

While the lack of explicit tree positions prevent PHOREAU from recreating the asymmetrical crown shapes which 

result from horizontal constraining between crowns (Niklaus et al., 2017), this simple approach allows for a more 

accurate representation of side-shading between trees, and captures the way shaded trees tend to become more 1495 

flat-topped as they reduce their crown height (Oliver and Larson, 1996), while saving some simulation time. See 

Figure 5 for a visualization of the new crown shapes. 

 
Appendix D: Density-dependent light availability 
 1500 

Any representation of forest canopies and light dispersion has to strike a balance between predictive power — 

how much photosynthetically active radiation (PAR) does a given tree actually receive at a given moment in time? 

— and computing cost: by aggregating leaves on a tree-by-tree basis and disregarding differences in angle and 

light absorption between sun and shade-leaves (Givnish, 1988), by calculating at yearly time-step, and by 

considering only the vertical stratification without an explicit representation of trunk distribution across space, 1505 

ForCEEPS is able to compute in a timely fashion what would otherwise take orders of magnitude longer with a 

more bottom-up approach from the leaf to the tree. 

 

PHOREAU does not diverge from this general framework, which is well suited to working on large-scale 

inventories (that usually come without tree-level coordinates), and does not suppose any a priori knowledge on 1510 

canopy composition. However, this simplification is not without its drawbacks. Because the light availability of a 

given canopy layer depends solely on the foliage area present in the layers above it, with no accounting for how 

this foliage is actually distributed, light competition is — in effect — boiled down to a single value: the LAI. 

Intuitively we understand that this does not quite tally with reality: two superposed leaves will intercept less light, 

all else being equal, than two leaves on a level plane; forests are not horizontally homogeneous, and gaps in the 1515 
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canopy may form as trees die off, allowing saplings to sprout and grow even in dense stands (Nicotra et al., 1999). 

Due to the links between patchy structures of light availability and tree species diversity and coexistence (Moora 

et al., 2007), measuring and quantifying microsite light availability has been a focus of research (Parent and 

Messier, 1996; Tymen et al., 2017), with important implications for forest management (Coates et al., 2003). 

 1520 

This structural limitation — which can be important, e.g. to accurately predict species richness in relation to 

management — can never be fully worked around. And, in keeping with the general philosophy of the model to 

strike a balance between complexity and genericity, we opted not to incorporate a complex 3D tree-level light 

absorption model (le Maire et al., 2013). However, in the transition from ForCEEPS to PHOREAU, some steps 

have been taken to at least partially account for the horizontal stand structure. This was done in an indirect way by 1525 

using information available to the model: the stand density. 

 

As in most gap-models, foliage area in ForCEEPS is translated into light availability using a modified logarithmic 

Beer-Lambert law, see Eq. D1, where light availability is a function of foliage area and a light extinction coefficient 

𝜆. In the original formulation of the law this extinction coefficient is calculated by integrating over the path of the 1530 

light ray the absorbance and density of the materials it crosses. This calculation — which accounts for the angle 

of the leaves, the angle of the sun’s rays, the different absorbances between species and sun and shade-leaves, and 

the distribution and clumping of the leaves and trees (Dufrêne and Bréda, 1995; Smith, 1993) — is usually 

simplified into an empirical constant extinction parameter, which can vary from site to site (Binkley et al., 2013; 

Vose et al., 1995). However, in the ForCEEPS framework, where stand composition is an emergent property and 1535 

not an input, a single 𝜆 value is used regardless of site conditions. 

 

Following the methodology outlined in (Nilson, 1971; Black et al., 1991; Bréda, Soudan and Bergonzini), 

PHOREAU integrates a clumping factor Ω in its calculation of the light extinction coefficient. This clumping 

factor ranges from 0 (corresponding to a fully concentrated distribution) to 1 (corresponding to a perfectly 1540 

homogenous distribution), and represents the aggregation of leaves within each tree and between the trees 

themselves. The advantage of this approach is that Ω can be calculated each year as an emergent variable, allowing 

the model to capture observed trends like the inverse relation between LAI and the light extinction coefficient 

(each additional increment of leaf area blocks marginally less light) (Dufrêne and Bréda, 1995). The clumping 

factor in PHOREAU is calculated using Curtis relative density (Smith, 1993; Curtis, 1982): with this formulation 1545 

(see Eq. D2) for a given LAI, a dense stand with small trees will block out more light than a stand populated by a 

few large trees. This approach is similar to the one used in LAI estimation with MODIS or hemispherical 

photography, where clumping indices are also used to correct the raw measured LAI (Chen et al., 2012; Demarez 

et al., 2008; Zhu et al., 2018).  

 1550 

A further step would be to incorporate species-specific absorbance values , as leaves of different species react 

differently to incoming light (Binkley et al., 2013), but this would necessitate gathering data at the species level 

(data which is, to our knowledge, available only for a select few species). Another possible refinement would be 

to incorporate the angle of incoming light in the calculation of light availability (Smith, 1980); but this would 

require modifying the light competition calculation to consider site effects related to slope and exposition. 1555 
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Appendix E: Incorporation of Specific Leaf Area 
 
The relation between trunk diameter, crown biomass, and foliage area in ForCEEPS are governed by a set of 

simple allometric relationships calibrated for a few of the main temperate European species, using experimental 

data collected in Switzerland by destructive sampling in the 1940s and 50s (Bugmann, 1996; Burger, 1951). The 1565 

refinements that ForCEEPS implemented regarding crown plasticity and explicit vertical stratification were built 

upon this foundation but did not challenge its underlying assumptions (Morin et al., 2021). This became 

problematic as the model — and PHOREAU in particular — incorporated more species from a larger geographic 

range: understory or Mediterranean species in particular that were not represented in the initial calibration dataset. 

This was directly reflected in model predictions, for example with an overestimation of Quercus ilex or Pinus 1570 

halepensis mortality due to inflated foliage areas. 

 

A simple solution to this issue was implemented by recalculating the 𝑐V parameter (used in ForCEEPS to derive a 

tree’s foliage area from its diameter) using a specific leaf area (SLA) value for each species. The retained SLA — 

the surface area for a given mass of leaves — are those of average adult individuals of each species over a large 1575 

set of sites (Devresse et al., 2024; Kattge et al., 2020). This new formulation (see Eq. 22) allows the model to 

capture inter-specific differences in drought resistance strategies (Greenwood et al., 2017), while disregarding for 

the moment SLA plasticity to tree age, competition, and site conditions (Gratani, 2014).    

 

Appendix F: Microclimate derived from stand-structure 1580 
 
By integrating fine hydraulic and phenological mechanisms in the overall framework of a forest-structure gap 

model, PHOREAU has the opportunity to capture the effects of microclimate on plant functioning. Because forest 

canopies absorb or reflect the majority of incoming solar radiation, reduce wind speeds, convert solar energy into 

latent heat through evapotranspiration, and block outgoing infrared radiation, climatic conditions in the understory 1585 

are often buffered compared to those at the top of the canopy, with cooler more stable temperatures during the 

day, and warmer temperatures during cold nights. This climate dampening effect is more marked for temperature 

extremes, and for tall, structurally complex dense canopies (De Frenne et al., 2021). Furthermore, it is an important 

factor in ability of young, understory trees to resist droughts despite their shallow root systems (Forrester and 

Bauhus, 2016). Because PHOREAU evaluates drought-stress at an individual level by calculating tree fluxes, it 1590 

can easily make use of microclimatic data for temperature, air humidity, and light availability, to better compute 

plant evapotranspiration and in turn differentiate water stress among individuals of different heights. In addition, 

because PHOREAU simulates many small patches each sharing a soil and a canopy height profile, the 

incorporation of microclimate could help the model capture forest landscape mosaic dynamics, where forests with 

n: total number of layers ; i: layer rank ; N: number of trees 
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heterogeneous patches are able to host more diversity due to differentiated microclimatic effects on regeneration 1595 

and drought (Pincebourde et al., 2016).  

 

To derive microclimate temperature and air humidity from macroclimate, we implemented a version of the 

statistical model developed, calibrated and validated in Gril et al., (2023) and Gril, Laslier, et al., (2023). This 

model, which has the advantage of using only easily available patch characteristics, uses a simple slope and 1600 

equilibrium approach, presented in Figure S1, to compute microclimate temperature at soil level (𝑇@) from the 

corresponding hourly or daily macroclimate temperature (𝑇j). The slope (𝑚!&-A4)	captures the linear relationship 

between microclimate and macroclimate, while the equilibrium is the point at which microclimate is equal to 

macroclimate (Eq. F3). In our case, month mean temperature (𝑇") is used as the equilibrium. The slope, which 

acts as a buffer if is lower than 1, is computed daily using patch-level leaf area index (𝐿𝐴𝐼), maximum tree height 1605 

(ℎ"#$), and vertical complexity index (𝑉𝐶𝐼), as seen in Eq. F4 with corresponding coefficients calibrated over a 

large dataset of microclimate measurements (Gril, Laslier, et al., 2023). VCI is obtained following Van Ewijk, 

Treitz and Scott, (2011) by calculating the weighted logarithmic average of foliage area proportion per patch 

canopy layer (𝑝'), normalized by the total number of layers 𝑛, as shown in Eq. F5 and Eq. F6. Finally, for any 

given tree height ℎ, the corresponding microclimate temperature 𝑇)
j is derived from soil microclimate and 1610 

macroclimate using a linear interpolation, as shown in Eq. F1 and Eq. F2.   
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 1620 

 
 
Calculated hourly microclimate temperatures are then used to compute corrected local vapor pressure deficits 

(VPD) used in PHOREAU transpiration computations. These temperatures are also used in GDD calculations (see 

Eq. 29), as well as for seedling establishment constraints based on minimal temperatures (𝑊t"'/). For seedlings, 1625 

soil-level microclimate temperature is directly used; for established trees, the microclimate temperature is 

calculated the weighted average height of their foliage area distribution. 

 

Because leaf unfolding and senescence dates are integrated in the calculations of 𝐿𝐴𝐼 and 𝑉𝐶𝐼, the slope of 

microclimate buffering or amplification can change throughout the year. 1630 

j : day or hour ; 𝑚: month ; 𝑖 : canopy 
layer; n : number of canopy layers 
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While this approach presents a number of advantages, it comes with major simplifications. The most important 

one is certainly the linear interpolation of microclimate over the height of the stand, which neglects actual wind 

movement and radiation attenuation dynamics. Microclimatic data, measured at different heights below the 

canopy, would be needed to calibrate a more realistic non-linear function. Other simplifications include 1635 

disregarding the effect of soil moisture, ignoring horizontal heterogeneity within patches, and assuming monthly 

mean temperatures are a good indicator of equilibrium.  

 
 
 1640 
 
Appendix G: Treewise aggregation 
 
Because the runtime of a SurEau simulation is driven by the number of distinct water-holding compartments — 

the atmosphere, soil layers, and mostly importantly tree organs — the first step to reducing the runtime of a SurEau 1645 

simulation is to reduce the number of initial trees. This approach requires that the global stem volumes and foliage 

areas remain the same at the stand level, as these are the main drivers of water-use in SurEau and in natura 

(Wullschleger et al., 1998). The aggregation method ensures this through by summing and averaging, at the cost 

of some precision in the description of the competition for water. 

 1650 

The degree of simplification is specified at the start of the PHOREAU simulation by choosing a number of classes: 

this is the maximum number of aggregate trees created per species at the start for each SurEau run-year. It follows 

that, for example, a three-class aggregation in a stand with 4 species will result in SurEau initializing with at most 

12 trees, which is a more manageable number. To preserve the overall structure of the stand, trees are distributed 

within classes on the basis of trunk diameter: for an n-class aggregation, for each species, the range of diameters 1655 

between 7.5 cm and the largest diameter at breast height is decomposed between 𝑛 − 1 segments of same size: 

classes are then created by grouping all the trees with a diameter at breast height located between the extremities 

of a given segment, and the last class is composed of all the juvenile trees smaller than 7.5 cm. A consequence of 

Figure F1 | Schematic representation of the slope and equilibrium microclimate approach, 
reprinted from Gril, Laslier, et al., (2023). 
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this method is that a class may contain no tree for a given year, and that trees may move between classes from one 

year to the next as they grow in size.  1660 

 

After the distribution, a single aggregated tree is created for each class. The volume of this aggregate tree is the 

sum of the volumes of all the trees in the class; its height the average of their heights; its foliage area the sum of 

their foliage areas; its root depth the average of their root depths; its root biomass the sum of their root biomasses; 

and finally its light availability the average of their light availabilities. See Figure W2 for an example case. 1665 

 
Appendix H: Dry-year selection  
 
The second optional way of optimizing PHOREAU performance revolves around modifying the rate at which 

SurEau is called from ForCEEPS. By default, the two submodels are run on a 1-to-1 basis, with SurEau being 1670 

called at the beginning of each year; but a more parsimonious approach is to run SurEau only for the driest years 

of the simulation. This simplification is based on the idea that the impact of drought on forested stands, and 

especially on tree mortality, does not follow a linear curve, but rather depends on climate extremes, physiological 

thresholds and tipping points (Hartmann et al., 2018). Because this approach requires a prerequisite ranking of all 

of the years of the simulation according to their dryness, we use an integrative Drought Index calculated for each 1675 

year (Morin et al., 2021). The rate of SurEau calls — every two years, five years, etc., — is set by the user before 

the start of the simulation, with a trade-off between runtime and the accuracy of drought-response predictions. At 

the start of the simulation, the driest year among the first 𝑛 years is selected as the year SurEau will be called; 

then, at the start of the 𝑛 + 1 year, the driest year among the next 𝑛 years is selected, and so on. 

 1680 
Appendix I: Drought feedback on growth 
 
In assessing the effects of drought events on trees, PHOREAU distinguishes between short-term adaptations and 

long-term non-reversible consequences — respectively feedbacks on growth and on mortality. The independence 

of these two mechanisms is key to avoiding confusion between two sources of mortality: that caused by long-term 1685 

carbon starvation — represented in PHOREAU by diameter growth falling under a certain threshold — and that 

caused directly by extreme drought through high level of xylem embolism leading to hydraulic failure (Cochard 

et al., 2021b). A tree subjected to consecutive years of water stress may maintain its conductive vessels but die off 

due to a lack of carbon intake and defoliation; another may die following a single month of acute water stress 

despite strong carbon reserves. By establishing a clear distinction between these two pathways, PHOREAU is able 1690 

to account for the different drought response strategies observed among species. 

 
In PHOREAU, the impact of drought on growth is assessed using the degree of stomatal closure, converted into a 

drought index 𝐷𝑟𝐼. Compared to the original ForCEEPS formulation which uses a simple monthly water budget 

(Bugmann and Solomon, 2000), this new mechanism takes advantage of the detailed hydraulic framework of 1695 

SurEAU to account for competition for water as well as inter-specific differences in dealing with water-stress. For 

seedling establishment — for which SurEAU cannot be used — the original drought index 𝐷𝑟𝐼 remains used as a 

proxy for global stand water availability. 
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Schematically, as soil water reserves become depleted and soil water potential decreases, trees adapt their 1700 

conductance by closing off stomata in order to reduce water loss and maintain twig and leaf potentials above 

cavitation thresholds (Cochard et al., 1996, 2002). This regulation mechanism prevents the premature death of 

branches and trees due to uncontrolled embolisms, as trees reduce their water loss until only cuticular transpiration 

remains. The relation between leaf water potential and stomatal closure is an important trait describing a species’ 

response to drought: constrained by a trade-off between carbon gain and risk of hydraulic failure (Brodribb et al., 1705 

2003; Venturas et al., 2018), it is correlated with the more often measured turgor loss point (TLP) (Brodribb and 

Holbrook, 2003). While the link between turgor loss and reduced growth is well-documented (Cabon et al., 2019; 

Peters et al., 2020; Potkay et al., 2022), for PHOREAU stomatal aperture was selected as a continuous variable 

allowing for a finer feedback. 

 1710 

Stomatal aperture 𝛾 in PHOREAU is derived at each time-step from leaf water potential 𝑃9,!?"	using a sigmoid 

curve described by two species-specific traits: 𝑃(!UV the water potential causing 12% stomatal closure, and 𝑃(!WW 

the water potential causing 88% stomatal closure (Cochard et al., 2021b). Actual stomatal conductance is then 

calculated as the product between this stomatal aperture ratio and a maximal stomatal conductance value for a 

given climate. To calculate the drought reduction index 𝐷𝑟𝐼 of a given tree, daily stomatal apertures ratios 𝛾j are 1715 

averaged over the photosynthetic period, which are then averaged over the year (Eq. 19).  

 

Appendix J: Drought feedback on defoliation 

Between the normal closing and opening of stomata to regulate water flow, and the runaway embolisms 

responsible for tree mortality after prolonged extreme droughts, trees exhibit a range of intermediate responses to 1720 

water stress. Among these regulatory mechanisms, the adaptation of leaf area to moderate water stress is of 

particular importance for any model, such as PHOREAU, which integrates tree growth and drought-resistance.  

Water limitation impacts leaf area through three main pathways: the premature shedding of leaves, the disruption 

of new bud formation (Bréda et al., 2006), and plastic biomass allocation to leaves (Martínez-Vilalta et al., 2004). 

These mechanisms function at gradually longer time-frames: a cohort of trees may shed their leaves one year in 1725 

response to extreme drought, and recover their full canopy the next; another may experience several years of 

decreased leaf area while its leaf phenology cycle is disturbed; and yet another cohort may have permanently 

shifted to produce less leaf area to adapt to chronic soil water limitations (Limousin et al., 2012; Martin-StPaul et 

al., 2013). This graduated temporal response is complicated by the fact it is differentially applied among species, 

following the classic split between drought-avoidance and drought-resistance strategies: indeed, there is evidence 1730 

that while the reduction of leaf area improves resistance to moderate drought events, it may not avail against severe 

water stress (Limousin et al., 2022). Furthermore, the short-term gain in drought-resistance of a reduced 

photosynthetic surface may eventually offset by the negatives consequences of reduced carbon uptake (Poyatos et 

al., 2013), and the link between leaf area and a reduction of fine root biomass (Gieger and Thomas, 2002). 

While the integration of defoliation has been shown to improve the predictions of tree mortality models (Dobbertin 1735 

and Brang, 2001), this integration is complicated by the fact that few are able to account for the dual role of leaves 

in carbon-assimilation and water-use. However, unlike most mortality models, the PHOREAU model has the 
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major advantage of being able to disentangle the contradictory effects of leaf area on growth and drought 

resistance, and of having an explicit representation of the root compartment with water uptake driven by fine roots 

and ultimately leaf area (see Sect. 2.4).  1740 

Appendix K: Drought feedback on mortality 
 
Drought-induced mortality in PHOREAU is derived from the percentage of cavitation, i.e. the percentage of loss 

of conductance (PLC). This mortality mechanism is entirely distinct from the pre-existing slow-growth mortality 

in ForCEEPS, and the previously described drought feedback on growth. Indeed, contrary to the slow-growth 1745 

mortality that reflects carbon starvation and the long-term integrative effects of dehydration coupled with 

temperatures and competition for light on the capacity of trees to grow and survive (Bugmann and Solomon, 2000), 

this feedback is only intended to capture catastrophic water failure caused by extreme drought events, irrespective 

of the overall prior health of the tree. Unlike the stomatal closure used in drought feedback on growth, the 

cavitation of a tree’s hydraulic system is neither quickly reversible, nor does it follow a linear response to hydraulic 1750 

stress. Furthermore, it occurs only after the stomata have been closed, when, under extreme stress conditions, 

residual water flow through the cuticle empties the plant’s water reservoirs. As water is drained from the soil and 

the water potential of the system becomes more and more negative, the conductance of a tree’s hydraulic system 

may remain stable until a certain point is reached, when it rapidly decreases as the xylem vessels are embolized 

and air are formed (Tyree and Sperry, 1989). This non-linear, tipping point response of conductance loss to 1755 

decreasing water potentials is described by the vulnerability curve of the species. This curve, in the shape of an 

inverse sigmoid function, is described for each species using a 𝑃B@ parameter. This parameter, responsible for the 

main differences in drought-resistance between species (Delzon and Cochard, 2014), is the water potential causing 

50% cavitation in the xylem (Cochard et al., 2021b).  

 1760 
Appendix L: The rain interception module 
 
Capitalizing on the capacity of PHOREAU to predict individual-tree daily foliage area values that integrate 

allometry, competition, frost, phenology, and drought-defoliation effects, we implement a rain interception module 

that reduces incoming rain based on the daily leaf area of the stand. Modelling rainfall interception — defined as 1765 

free water that evaporates from the leaves and barks of trees after a rain event — is an important component for 

any model trying to water cycles and tree water balance (Davi et al., 2005a; Granier et al., 1999). The intensity of 

the interception has been shown to grow linearly with leaf area, for values ranging from 20% to 35% of cumulated 

rainfall in temperate and continental climates (Bréda et al., 2006). While secondary factors such as irradiance, 

windspeed, and vapor pressure deficit impact the rate of interception in natura, as a first approach we have chosen 1770 

a simple implementation, inspired from Medfate (De Cáceres et al., 2023b), based solely on daily leaf area, rain 

volume, and potential evapotranspiration.  

 

A canopy storage volume is derived from the foliage area of the stand. This volume is incremented at a daily time-

step with incoming rainfall, and outgoing evaporated water. For a given volume of incoming rainfall, the 1775 

throughfall, or the volume of water to reach the ground, is calculated with a simplified Beer-Lambert formula, in 

a similar fashion to the way light extinction is computed. Because the canopy storage volume is itself limited, any 

intercepted water that overflows this maximal quantity flows down the soil; a natural consequence of this property 
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is that a given volume of given rainfall will yield a greater cumulated throughfall when concentrated in a single 

day, than when distributed over several days with intervening evaporation. The algorithm, presented below in Eq. 1780 

L1, computes the daily stand-wide throughfall volumes that then serve as inputs to the water balance model. 

 

 

𝐶𝑎𝑛𝑜𝑝𝑦𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦O =
𝐿𝐴𝐼O
2  

𝑃𝑜𝑡𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑒𝑑𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙O = 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙O ∗ :1 − 𝑒G>.U	∗	9:So	=																																														  Eq. L1 1785 

𝑃𝑜𝑡𝑇ℎ𝑜𝑢𝑔ℎ𝑓𝑎𝑙𝑙O = 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙O ∗ (𝑒G>.U	∗	9:So	) 

𝐶𝑎𝑛𝑜𝑝𝑦𝑆𝑡𝑜𝑟𝑎𝑔𝑒O =	𝐶𝑎𝑛𝑜𝑝𝑦𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦O − 𝐶𝑎𝑛𝑜𝑝𝑦𝑆𝑡𝑜𝑐𝑘OG? 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑓𝑎𝑙𝑙j = y
𝑃𝑜𝑡𝑇ℎ𝑜𝑢𝑔ℎ𝑓𝑎𝑙𝑙j

𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙j −	𝐴𝑣𝐶𝑎𝑛𝑜𝑝𝑦𝑆𝑡𝑜𝑟𝑎𝑔𝑒j)
~
	𝑃𝑜𝑡𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑒𝑑𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙j ≤	𝐴𝑣𝐶𝑎𝑛𝑜𝑝𝑦𝑆𝑡𝑜𝑟𝑎𝑔𝑒j 	
𝑃𝑜𝑡𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑒𝑑𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙j >	𝐴𝑣𝐶𝑎𝑛𝑜𝑝𝑦𝑆𝑡𝑜𝑟𝑎𝑔𝑒j

 

𝑆𝑡𝑜𝑟𝑒𝑑𝑊𝑎𝑡𝑒𝑟O =	𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙O −	𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑓𝑎𝑙𝑙O 

𝐶𝑎𝑛𝑜𝑝𝑦𝑆𝑡𝑜𝑐𝑘O = 𝑀𝑎𝑥(0, 𝐶𝑎𝑛𝑜𝑝𝑦𝑆𝑡𝑜𝑐𝑘OG? + 𝑆𝑡𝑜𝑟𝑒𝑑𝑊𝑎𝑡𝑒𝑟O − 𝑃𝐸𝑇O) 1790 

 

 

 
Appendix M: The bootstrap algorithm 
 1795 
 In the PHOREAU framework, the leaf area is updated at the end of the year, after each tree’s crown length has 

been updated according to the light availability. However, the light availability that is used to calculate the new 

crown lengths is the result of the stand area of the previous year, which is itself the result of the previous year’s 

crown lengths. This asynchronicity means that – disregarding other processes like growth regeneration and 

mortality – the estimation of stand area will oscillate around an equilibrium state. While this equilibrium state is 1800 

dynamically stable, the oscillations for the first few years are large enough to be significant. This is especially 

problematic when starting the model from an inventory: because actual crown lengths are rarely available, the 

model is forced to initiate the crown at the maximum species’ value; the resulting very low light availability means 

that the following year the crown lengths will be reduced by a large factor, which means that more light will be 

available the year after that, causing a new spike in stand leaf area. It is to correct for this effect that we 1805 

implemented a bootstrap algorithm where, before the first year of the simulation, multiple iterations of the light 

competition module are run until the shift in stand area between two successive iterations becomes negligible 

 

j : day of year 
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Figure M1 | Illustration of PHOREAU canopy bootstrap algorithm. Top: one-sided leaf area indices 
predicted by the PHOREAU bootstrap algorithm, initialized with a Picea abies dominated inventory 
(RENECOFOR EPC 39a, 2003). Bottom: three snapshots of predicted foliage area and light availability 
vertical stratification at different steps in the algorithm. For details on the calculation of the Vertical 
Complexity Index (VCI), refer to Appendix F. 

b a 
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Appendix N: The Integrated Carbon Observation System 
 
The Integrated Carbon Observation System is a network of stations that measure ecosystem-atmosphere exchanges 

of greenhouse gases and energy at a high frequency (Baldocchi, 2003), using the eddy-covariance technique. In 

addition, a large set of ancillary variables needed for the interpretation of the flux data are also measured: for forest 1830 

stations these include, among other measures, tree inventories, leaf area index, and soil data — all of which can 

be leveraged for our modelling purposes (Gielen et al., 2018). The large scope of measured variables in ICOS 

framework makes any validation based on it easily scalable, and will in the future allow testing of any newly 

integrated PHOREAU processes (such as carbon retention or vertical micro-climate interpolation). Finally, a set 

of rigorous specifications for the installation of the eddy-covariance tower sensors, and a common pipeline for the 1835 

post-processing of the raw data through the Ecosystem Thematic Centre (ETC), ensure the high level of 

comparability between sites that is necessary for large-scale model evaluation. 

 
Appendix O: Puéchabon  
 1840 
The Puéchabon experimental site (43°44’30”N, 3°35’40”E, altitude 270 m) is located in a forest of holm oak 

located in the South of France near Montpellier. With its last clear cut in 1942, and managed as a coppice for 

centuries before that, the site is characterized by a high density (5000-7000 trees/ha) of small (5.5 meter high 

overstorey) Quercus ilex trees: they make up an old forest with a basal area of 30 m2/ha, (Rambal et al., 2014), 

and an LAI around 2.2 with little seasonal variability. Located on a flat area, with a rocky soil of Jurassic limestone 1845 

filled with clay, its small water reserve (roughly 130 mm of water over the 5 meter profile) and typically 

Mediterranean precipitation pattern (highly variable from year-to-year, with a measured range of 550 to 1550 mm 

primarily concentrated between September and April) made it an ideal candidate to study the long-term effects of 

drought.  

 1850 

Within the framework of the Mediterranean Terrestrial Ecosystems and Increasing Drought (MIND) project, the 

diameter of trees contained in twelve 100m2 plots have been measured on a year-to-year basis since 2003: these 

are distributed between three control plots, three thinned plots (33% reduction of basal area), three plots with 

partial rainfall exclusion (33% throughfall), and three thinned and rainfall excluded plots (Gavinet et al., 2019b). 

We have used these plots to run simulations from 2003 to 2020, and assess how the PHOREAU model simulates 1855 

the effects of tree density on drought resistance.  

 
Appendix P: Font Blanche  
 
The Font Blanche experimental site (5°40’45’’E, 43°14’27’’N, altitude: 420 m) is located in a mixed-forest of 1860 

Aleppo pine and holm oak, with an overstorey of Pinus halepensis (13.5 m height) that dominates a coppice of 

Quercus ilex (6.5 m height). With a basal area of 21.3 m2/ha and and LAI ranging between 2.5 and 2.7 it is less 

dense than Puéchabon, but otherwise boasts a broadly similar soil and meteorological profile (Simioni et al., 2016). 

For our validation we used the 625m2 control plot (PM30) of the rainfall exclusion experiment, in addition to the 

main plot of 6400m2 that we split between 25 smaller splots of 267 m2 apiece to satisfy PHOREAU homogenous 1865 

competition assumptions. Our timeframe for this site ranges from 2007 to 2020. 
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Appendix Q: Hesse 
 1870 
The Hesse Experimental site (7°3’59’’E, 48°40’30’’N, altitude: 300 m) is located in a beech (Fagus sylvatica) 

stand in north-eastern France, on a plain at the feet of the Vosges mountains. Average tree height was measured 

at 16.2 m in 2005, with a maximum leaf area index over 7.5 indicating a very high level of canopy closure. In 

comparison to the two previous sites it is characterized by a wetter, semi-continental temperate climate, with a 

deep loam-clay soil  (Davi et al., 2005a; Dufrene et al., 2005). Unlike most sites in the ICOS network it is fertile, 1875 

fast-growing and subjected to frequent thinnings, with an average tree age of only roughly 40 years in 2005, 

allowing us to test the capability of PHOREAU to simulate canopy and basal area regrowth after a cut. 

Furthermore, despite the stand having high rainfall and soil high water holding capacity, droughts events are 

responsible for most of the interannual variability in tree growth (Granier et al., 2008). We extracted from the 

inventory four evenly sized 300 m2 plots. Because the validation timeframe ranges from 1999 to 2010 when the 1880 

most data was available (Cuntz et al., 2023e, 2023d, 2023c, 2023b, 2023a; Betsch et al., 2011; Peiffer et al., 2014; 

Tuzet et al., 2017; Zapater, 2018), our model also replicates two thinnings that occurred in 2005 and 2010, 

respectively for 25 and 15% of the basal area. 

 
Appendix R: Barbeau 1885 
 
The Barbeau experimental site (2°46’E, 48°28’N, altitude: 100 m) is located in the Fontainebleau national forest 

southwest of Paris. The stand is dominated by sessile oak (Quercus petraea) trees that 25 m at 100 years of age, 

with an understory of hornbeam (Carpinus betulus). Mean annual cumulated precipitations of 677 mm are evenly 

distributed over the year, and feed into a deep soil with roots able to reach at least 150 cm in depth. We initialized 1890 

our validation over 9 plots of 1000 m2 using an exhaustive inventory made in the winter of 2006-2007; we ran 

running it until 2021, including a thinning in 2011 (Delpierre et al., 2016; Maysonnave et al., 2022). Unlike the 

other studied sites, growth data was not available on a tree by tree basis, but instead aggregated at the stand level 

(Briere et al., 2021). 

 1895 

Appendix S: Supplementary Tables 

 

Tables S1 to S17 are available in the supplements published alongside this article. 

 
Appendix T: Climate Reconstruction  1900 
 
The SILVAE web portal (Bertrand et al., 2011 and Richard, 2011) offers monthly average temperature and 

precipitation sum data over France at a finer spatial resolution, accounting for microclimatic differences caused 

by differences in altitude, exposition, and wind orientation. These time-series, available for the period between 

2000 and 2014, were used to correct the coarser ERA-5 Land dataset for all variables except wind-speed: either 1905 

by direct mean-adjustment for the average temperature and precipitation variables, or after a prior linear regression 

of the variable over the mean temperature for the given month of the ERA-5 Land time-series. For the average 

temperature variable, between 2000 and 2014, daily values were corrected by the difference between the average 

of all the daily ERA-5 Land values for that month and the single monthly value of the SILVAE correction dataset; 

whereas for the years outside of this range where the corresponding monthly value was not available, the difference 1910 
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was calculated using the mean of all values for the given month between 2000 and 2014. A similar method was 

used for the precipitation variable, where the daily values were multiplied by the ratio between summed monthly 

ERA-5 precipitations, and the single monthly SILVAE value. For the other variables except wind speed the same 

method was used as for the average daily temperature, except the addition factor was itself first multiplied by the 

slope of the regression between the temperature and the variable. The wind speed variable was not corrected due 1915 

to its weak correlation to mean temperature. The workflow for climate reconstruction is summarized in Figure 7. 

 
Appendix U: Evaluation against leaf area  
 
The importance given to competition for light and leaf area prediction is one of the core principles of ForCEEPS 1920 

— and the FORCLIM and FORECE models before it. However, because the initial models were focused on long-

term forest dynamics, the methodology used to calibrate and validate the light competition module was based on 

a broad adequation between expected LAI values, and those reconstructed by the model after runs of hundreds or 

thousands of years starting from the bare ground (Kienast, 1987). Even then, LAI was not usually considered in 

the final validation, which was made on predicted biomass, basal area, tree density, or species composition 1925 

(Bugmann, 1996; Wehrli et al., 2006). Notwithstanding the fact that this approach disregards past human 

interventions in the observed stands, it only accounts for equilibrium states, which becomes problematic when one 

wishes to apply the model at shorter timescales and consider the shorter-term effects of climate-change on existing 

forests. Yet, while ForCEEPS did use actual inventories and short-term productivity for its original evaluation 

(Morin et al., 2021), its performance was not assessed by comparing simulated and observed predicted leaf area 1930 

index values. 

 

This approach holds up as long as leaf area can be considered to be an intermediary variable. Because the previous 

models only used leaf area within the framework of their light competition modules, a given tree’s predicted leaf 

area only mattered insomuch as it provided shadow to neighboring smaller trees, decreasing their light availability 1935 

factor. In this respect, absolute leaf area mattered less than the relative distribution between trees and species, 

which governed growth and final predicted compositions.  

 

However, in PHOREAU, tree leaf area is also an integral input of another part of the model: the simulation of 

hydraulic processes. This is because the upwards flow of water through the tree is ultimately driven by the 1940 

transpiration in the leaves (Ruffault et al., 2022). And, in this respect, water flow is driven not by the relative, but 

by the absolute quantity of leaf area. Mechanically, a stand with a greater total leaf area index will tend to exhaust 

its water reserves faster; and tree leaf area, in ecosystems subjected to drought, is directly modulated by recent 

drought events (Bréda et al., 2006). These mechanisms, which are implemented in PHOREAU, require an accurate 

prediction of yearly stand leaf area index as a prerequisite condition to any simulation of hydraulic stress.  1945 

 

Unlike other validations of SurEau (Ruffault et al., 2023), the PHOREAU framework prevents the direct use of 

leaf area index as an input to the model; instead, the model initializes the stand LAI using solely the diameter and 

height information contained in the initial inventory. This makes the model suited to work on a majority of sites, 

where trunk diameters are measured but not leaf area, and allows it to make predictions in the future, as the LAI 1950 

is recalculated on a year-to-year basis. The drawback of this approach is the addition of a new source of error when 
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LAI is wrongly estimated. This is why, before validating the model on growth or drought-induced mortality, a 

preliminary validation of the leaf area index predictions was necessary.   
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Appendix V: Height-Diameter Interpolation 
 1955 
 
Height-diameter ratio interpolation. In order to leverage PHOREAU’s ability to reproduce stand light availability 

and microclimatic conditions based on the 

structure of modelled trees, we used the 

newly independent tree height variable (see 1960 

Sect. 2.1.2) as an input parameter. However, 

height measurements were only available for 

a subset of trees across all RENECOFR and 

ICP II plots. Therefore, for trees where only 

circumference was measured, we applied 1965 

plot-specific LOESS local regressions 

(Cleveland and Loader, 1996) to estimate 

species height-to-diameter curves from 

available measurements. The variability in 

height-to-diameter relationships among 1970 

plots can be seen in Fig. U1 and Fig. W16, 

contrasted with the fixed height-to-diameter formula used in the original ForCEEPS framework. The associated 

statistics presented in Table S3 highlight the general tendency of the formula to underestimate tree heights in our 

study sites (AB = –15.7%; Table S3); this is not necessarily surprising, as the RENECOFOR and ICP II sites 

mostly support denser, more productive stands, where trees prioritize height growth to compete for sunlight. 1975 
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Figure U1 | Diversity of site height-to-diameter curves for 
Fagus sylvatica. Refer to Table S3 for details. 
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Appendix W: Supplementary evaluation figures 
 
 

 1980 

  Figure W1 | Predicted distribution of stand leaf area and light availability. This figure illustrates the 
vertical gradient of predicted light availability indices of the four considered ICOS sites for specific simulation 
years. The light availability is presented over the aboveground profile, divided into 0.1 m layers. In addition, 
the area of each shape in the layers represents the predicted aggregate leaf area. Refer to Fig. W17 for light 
availability index gradient. The figure also includes global annual stand parameters LAI and VCI (see 
Appendix F of VCI). 
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Large Q. ilex

Medium Q. ilex

Sapling Q. ilex

Large P. halepensis

Medium P. halepensis

Sapling P. halepensis

Large C. betulus

Medium C. betulus

Sapling C. betulus
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Figure W2 | Predicted fine root area distribution over the soil profile. For the four ICOS validation sites, 
for certain simulation years a partial vertical soil profile is shown, with the overall dryness of each soil layer 
depicted as a gradient using its 10th quantile relative extractable water (REW) percentage. For each species 
and size class aggregate tree (refer to Appendix G for details on the aggregation method), the distribution of 
the inverse cone along the soil layers represents the predicted location of its fine roots, with its total aggregate 
fine root area index (FRAI) shown under. Refer to Fig. 8 for species and cohort color codes. 
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  1985 
 
 
  

Figure W3 | Predicted versus observed annual stand leaf area index (LAI). For each simulation site, the 
bars depict the annual leaf area index projections generated by the PHOREAU model, broken down by species 
and size class contributions (refer to Table S16 for associated statistics). The dashed line represents the 
observed annual stand leaf area index (data sources are detailed in Table 1). Leaf area index is defined as the 
total one-sided leaf area per unit of ground area. Refer to Fig. 8 for species and cohort color codes. 
 

Fig. X | Predicted versus observed
annual stand leaf area index (LAI). For
each simulation site, the bars depict the
annual leaf area index projections
generated by the PHOREAU model,
broken down by species and size class
contributions (refer to Annex X for
details). The dashed line represents the
observed annual stand leaf area index
(data sources detailed in Annex X). Leaf
area index is defined as the total one-
sided leaf area per unit of ground area.
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1990 

Figure W4 | Predicted versus observed evolution annual stand basal area loss due to mortality. For each 
simulation site, the bars depict the summed annual total basal area (m2/ha) of all dead trees, broken down by 
species and size class). Observed values are derived from stand inventories, while predicted values are generated 
by the PHOREAU model. Also shown are the yearly basal area loss rates, calculated relative to the initial basal 
area for two distinct time periods in each simulation, along with the total basal area dieback per hectare (Gdead). 
Transparent bars indicate years with thinnings (see Appendices Q and R for details), which are excluded from 
the mortality statistics. Refer to Fig. 8 for species and cohort color codes. 
 
 

N = 99.45

No Data

0.48%  0.65%  0.68%  1.5%  

Gdead = 2.99 m2/ha Gdead = 5.44 m2/ha Gdead = 1.51 m2/ha Gdead = 2.11 m2/ha

0.55%  0.97%  0.82%  1.32%  

0.82%  1.29%  

Gdead = 3.91 m2/ha

0.32%  0.53%  1.43%  1.76%  

Gdead = 0.76 m2/ha Gdead = 2.89 m2/ha

Fig. X | Predicted versus observed
evolution annual stand basal area
loss due to mortality. For each
simulation site, the bars depict the
summed annual total basal area (m2/ha)
of all dead trees, broken down by
species and size class (refer to Annex X
for details). Observed values are
derived from stand inventories, while
predicted values are generated by the
PHOREAU model. Also shown are the
yearly basal area loss rates, calculated
relative to the initial basal area for two
distinct time periods in each simulation,
along with the total basal area dieback
per hectare (Gdead). Transparent bars
indicate years with thinnings (see Annex
X for details), which are excluded from
the the mortality statistics.
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Figure W5 | Predicted versus observed daily real evapotranspiration (ETR) and Transpiration. For each 
simulation site, the plain blue line is the regression line of the linear model of the relationship between observed 
and predicted stand daily ETR (or transpiration for Hesse), with confidence interval represented with the grey 
dashed lines; the dashed red line is the 1:1 line. See Table S11 associated statistics. Color code for the seasons 
as follows:   ,Winter;    ,Spring;    ,Summer;    ,Autumn 
 

Pearson Correlation : 0.74***

Mean Deviation : 0.16

RMSE : 1.7

Nobs : 1319

Pearson Correlation : 0.79***

Mean Deviation : - 0.24
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Pearson Correlation : 0.64***

Mean Deviation : 0.03

RMSE : 0.84

Nobs : 6105

Pearson Correlation : 0.48***

Mean Deviation : - 0.17

RMSE : 0.91

Nobs : 4739



 72 

 
 
 
 1995 
 
 
 
 
 2000 
 
 

M
in

im
um

 st
em

 w
at

er
 p

ot
en

tia
l (

M
Pa

 p
er

 d
ay

)
M

in
im

um
 st

em
 w

at
er

 p
ot

en
tia

l (
M

Pa
 p

er
 d

ay
)

M
in

im
um

 st
em

 w
at

er
 p

ot
en

tia
l (

M
Pa

 p
er

 d
ay

)
Pr

ed
aw

n 
ste

m
 w

at
er

 p
ot

en
tia

l (
M

Pa
 p

er
 d

ay
)

Figure W6 | Evolution of predicted versus observed stem water potentials. For the dominant species of the 
four ICOS simulations, the blue line depicts the daily evolution of the stem water potentials (MPa) generated by 
the PHOREAU model and averaged over the aggregate trees of the species (refer to Appendix G for details on 
the aggregation method). The red points represent the observed water potentials, limited to the years for which 
observational data is available (data sources are detailed in Table 1, and associated statistics in Table S10). For 
Puéchabon, Font Blanche and Barbeau sites, the minimum daily observed and predicted water potentials are 
shown. For Hesse, where only predawn observations are available, the maximum predicted water potential is 
used instead. 
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No Data

Pearson Correlation : 0.92***

Mean Deviation : - 46.98

RMSE : 56.37

Nobs : 462

Pearson Correlation : 0.8***

Mean Deviation : 15.4

RMSE : 25.7

Nobs : 2648

Pearson Correlation : 0.86***

Mean Deviation : 1.03

RMSE : 10.5

Nobs : 2232

Fig. X | Predicted versus observed
soil water quantity (SWC). For each
simulation site, the plain blue line is
the regression line of the linear model
of the relationship between observed
and predicted SWC, with confidence
interval represented with the grey
dashed lines; the dashed red line is
the 1:1 line. See Annex X for definition
of associated statistics. Colour code
for the seasons as follows :
,Winter;    ,Spring;    ,Summer;    ,Autumn

Pearson Correlation : 0.78***

Mean Deviation : - 31.38

RMSE : 83.44

Nobs : 1591

Depth : 0-150 cm Depth : 0-50 cm

Depth : 0-150 cm Depth : 0-150 cm

Figure W7 | Predicted versus observed soil water quantity (SWC). For each simulation site, the plain blue 
line is the regression line of the linear model of the relationship between observed and predicted SWC, with 
confidence interval represented with the grey dashed lines; the dashed red line is the 1:1 line. See Table S12 for 
associated statistics. Color code for the seasons as follows:  
  ,Winter;    ,Spring;    ,Summer;    ,Autumn 
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 2005 

 
  

Fig. X | Predicted versus observed
evolution of aggregate daily
species transpiration. For each
simulation site, the blue line depicts
the aggregated daily transpiration
(mm) generated by PHOREAU from all
the trees of the given species. The red
line depicts the observed daily
transpiration value for this species,
upscaled from sapflow measurements
made for individual trees using stand
LAI and species leaf area to sapwood
area ratios.

Figure W8 | Predicted versus observed evolution of aggregate daily species transpiration. For each 
simulation site, the blue line depicts the aggregated daily transpiration (mm) generated by PHOREAU from 
all the trees of the given species. The red line depicts the observed daily transpiration value for this species, 
upscaled from sapflow measurements made for individual trees using stand LAI and species leaf area to 
sapwood area ratios.  
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  2010 

Pearson Correlation : 0.81***

Mean Deviation : - 0.03

RMSE : 0.52

Nobs : 5193

No Data

Pearson Correlation : 0.78***

Mean Deviation : - 0.15

RMSE : 1.68

Nobs : 1289

Pearson Correlation : 0.72***

Mean Deviation : - 0.09

RMSE : 0.36

Nobs : 3027

Pearson Correlation : 0.69***

Mean Deviation : - 0.27

RMSE : 0.52

Nobs : 2876

Fig. X | Predicted versus observed
species aggregate daily
transpirations. For each simulation
site, the plain blue line is the
regression line of the linear model of
the relationship between observed and
predicted species aggregate daily
transpiration (mm), with confidence
interval represented with the grey
dashed lines; the dashed red line is
the 1:1 line. See Annex X for definition
of associated statistics. Colour code
for the seasons as follows :
,Winter;    ,Spring;    ,Summer;    ,Autumn

Figure W9 | Predicted versus observed species aggregate daily transpirations. For each simulation site, 
the plain blue line is the regression line of the linear model of the relationship between observed and predicted 
species aggregate daily transpiration (mm), with confidence interval represented with the grey dashed lines; 
the dashed red line is the 1:1 line. See Table S8 for associated statistics. Color code for the seasons as follows:  
  ,Winter;    ,Spring;    ,Summer;    ,Autumn 
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Pearson Correlation : 0.95***

Mean Deviation : - 0.67

RMSE : 0.8

Nobs : 88

Pearson Correlation : 0.83*

Mean Deviation : 0.018

RMSE : 0.53

Nobs : 5

Pearson Correlation : 0.78***

Mean Deviation : 0.61

RMSE : 1.16

Nobs : 93

Pearson Correlation : 0.65***

Mean Deviation : -0.08

RMSE : 0.25

Nobs : 54

Fig. X | Predicted versus observed
daily stem water potential. For each
dominant species of the four simulation
sites, each point represents a day with
water potential observations (mPa),
plotted against its corresponding
predicted value by the PHOREAU
model. For Puéchabon, Font Blanche
and Barbeau minimum daily water
potential is plotted, while the predawn
potentials are shown for the Hesse site.
The plain blue line is the regression line
of the linear model of the relationship
between observed and predicted water
potential, with confidence interval
represented with the grey dashed lines;
the dashed red line is the 1:1 line. See
Annex X for definition of associated
statistics. Colour code for the seasons
as follows :
,Winter;    ,Spring;    ,Summer;    ,Autumn

Figure W10 | Predicted versus observed daily stem water potential. For each dominant species of the four 
simulation sites, each point represents a day with water potential observations (mPa), plotted against its 
corresponding predicted value by the PHOREAU model. For Puéchabon, Font Blanche and Barbeau minimum 
daily water potential is plotted, while the predawn potentials are shown for the Hesse site. The plain blue line 
is the regression line of the linear model of the relationship between observed and predicted water potential, 
with confidence interval represented with the grey dashed lines; the dashed red line is the 1:1 line. See Table 
S10 for associated statistics. Color code for the seasons as follows:  
  ,Winter;    ,Spring;    ,Summer;    ,Autumn 
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Figure W11 | Regressions of PHOREAU stand 
basal area increment (BAI) prediction errors 
against site characteristics. For each of the 340 
simulation inventories, the mean annual BAI 
prediction error, color coded by site dominant species 
(see legend in bottom left) is plotted against : (a) 
Mean annual degree day sum (°C); (b) mean annual 
temperature (°C); (c) mean annual precipitation sum 
(mm/year); (d) soil maximum available water 
capacity (cm); (e) length of simulation; (f) initial 
inventory basal area (m2/ha). (g) initial stand density 
(trees/ha). The plain blue line is the regression line of 
the linear model of the relationship between 
prediction error and stand characteristic, with slope 
value and significance in top left, along with Pearson 
correlation. 
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Fig. X | Projected (by PHOREAU) against observed litter leaf area index (LAI) for available
RENECOFOR inventories. The y-axis shows the LAI predicted by the model from the stand inventory at
the start of the simulation, while the x-axis represents the LAI value infered from litter collection for the
maching coordinate and closest available year. Stand points are color coded by dominant species (see
legend in bottom left). The size of points shows inventory basal area. The dashed red-line is the 1:1 line;
the black full line represent the regression line of the linear model between observed and predicted LAI,
with confidence interval represented by the grey shaded area. Associated statistics in top left.
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Figure W12 | Predicted (by PHOREAU) against observed litter leaf area index (LAI) for available 
RENECOFOR inventories. The y-axis shows the LAI predicted by the model from the stand inventory 
at the start of the simulation, while the x-axis represents the LAI value infered from litter collection for 
the maching coordinate and closest available year. Stand points are color coded by dominant species (see 
legend in bottom left). The size of points shows inventory basal area. The dashed red-line is the 1:1 line; 
the black full line represent the regression line of the linear model between observed and predicted LAI, 
with confidence interval represented by the grey shaded area. Associated statistics in Table S7. 
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Fig. S2 | Projected (by ForCEEPS) against observed mean annual stand basal increments (BAI) for
all 340 RENECOFOR and ICP II validation inventories. Stand points are color coded by dominant species
(see legend above). The dashed red-line is the 1:1 line; other full lines represent the regression lines of the
linear model between observed and predicted stand productivity, with confidence intervals represented by
the grey shaded area (in black the overall regression; coloured lines for species-specific regressions).
Associated statistics for the global simulation in top left, while species-specific statistics can be found in
Table S2.

S17 Figure W13 | Predicted (by ForCEEPS) against observed mean annual stand basal increments (BAI) 
for all 340 RENECOFOR and ICP II validation inventories. Stand points are color coded by dominant species 
(see legend above). The dashed red-line is the 1:1 line; other full lines represent the regression lines of the 
linear model between observed and predicted stand productivity, with confidence intervals represented by the 
grey shaded area (in black the overall regression; coloured lines for species-specific regressions). Associated 
statistics for the global simulation in top left, while species-specific statistics can be found in Table S2. 
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RMSE: 3.42433 
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Pearson Correlation: 0.175**
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Fig. S3 | Projected (by ForCEEPS) against observed satellite leaf area index (LAI) for all 340
RENECOFOR and ICP II validation inventories. The y-axis shows the LAI predicted by the model from the
stand inventory at the start of the simulation, while the x-axis represents the PROBA-V LAI value for the
maching coordinate and inventory year, averaged between July, August and September. Stand points are
color coded by dominant species (see legend in bottom left). The size of points shows inventory basal
area. The dashed red-line is the 1:1 line; the black full line represent the regression line of the linear model
between observed and predicted LAI, with confidence interval represented by the grey shaded area.
Associated statistics in top left.
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S18 Figure W14 | Predicted (by ForCEEPS) against observed satellite leaf area index (LAI) for all 340 
RENECOFOR and ICP II validation inventories. The y-axis shows the LAI predicted by the model from 
the stand inventory at the start of the simulation, while the x-axis represents the PROBA-V LAI value for 
the maching coordinate and inventory year, averaged between July, August and September. Stand points 
are color coded by dominant species (see legend in bottom left). The size of points shows inventory basal 
area. The dashed red-line is the 1:1 line; the black full line represent the regression line of the linear 
model between observed and predicted LAI, with confidence interval represented by the grey shaded 
area. Associated statistics in Table S6. 
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Fig. X | Projected community compositions after long-term PHOREAU simulations. For the 250
tested sites of the PNV validation, each pie graph represents the basal area repartition of simulated
species after 2000 years (see legend in bottom left for species color code). Prediction success (according
to PNV assumed dominant species) is represented by the color of the circle’s outer border. Green border :
sites for which the dominating species was accurately predicted. Yellow border : sites for which the
second-ranked species was accurately predicted, but not the dominating species. Red border : sites for
which neither the first-ranked nor second-ranked species were accurately predicted.

Accurate prediction (62%)
Partial prediction (24%)
False prediction (14%)

Figure W15 | Projected community compositions after long-term PHOREAU simulations. For the 250 
tested sites of the PNV validation, each pie graph represents the basal area repartition of simulated species after 
2000 years (see legend in bottom left for species color code). Prediction success (according to PNV assumed 
dominant species) is represented by the color of the circle’s outer border. Green border: sites for which the 
dominating species was accurately predicted. Yellow border: sites for which the second-ranked species was 
accurately predicted, but not the dominating species. Red border: sites for which neither the first-ranked nor 
second-ranked species were accurately predicted. 
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Fig. S4 | Diversity of height-to-diameter ratios among
study sites. For each species with sufficient data, for
each of the 245 RENECOFOR and ICP II study sites,
points show measured height against circumference of
individual trees present in PHOREAU simulation
inventories. Full lines, colored-coded by site, represent
local-regression curves used to calculate height for trees
with no height measurement. Height-to-diameter curves
were interpolated for each plot using a LOESS method n
tree measurements (not limited to simulation periods).
The dashed red line represents the ForCEEPS species
height-to-diameter formula. Predicted tree heights from
the formula were evaluated against measured tree
heights to produce associated statistics, detailed in Table
X.

S20 

S3. 

Figure W16 | Diversity of height-to-diameter ratios 
among study sites. For each species with sufficient data, 
for each of the 245 RENECOFOR and ICP II study sites, 
points show measured height against circumference of 
individual trees present in PHOREAU simulation 
inventories. Full lines, colored-coded by site, represent 
local-regression curves used to calculate height for trees 
with no height measurement. Height-to-diameter curves 
were interpolated for each plot using a LOESS method on 
tree measurements (not limited to simulation periods). The 
dashed red line represents the ForCEEPS species height-
to-diameter formula. Predicted tree heights from the 
formula were evaluated against measured tree heights to 
produce associated statistics, detailed in Table S3. 
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Figure W17 | Simulated 
distribution and sum of basal area 
(m2/ha), LAI and fine root area 
(m2/ha) at different steps of two 
1500 year-long simulation over 50 
independent 1000m2 mixed 
F.sylvatica and A. alba stands, 
starting from bare ground, using 
edaphic and climatic conditions 
from a beech-dominated Vosges 
stand (RENECOFOR HET 88, 
1969-2020). Yearly climates were 
sampled at random from historical 
data. For both the control (A) and 
acclimatization (B) scenarios, 
incoming rainfall was reduced by 
66% from the 1250th year onward. 
For the acclimatization scenario, an 
additional 33% reduction was 
applied between the 1000th and 
1250th year. When simulated 
without the new explicit root 
representation (results not shown), 
the acclimatization scenario did not 
overperform the control scenario.   
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Appendix Y: Evaluation against tree basal area increments 

PHOREAU demonstrated satisfactory predictive capability for tree-level mean annual basal area increment (BAI) 

across diverse species and climatic conditions throughout Europe (Fig. Y1). The model achieved a strong 

correlation between observed and predicted values (r = 0.68, p < 0.001, n = 81655; Table S4), with satisfactory 2040 

levels of prediction accuracy (RMSE = 0.00106, AB = 0.225, and AAB = 0.793). However, the model dampened 

the observed variability in tree growth, tending to underestimate the productivity of the most vigorous trees while 

simultaneously overestimating growth of the least productive trees. 

When assessed at the species level, the Pearson correlation coefficients varied substantially, from 0.14 for C. 

avellana to 0.913 for U. glabra (Table S4). Prediction accuracy also differed widely among species, with an 2045 

average RMSE of 0.00103 and an AB of 0.34. Correlation coefficients were generally higher for the 13 main 

species of the study (those that dominate at least one of the 340 simulation inventories) compared to secondary 

species (average r = 0.60 and 0.53, respectively), with a pronounced tendency for the model to underestimate the 

productivity of these secondary, generally understory species, whose growth rates were not recalibrated on forest 

growth data in the ForCEEPS study (Morin et al., 2021). 2050 

In comparison with the ForCEEPS model, which was applied to the same dataset (Fig. Y2, Table S4), PHOREAU 

demonstrated a moderately improved performance in predicting tree productivity. It yielded higher Pearson 

correlation coefficients, as well as lower RMSE and absolute errors. Despite these improvements, PHOREAU's 

predictions exhibited a comparatively greater average bias.  

 2055 
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Fig. X | Projected (by PHOREAU) against observed mean annual tree basal increments (BAI) for all
simulated trees over the 340 RENECOFOR and ICP II validation inventories. Tree points are color coded
by species (see legend above). The dashed red-line is the 1:1 line; other full lines represent the regression
lines of the linear model between observed and predicted tree productivity, with confidence intervals
represented by the grey shaded area (in black the overall regression; coloured lines for species-specific
regressions). Species-specific regressions are only shown for stand dominant species (in bold in legend)
Associated statistics for the global simulation in top left, while species-specific statistics can be found in
Table S1.

16 Figure Y1 | Projected (by PHOREAU) against observed mean annual tree basal increments (BAI) for all 
simulated trees over the 340 RENECOFOR and ICP II validation inventories. Tree points are color coded by 
species (see legend above). The dashed red-line is the 1:1 line; other full lines represent the regression lines of 
the linear model between observed and predicted tree productivity, with confidence intervals represented by 
the grey shaded area (in black the overall regression; coloured lines for species-specific regressions). Species-
specific regressions are only shown for stand dominant species (in bold in legend) Associated statistics for the 
global simulation in top left, while species-specific statistics can be found in Table S1. 
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Pearson correlation : 0.621***

RMSE : 0.00129
Average Bias : 0.051
n : 81655

C. sativa (1389)
C. betulus (6472)
U. glabra (61)

T. baccata (2)
S. aucuparia (140)
S. aria (72)
S. alba (25) 

Q. ilex (958)
P. menziesii (1190)
P. tremula (45)
Pop. nigra (4)
P. sylvestris (15152)
P. pinaster (2515)

P. halepensis (289)

P. abies (11388)

F. excelsior (477) 
A. platanoides (20) 

A. incana (14)

A. pseudoplatan. (496)

A. campestre (85) 

A. glutinosa (10) T. cordata (100)

Q. robur (3891)

P. cembra (23)

L. decidua (780)

B. pendula (1165)
C. avellana (571)

A. Alba (7434)  

Pin. nigra (872)

F. sylvatica (19718) 

P. montana (1) Q. petraea (5128)

Fig. S1 | Projected (by ForCEEPS) against observed mean annual tree basal increments (BAI) for all
simulated trees over the 340 RENECOFOR and ICP II validation inventories. Tree points are color coded
by species (see legend above). The dashed red-line is the 1:1 line; other full lines represent the regression
lines of the linear model between observed and predicted tree productivity, with confidence intervals
represented by the grey shaded area (in black the overall regression; coloured lines for species-specific
regressions). Species-specific regressions are only shown for stand dominant species (in bold in legend).
Associated statistics for the global simulation in top left, while species-specific statistics can be found in
Table S1.

S16 Figure Y2 | Predicted (by ForCEEPS) against observed mean annual tree basal increments (BAI) for all 
simulated trees over the 340 RENECOFOR and ICP II validation inventories. Tree points are color coded by 
species (see legend above). The dashed red-line is the 1:1 line; other full lines represent the regression lines of 
the linear model between observed and predicted tree productivity, with confidence intervals represented by 
the grey shaded area (in black the overall regression; coloured lines for species-specific regressions). Species-
specific regressions are only shown for stand dominant species (in bold in legend). Associated statistics for the 
global simulation in top left, while species-specific statistics can be found in Table S1. 
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Appendix Z: Summary of processes by original mode and time-step 
 

 
  

Main processes Original model Time step Manuscript sections
Tree establishment ForCEEPS + PHENOFIT year 2.1
Tree growth ForCEEPS year 2.1 & 2.4.3
Tree mortality ForCEEPS year 2.1 & 2.4.2
Phenology PHENOFIT day 2.3
Competition for light ForCEEPS day 2.1 & 2.4.3
Stress-induced defoliation ForCEEPS + PHENOFIT + SurEau day 2.4.3
Leaf frost injury PHENOFIT year 2.3
Stem cavitation SurEau hour 2.2
Root growth ForCEEPS + SurEau year 2.4.4
Stomatal transpiration SurEau hour 2.2
Precipitation, interception, and soil fluxes SurEau hour 2.3 & Appendix L
Tree water fluxes SurEau infra-hourly 2.2

Figure Z1 | Summary of processes by original model and time-step  
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7 Code and data availability 2070 
 
Species parameters, as well as the dataset used for model evaluation at the European scale (climate and soil files, 

as well as tree inventories) can be downloaded from the following open access Zenodo archive: 

https://doi.org/10.5281/zenodo.15241618 (Postic and Morin, 2025a). Data used for the evaluation of eco-

physiological processes at the local scale can be obtained upon request from the respective ICOS site PIs. 2075 

 

A standalone version of the PHOREAU model, with an example dataset corresponding to the four ICOS sites used 

in the ecophysiological validation, can be downloaded from the following open access Zenodo archive: 

https://doi.org/10.5281/zenodo.15260689 (Postic and Morin, 2025b).  

 2080 
8 Author contribution 
 
XM, TP and NM conceptualized the study. TP designed the PHOREAU model, realized the evaluation protocol, 

and wrote the first draft. FC, TP, NM, XM, IC implemented the PHOREAU model in Capsis. HC, NM, JR, FP 

and FC developed SurEau and implemented the version in Capsis. JML, JMO, EJ, MC, DB, ND, GS furnished 2085 

datasets for eco-physiological validation. LD contributed to model testing and figure design. All co-authors 

contributed to revising and writing the manuscript. 
 
9 Competing interests 
 2090 
The authors declare that they have no conflict of interest. 
 
10 Financial support 
 
This study has been financed by the project FISSA (forecasting forest socio-ecosystems’ sensitivity and adaptation 2095 

to climate change) (ANR-21-CE32-0010-01). Regarding SurEau’s developments and integration in Capsis, the 

work was partly supported by the network ‘PsiHub’, funded by the ECODIV department of INRAE, the H2020 

Project FORGENIUS (Improving access to FORest GENetic resources Information and services for end-USers) 

#862221 and the projects ANR TAW-TREE (ANR-23-CE01-0008) and DGF-ANR sTREssE : (ANR-24-CE92-

0068).  2100 

 
11 Acknowledgements 
 
The authors wish to thank the ICP Forests program for providing the European scale inventory data (same dataset 

used in Morin et al., 2025), and the Office National des Forêts and the RENECOFOR team, particularly Manuel 2105 

Nicolas and Marc Lanier, for providing their database. The ERA-5-Land database was provided by Copernicus 

with help from Victor Van der Meersch, and soil water retention data by the ESDAC database (Tóth et al., 2017). 

François Pimont contributed to the development of SurEau on the Capsis platform. The authors are also grateful 

to the Capsis modelling platform (http://www7.inra.fr/capsis/). The authors also wish to thank the teams involved 

in managing and collecting data from the ICOS sites: Damien Longepierre, Jean Kempf, Alexandre Morfin and 2110 

Charlotte Girardin. Finally, the authors are thankful for the collaboration with Eva Gril and Jonathan Lenoir in 

integrating a new microclimate module in PHOREAU. 



 90 

12 References 
 
Adler, P. B., Fajardo, A., Kleinhesselink, A. R., and Kraft, N. J. B.: Trait-based tests of coexistence mechanisms, 2115 
Ecol. Lett., 16, 1294–1306, https://doi.org/10.1111/ele.12157, 2013. 

Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., 
Rigling, A., Breshears, D. D., Hogg, E. H. (Ted), Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., 
Lim, J.-H., Allard, G., Running, S. W., Semerci, A., and Cobb, N.: A global overview of drought and heat-induced 
tree mortality reveals emerging climate change risks for forests, For. Ecol. Manag., 259, 660–684, 2120 
https://doi.org/10.1016/j.foreco.2009.09.001, 2010. 

Ammer, C.: Diversity and forest productivity in a changing climate, New Phytol., 221, 50–66, 
https://doi.org/10.1111/nph.15263, 2019. 

Anderegg, W. R. L., Plavcová, L., Anderegg, L. D. L., Hacke, U. G., Berry, J. A., and Field, C. B.: Drought’s 
legacy: multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future 2125 
risk, Glob. Change Biol., 19, 1188–1196, https://doi.org/10.1111/gcb.12100, 2013. 

Augspurger, C. K. and Bartlett, E. A.: Differences in leaf phenology between juvenile and adult trees in a temperate 
deciduous forest, Tree Physiol., 23, 517–525, https://doi.org/10.1093/treephys/23.8.517, 2003. 

Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of 
ecosystems: past, present and future, Glob. Change Biol., 9, 479–492, https://doi.org/10.1046/j.1365-2130 
2486.2003.00629.x, 2003. 

Bartlett, M. K., Scoffoni, C., and Sack, L.: The determinants of leaf turgor loss point and prediction of drought 
tolerance of species and biomes: a global meta-analysis, Ecol. Lett., 15, 393–405, https://doi.org/10.1111/j.1461-
0248.2012.01751.x, 2012. 

Bastick, C., Colin, A., Cuny, H., Bailly, A., Berthelot, A., Chaumet, M., Deroubaix, G., Ruch, P., Savagner, L., 2135 
and Vial, E.: Projection des disponibilités en bois et des stocks et flux de carbone du secteur forestier Francais 
(IGN), 2024. 

Bertrand, R., Lenoir, J., Piedallu, C., Riofrío-Dillon, G., de Ruffray, P., Vidal, C., Pierrat, J.-C., and Gégout, J.-
C.: Changes in plant community composition lag behind climate warming in lowland forests, Nature, 479, 517–
520, https://doi.org/10.1038/nature10548, 2011. 2140 

Betsch, P., Bonal, D., Breda, N., Montpied, P., Peiffer, M., Tuzet, A., and Granier, A.: Drought effects on water 
relations in beech: The contribution of exchangeable water reservoirs, Agric. For. Meteorol., 151, 531–543, 
https://doi.org/10.1016/j.agrformet.2010.12.008, 2011. 

Bigler, C. and Bugmann, H.: Climate-induced shifts in leaf unfolding and frost risk of European trees and shrubs, 
Sci. Rep., 8, 9865, https://doi.org/10.1038/s41598-018-27893-1, 2018. 2145 

Binkley, D., Campoe, O. C., Gspaltl, M., and Forrester, D. I.: Light absorption and use efficiency in forests: Why 
patterns differ for trees and stands, For. Ecol. Manag., 288, 5–13, https://doi.org/10.1016/j.foreco.2011.11.002, 
2013. 

Black, T. A., Chen, J.-M., Lee, X., and Sagar, R. M.: Characteristics of shortwave and longwave irradiances under 
a Douglas-fir forest stand, Can. J. For. Res., 21, 1020–1028, https://doi.org/10.1139/x91-140, 1991. 2150 

Blondeel, H., Guillemot, J., Martin-StPaul, N., Druel, A., Bilodeau-Gauthier, S., Bauhus, J., Grossiord, C., Hector, 
A., Jactel, H., Jensen, J., Messier, C., Muys, B., Serrano-León, H., Auge, H., Barsoum, N., Birhane, E., Bruelheide, 
H., Cavender-Bares, J., Chu, C., Cumming, J. R., Damtew, A., Eisenhauer, N., Ferlian, O., Fiedler, S., Ganade, 
G., Godbold, D. L., Gravel, D., Hall, J. S., Hölscher, D., Hulvey, K. B., Koricheva, J., Kreft, H., Lapadat, C., 
Liang, J., Liu, X., Meredieu, C., Mereu, S., Montgomery, R., Morillas, L., Nock, C., Paquette, A., Parker, J. D., 2155 
Parker, W. C., Paterno, G. B., Perring, M. P., Ponette, Q., Potvin, C., Reich, P. B., Rentch, J., Rewald, B., Sandén, 
H., Sinacore, K., Standish, R. J., Stefanski, A., Tobin, P. C., van Breugel, M., Fagundes, M. V., Weih, M., 
Williams, L. J., Zhou, M., Scherer-Lorenzen, M., Verheyen, K., and Baeten, L.: Tree diversity reduces variability 
in sapling survival under drought, J. Ecol., 112, 1164–1180, https://doi.org/10.1111/1365-2745.14294, 2024. 

Bohn, F. J. and Huth, A.: The importance of forest structure to biodiversity–productivity relationships, R. Soc. 2160 
Open Sci., 4, 160521, https://doi.org/10.1098/rsos.160521, 2017. 

Botkin, D. B., Janak, J. F., and Wallis, J. R.: Some Ecological Consequences of a Computer Model of Forest 
Growth, J. Ecol., 60, 849–872, https://doi.org/10.2307/2258570, 1972. 



 91 

Bourdier, T., Cordonnier, T., Kunstler, G., Piedallu, C., Lagarrigues, G., and Courbaud, B.: Tree Size Inequality 
Reduces Forest Productivity: An Analysis Combining Inventory Data for Ten European Species and a Light 2165 
Competition Model, PLOS ONE, 11, e0151852, https://doi.org/10.1371/journal.pone.0151852, 2016. 

Bréda, N., Soudan, K., and Bergonzini, J.-C.: Mesure de l’indice foliaire en forêt, 2002. 

Bréda, N., Huc, R., Granier, A., and Dreyer, E.: Temperate forest trees and stands under severe drought: a review 
of ecophysiological responses, adaptation processes and long-term consequences, Ann. For. Sci., 63, 625–644, 
https://doi.org/10.1051/forest:2006042, 2006. 2170 

Brethes, A. and Frankreich (Eds.): Renecofor - caracteristiques pedologiques des 102 peuplements du réseau: 
observations de 1994/95, Département des Recherches Techniques, Fontainebleau, 573 pp., 1997. 

Briere, M., François, C., Lebourgeois, F., Seynave, I., Vincent, G., Korboulewsky, N., Ningre, F., Perot, T., Perret, 
S., Calas, A., and Dufrêne, E.: Leaf area index estimation of even-aged oak ( Quercus petraea ) forests using in 
situ stand dendrometric parameters, Ecology, https://doi.org/10.1101/2021.08.05.454476, 2021. 2175 

Brodribb, T. J. and Holbrook, N. M.: Stomatal Closure during Leaf Dehydration, Correlation with Other Leaf  
Physiological  Traits, Plant Physiol., 132, 2166–2173, https://doi.org/10.1104/pp.103.023879, 2003. 

Brodribb, T. J., Holbrook, N. M., Edwards, E. J., and Gutiérrez, M. V.: Relations between stomatal closure, leaf 
turgor and xylem vulnerability in eight tropical dry forest trees, Plant Cell Environ., 26, 443–450, 
https://doi.org/10.1046/j.1365-3040.2003.00975.x, 2003. 2180 

Brodribb, T. J., Bowman, D. J. M. S., Nichols, S., Delzon, S., and Burlett, R.: Xylem function and growth rate 
interact to determine recovery rates after exposure to extreme water deficit, New Phytol., 188, 533–542, 
https://doi.org/10.1111/j.1469-8137.2010.03393.x, 2010. 

Brodribb, T. J., Powers, J., Cochard, H., and Choat, B.: Hanging by a thread? Forests and drought, Science, 368, 
261–266, https://doi.org/10.1126/science.aat7631, 2020. 2185 

Brunner, I., Herzog, C., Dawes, M. A., Arend, M., and Sperisen, C.: How tree roots respond to drought, Front. 
Plant Sci., 6, https://doi.org/10.3389/fpls.2015.00547, 2015. 

Bugmann, H.: A review of Forest Gap Models, Clim. Change, 51, 259–305, 
https://doi.org/10.1023/A:1012525626267, 2001. 

Bugmann, H. and Seidl, R.: The evolution, complexity and diversity of models of long-term forest dynamics, J. 2190 
Ecol., 110, 2288–2307, https://doi.org/10.1111/1365-2745.13989, 2022. 

Bugmann, H. K. M.: A Simplified Forest Model to Study Species Composition Along Climate Gradients, Ecology, 
77, 2055–2074, https://doi.org/10.2307/2265700, 1996. 

Bugmann, H. K. M. and Solomon, A. M.: Explaining Forest Composition and Biomass across Multiple 
Biogeographical Regions, Ecol. Appl., 10, 95–114, https://doi.org/10.2307/2640989, 2000. 2195 

Burger, H.: Holz, Blattmenge und Zuwachs. XI. Mitteilung. Die Tanne, 247–286, 1951. 

du Bus de Warnaffe, G. and Angerand, S.: Gestion Forestière et Changement Climatique : une nouvelle approche 
de la stratégie nationale d’atténuation, 2020. 

Cabon, A., Martínez-Vilalta, J., Martínez de Aragón, J., Poyatos, R., and De Cáceres, M.: Applying the eco-
hydrological equilibrium hypothesis to model root distribution in water-limited forests, Ecohydrology, 11, e2015, 2200 
https://doi.org/10.1002/eco.2015, 2018. 

Cabon, A., Fern, L., Woodruff, D. R., and Mart, J.: Water potential control of turgor‐driven tracheid enlargement 
in Scots pine at its xeric distribution edge, New Phytol., 2019. 

Cailleret, M., Jansen, S., Robert, E. M. R., Desoto, L., Aakala, T., Antos, J. A., Beikircher, B., Bigler, C., 
Bugmann, H., Caccianiga, M., Cada, V., Camarero, J. J., Cherubini, P., Cochard, H., Coyea, M. R., Cufar, K., Das, 2205 
A. J., Davi, H., Delzon, S., Dorman, M., Gea-Izquierdo, G., Gillner, S., Haavik, L. J., Hartmann, H., Heres, A.-
M., Hultine, K. R., Janda, P., Kane, J. M., Kharuk, V. I., Kitzberger, T., Klein, T., Kramer, K., Lens, F., Levanic, 
T., Linares Calderon, J. C., Lloret, F., Lobodo-Vale, R., Lombardi, F., Lopez Rodriguez, R., Makinen, H., Mayr, 
S., Meszaros, I., Metsaranta, J. M., Minunno, F., Oberhuber, W., Papadopoulos, A., Peltoniemi, M., Petritan, A. 
M., Rohner, B., Sanguesa-Barreda, G., Sarris, D., Smith, J. M., Stan, A. B., Sterck, F., Stojanovic, D. B., Suarez, 2210 
M. L., Svoboda, M., Tognetti, R., Torres-Ruiz, J. M., Trotsiuk, V., Villalba, R., Vodde, F., Westwood, A. R., 
Wyckoff, P. H., Zafirov, N., and Martinez-Vilalta, J.: A synthesis of radial growth patterns preceding tree 
mortality, Glob. Change Biol., 23, 1675–1690, https://doi.org/10.1111/gcb.13535, 2017. 



 92 

Cakpo, C. B., Ruffault, J., Dupuy, J.-L., Pimont, F., Doussan, C., Moreno, M., Jean, N., Jean, F., Burlett, R., 
Delzon, S., Trueba, S., Torres-Ruiz, J. M., Cochard, H., and Martin-StPaul, N.: Exploring the role of plant 2215 
hydraulics in canopy fuel moisture content: insights from an experimental drought study on Pinus halepensis Mill. 
and Quercus ilex L., Ann. For. Sci., 81, 26, https://doi.org/10.1186/s13595-024-01244-9, 2024. 

Canadell, J., Jackson, R. B., Ehleringer, J. B., Mooney, H. A., Sala, O. E., and Schulze, E.-D.: Maximum rooting 
depth of vegetation types at the global scale, Oecologia, 108, 583–595, https://doi.org/10.1007/BF00329030, 1996. 

del Castillo, J., Comas, C., Voltas, J., and Ferrio, J. P.: Dynamics of competition over water in a mixed oak-pine 2220 
Mediterranean forest: Spatio-temporal and physiological components, For. Ecol. Manag., 382, 214–224, 
https://doi.org/10.1016/j.foreco.2016.10.025, 2016. 

Caylor, K. K., Scanlon, T. M., and Rodriguez-Iturbe, I.: Ecohydrological optimization of pattern and processes in 
water-limited ecosystems: A trade-off-based hypothesis, Water Resour. Res., 45, 
https://doi.org/10.1029/2008WR007230, 2009. 2225 

Chapin III, F. S., Randerson, J. T., McGuire, A. D., Foley, J. A., and Field, C. B.: Changing feedbacks in the 
climate–biosphere system, Front. Ecol. Environ., 6, 313–320, https://doi.org/10.1890/080005, 2008. 

Chen, J. M., Mo, G., Pisek, J., Liu, J., Deng, F., Ishizawa, M., and Chan, D.: Effects of foliage clumping on the 
estimation of global terrestrial gross primary productivity, Glob. Biogeochem. Cycles, 26, 
https://doi.org/10.1029/2010GB003996, 2012. 2230 

Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R., Bucci, S. J., Feild, T. S., Gleason, S. 
M., Hacke, U. G., Jacobsen, A. L., Lens, F., Maherali, H., Martínez-Vilalta, J., Mayr, S., Mencuccini, M., Mitchell, 
P. J., Nardini, A., Pittermann, J., Pratt, R. B., Sperry, J. S., Westoby, M., Wright, I. J., and Zanne, A. E.: Global 
convergence in the vulnerability of forests to drought, Nature, 491, 752–755, https://doi.org/10.1038/nature11688, 
2012. 2235 

Choat, B., Brodribb, T. J., Brodersen, C. R., Duursma, R. A., López, R., and Medlyn, B. E.: Triggers of tree 
mortality under drought, Nature, 558, 531–539, https://doi.org/10.1038/s41586-018-0240-x, 2018. 

Chuine, I.: Why does phenology drive species distribution?, Philos. Trans. R. Soc. B Biol. Sci., 365, 3149–3160, 
https://doi.org/10.1098/rstb.2010.0142, 2010. 

Chuine, I. and Beaubien, E. G.: Phenology is a major determinant of tree species range, Ecol. Lett., 4, 500–510, 2240 
https://doi.org/10.1046/j.1461-0248.2001.00261.x, 2001. 

Chuine, I. and Régnière, J.: Process-Based Models of Phenology for Plants and Animals, Annu. Rev. Ecol. Evol. 
Syst., 48, 159–182, https://doi.org/10.1146/annurev-ecolsys-110316-022706, 2017. 

Chuine, I., de Cortazar-Atauri, I. G., Kramer, K., and Hänninen, H.: Chapter 15 Plant Phenology Models, in: 
Phenology: An Integrative Environmental Science, vol. 44, edited by: Schwartz, M. D., Springer Nature, 315–2245 
338, https://doi.org/10.1007/978-3-031-75027-4_14, 2024. 

Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A., and Schwartz, M. D.: Shifting plant phenology in response 
to global change, Trends Ecol. Evol., 22, 357–365, https://doi.org/10.1016/j.tree.2007.04.003, 2007. 

Cleveland, W. S. and Loader, C.: Smoothing by Local Regression: Principles and Methods, Heidelberg, Book 
Title: Statistical Theory and Computational Aspects of SmoothingDOI: 10.1007/978-3-642-48425-4_2, 10–49, 2250 
https://doi.org/10.1007/978-3-642-48425-4_2, 1996. 

Coates, K. D., Canham, C. D., Beaudet, M., Sachs, D. L., and Messier, C.: Use of a spatially explicit individual-
tree model (SORTIE/BC) to explore the implications of patchiness in structurally complex forests, For. Ecol. 
Manag., 186, 297–310, https://doi.org/10.1016/S0378-1127(03)00301-3, 2003. 

Cochard, H., Bréda, N., and Granier, A.: Whole tree hydraulic conductance and water loss regulation in Quercus 2255 
during drought: evidence for stomatal control of embolism?, Ann. Sci. For., 53, 197–206, 
https://doi.org/10.1051/forest:19960203, 1996. 

Cochard, H., Coll, L., Le Roux, X., and Améglio, T.: Unraveling the Effects of Plant Hydraulics on Stomatal 
Closure during Water Stress in Walnut, Plant Physiol., 128, 282–290, https://doi.org/10.1104/pp.010400, 2002. 

Cochard, H., Pimont, F., Ruffault, J., and Martin-StPaul, N.: SurEau: a mechanistic model of plant water relations 2260 
under extreme drought, Ann. For. Sci., 78, 55, https://doi.org/10.1007/s13595-021-01067-y, 2021a. 

Cochard, H., Pimont, F., Ruffault, J., and Martin-StPaul, N.: SurEau: a mechanistic model of plant water relations 
under extreme drought, Ann. For. Sci., 78, 55, https://doi.org/10.1007/s13595-021-01067-y, 2021b. 



 93 

Cole, E. F. and Sheldon, B. C.: The shifting phenological landscape: Within- and between-species variation in leaf 
emergence in a mixed-deciduous woodland, Ecol. Evol., 7, 1135–1147, https://doi.org/10.1002/ece3.2718, 2017. 2265 

Coomes, D. A. and Grubb, P. J.: Impacts of Root Competition in Forests and Woodlands: A Theoretical 
Framework and Review of Experiments, Ecol. Monogr., 70, 171–207, https://doi.org/10.1890/0012-
9615(2000)070[0171:IORCIF]2.0.CO;2, 2000. 

Cruiziat, P., Cochard, H., and Amiglio, T.: Hydraulic architecture of trees: main concepts and results, Ann. For. 
Sci., 59, 723–752, https://doi.org/10.1051/forest:2002060, 2002. 2270 

Cuntz, M., Joetzjer, E., Aiguier, T., Courtois, P., and Lily, J.: ETC L2 ARCHIVE, Hesse, 2021-12-31–2022-12-
31, 2023a. 

Cuntz, M., Joetzjer, E., Aiguier, T., Courtois, P., and Lily, J.: ETC L2 Fluxes, Hesse, 2021-12-31–2022-12-31, 
ICOS RI, 2023b. 

Cuntz, M., Joetzjer, E., Aiguier, T., Courtois, P., and Lily, J.: ETC L2 Fluxnet (half-hourly), Hesse, 2021-12-31–2275 
2022-12-31, ICOS RI, 2023c. 

Cuntz, M., Joetzjer, E., Aiguier, T., Courtois, P., and Lily, J.: ETC L2 Meteo, Hesse, 2021-12-31–2022-12-31, 
ICOS RI, 2023d. 

Cuntz, M., Joetzjer, E., Aiguier, T., Courtois, P., and Lily, J.: ETC L2 Meteosens, Hesse, 2021-12-31–2022-12-
31, ICOS RI, 2023e. 2280 

Curtis, R. O. 1982: A simple index of stand density for Douglas-fir., n.d. 

Dănescu, A., Albrecht, A. T., and Bauhus, J.: Structural diversity promotes productivity of mixed, uneven-aged 
forests in southwestern Germany, Oecologia, 182, 319–333, https://doi.org/10.1007/s00442-016-3623-4, 2016. 

Davi, H., Dufrêne, E., Granier, A., Le Dantec, V., Barbaroux, C., François, C., and Bréda, N.: Modelling carbon 
and water cycles in a beech forest, Ecol. Model., 185, 387–405, https://doi.org/10.1016/j.ecolmodel.2005.01.003, 2285 
2005a. 

Davi, H., Dufrêne, E., Granier, A., Le Dantec, V., Barbaroux, C., François, C., and Bréda, N.: Modelling carbon 
and water cycles in a beech forest: Part II.: Validation of the main processes from organ to stand scale, Ecol. 
Model., 185, 387–405, https://doi.org/10.1016/j.ecolmodel.2005.01.003, 2005b. 

De Cáceres, M., Mencuccini, M., Martin-StPaul, N., Limousin, J.-M., Coll, L., Poyatos, R., Cabon, A., Granda, 2290 
V., Forner, A., Valladares, F., and Martínez-Vilalta, J.: Unravelling the effect of species mixing on water use and 
drought stress in Mediterranean forests: A modelling approach, Agric. For. Meteorol., 296, 108233, 
https://doi.org/10.1016/j.agrformet.2020.108233, 2021. 

De Cáceres, M., Molowny-Horas, R., Cabon, A., Martínez-Vilalta, J., Mencuccini, M., García-Valdés, R., Nadal-
Sala, D., Sabaté, S., Martin-StPaul, N., Morin, X., D’Adamo, F., Batllori, E., and Améztegui, A.: MEDFATE 2295 
2.9.3: a trait-enabled model to simulate Mediterranean forest function and dynamics at regional scales, Geosci. 
Model Dev., 16, 3165–3201, https://doi.org/10.5194/gmd-16-3165-2023, 2023a. 

De Cáceres, M., Molowny-Horas, R., Cabon, A., Martínez-Vilalta, J., Mencuccini, M., García-Valdés, R., Nadal-
Sala, D., Sabaté, S., Martin-StPaul, N., Morin, X., D’Adamo, F., Batllori, E., and Améztegui, A.: MEDFATE 
2.9.3: a trait-enabled model to simulate Mediterranean forest function and dynamics at regional scales, Geosci. 2300 
Model Dev., 16, 3165–3201, https://doi.org/10.5194/gmd-16-3165-2023, 2023b. 

De Frenne, P., Lenoir, J., Luoto, M., Scheffers, B. R., Zellweger, F., Aalto, J., Ashcroft, M. B., Christiansen, D. 
M., Decocq, G., De Pauw, K., Govaert, S., Greiser, C., Gril, E., Hampe, A., Jucker, T., Klinges, D. H., Koelemeijer, 
I. A., Lembrechts, J. J., Marrec, R., Meeussen, C., Ogée, J., Tyystjärvi, V., Vangansbeke, P., and Hylander, K.: 
Forest microclimates and climate change: Importance, drivers and future research agenda, Glob. Change Biol., 27, 2305 
2279–2297, https://doi.org/10.1111/gcb.15569, 2021. 

Decarsin, R., Guillemot, J., Le Maire, G., Blondeel, H., Meredieu, C., Achard, E., Bonal, D., Cochard, H., Corso, 
D., Delzon, S., Doucet, Z., Druel, A., Grossiord, C., Torres‐Ruiz, J. M., Bauhus, J., Godbold, D. L., Hajek, P., 
Jactel, H., Jensen, J., Mereu, S., Ponette, Q., Rewald, B., Ruffault, J., Sandén, H., Scherer‐Lorenzen, M., Serrano‐
León, H., Simioni, G., Verheyen, K., Werner, R., and Martin‐StPaul, N.: Tree drought–mortality risk depends 2310 
more on intrinsic species resistance than on stand species diversity, Glob. Change Biol., 30, e17503, 
https://doi.org/10.1111/gcb.17503, 2024. 

Delagrange, S., Messier, C., Lechowicz, M. J., and Dizengremel, P.: Physiological, morphological and allocational 
plasticity in understory deciduous trees: importance of plant size and light availability, Tree Physiol., 24, 775–
784, https://doi.org/10.1093/treephys/24.7.775, 2004. 2315 



 94 

Delpierre, N., Dufrêne, E., Soudani, K., Ulrich, E., Cecchini, S., Boé, J., and François, C.: Modelling interannual 
and spatial variability of leaf senescence for three deciduous tree species in France, Agric. For. Meteorol., 149, 
938–948, https://doi.org/10.1016/j.agrformet.2008.11.014, 2009. 

Delpierre, N., Berveiller, D., Granda, E., and Dufrêne, E.: Wood phenology, not carbon input, controls the 
interannual variability of wood growth in a temperate oak forest, New Phytol., 210, 459–470, 2320 
https://doi.org/10.1111/nph.13771, 2016. 

Delzon, S. and Cochard, H.: Recent advances in tree hydraulics highlight the ecological significance of the 
hydraulic safety margin, New Phytol., 203, 355–358, https://doi.org/10.1111/nph.12798, 2014. 

Demarez, V., Duthoit, S., Baret, F., Weiss, M., and Dedieu, G.: Estimation of leaf area and clumping indexes of 
crops with hemispherical photographs, Agric. For. Meteorol., 148, 644–655, 2325 
https://doi.org/10.1016/j.agrformet.2007.11.015, 2008. 

Devresse, L., Coligny, F. de, Way, F., and Morin, X.: A Process-based Model Approach to test for evolutionary 
rescue in forest ecosystems under climate change, 2024. 

Didion, M., Kupferschmid, A. D., Zingg, A., Fahse, L., and Bugmann, H.: Gaining local accuracy while not losing 
generality — extending the range of gap model applications, Can. J. For. Res., 39, 1092–1107, 2330 
https://doi.org/10.1139/X09-041, 2009. 

Dobbertin, M. and Brang, P.: Crown defoliation improves tree mortality models, For. Ecol. Manag., 141, 271–
284, https://doi.org/10.1016/S0378-1127(00)00335-2, 2001. 

Dufour-Kowalski, S., Courbaud, B., Dreyfus, P., Meredieu, C., and De Coligny, F.: Capsis: an open software 
framework and community for forest growth modelling, Ann. For. Sci., 69, 221–233, 2335 
https://doi.org/10.1007/s13595-011-0140-9, 2012. 

Dufrêne, E. and Bréda, N.: Estimation of deciduous forest leaf area index using direct and indirect methods, 
Oecologia, 104, 156–162, https://doi.org/10.1007/BF00328580, 1995. 

Dufrene, E., Davi, H., François, C., Maire, G. L., Dantec, V. L., and Granier, A.: Modelling carbon and water 
cycles in a beech forest Part I : model description and uncertainty analysis on modelled NEE, 2005. 2340 

Eagleson, P. S.: Ecological optimality in water-limited natural soil-vegetation systems: 1. Theory and hypothesis, 
Water Resour. Res., 18, 325–340, https://doi.org/10.1029/WR018i002p00325, 1982. 

Ellenberg, H.: Vegetation Mitteleuropas mit den Alpen - Verlag Eugen Ulmer, 1986. 

Eller, C. B., Rowland, L., Mencuccini, M., Rosas, T., Williams, K., Harper, A., Medlyn, B. E., Wagner, Y., Klein, 
T., Teodoro, G. S., Oliveira, R. S., Matos, I. S., Rosado, B. H. P., Fuchs, K., Wohlfahrt, G., Montagnani, L., Meir, 2345 
P., Sitch, S., and Cox, P. M.: Stomatal optimization based on xylem hydraulics (SOX) improves land surface 
model simulation of vegetation responses to climate, New Phytol., 226, 1622–1637, 
https://doi.org/10.1111/nph.16419, 2020. 

Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B., and Otero-Casal, C.: Hydrologic regulation of plant 
rooting depth, Proc. Natl. Acad. Sci., 114, 10572–10577, https://doi.org/10.1073/pnas.1712381114, 2017. 2350 

Fang, H., Baret, F., Plummer, S., and Schaepman-Strub, G.: An Overview of Global Leaf Area Index (LAI): 
Methods, Products, Validation, and Applications, Rev. Geophys., 57, 739–799, 
https://doi.org/10.1029/2018RG000608, 2019. 

Feng, F., Losso, A., Tyree, M., Zhang, S., and Mayr, S.: Cavitation fatigue in conifers: a study on eight European 
species, Plant Physiol., 186, 1580–1590, https://doi.org/10.1093/plphys/kiab170, 2021. 2355 

Fisher, R. A., Muszala, S., Verteinstein, M., Lawrence, P., Xu, C., McDowell, N. G., Knox, R. G., Koven, C., 
Holm, J., Rogers, B. M., Spessa, A., Lawrence, D., and Bonan, G.: Taking off the training wheels: the properties 
of a dynamic vegetation model without climate envelopes, CLM4.5(ED), Geosci. Model Dev., 8, 3593–3619, 
https://doi.org/10.5194/gmd-8-3593-2015, 2015. 

Fisher, R. A., Koven, C. D., Anderegg, W. R. L., Christoffersen, B. O., Dietze, M. C., Farrior, C. E., Holm, J. A., 2360 
Hurtt, G. C., Knox, R. G., Lawrence, P. J., Lichstein, J. W., Longo, M., Matheny, A. M., Medvigy, D., Muller-
Landau, H. C., Powell, T. L., Serbin, S. P., Sato, H., Shuman, J. K., Smith, B., Trugman, A. T., Viskari, T., 
Verbeeck, H., Weng, E., Xu, C., Xu, X., Zhang, T., and Moorcroft, P. R.: Vegetation demographics in Earth 
System Models: A review of progress and priorities, Glob. Change Biol., 24, 35–54, 
https://doi.org/10.1111/gcb.13910, 2018. 2365 

Forrester, D. I.: The spatial and temporal dynamics of species interactions in mixed-species forests: From pattern 



 95 

to process, For. Ecol. Manag., 312, 282–292, https://doi.org/10.1016/j.foreco.2013.10.003, 2014. 

Forrester, D. I. and Bauhus, J.: A Review of Processes Behind Diversity—Productivity Relationships in Forests, 
Curr. For. Rep., 2, 45–61, https://doi.org/10.1007/s40725-016-0031-2, 2016. 

Forrester, D. I. and Pretzsch, H.: Tamm Review: On the strength of evidence when comparing ecosystem functions 2370 
of mixtures with monocultures, For. Ecol. Manag., 356, 41–53, https://doi.org/10.1016/j.foreco.2015.08.016, 
2015. 

Fortin, M., van couwenberghe, R., Perez, V., and Piedallu, C.: Evidence of climate effects on the height-diameter 
relationships of tree species, Ann. For. Sci., 76, https://doi.org/10.1007/s13595-018-0784-9, 2019. 

Freschet, G. T., Pagès, L., Iversen, C. M., Comas, L. H., Rewald, B., Roumet, C., Klimešová, J., Zadworny, M., 2375 
Poorter, H., Postma, J. A., Adams, T. S., Bagniewska-Zadworna, A., Bengough, A. G., Blancaflor, E. B., Brunner, 
I., Cornelissen, J. H. C., Garnier, E., Gessler, A., Hobbie, S. E., Meier, I. C., Mommer, L., Picon-Cochard, C., 
Rose, L., Ryser, P., Scherer-Lorenzen, M., Soudzilovskaia, N. A., Stokes, A., Sun, T., Valverde-Barrantes, O. J., 
Weemstra, M., Weigelt, A., Wurzburger, N., York, L. M., Batterman, S. A., Gomes de Moraes, M., Janeček, Š., 
Lambers, H., Salmon, V., Tharayil, N., and McCormack, M. L.: A starting guide to root ecology: strengthening 2380 
ecological concepts and standardising root classification, sampling, processing and trait measurements, New 
Phytol., 232, 973–1122, https://doi.org/10.1111/nph.17572, 2021. 

Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W., Pongratz, J., 
Sitch, S., Le Quéré, C., Bakker, D. C. E., Canadell, J. G., Ciais, P., Jackson, R. B., Anthoni, P., Barbero, L., Bastos, 
A., Bastrikov, V., Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevallier, F., Chini, L. P., Currie, K. I., 2385 
Feely, R. A., Gehlen, M., Gilfillan, D., Gkritzalis, T., Goll, D. S., Gruber, N., Gutekunst, S., Harris, I., Haverd, V., 
Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A. K., Joetzjer, E., Kaplan, J. O., Kato, E., Klein Goldewijk, K., 
Korsbakken, J. I., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Marland, 
G., McGuire, P. C., Melton, J. R., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Neill, C., Omar, A. 
M., Ono, T., Peregon, A., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., 2390 
Séférian, R., Schwinger, J., Smith, N., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F. N., van der Werf, G. R., 
Wiltshire, A. J., and Zaehle, S.: Global Carbon Budget 2019, Earth Syst. Sci. Data, 11, 1783–1838, 
https://doi.org/10.5194/essd-11-1783-2019, 2019. 

Fuchs, S., Hertel, D., Schuldt, B., and Leuschner, C.: Effects of Summer Drought on the Fine Root System of Five 
Broadleaf Tree Species along a Precipitation Gradient, Forests, 11, 289, https://doi.org/10.3390/f11030289, 2020. 2395 

Fuster, B., Sánchez-Zapero, J., Camacho, F., García-Santos, V., Verger, A., Lacaze, R., Weiss, M., Baret, F., and 
Smets, B.: Quality Assessment of PROBA-V LAI, fAPAR and fCOVER Collection 300 m Products of Copernicus 
Global Land Service, Remote Sens., 12, 1017, https://doi.org/10.3390/rs12061017, 2020. 

Fyllas, N. M., Gloor, E., Mercado, L. M., Sitch, S., Quesada, C. A., Domingues, T. F., Galbraith, D. R., Torre-
Lezama, A., Vilanova, E., Ramírez-Angulo, H., Higuchi, N., Neill, D. A., Silveira, M., Ferreira, L., Aymard C., 2400 
G. A., Malhi, Y., Phillips, O. L., and Lloyd, J.: Analysing Amazonian forest productivity using a new individual 
and trait-based model (TFS v.1), Geosci. Model Dev., 7, 1251–1269, https://doi.org/10.5194/gmd-7-1251-2014, 
2014. 

Gavinet, J., Ourcival, J., and Limousin, J.: Rainfall exclusion and thinning can alter the relationships between 
forest functioning and drought, New Phytol., 223, 1267–1279, https://doi.org/10.1111/nph.15860, 2019a. 2405 

Gavinet, J., Ourcival, J.-M., and Limousin, J.-M.: Rainfall exclusion and thinning can alter the relationships 
between forest functioning and drought, New Phytol., 223, 1267–1279, https://doi.org/10.1111/nph.15860, 2019b. 

Gieger, T. and Thomas, F. M.: Effects of defoliation and drought stress on biomass partitioning and water relations 
of Quercus robur and Quercus petraea, Basic Appl. Ecol., 3, 171–181, https://doi.org/10.1078/1439-1791-00091, 
2002. 2410 

Gielen, B., Acosta, M., Altimir, N., Buchmann, N., Cescatti, A., Ceschia, E., Fleck, S., Hörtnagl, L., Klumpp, K., 
Kolari, P., Lohila, A., Loustau, D., Marañon-Jimenez, S., Manise, T., Matteucci, G., Merbold, L., Metzger, C., 
Moureaux, C., Montagnani, L., Nilsson, M. B., Osborne, B., Papale, D., Pavelka, M., Saunders, M., Simioni, G., 
Soudani, K., Sonnentag, O., Tallec, T., Tuittila, E.-S., Peichl, M., Pokorny, R., Vincke, C., and Wohlfahrt, G.: 
Ancillary vegetation measurements at ICOS ecosystem stations, Int. Agrophysics, 32, 645–664, 2415 
https://doi.org/10.1515/intag-2017-0048, 2018. 

Gill, D. S., Amthor, J. S., and Bormann, F. H.: Leaf phenology, photosynthesis, and the persistence of saplings 
and shrubs in a mature northern hardwood forest, Tree Physiol., 18, 281–289, 
https://doi.org/10.1093/treephys/18.5.281, 1998. 



 96 

Givnish, T. J.: Adaptation to Sun and Shade: a Whole-Plant Perspective, Funct. Plant Biol., 15, 63–92, 2420 
https://doi.org/10.1071/pp9880063, 1988. 

Gotelli, N. J. and Graves, G. R.: Null Models in Ecology, 1996. 

Granier, A., Bréda, N., Biron, P., and Villette, S.: A lumped water balance model to evaluate duration and intensity 
of drought constraints in forest stands, Ecol. Model., 116, 269–283, https://doi.org/10.1016/S0304-
3800(98)00205-1, 1999. 2425 

Granier, A., Biron, P., and Lemoine, D.: Water balance, transpiration and canopy conductance in two beech stands, 
Agric. For. Meteorol., 100, 291–308, https://doi.org/10.1016/S0168-1923(99)00151-3, 2000. 

Granier, A., Bréda, N., Longdoz, B., Gross, P., and Ngao, J.: Ten years of fluxes and stand growth in a young 
beech forest at Hesse, North-eastern France, Ann. For. Sci., 65, 704–704, https://doi.org/10.1051/forest:2008052, 
2008. 2430 

Gratani, L.: Plant Phenotypic Plasticity in Response to Environmental Factors, Adv. Bot., 2014, 1–17, 
https://doi.org/10.1155/2014/208747, 2014. 

Greenwood, S., Ruiz-Benito, P., Martínez-Vilalta, J., Lloret, F., Kitzberger, T., Allen, C. D., Fensham, R., 
Laughlin, D. C., Kattge, J., Bönisch, G., Kraft, N. J. B., and Jump, A. S.: Tree mortality across biomes is promoted 
by drought intensity, lower wood density and higher specific leaf area, Ecol. Lett., 20, 539–553, 2435 
https://doi.org/10.1111/ele.12748, 2017. 

Gressler, E., Jochner, S., Capdevielle-Vargas, R. M., Morellato, L. P. C., and Menzel, A.: Vertical variation in 
autumn leaf phenology of Fagus sylvatica L. in southern Germany, Agric. For. Meteorol., 201, 176–186, 
https://doi.org/10.1016/j.agrformet.2014.10.013, 2015. 

Grier, C. G. and Running, S. W.: Leaf Area of Mature Northwestern Coniferous Forests: Relation to Site Water 2440 
Balance, Ecology, 58, 893–899, https://doi.org/10.2307/1936225, 1977. 

Gril, E., Spicher, F., Greiser, C., Ashcroft, M. B., Pincebourde, S., Durrieu, S., Nicolas, M., Richard, B., Decocq, 
G., Marrec, R., and Lenoir, J.: Slope and equilibrium: A parsimonious and flexible approach to model 
microclimate, Methods Ecol. Evol., 14, 885–897, https://doi.org/10.1111/2041-210X.14048, 2023a. 

Gril, E., Laslier, M., Gallet-Moron, E., Durrieu, S., Spicher, F., Vincent, L. R., Brasseur, B., Haesen, S., Meerbeek, 2445 
K., Decocq, G., Marrec, R., and Lenoir, J.: Using airborne LiDAR to map forest microclimate temperature 
buffering or amplification, Remote Sens. Environ., 298, 113820, https://doi.org/10.1016/j.rse.2023.113820, 
2023b. 

Guerrero-Ramírez, N. R., Mommer, L., Freschet, G. T., Iversen, C. M., McCormack, M. L., Kattge, J., Poorter, 
H., van der Plas, F., Bergmann, J., Kuyper, T. W., York, L. M., Bruelheide, H., Laughlin, D. C., Meier, I. C., 2450 
Roumet, C., Semchenko, M., Sweeney, C. J., van Ruijven, J., Valverde-Barrantes, O. J., Aubin, I., Catford, J. A., 
Manning, P., Martin, A., Milla, R., Minden, V., Pausas, J. G., Smith, S. W., Soudzilovskaia, N. A., Ammer, C., 
Butterfield, B., Craine, J., Cornelissen, J. H. C., de Vries, F. T., Isaac, M. E., Kramer, K., König, C., Lamb, E. G., 
Onipchenko, V. G., Peñuelas, J., Reich, P. B., Rillig, M. C., Sack, L., Shipley, B., Tedersoo, L., Valladares, F., 
van Bodegom, P., Weigelt, P., Wright, J. P., and Weigelt, A.: Global root traits (GRooT) database, Glob. Ecol. 2455 
Biogeogr., 30, 25–37, https://doi.org/10.1111/geb.13179, 2021. 

Guillemot, J. and Martin-StPaul, N.: Tree growth strategies mediate drought resistance in species-diverse forests, 
Tree Physiol., 44, tpae141, https://doi.org/10.1093/treephys/tpae141, 2024. 

Guillemot, J., Martin‐StPaul, N. K., Bulascoschi, L., Poorter, L., Morin, X., Pinho, B. X., Le Maire, G., R. L. 
Bittencourt, P., Oliveira, R. S., Bongers, F., Brouwer, R., Pereira, L., Gonzalez Melo, G. A., Boonman, C. C. F., 2460 
Brown, K. A., Cerabolini, B. E. L., Niinemets, Ü., Onoda, Y., Schneider, J. V., Sheremetiev, S., and Brancalion, 
P. H. S.: Small and slow is safe: On the drought tolerance of tropical tree species, Glob. Change Biol., 28, 2622–
2638, https://doi.org/10.1111/gcb.16082, 2022. 

Haberstroh, S. and Werner, C.: The role of species interactions for forest resilience to drought, Plant Biol., 24, 
1098–1107, https://doi.org/10.1111/plb.13415, 2022. 2465 

Hammond, W. M., Yu, K., Wilson, L. A., Will, R. E., Anderegg, W. R. L., and Adams, H. D.: Dead or dying? 
Quantifying the point of no return from hydraulic failure in drought‐induced tree mortality, New Phytol., 223, 
1834–1843, https://doi.org/10.1111/nph.15922, 2019. 

Hammond, W. M., Williams, A. P., Abatzoglou, J. T., Adams, H. D., Klein, T., López, R., Sáenz-Romero, C., 
Hartmann, H., Breshears, D. D., and Allen, C. D.: Global field observations of tree die-off reveal hotter-drought 2470 
fingerprint for Earth’s forests, Nat. Commun., 13, 1761, https://doi.org/10.1038/s41467-022-29289-2, 2022. 



 97 

Hartmann, H.: Will a 385 million year-struggle for light become a struggle for water and for carbon? - How trees 
may cope with more frequent climate change-type drought events: WILL TREES STRUGGLE FOR WATER 
AND/OR CARBON?, Glob. Change Biol., 17, 642–655, https://doi.org/10.1111/j.1365-2486.2010.02248.x, 2011. 

Hartmann, H., Moura, C. F., Anderegg, W. R. L., Ruehr, N. K., Salmon, Y., Allen, C. D., Arndt, S. K., Breshears, 2475 
D. D., Davi, H., Galbraith, D., Ruthrof, K. X., Wunder, J., Adams, H. D., Bloemen, J., Cailleret, M., Cobb, R., 
Gessler, A., Grams, T. E. E., Jansen, S., Kautz, M., Lloret, F., and O’Brien, M.: Research frontiers for improving 
our understanding of drought-induced tree and forest mortality, New Phytol., 218, 15–28, 
https://doi.org/10.1111/nph.15048, 2018. 

Hertel, D., Strecker, T., Müller‐Haubold, H., and Leuschner, C.: Fine root biomass and dynamics in beech forests 2480 
across a precipitation gradient – is optimal resource partitioning theory applicable to water‐limited mature trees?, 
J. Ecol., 101, 1183–1200, https://doi.org/10.1111/1365-2745.12124, 2013. 

Hooper, D. U., Adair, E. C., Cardinale, B. J., Byrnes, J. E. K., Hungate, B. A., Matulich, K. L., Gonzalez, A., 
Duffy, J. E., Gamfeldt, L., and O’Connor, M. I.: A global synthesis reveals biodiversity loss as a major driver of 
ecosystem change, Nature, 486, 105–108, https://doi.org/10.1038/nature11118, 2012. 2485 

Hynynen, J.: Predicting tree crown ratio for unthinned and thinned Scots pine stands, Can. J. For. Res. Can., 1995. 

IGN: Données brutes de l’Inventaire forestier national., 2020. 

Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E., and Schulze, E. D.: A global analysis 
of root distributions for terrestrial biomes, Oecologia, 108, 389–411, https://doi.org/10.1007/BF00333714, 1996. 

Johnson, D. M., McCulloh, K. A., Woodruff, D. R., and Meinzer, F. C.: Hydraulic safety margins and embolism 2490 
reversal in stems and leaves: Why are conifers and angiosperms so different?, Plant Sci., 195, 48–53, 
https://doi.org/10.1016/j.plantsci.2012.06.010, 2012. 

Johnson, D. M., Domec, J.-C., Carter Berry, Z., Schwantes, A. M., McCulloh, K. A., Woodruff, D. R., Wayne 
Polley, H., Wortemann, R., Swenson, J. J., Scott Mackay, D., McDowell, N. G., and Jackson, R. B.: Co-occurring 
woody species have diverse hydraulic strategies and mortality rates during an extreme drought, Plant Cell 2495 
Environ., 41, 576–588, https://doi.org/10.1111/pce.13121, 2018. 

Jolly, W. M., Nemani, R., and Running, S. W.: Enhancement of understory productivity by asynchronous 
phenology with overstory competitors in a temperate deciduous forest, Tree Physiol., 24, 1069–1071, 
https://doi.org/10.1093/treephys/24.9.1069, 2004. 

Jonard, M., André, F., de Coligny, F., de Wergifosse, L., Beudez, N., Davi, H., Ligot, G., Ponette, Q., and Vincke, 2500 
C.: HETEROFOR 1.0: a spatially explicit model for exploring the response of structurally complex forests to 
uncertain future conditions – Part 1: Carbon fluxes and tree dimensional growth, Geosci. Model Dev., 13, 905–
935, https://doi.org/10.5194/gmd-13-905-2020, 2020. 

Jourdan, M., Lebourgeois, F., and Morin, X.: The effect of tree diversity on the resistance and recovery of forest 
stands in the French Alps may depend on species differences in hydraulic features, For. Ecol. Manag., 450, 117486, 2505 
https://doi.org/10.1016/j.foreco.2019.117486, 2019. 

Jourdan, M., Cordonnier, T., Dreyfus, P., Riond, C., de Coligny, F., and Morin, X.: Managing mixed stands can 
mitigate severe climate change impacts on French alpine forests, Reg. Environ. Change, 21, 78, 
https://doi.org/10.1007/s10113-021-01805-y, 2021. 

Juchheim, J.: Quantifying the impact of forest management intensity and tree species diversity on individual tree 2510 
shape and three-dimensional stand structure, Georg-August-University Göttingen, 
https://doi.org/10.53846/goediss-8272, 2020. 

Jucker, T., Bouriaud, O., Avacaritei, D., Dănilă, I., Duduman, G., Valladares, F., and Coomes, D. A.: Competition 
for light and water play contrasting roles in driving diversity–productivity relationships in Iberian forests, J. Ecol., 
102, 1202–1213, https://doi.org/10.1111/1365-2745.12276, 2014. 2515 

Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Tautenhahn, S., Werner, G. D. A., Aakala, 
T., Abedi, M., Acosta, A. T. R., Adamidis, G. C., Adamson, K., Aiba, M., Albert, C. H., Alcántara, J. M., Alcázar 
C, C., Aleixo, I., Ali, H., Amiaud, B., Ammer, C., Amoroso, M. M., Anand, M., Anderson, C., Anten, N., Antos, 
J., Apgaua, D. M. G., Ashman, T.-L., Asmara, D. H., Asner, G. P., Aspinwall, M., Atkin, O., Aubin, I., Baastrup-
Spohr, L., Bahalkeh, K., Bahn, M., Baker, T., Baker, W. J., Bakker, J. P., Baldocchi, D., Baltzer, J., Banerjee, A., 2520 
Baranger, A., Barlow, J., Barneche, D. R., Baruch, Z., Bastianelli, D., Battles, J., Bauerle, W., Bauters, M., 
Bazzato, E., Beckmann, M., Beeckman, H., Beierkuhnlein, C., Bekker, R., Belfry, G., Belluau, M., Beloiu, M., 
Benavides, R., Benomar, L., Berdugo-Lattke, M. L., Berenguer, E., Bergamin, R., Bergmann, J., Bergmann 
Carlucci, M., Berner, L., Bernhardt-Römermann, M., Bigler, C., Bjorkman, A. D., Blackman, C., Blanco, C., 



 98 

Blonder, B., Blumenthal, D., Bocanegra-González, K. T., Boeckx, P., Bohlman, S., Böhning-Gaese, K., Boisvert-2525 
Marsh, L., Bond, W., Bond-Lamberty, B., Boom, A., Boonman, C. C. F., Bordin, K., Boughton, E. H., Boukili, 
V., Bowman, D. M. J. S., Bravo, S., Brendel, M. R., Broadley, M. R., Brown, K. A., Bruelheide, H., Brumnich, 
F., Bruun, H. H., Bruy, D., Buchanan, S. W., Bucher, S. F., Buchmann, N., Buitenwerf, R., Bunker, D. E., et al.: 
TRY plant trait database – enhanced coverage and open access, Glob. Change Biol., 26, 119–188, 
https://doi.org/10.1111/gcb.14904, 2020. 2530 

Keane, R. E., Austin, M., Field, C., Huth, A., Lexer, M. J., Peters, D., Solomon, A., and Wyckoff, P.: Tree 
Mortality in Gap Models: Application to Climate Change, Clim. Change, 51, 509–540, 
https://doi.org/10.1023/A:1012539409854, 2001. 

Kienast, F.: FORECE: A forest succession model for southern Central Europe, Oak Ridge National Lab., TN 
(USA), 1987. 2535 

Kinzig, A. P., Pacala, S. W., and Tilman, D.: The Functional Consequences of Biodiversity: Empirical Progress 
and Theoretical Extensions (MPB-33), Princeton University Press, 2002. 

Kirchen, G., Calvaruso, C., Granier, A., Redon, P.-O., Van der Heijden, G., Bréda, N., and Turpault, M.-P.: Local 
soil type variability controls the water budget and stand productivity in a beech forest, For. Ecol. Manag., 390, 
89–103, https://doi.org/10.1016/j.foreco.2016.12.024, 2017. 2540 

Konôpka, B., Pajtík, J., Moravčík, M., and Lukac, M.: Biomass partitioning and growth efficiency in four naturally 
regenerated forest tree species, Basic Appl. Ecol., 11, 234–243, https://doi.org/10.1016/j.baae.2010.02.004, 2010. 

Körner, C.: Carbon limitation in trees, J. Ecol., 91, 4–17, https://doi.org/10.1046/j.1365-2745.2003.00742.x, 2003. 

Krůček, M., Trochta, J., Cibulka, M., and Král, K.: Beyond the cones: How crown shape plasticity alters 
aboveground competition for space and light—Evidence from terrestrial laser scanning, Agric. For. Meteorol., 2545 
264, 188–199, https://doi.org/10.1016/j.agrformet.2018.09.016, 2019. 

Kuuluvainen, T. and Pukkala, T.: Simulation of within-tree and between-tree shading of direct radiation in a forest 
canopy: effect of crown shape and sun elevation, Ecol. Model., 49, 89–100, https://doi.org/10.1016/0304-
3800(89)90045-8, 1989. 

Lebourgeois (François): Sensibilité au climat des Chênes sessile et pédonculé dans le réseau RENECOFOR. 2550 
Comparaison avec les hêtraies, Rev. For. Fr., https://doi.org/10.4267/2042/5720, 2006. 

Ledo, A., Paul, K. I., Burslem, D. F. R. P., Ewel, J. J., Barton, C., Battaglia, M., Brooksbank, K., Carter, J., Eid, 
T. H., England, J. R., Fitzgerald, A., Jonson, J., Mencuccini, M., Montagu, K. D., Montero, G., Mugasha, W. A., 
Pinkard, E., Roxburgh, S., Ryan, C. M., Ruiz‐Peinado, R., Sochacki, S., Specht, A., Wildy, D., Wirth, C., Zerihun, 
A., and Chave, J.: Tree size and climatic water deficit control root to shoot ratio in individual trees globally, New 2555 
Phytol., 217, 8–11, https://doi.org/10.1111/nph.14863, 2018. 

Leinonen, I.: A Simulation Model for the Annual Frost Hardiness and Freeze Damage of Scots Pine, Ann. Bot., 
78, 687–693, https://doi.org/10.1006/anbo.1996.0178, 1996. 

Levine, J. I., An, R., Kraft, N. J. B., Pacala, S. W., and Levine, J. M.: Why ecologists struggle to predict coexistence 
from functional traits, Trends Ecol. Evol., S0169534724002532, https://doi.org/10.1016/j.tree.2024.10.002, 2024. 2560 

Li, X., Xi, B., Wu, X., Choat, B., Feng, J., Jiang, M., and Tissue, D.: Unlocking Drought-Induced Tree Mortality: 
Physiological Mechanisms to Modeling, Front. Plant Sci., 13, 835921, https://doi.org/10.3389/fpls.2022.835921, 
2022. 

Li, Z., Kurz, W. A., Apps, M. J., and Beukema, S. J.: Belowground biomass dynamics in the Carbon Budget Model 
of the Canadian Forest Sector: recent improvements and implications for the estimation of NPP and NEP, Can. J. 2565 
For. Res., 33, 126–136, https://doi.org/10.1139/x02-165, 2003. 

Liang, J., Crowther, T. W., Picard, N., Wiser, S., Zhou, M., Alberti, G., Schulze, E.-D., McGuire, A. D., Bozzato, 
F., Pretzsch, H., de-Miguel, S., Paquette, A., Hérault, B., Scherer-Lorenzen, M., Barrett, C. B., Glick, H. B., 
Hengeveld, G. M., Nabuurs, G.-J., Pfautsch, S., Viana, H., Vibrans, A. C., Ammer, C., Schall, P., Verbyla, D., 
Tchebakova, N., Fischer, M., Watson, J. V., Chen, H. Y. H., Lei, X., Schelhaas, M.-J., Lu, H., Gianelle, D., 2570 
Parfenova, E. I., Salas, C., Lee, E., Lee, B., Kim, H. S., Bruelheide, H., Coomes, D. A., Piotto, D., Sunderland, T., 
Schmid, B., Gourlet-Fleury, S., Sonké, B., Tavani, R., Zhu, J., Brandl, S., Vayreda, J., Kitahara, F., Searle, E. B., 
Neldner, V. J., Ngugi, M. R., Baraloto, C., Frizzera, L., Bałazy, R., Oleksyn, J., Zawiła-Niedźwiecki, T., Bouriaud, 
O., Bussotti, F., Finér, L., Jaroszewicz, B., Jucker, T., Valladares, F., Jagodzinski, A. M., Peri, P. L., Gonmadje, 
C., Marthy, W., O’Brien, T., Martin, E. H., Marshall, A. R., Rovero, F., Bitariho, R., Niklaus, P. A., Alvarez-2575 
Loayza, P., Chamuya, N., Valencia, R., Mortier, F., Wortel, V., Engone-Obiang, N. L., Ferreira, L. V., Odeke, D. 
E., Vasquez, R. M., Lewis, S. L., and Reich, P. B.: Positive biodiversity-productivity relationship predominant in 



 99 

global forests, Science, 354, aaf8957, https://doi.org/10.1126/science.aaf8957, 2016. 

Limousin, J., Roussel, A., Rodríguez‐Calcerrada, J., Torres‐Ruiz, J. M., Moreno, M., Garcia De Jalon, L., 
Ourcival, J., Simioni, G., Cochard, H., and Martin‐StPaul, N.: Drought acclimation of Quercus ilex leaves 2580 
improves tolerance to moderate drought but not resistance to severe water stress, Plant Cell Environ., 45, 1967–
1984, https://doi.org/10.1111/pce.14326, 2022. 

Limousin, J.-M., Rambal, S., Ourcival, J.-M., Rodríguez-Calcerrada, J., Pérez-Ramos, I. M., Rodríguez-Cortina, 
R., Misson, L., and Joffre, R.: Morphological and phenological shoot plasticity in a Mediterranean evergreen oak 
facing long-term increased drought, Oecologia, 169, 565–577, https://doi.org/10.1007/s00442-011-2221-8, 2012. 2585 

Longuetaud, F., Piboule, A., Wernsdörfer, H., and Collet, C.: Crown plasticity reduces inter-tree competition in a 
mixed broadleaved forest, Eur. J. For. Res., 132, 621–634, https://doi.org/10.1007/s10342-013-0699-9, 2013. 

Lopez, O. R., Farris-Lopez, K., Montgomery, R. A., and Givnish, T. J.: Leaf phenology in relation to canopy 
closure in southern Appalachian trees, Am. J. Bot., 95, 1395–1407, https://doi.org/10.3732/ajb.0800104, 2008. 

Maeght, J.-L., Rewald, B., and Pierret, A.: How to study deep roots—and why it matters, Front. Plant Sci., 4, 2013. 2590 

le Maire, G., Nouvellon, Y., Christina, M., Ponzoni, F. J., Gonçalves, J. L. M., Bouillet, J.-P., and Laclau, J.-P.: 
Tree and stand light use efficiencies over a full rotation of single- and mixed-species Eucalyptus grandis and 
Acacia mangium plantations, For. Ecol. Manag., 288, 31–42, https://doi.org/10.1016/j.foreco.2012.03.005, 2013. 

Maréchaux, I. and Chave, J.: An individual-based forest model to jointly simulate carbon and tree diversity in 
Amazonia: description and applications, Ecol. Monogr., 87, 632–664, https://doi.org/10.1002/ecm.1271, 2017. 2595 

Maréchaux, I., Langerwisch, F., Huth, A., Bugmann, H., Morin, X., Reyer, C. P. O., Seidl, R., Collalti, A., Dantas 
de Paula, M., Fischer, R., Gutsch, M., Lexer, M. J., Lischke, H., Rammig, A., Rödig, E., Sakschewski, B., Taubert, 
F., Thonicke, K., Vacchiano, G., and Bohn, F. J.: Tackling unresolved questions in forest ecology: The past and 
future role of simulation models, Ecol. Evol., 11, 3746–3770, https://doi.org/10.1002/ece3.7391, 2021. 

Martínez-Vilalta, J., Sala, A., and Piñol, J.: The hydraulic architecture of Pinaceae – a review, Plant Ecol., 171, 3–2600 
13, https://doi.org/10.1023/B:VEGE.0000029378.87169.b1, 2004. 

Martin-StPaul, N., Delzon, S., and Cochard, H.: Plant resistance to drought depends on timely stomatal closure, 
Ecol. Lett., 20, 1437–1447, https://doi.org/10.1111/ele.12851, 2017. 

Martin-StPaul, N. K., Limousin, J.-M., Vogt-Schilb, H., Rodríguez-Calcerrada, J., Rambal, S., Longepierre, D., 
and Misson, L.: The temporal response to drought in a Mediterranean evergreen tree: comparing a regional 2605 
precipitation gradient and a throughfall exclusion experiment, Glob. Change Biol., 19, 2413–2426, 
https://doi.org/10.1111/gcb.12215, 2013. 

Mas, E., Vilagrosa, A., Morcillo, L., Saurer, M., Valladares, F., and Grossiord, C.: Drought effects in 
Mediterranean forests are not alleviated by diversity-driven water source partitioning, J. Ecol., 112, 2107–2122, 
https://doi.org/10.1111/1365-2745.14387, 2024. 2610 

Maysonnave, J., Delpierre, N., François, C., Jourdan, M., Cornut, I., Bazot, S., Vincent, G., Morfin, A., and 
Berveiller, D.: Contribution of deep soil layers to the transpiration of a temperate deciduous forest: Implications 
for the modelling of productivity, Sci. Total Environ., 838, 155981, 
https://doi.org/10.1016/j.scitotenv.2022.155981, 2022. 

McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., 2615 
Williams, D. G., and Yepez, E. A.: Mechanisms of plant survival and mortality during drought: why do some 
plants survive while others succumb to drought?, New Phytol., 178, 719–739, https://doi.org/10.1111/j.1469-
8137.2008.02436.x, 2008. 

McDowell, N. G., Allen, C. D., Anderson-Teixeira, K., Aukema, B. H., Bond-Lamberty, B., Chini, L., Clark, J. 
S., Dietze, M., Grossiord, C., Hanbury-Brown, A., Hurtt, G. C., Jackson, R. B., Johnson, D. J., Kueppers, L., 2620 
Lichstein, J. W., Ogle, K., Poulter, B., Pugh, T. A. M., Seidl, R., Turner, M. G., Uriarte, M., Walker, A. P., and 
Xu, C.: Pervasive shifts in forest dynamics in a changing world, Science, 368, eaaz9463, 
https://doi.org/10.1126/science.aaz9463, 2020a. 

McDowell, N. G., Allen, C. D., Anderson-Teixeira, K., Aukema, B. H., Bond-Lamberty, B., Chini, L., Clark, J. 
S., Dietze, M., Grossiord, C., Hanbury-Brown, A., Hurtt, G. C., Jackson, R. B., Johnson, D. J., Kueppers, L., 2625 
Lichstein, J. W., Ogle, K., Poulter, B., Pugh, T. A. M., Seidl, R., Turner, M. G., Uriarte, M., Walker, A. P., and 
Xu, C.: Pervasive shifts in forest dynamics in a changing world, Science, 368, eaaz9463, 
https://doi.org/10.1126/science.aaz9463, 2020b. 

McDowell, N. G., Sapes, G., Pivovaroff, A., Adams, H. D., Allen, C. D., Anderegg, W. R. L., Arend, M., 



 100 

Breshears, D. D., Brodribb, T., Choat, B., Cochard, H., De Cáceres, M., De Kauwe, M. G., Grossiord, C., 2630 
Hammond, W. M., Hartmann, H., Hoch, G., Kahmen, A., Klein, T., Mackay, D. S., Mantova, M., Martínez-Vilalta, 
J., Medlyn, B. E., Mencuccini, M., Nardini, A., Oliveira, R. S., Sala, A., Tissue, D. T., Torres-Ruiz, J. M., 
Trowbridge, A. M., Trugman, A. T., Wiley, E., and Xu, C.: Mechanisms of woody-plant mortality under rising 
drought, CO2 and vapour pressure deficit, Nat. Rev. Earth Environ., 3, 294–308, https://doi.org/10.1038/s43017-
022-00272-1, 2022. 2635 

McGill, B. J., Enquist, B. J., Weiher, E., and Westoby, M.: Rebuilding community ecology from functional traits, 
Trends Ecol. Evol., 21, 178–185, https://doi.org/10.1016/j.tree.2006.02.002, 2006. 

Mehtätalo, L., Miguel, S. de, and Gregoire, T.: Modeling height-diameter curves for prediction, Can. J. For. Res., 
45, 826–837, https://doi.org/10.1139/cjfr-2015-0054, 2015. 

Mencuccini, M., Manzoni, S., and Christoffersen, B.: Modelling water fluxes in plants: from tissues to biosphere, 2640 
New Phytol., 222, 1207–1222, https://doi.org/10.1111/nph.15681, 2019. 

Mette, T., Albrecht, A., Ammer, C., Biber, P., Kohnle, U., and Pretzsch, H.: Evaluation of the forest growth 
simulator SILVA on dominant trees in mature mixed Silver fir–Norway spruce stands in South-West Germany, 
Ecol. Model., 220, 1670–1680, https://doi.org/10.1016/j.ecolmodel.2009.03.018, 2009. 

Mokany, K., Raison, R. J., and Prokushkin, A. S.: Critical analysis of root : shoot ratios in terrestrial biomes, Glob. 2645 
Change Biol., 12, 84–96, https://doi.org/10.1111/j.1365-2486.2005.001043.x, 2006. 

Monteith, J. L.: Evaporation and environment, Symp. Soc. Exp. Biol., 19, 205–234, 1965. 

Moora, M., Daniell, T., Kalle, H., Liira, J., Püssa, K., Roosaluste, E., Öpik, M., Wheatley, R., and Zobel, M.: 
Spatial pattern and species richness of boreonemoral forest understorey and its determinants—A comparison of 
differently managed forests, For. Ecol. Manag., 250, 64–70, https://doi.org/10.1016/j.foreco.2007.03.010, 2007. 2650 

Morales, P., Sykes, M. T., Prentice, I. C., Smith, P., Smith, B., Bugmann, H., Zierl, B., Friedlingstein, P., Viovy, 
N., Sabaté, S., Sánchez, A., Pla, E., Gracia, C. A., Sitch, S., Arneth, A., and Ogee, J.: Comparing and evaluating 
process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes, Glob. 
Change Biol., 11, 2211–2233, https://doi.org/10.1111/j.1365-2486.2005.01036.x, 2005. 

Moreno, M., Simioni, G., Cailleret, M., Ruffault, J., Badel, E., Carrière, S., Davi, H., Gavinet, J., Huc, R., 2655 
Limousin, J.-M., Marloie, O., Martin, L., Rodríguez-Calcerrada, J., Vennetier, M., and Martin-StPaul, N.: 
Consistently lower sap velocity and growth over nine years of rainfall exclusion in a Mediterranean mixed pine-
oak forest, Agric. For. Meteorol., 308–309, 108472, https://doi.org/10.1016/j.agrformet.2021.108472, 2021. 

Moreno, M., Simioni, G., Cochard, H., Doussan, C., Guillemot, J., Decarsin, R., Fernandez-Conradi, P., Dupuy, 
J.-L., Trueba, S., Pimont, F., Ruffault, J., Jean, F., Marloie, O., and Martin-StPaul, N. K.: Isohydricity and 2660 
hydraulic isolation explain reduced hydraulic failure risk in an experimental tree species mixture, Plant Physiol., 
195, 2668–2682, https://doi.org/10.1093/plphys/kiae239, 2024. 

Moreno-de-Las-Heras, M., Bochet, E., Vicente-Serrano, S. M., Espigares, T., Molina, M. J., Monleón, V., Nicolau, 
J. M., Tormo, J., and García-Fayos, P.: Drought conditions, aridity and forest structure control the responses of 
Iberian holm oak woodlands to extreme droughts: A large-scale remote-sensing exploration in eastern Spain, Sci. 2665 
Total Environ., 901, 165887, https://doi.org/10.1016/j.scitotenv.2023.165887, 2023. 

Morin: Tree species richness promotes productivity in temperate forests through strong complementarity between 
species., 2011. 

Morin, X., Augspurger, C., and Chuine, I.: PROCESS-BASED MODELING OF SPECIES’ DISTRIBUTIONS: 
WHAT LIMITS TEMPERATE TREE SPECIES’ RANGE BOUNDARIES?, Ecology, 88, 2280–2291, 2670 
https://doi.org/10.1890/06-1591.1, 2007. 

Morin, X., Damestoy, T., Toigo, M., Castagneyrol, B., Jactel, H., de Coligny, F., and Meredieu, C.: Using forest 
gap models and experimental data to explore long-term effects of tree diversity on the productivity of mixed 
planted forests, Ann. For. Sci., 77, 50, https://doi.org/10.1007/s13595-020-00954-0, 2020. 

Morin, X., Bugmann, H., Coligny, F., Martin‐StPaul, N., Cailleret, M., Limousin, J., Ourcival, J., Prevosto, B., 2675 
Simioni, G., Toigo, M., Vennetier, M., Catteau, E., and Guillemot, J.: Beyond forest succession: A gap model to 
study ecosystem functioning and tree community composition under climate change, Funct. Ecol., 35, 955–975, 
https://doi.org/10.1111/1365-2435.13760, 2021. 

Morin, X., Toigo, M., Fahse, L., Guillemot, J., Cailleret, M., Bertrand, R., Cateau, E., De Coligny, F., García‐
Valdés, R., Ratcliffe, S., Riotte‐Lambert, L., Zavala, M. A., and Vallet, P.: More species, more trees: The role of 2680 
tree packing in promoting forest productivity, J. Ecol., 1365-2745.14460, https://doi.org/10.1111/1365-



 101 

2745.14460, 2025. 

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, 
M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., 
Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, 2685 
Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021. 

Nadrowski, K., Wirth, C., and Scherer-Lorenzen, M.: Is forest diversity driving ecosystem function and service?, 
Curr. Opin. Environ. Sustain., 2, 75–79, https://doi.org/10.1016/j.cosust.2010.02.003, 2010. 

Nemani, R. R. and Running, S. W.: Testing a theoretical climate-soil-leaf area hydrologic equilibrium of forests 
using satellite data and ecosystem simulation, Agric. For. Meteorol., 44, 245–260, https://doi.org/10.1016/0168-2690 
1923(89)90020-8, 1989. 

Nicotra, A. B., Chazdon, R. L., and Iriarte, S. V. B.: Spatial Heterogeneity of Light and Woody Seedling 
Regeneration in Tropical Wet Forests, Ecology, 80, 1908–1926, https://doi.org/10.1890/0012-
9658(1999)080[1908:SHOLAW]2.0.CO;2, 1999. 

Niklaus, P. A., Baruffol, M., He, J.-S., Ma, K., and Schmid, B.: Can niche plasticity promote biodiversity-2695 
productivity relationships through increased complementarity?, Ecology, 98, 1104–1116, 
https://doi.org/10.1002/ecy.1748, 2017. 

Nilson, T.: A theoretical analysis of the frequency of gaps in plant stands, Agric. Meteorol., 8, 25–38, 
https://doi.org/10.1016/0002-1571(71)90092-6, 1971. 

Oliver, C. and Larson, B.: Forest Stand Dynamics, Wiley, 1996. 2700 

Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, 
S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., 
and Hayes, D.: A Large and Persistent Carbon Sink in the World’s Forests, Science, 333, 988–993, 
https://doi.org/10.1126/science.1201609, 2011. 

Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Rambal, S., 2705 
Valentini, R., Vesala, T., and Yakir, D.: Towards a standardized processing of Net Ecosystem Exchange measured 
with eddy covariance technique: algorithms and uncertainty estimation, Biogeosciences, 3, 571–583, 
https://doi.org/10.5194/bg-3-571-2006, 2006. 

Paquette, A. and Messier, C.: The effect of biodiversity on tree productivity: from temperate to boreal forests, 
Glob. Ecol. Biogeogr., 20, 170–180, https://doi.org/10.1111/j.1466-8238.2010.00592.x, 2011. 2710 

Parent, S. and Messier, C.: A simple and efficient method to estimate microsite light availability under a forest 
canopy, Can. J. For. Res., 26, 151–154, https://doi.org/10.1139/x26-017, 1996. 

Park, T., Ganguly, S., Tømmervik, H., Euskirchen, E. S., Høgda, K.-A., Karlsen, S. R., Brovkin, V., Nemani, R. 
R., and Myneni, R. B.: Changes in growing season duration and productivity of northern vegetation inferred from 
long-term remote sensing data, Environ. Res. Lett., 11, 084001, https://doi.org/10.1088/1748-9326/11/8/084001, 2715 
2016. 

Parmesan, C., Morecroft, M. D., and Trisurat, Y.: Climate Change 2022:Impacts, Adaptation and Vulnerability, 
GIEC, 2022. 

Peiffer, M., Bréda, N., Badeau, V., and Granier, A.: Disturbances in European beech water relation during an 
extreme drought, Ann. For. Sci., 71, 821–829, https://doi.org/10.1007/s13595-014-0383-3, 2014. 2720 

Peters, R. L., Steppe, K., Cuny, H. E., Schaub, M., Rathgeber, C. B. K., Cabon, A., and Fonti, P.: Turgor – a 
limiting factor for radial growth in mature conifers along an elevational gradient, New Phytol., 2020. 

Piedallu, C., Dallery, D., Bresson, C., Legay, M., Gégout, J.-C., and Pierrat, R.: Spatial vulnerability assessment 
of silver fir and Norway spruce dieback driven by climate warming, Landsc. Ecol., 38, 341–361, 
https://doi.org/10.1007/s10980-022-01570-1, 2023. 2725 

Pincebourde, S., Murdock, C. C., Vickers, M., and Sears, M. W.: Fine-Scale Microclimatic Variation Can Shape 
the Responses of Organisms to Global Change in Both Natural and Urban Environments, Integr. Comp. Biol., 56, 
45–61, https://doi.org/10.1093/icb/icw016, 2016. 

van der Plas, F.: Biodiversity and ecosystem functioning in naturally assembled communities, Biol. Rev., 94, 
1220–1245, https://doi.org/10.1111/brv.12499, 2019. 2730 

Postic, T. and Morin, X.: Dataset for PHOREAU Evaluation (Postic et al.), 



 102 

https://doi.org/10.5281/zenodo.15241618, 2025a. 

Postic, T. and Morin, X.: PHOREAU v1.0 standalone (Postic. et al), , https://doi.org/10.5281/zenodo.15260689, 
2025b. 

Potkay, A., Hölttä, T., Trugman, A. T., and Fan, Y.: Turgor-limited predictions of tree growth, height and 2735 
metabolic scaling over tree lifespans, 42, 2022. 

Poyatos, R., Aguadé, D., Galiano, L., Mencuccini, M., and Martínez-Vilalta, J.: Drought-induced defoliation and 
long periods of near-zero gas exchange play a key role in accentuating metabolic decline of Scots pine, New 
Phytol., 200, 388–401, https://doi.org/10.1111/nph.12278, 2013. 

Pregitzer, K. S.: Fine Roots of Trees: A New Perspective, New Phytol., 154, 267–270, 2002. 2740 

Pretzsch, H.: Forest Dynamics, Growth, and Yield, in: Forest Dynamics, Growth and Yield: From Measurement 
to Model, edited by: Pretzsch, H., Springer, Berlin, Heidelberg, 1–39, https://doi.org/10.1007/978-3-540-88307-
4_1, 2009. 

Pretzsch, H. and Biber, P.: Size-symmetric versus size-asymmetric competition and growth partitioning among 
trees in forest stands along an ecological gradient in central Europe, Can. J. For. Res., 40, 370–384, 2745 
https://doi.org/10.1139/X09-195, 2010. 

Pretzsch, H., Rötzer, T., and Forrester, D. I.: Modelling Mixed-Species Forest Stands, in: Mixed-Species Forests: 
Ecology and Management, edited by: Pretzsch, H., Forrester, D. I., and Bauhus, J., Springer, Berlin, Heidelberg, 
383–431, https://doi.org/10.1007/978-3-662-54553-9_8, 2017. 

Price, D. T., Zimmermann, N. E., Lexer, M. J., Leadley, P., Jorritsma, I. T. M., Schaber, J., Clark, D. F., Lasch, 2750 
P., Mcnulty, S., Wu, J., and Smith, B.: Regeneration in Gap Models: Priority Issues for Studying Forest Responses 
to Climate Change, 34, 2001. 

Rambal, S., Joffre, R., Ourcival, J. M., Cavender-Bares, J., and Rocheteau, A.: The growth respiration component 
in eddy CO2 flux from a Quercus ilex mediterranean forest, Glob. Change Biol., 10, 1460–1469, 
https://doi.org/10.1111/j.1365-2486.2004.00819.x, 2004. 2755 

Rambal, S., Lempereur, M., Limousin, J. M., Martin-StPaul, N. K., Ourcival, J. M., and Rodríguez-Calcerrada, J.: 
How drought severity constrains gross primary production(GPP) and its partitioning among carbon pools in a 
&lt;i&gt;Quercus ilex&lt;/i&gt; coppice?, Biogeosciences, 11, 6855–6869, https://doi.org/10.5194/bg-11-6855-
2014, 2014. 

Rameau, J.-C., Mansion, D., Dumé, G., and Gauberville, C.: Flore forestière française tome 3, région 2760 
méditerranéenne: Guide écologique illustré, CNPF-IDF, 2438 pp., 2008. 

Rasche, L., Fahse, L., Zingg, A., and Bugmann, H.: Enhancing gap model accuracy by modeling dynamic height 
growth and dynamic maximum tree height, Ecol. Model., 232, 133–143, 
https://doi.org/10.1016/j.ecolmodel.2012.03.004, 2012. 

Ratcliffe, S., Wirth, C., Jucker, T., van der Plas, F., Scherer-Lorenzen, M., Verheyen, K., Allan, E., Benavides, R., 2765 
Bruelheide, H., Ohse, B., Paquette, A., Ampoorter, E., Bastias, C. C., Bauhus, J., Bonal, D., Bouriaud, O., Bussotti, 
F., Carnol, M., Castagneyrol, B., Chećko, E., Dawud, S. M., Wandeler, H. D., Domisch, T., Finér, L., Fischer, M., 
Fotelli, M., Gessler, A., Granier, A., Grossiord, C., Guyot, V., Haase, J., Hättenschwiler, S., Jactel, H., 
Jaroszewicz, B., Joly, F.-X., Kambach, S., Kolb, S., Koricheva, J., Liebersgesell, M., Milligan, H., Müller, S., 
Muys, B., Nguyen, D., Nock, C., Pollastrini, M., Purschke, O., Radoglou, K., Raulund-Rasmussen, K., Roger, F., 2770 
Ruiz-Benito, P., Seidl, R., Selvi, F., Seiferling, I., Stenlid, J., Valladares, F., Vesterdal, L., and Baeten, L.: 
Biodiversity and ecosystem functioning relations in European forests depend on environmental context, Ecol. 
Lett., 20, 1414–1426, https://doi.org/10.1111/ele.12849, 2017. 

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., 
Gilmanov, T., Granier, A., Grünwald, T., Havránková, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., 2775 
Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.-M., Pumpanen, J., Rambal, S., 
Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and Valentini, R.: On the 
separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm, 
Glob. Change Biol., 11, 1424–1439, https://doi.org/10.1111/j.1365-2486.2005.001002.x, 2005. 

Reineke, L. H.: Perfecting a stand-density index for even-aged forest, J. Agric. Res., 46, 627–638, 1933. 2780 

Reyer, C.: Forest Productivity Under Environmental Change—a Review of Stand-Scale Modeling Studies, Curr. 
For. Rep., 1, 53–68, https://doi.org/10.1007/s40725-015-0009-5, 2015. 

Richard, J.: Caractérisation de la contrainte hydrique des solsàl’aide de cartes numériques pour prendre en compte 



 103 

les effets potentiels du changement climatique dans les catalogues de stations forestières - Applications aux 
plateaux calcaires de Lorraine et de Bourgogne, 2011. 2785 

Ruffault, J., Pimont, F., Cochard, H., Dupuy, J.-L., and Martin-StPaul, N. K.: SurEau-Ecos v2.0: A trait-based 
plant hydraulics model for simulations of plant water status and drought-induced mortality at the ecosystem level, 
Biogeosciences, https://doi.org/10.5194/gmd-2022-17, 2022. 

Ruffault, J., Limousin, J.-M., Pimont, F., Dupuy, J.-L., De Càceres, M., Cochard, H., Mouillot, F., Blackman, C. 
J., Torres-Ruiz, J. M., Parsons, R. A., Moreno, M., Delzon, S., Jansen, S., Olioso, A., Choat, B., and Martin-2790 
StPaul, N.: Plant hydraulic modelling of leaf and canopy fuel moisture content reveals increasing vulnerability of 
a Mediterranean forest to wildfires under extreme drought, New Phytol., 237, 1256–1269, 
https://doi.org/10.1111/nph.18614, 2023. 

Saarinen, N., Kankare, V., Huuskonen, S., Hynynen, J., Bianchi, S., Yrttimaa, T., Luoma, V., Junttila, S., 
Holopainen, M., Hyyppä, J., and Vastaranta, M.: Effects of Stem Density on Crown Architecture of Scots Pine 2795 
Trees, Front. Plant Sci., 13, 817792, https://doi.org/10.3389/fpls.2022.817792, 2022. 

San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Durrant, T., Mauri, A., Tinner, W., Ballian, D., Beck, P., Birks, 
H., Eaton, E., Enescu, C., Salvatore, P., Popescu, I., Ravazzi, C., Welk, E., Abad Viñas, R., Azevedo, J., Barbati, 
A., Barredo, J., and Zecchin, B.: European Atlas of Forest Tree Species, 2016. 

Scheiter, S., Langan, L., and Higgins, S. I.: Next-generation dynamic global vegetation models: learning from 2800 
community ecology, New Phytol., 198, 957–969, https://doi.org/10.1111/nph.12210, 2013. 

Schenk, H. J. and Jackson, R. B.: The Global Biogeography of Roots, Ecol. Monogr., 72, 311–328, 
https://doi.org/10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2, 2002. 

Schieber, B.: Spring phenology of European beech (Fagus sylvatica L.) in a submountain beech stand with 
different stocking in 1995&ndash;2004, J. For. Sci., 52, 208–216, https://doi.org/10.17221/4503-JFS, 2012. 2805 

Schnabel, F., Liu, X., Kunz, M., Barry, K. E., Bongers, F. J., Bruelheide, H., Fichtner, A., Härdtle, W., Li, S., 
Pfaff, C.-T., Schmid, B., Schwarz, J. A., Tang, Z., Yang, B., Bauhus, J., Von Oheimb, G., Ma, K., and Wirth, C.: 
Species richness stabilizes productivity via asynchrony and drought-tolerance diversity in a large-scale tree 
biodiversity experiment, Sci. Adv., 7, eabk1643, https://doi.org/10.1126/sciadv.abk1643, 2021. 

Schwärzel, K.: Schwärzel, K., Seidling, W., Hansen, K., Strich, S., and Lorenz, M. (2022). “Part I: Objectives, 2810 
strategy and implementation of ICP forests” in Manual on methods and criteria for harmonized sampling, 
assessment, monitoring and analysis of the effects of air pollution on forests. (ed.) U.I.F.P.C. Centre (Eberswalde, 
Germany: Thünen Institute of Forest Ecosystems), 2022. 

Seidl, R. and Turner, M. G.: Post-disturbance reorganization of forest ecosystems in a changing world, Proc. Natl. 
Acad. Sci., 119, e2202190119, https://doi.org/10.1073/pnas.2202190119, 2022. 2815 

Simioni, G., Marie, G., and Huc, R.: Influence of vegetation spatial structure on growth and water fluxes of a 
mixed forest: Results from the NOTG 3D model, Ecol. Model., 328, 119–135, 
https://doi.org/10.1016/j.ecolmodel.2016.02.004, 2016. 

Smith, J. A.: The Lambertian Assumption and Landsat Data, n.d. 

Smith, N. J.: Estimating leaf area index and light extinction coefficients in stands of Douglas-fir 2820 
(Pseudotsugamenziesii), Can. J. For. Res., 23, 317–321, https://doi.org/10.1139/x93-043, 1993. 

Sperry, J. S., Hacke, U. G., Oren, R., and Comstock, J. P.: Water deficits and hydraulic limits to leaf water supply, 
Plant Cell Environ., 25, 251–263, https://doi.org/10.1046/j.0016-8025.2001.00799.x, 2002. 

Tóth, B., Weynants, M., Pásztor, L., and Hengl, T.: 3D soil hydraulic database of Europe at 250 m resolution, 
Hydrol. Process., 31, 2662–2666, https://doi.org/10.1002/hyp.11203, 2017. 2825 

Tumber‐Dávila, S. J., Schenk, H. J., Du, E., and Jackson, R. B.: Plant sizes and shapes above and belowground 
and their interactions with climate, New Phytol., 235, 1032–1056, https://doi.org/10.1111/nph.18031, 2022. 

Tuzet, A., Granier, A., Betsch, P., Peiffer, M., and Perrier, A.: Modelling hydraulic functioning of an adult beech 
stand under non-limiting soil water and severe drought condition, Ecol. Model., 348, 56–77, 
https://doi.org/10.1016/j.ecolmodel.2017.01.007, 2017. 2830 

Tymen, B., Vincent, G., Courtois, E. A., Heurtebize, J., Dauzat, J., Marechaux, I., and Chave, J.: Quantifying 
micro-environmental variation in tropical rainforest understory at landscape scale by combining airborne LiDAR 
scanning and a sensor network, Ann. For. Sci., 74, 32, https://doi.org/10.1007/s13595-017-0628-z, 2017. 



 104 

TYREE, M. T. and HAMMEL, H. T.: The Measurement of the Turgor Pressure and the Water Relations of Plants 
by the Pressure-bomb Technique, J. Exp. Bot., 23, 267–282, https://doi.org/10.1093/jxb/23.1.267, 1972. 2835 

Tyree, M. T. and Sperry, J. S.: Do woody plants operate near the point of catastrophic xylem dysfunction caused 
by dynamic water stress? : answers from a model, Plant Physiol., 88, 574–580, 
https://doi.org/10.1104/pp.88.3.574, 1988. 

Tyree, M. T. and Sperry, J. S.: Vulnerability of Xylem to Cavitation and Embolism, Annu. Rev. Plant Physiol. 
Plant Mol. Biol., 40, 19–36, https://doi.org/10.1146/annurev.pp.40.060189.000315, 1989. 2840 

Ulrich, E.: Organization of forest system monitoring in France-the RENECOFOR network., World Forestry 
Congress, 1997. 

Van der Meersch, V., Armstrong, E., Mouillot, F., Duputié, A., Davi, H., Saltré, F., and Chuine, I.: Paleorecords 
Reveal Biological Mechanisms Crucial for Reliable Species Range Shift Projections Amid Rapid Climate Change, 
Ecol. Lett., 28, e70080, https://doi.org/10.1111/ele.70080, 2025. 2845 

Van Ewijk, K. Y., Treitz, P. M., and Scott, N. A.: Characterizing Forest Succession in Central Ontario using Lidar-
derived Indices, Photogramm. Eng. Remote Sens., 77, 261–269, https://doi.org/10.14358/PERS.77.3.261, 2011. 

Van Genuchten, M.: A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils1, 
Soil Sci. Soc. Am. J., 44, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980. 

Vanoni, M., Cailleret, M., Hülsmann, L., Bugmann, H., and Bigler, C.: How do tree mortality models from 2850 
combined tree-ring and inventory data affect projections of forest succession?, For. Ecol. Manag., 433, 606–617, 
https://doi.org/10.1016/j.foreco.2018.11.042, 2019. 

Venturas, M. D., Sperry, J. S., Love, D. M., Frehner, E. H., Allred, M. G., Wang, Y., and Anderegg, W. R. L.: A 
stomatal control model based on optimization of carbon gain versus hydraulic risk predicts aspen sapling responses 
to drought, New Phytol., 220, 836–850, https://doi.org/10.1111/nph.15333, 2018. 2855 

Vitasse, Y.: Ontogenic changes rather than difference in temperature cause understory trees to leaf out earlier, 
New Phytol., 198, 149–155, https://doi.org/10.1111/nph.12130, 2013. 

Vose, J. M., Clinton, B. D., Sullivan, N. H., and Bolstad, P. V.: Vertical leaf area distribution, light transmittance, 
and application of the Beer–Lambert Law in four mature hardwood stands in the southern Appalachians, Can. J. 
For. Res., 25, 1036–1043, https://doi.org/10.1139/x95-113, 1995. 2860 

de Vries, W., Vel, E., Reinds, G. J., Deelstra, H., Klap, J. M., Leeters, E. E. J. M., Hendriks, C. M. A., Kerkvoorden, 
M., Landmann, G., Herkendell, J., Haussmann, T., and Erisman, J. W.: Intensive monitoring of forest ecosystems 
in Europe: 1. Objectives, set-up and evaluation strategy, For. Ecol. Manag., 174, 77–95, 
https://doi.org/10.1016/S0378-1127(02)00029-4, 2003. 

Wang, Z., Zhou, Z., and Wang, C.: Defoliation-induced tree growth declines are jointly limited by carbon source 2865 
and sink activities, Sci. Total Environ., 762, 143077, https://doi.org/10.1016/j.scitotenv.2020.143077, 2021. 

Wehrli, A., Weisberg, P. J., Schönenberger, W., Brang, P., and Bugmann, H.: Improving the establishment 
submodel of a forest patch model to assess the long-term protective effect of mountain forests, Eur. J. For. Res., 
126, 131–145, https://doi.org/10.1007/s10342-006-0142-6, 2006. 

Williams, J. W. and Jackson, S. T.: Novel climates, no-analog communities, and ecological surprises, Front. Ecol. 2870 
Environ., 5, 475–482, https://doi.org/10.1890/070037, 2007. 

Woodward, F. I. and Osborne, C. P.: The representation of root processes in models addressing the responses of 
vegetation to global change, New Phytol., 147, 223–232, https://doi.org/10.1046/j.1469-8137.2000.00691.x, 2000. 

Wullschleger, S. D., Meinzer, F. C., and Vertessy, R. A.: A review of whole-plant water use studies in tree, Tree 
Physiol., 18, 499–512, https://doi.org/10.1093/treephys/18.8-9.499, 1998. 2875 

Xie, Y., Wang, X., Wilson, A. M., and Silander, J. A.: Predicting autumn phenology: How deciduous tree species 
respond to weather stressors, Agric. For. Meteorol., 250–251, 127–137, 
https://doi.org/10.1016/j.agrformet.2017.12.259, 2018. 

Xu, X., Konings, A. G., Longo, M., Feldman, A., Xu, L., Saatchi, S., Wu, D., Wu, J., and Moorcroft, P.: Leaf 
surface water, not plant water stress, drives diurnal variation in tropical forest canopy water content, New Phytol., 2880 
231, 122–136, https://doi.org/10.1111/nph.17254, 2021. 

Zapater, M.: Diversité fonctionnelle de la réponse à la sécheresse édaphique d’espèces feuillues en peuplement 
mélangé: Approches écophysiologique et isotopique, 2018. 



 105 

Zhu, X., Skidmore, A. K., Wang, T., Liu, J., Darvishzadeh, R., Shi, Y., Premier, J., and Heurich, M.: Improving 
leaf area index (LAI) estimation by correcting for clumping and woody effects using terrestrial laser scanning, 2885 
Agric. For. Meteorol., 263, 276–286, https://doi.org/10.1016/j.agrformet.2018.08.026, 2018. 

 


