
1 
 

Measurement Report: Collocated speciation and potential 1 

mechanisms of gaseous adsorption for integrated filter-based 2 

sampling and analysis of water-soluble organic molecular 3 

markers in the atmosphere  4 

 5 

 6 

Wei Feng1, Xiangyu Zhang1, Zhijuan Shao2, Guofeng Shen3, Hong Liao1, Yuhang 7 

Wang4, Mingjie Xie1,* 8 

 9 

 10 

1Collaborative Innovation Center of Atmospheric Environment and Equipment 11 

Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and 12 

Pollution Control, School of Environmental Science and Engineering, Nanjing 13 

University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, 14 

China. 15 

2School of Environment Science and Engineering, Suzhou University of Science and 16 

Technology Shihu Campus, 99 Xuefu Road, Suzhou 215009, China  17 

3Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, 18 

Peking University, Beijing 100871, China 19 

4School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta 20 

GA 30332, United States 21 

 22 

*Correspondence to: 23 

Mingjie Xie (mingjie.xie@nuist.edu.cn, mingjie.xie@colorado.edu);  24 

Mailing address: 219 Ningliu Road, Nanjing, Jiangsu, 210044, China 25 

 26 

 27 

 28 



2 
 

Abstract 29 

To better understand the measurement uncertainties and sampling artifacts of 30 

particulate water-soluble organic molecular markers (WSOMMs), three quartz filters 31 

were stacked and installed in two collocated samplers (Sampler I and II) to 32 

simultaneously collect ambient WSOMMs. The paired top filters (Qf) loaded with PM2.5 33 

were analyzed to determine the duplicate-derived uncertainty of particulate WSOMM 34 

concentrations. For several WSOMMs (e.g., levoglucosan) specifically associated with 35 

aerosol sources, the uncertainty was well below 20%, which was commonly assumed 36 

in previous studies for the analysis of particulate WSOMMs. If the WSOMMs detected 37 

in the other two filters (Qb and Qbb) below Qf were caused by gaseous adsorption, the 38 

breakthrough value ([Qbb]/([Qb]+[Qbb])) can be used to estimate the sampling artifact 39 

of particulate WSOMMs due to gaseous adsorption on Qf. To understand the influence 40 

of acidic and alkaline conditions on the adsorption of gaseous WSOMMs or their 41 

precursors on quartz filters, the bottom filter (Qbb) of Sampler I was treated with 42 

(NH4)2SO4 or KOH on different sampling days. From the comparison of the 43 

measurement results between chemically treated and untreated Qbb samples, it was 44 

inferred that (NH4)2SO4 can increase the formation of isoprene secondary organic 45 

aerosol by reactive uptake of the oxidative intermediates; KOH can promote the 46 

adsorption of organic acids through neutralization reactions. Future studies are 47 

warranted to develop a suitable method for sampling gaseous WSOMMs using 48 

chemically treated adsorbents.  49 

 50 

 51 

 52 

 53 
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1. Introduction 54 

As a major component of atmospheric aerosols, water-soluble organic carbon 55 

(WSOC) can influence aerosol radiative forcing through absorbing and scattering solar 56 

and terrestrial radiation (Malm et al., 1996; Ming et al., 2005) and promoting cloud 57 

formation by acting as cloud condensation nuclei and ice-nucleating particles (Novakov 58 

and Penner, 1993; Chen et al., 2021). Moreover, the deposition of WSOC provides 59 

nutrients for plants and microorganisms on Earth that maintain the balance of the 60 

ecosystem (Quinn et al., 2010; Iavorivska et al., 2017; Goll et al., 2023). The heavy 61 

metals and toxic organics associated with WSOC also increase the health risks of 62 

atmospheric aerosols (Tao and Lin, 2000). WSOC can be released directly by biomass 63 

burning (Ding et al., 2013; Du et al., 2014) or can be formed by the atmospheric 64 

oxidation of volatile organic precursors and subsequent gas-particle partitioning 65 

processes (termed “secondary organic aerosol”, SOA) (Zhang et al., 2007; Kroll and 66 

Seinfeld, 2008). Water-soluble organic molecular makers (WSOMMs) are organic 67 

compounds with specific origins in the atmosphere and are commonly used to identify 68 

the sources of WSOC and particulate matter (PM). In laboratory studies where SOA 69 

formation was simulated using a smoke chamber, WSOMMs play a central role in 70 

revealing the reaction pathways (Kroll et al., 2006; Ng et al., 2008).  71 

A comprehensive understanding of the physicochemical properties, atmospheric 72 

transformation and environmental impacts of WSOC depends largely on its 73 

characterization (Noziere et al., 2015). Uncertainty analysis for the quantification of 74 

PM components, including WSOC and WSOMMs, is necessary to show the variability 75 

of measurement results due to sampling, pretreatment, instrumental analysis, etc 76 

(Zhang et al., 2024). The uncertainty data are also needed when the simulation results 77 

of atmospheric transport models, e.g. for predicting the spatiotemporal distribution of 78 
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PM components and SOA formation, are evaluated by comparison with measurements 79 

(Aleksankina et al., 2019). For PM species with high measurement uncertainty, 80 

modeling could aim to obtain a reasonable range instead of a specific value. In addition, 81 

the uncertainty data are required for source apportionment using receptor models (Kim 82 

and Hopke, 2007). In existing studies, propagation methods (e.g., root sum of squares) 83 

have been used to predict the overall uncertainty of the system from different sources 84 

of uncertainty (Jaeckels et al., 2007; Dutton et al., 2009b; Feng et al., 2023b). Another 85 

method to estimate the uncertainty is to conduct repeated analysis for selected samples 86 

(Xie et al., 2016), which only considers the error during chemical analysis. The total 87 

uncertainty for the characterization of atmospheric composition is composed of the 88 

uncertainties in both sampling and chemical analysis, and can be directly determined 89 

by performing collocated sampling. This method has been applied to estimate the 90 

concentration uncertainties of bulk PM components (Dutton et al., 2009a; Yang et al., 91 

2021; Xie et al., 2022b), but the duplicate-derived uncertainty for the characterization 92 

of WSOMMs has rarely been investigated.  93 

The known WSOMMs (e.g., 2-methyltetrols) are mostly semi-volatile organic 94 

compounds (SVOCs), in which a mass transfer always takes place between the gas and 95 

particle phase (Yatavelli et al., 2014; Xie et al., 2014b). In filter-based sampling of 96 

WSOMMs in the particle phase, the adsorption of gaseous WSOMMs on filters (“blow 97 

on” effect, positive artifact) leads to an overestimation of particle-phase concentrations 98 

(Hart and Pankow, 1994; Mader and Pankow, 2001b; Subramanian et al., 2004). Several 99 

studies have used a denuder to eliminate organic gasses in the air stream prior to 100 

sampling PM on filters (Eatough et al., 2003; Fan et al., 2004; Subramanian et al., 2004), 101 

which creates a large potential for volatilization (“blow off” effect, negative artifact) of 102 

particulate organic matter (OM) due to the disruption of the gas-particle equilibrium 103 
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(Subramanian et al., 2004; Watson et al., 2009). The use of a backup quartz filter 104 

downstream of the PM-loaded quartz filter or a Teflon filter has been used in many 105 

studies to correct for adsorption of gaseous organics, with the target species being 106 

mostly bulk organic carbon (OC) (Watson and Chow, 2002; Subramanian et al., 2004; 107 

2009) and non-polar organic compounds (e.g., n-alkanes and polycyclic aromatics) 108 

(Mader and Pankow, 2001a; Xie et al., 2014a), while sampling artifacts of WSOMMs 109 

were less considered.  110 

The existence of gaseous WSOMMs has been reported by integrated gas-particle 111 

(G-P) sampling (Limbeck et al., 2005; Bao et al., 2012; Liu et al., 2012; Shen et al., 112 

2018) or online measurements (Williams et al., 2010; Xu et al., 2019; Lv et al., 2022a, 113 

2022b). Polyurethane foam (PUF) was the most commonly used adsorbent for sampling 114 

gaseous WSOMMs in offline observations (Xie et al., 2014b; Shen et al., 2020; 115 

Lanzafame et al., 2021; Qin et al., 2021). However, the extraction process could be 116 

affected by the leaching of the PUF material in methanol, leading to low recoveries 117 

(approximately 50%). To prove that methacrylic acid epoxide (MAE) is the key 118 

intermediate for the formation of 2-methylglyceric acid (2-MG) from isoprene under 119 

high NOX conditions, Lin et al. (2013b) collected gaseous MAE using an ice-cooled 120 

glass bubbler filled with ethyl acetate. Due to the limited flow rate and absorption 121 

efficiency, this liquid absorption method was more suitable for qualitative rather than 122 

quantitative purposes. The Semi-Volatile Thermal Desorption Aerosol Gas 123 

chromatograph (SV-TAG) was developed for hourly measurements of WSOMMs in the 124 

gas and particle phase. In the SV-TAG, a parallel thermal desorption cell equipped with 125 

passivated high-surface-area stainless steel (SS) fiber filters (F-CTD) was used for 126 

sampling (Williams et al., 2010; Zhao et al., 2013a, 2013b; Isaacman et al., 2014, 2016). 127 

One F-CTD was used to directly collect WSOMMs in both the gas and particle phases, 128 
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while the other cell was set up to collect only WSOMMs in the particle phase by passing 129 

the sample air through an upstream activated carbon denuder. Comparisons between 130 

the two cells directly reflected the G-P partitioning of the WSOMMs. However, the 131 

resulting particulate fraction (F%) was often greater than 100% (Isaacman et al., 2016; 132 

Liang et al., 2023), possibly due to the uncertainties associated with the small sampling 133 

volume and chemical analysis. 134 

In this study, three quartz filters were stacked and installed in two collocated 135 

samplers for sampling WSOMMs. The measurement results of WSOMMs on the top 136 

filter were used to estimate the uncertainties of analyzing WSOMMs in the particle 137 

phase. The remaining two bare quartz filters in one sampler were analyzed to assess 138 

positive sampling artifacts due to adsorption of gaseous WSOMMs or their precursors. 139 

To investigate the impacts of acidic and alkaline conditions on the adsorption on quartz 140 

filters, the bottom filter of the other sampler was soaked in ammonium sulfate 141 

((NH4)2SO4) or potassium hydroxide (KOH) and dried before sampling. The study 142 

results unveil the uncertainties in the characterization of WSOMMs in the particle phase, 143 

and are beneficial for further studies on sampling and analysis of gaseous WSOMMs. 144 

2. Methods 145 

2.1 Sampling 146 

All filter samples were collected on the rooftop of a six-story building (Binjiang 147 

Building) of Nanjing University of Information Science and Technology (NUIST, 148 

32.21°N, 118.71°E). The sampling site is located in a suburb in the western Yangtze 149 

River Delta of China (Figure 1a), approximately 20 km north of the city center of 150 

Nanjing. The inter-provincial highway G40 and Jiangbei expressway are located about 151 

700 m and 1.5 km northwest and southeast, respectively. The petrochemical industry of 152 

Yangzi and the chemical industry of Nanjing (SINOPEC) are located 5 – 10 km 153 
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northeast of the site. The surrounding area consists mainly of residential buildings, road 154 

traffic, and parks (e.g., the Longwangshan scenic area).  155 

Three quartz filters (20.3 cm × 12.6 cm, Munktell Filter AB, Sweden) were stacked 156 

and placed on each of the two identical samplers (Sampler I and II; Mingye 157 

Environmental, Guangzhou, China) equipped with 2.5 μm cut impactors to collect 158 

ambient air at a flow rate of 300 L min–1, with a filter face velocity of 25.2 cm S–1. All 159 

filters were pre-baked at 550℃ for 4 h to remove potential organic contaminants. 160 

Twenty-four pairs of collocated samples were collected from August to September 2021 161 

during daytime (08:00 – 19:00 GMT+8, N = 12) and nighttime (20:00 – 07:00 the next 162 

day, GMT+8, N = 12). As shown in Figure 1b, the top filter (Qf) in each filter was loaded 163 

with PM2.5, and the subsequent two filters (Qb and Qbb) were used to evaluate the 164 

adsorption of gaseous WSOMMs or their precursors on filters. In Sampler I, Qbb was 165 

soaked in 1 M (NH4)2SO4 (N = 12) or 1 M KOH (N = 12) and dried at a temperature of 166 

120℃ before sampling, while Qbb in Sampler II was not treated with chemicals. Table 167 

S1 shows the sampling date, mean temperature and relative humidity (RH, %), and the 168 

type of Qbb treatment ((NH4)2SO4, KOH, and no treatment) of Sampler I and II. Field 169 

blanks were taken at every 10th sample to correct for possible contamination. All 170 

samples and field blanks were sealed and stored at –20℃ until analysis.  171 

2.2 Chemical analysis 172 

The method of analysis for WSOMMs in filter samples has been detailly described 173 

in our previous work (Qin et al., 2021; Feng et al., 2023a, 2023b). Briefly, one-eighth 174 

of each filter sample was spiked with 40 μL of deuterated internal standards (IS, 175 

succinic acid-d4, levoglucosan-d7, naphthalene-d8, acenaphthene-d10, phenanthrene-176 

d10, chrysene-d10, and perylene-d12; 10 ng μL–1) and ultrasonically extracted twice 177 

for 15 min in a mixture of methanol and dichloromethane (v:v, 1:1). The total extract 178 
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of each sample was then rotary evaporated and blown to dryness with a gentle stream 179 

of N2. 60 μL of derivatization reagent [N, O-bis(trimethylsilyl)trifluoroacetamide 180 

(BSTFA) with 1% trimethylchlorosilane (TMCS) and pyridine, 5:1] was added and 181 

reacted with the dried extracts at 70°C for 3 hours. Prior to instrumental analysis by gas 182 

chromatography (GC, Agilent 7890B, USA)-mass spectrometry (MS, Agilent-5977B, 183 

USA), the extract solution was cooled to room temperature and diluted with 340 μL of 184 

pure hexane. Quantification of the individual WSOMMs was performed by generating 185 

six-point calibration curves and the IS method.  186 

Water-soluble inorganic ions and WSOC in filter samples were extracted with 187 

ultrapure water (18.2 MΩ). Cations (NH4
+, K+, Ca2+ and Mg2+) and anions (SO4

2− and 188 

NO3
−) were determined using Metrohm (930, Switzerland) and Dionex (ICS-3000, 189 

USA) ion chromatography (IC), respectively. WSOC was analyzed using a total organic 190 

carbon analyzer (TOC-L, Shimadzu, Japan). Bulk OC and elemental carbon (EC) of the 191 

filter samples were measured using a thermal-optical carbon analyzer (DRI, 2001A, 192 

Atmoslytic, USA) according to the IMPROVE-A protocol. Field blanks were analyzed 193 

in the same way as the air samples, and the measurement results of all filter samples 194 

were corrected.  195 

2.3 Data analysis 196 

2.3.1 Breakthrough calculation 197 

When Qb and Qbb were considered as adsorbents for sampling gaseous WSOMMs, 198 

the WSOMM concentrations in the Qb and Qbb samples can be used to calculate the 199 

breakthrough (B), which represents the sampling efficiency and is defined as follows:  200 

𝐵 =
[Q𝑏𝑏]

[Q𝑏]+[Q𝑏𝑏]
× 100%                    (1) 201 

where [Qb] and [Qbb] represent the concentrations of each target compound in Qb and 202 

Qbb samples, respectively. A B value of 33% has been commonly used as a threshold 203 
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for excessive breakthrough, and a B value of close to or higher than 50% indicates 204 

complete breakthrough (Peters et al., 2000). 205 

2.3.2 Calculation of the fractions of particulate and adsorbed WSOMMs 206 

Assuming that the target WSOMMs measured in the Qf samples exist in the particle 207 

phase, and those detected in the Qb and Qbb samples are present in the gas phase, the 208 

particulate (F%) and adsorption (A%) fractions of the individual WSOMMs can be 209 

calculated as follows: 210 

𝐹% =
[Q𝑓]

[Q𝑓]+[Q𝑏]+[Q𝑏𝑏]
× 100%                  (2) 211 

𝐴% = 1 − 𝐹%                             (3) 212 

where [Qf] denotes the concentrations of the target compound in Qf samples. 213 

2.3.3 Uncertainty assessment 214 

The coefficient of divergence (COD) has often been used as a measure of the 215 

similarity of chemical species concentrations between pairs of PM samples (Wilson et 216 

al., 2005) and is defined as follows: 217 

COD = √
1

𝑛
∑ (

𝑥𝑖1−𝑥𝑖2

𝑥𝑖1+𝑥𝑖2
)2𝑛

𝑖=1                       (4) 218 

where xi1 and xi2 in this work are the concentrations of a particular WSOMM in the ith 219 

pair of Qf samples from Sampler I and Sampler II, respectively, and n is the number of 220 

sample pairs. Values of COD approaching 0 and 1 indicate identity and complete 221 

divergence between pairs of collocated samples. 222 

The standard deviation of paired differences (SDdiff) and average relative percent 223 

difference (ARPD) were used to quantify the absolute and relative uncertainties of 224 

individual WSOMMs based on collocated measurement data (Flanagan et al., 2006; 225 

Dutton et al., 2009a; Yang et al., 2021). They were calculated as follows: 226 

SDdiff = √
1

2𝑛
∑ (𝑥𝑖1 − 𝑥𝑖2)

2𝑛
𝑖=1                  (5) 227 
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ARPD =
2

𝑛
∑

|𝑥𝑖1−𝑥𝑖2|

(𝑥𝑖1+𝑥𝑖2)
× 100%𝑛

𝑖=1                 (6) 228 

3 Results and discussion 229 

3.1 Collocated measurements of Qf samples 230 

3.1.1 Overview of the measurement data 231 

The mean concentrations of WSOMMs and bulk PM2.5 components in collocated 232 

Qf samples are summarized in Tables 1 and S2, respectively. Generally, all species 233 

showed similar mean concentrations between paired Qf samples with no significant 234 

difference (Student’s t test, p = 0.55 – 0.96). Among the isoprene SOA tracers, the mean 235 

concentration of 2-methylglyceric acid (2-MG, 4.48 ± 3.15 ng m–3) was comparable to 236 

observations at the same site in summer 2019 (3.62 ± 1.38 ng m–3) and summer 2020 237 

(4.71 ± 1.77 ng m–3) (Feng et al., 2023b). However, the mean concentrations of 2-238 

methyltetrols (2-MTs, 13.1 ± 7.00 ng m–3) and C5-alkene triols (C5-ATs, 15.6 ± 14.7 ng 239 

m–3) were significantly (p < 0.01) lower than in summer 2019 (21.3 ± 18.2 ng m–3, 21.3 240 

± 26.9 ng m–3) and summer 2020 (27.0 ± 21.6 ng m–3, 36.3 ± 48.0 ng m–3). After the 241 

implementation of a series of air pollution control measures in China after 2013 (e.g., 242 

the “Air Pollution Prevention and Control Action Plan”), an annual decrease in sulfate 243 

concentrations was observed in Nanjing (Xie et al., 2022a). As shown in Table S2, the 244 

mean sulfate concentration in this study (5.82 ± 2.07 ng m–3) is lower than in summer 245 

2019 (8.92 ± 3.25 ng m–3) and summer 2020 (7.67 ± 2.92 ng m–3) (Feng et al., 2023b). 246 

Since sulfate participates in the reactive uptake of isoprene SOA intermediates to form 247 

C5-ATs, 2-MTs, and hydroxy sulfate esters (Surratt et al., 2007a, 2010), the decrease in 248 

sulfate concentrations is a possible reason for the attenuation of isoprene SOA 249 

formation (Worton et al., 2013; Lin et al., 2013a; Xu et al., 2015). The concentrations 250 

of the primary WSOMMs, including biomass burning tracers, saccharides, and sugar 251 

alcohols, in this study had similar mean concentrations as in summer 2019 and summer 252 
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2020 (Feng et al., 2023a). This could be due to the weak emissions from biomass 253 

burning in summer with little annual variation (Zhang et al., 2008; Li et al., 2020; Fu et 254 

al., 2023), and sugar polyols mainly originate from biogenic sources during the growing 255 

season with minimal influence from human activities (Simoneit et al., 2004; Jia and 256 

Fraser, 2011; Kang et al., 2018). 257 

3.1.2 Duplicate-derived uncertainty 258 

Figures 2 and S1 show comparisons of the concentrations of selected typical 259 

WSOMMs and other compounds in collocated Qf samples. The scattering data of all 260 

identified WSOMMs fell along the identity line with strong correlations (r > 0.90, p < 261 

0.01). The COD values of all species were below 0.20, indicating a high similarity 262 

between the collocated measurements (Krudysz et al., 2008). Yang et al. (2021) found 263 

that the median concentrations of bulk PM2.5 components were negatively correlated 264 

with the corresponding ARPD values. In this work, such dependence of measurement 265 

uncertainties on ambient concentration was not observed for WSOMMs, possibly due 266 

to the high sensitivity of GC-MS analysis for derivatized WSOMMs. The SDdiff and 267 

ARPD values shown in Figures 2 and S1 are the uncertainties for particulate WSOMMs 268 

based on direct measurements, which are rarely reported. When using measurement 269 

data of particulate WSOMMs for receptor-based source apportionment (e.g., positive 270 

matrix factorization), uncertainty data are a required input and are often estimated using 271 

a propagation method (Hemann et al., 2009; Dutton et al., 2009a; Aleksankina et al., 272 

2019), where an error fraction of 20% was usually assumed (Zhang et al., 2009). 273 

However, the ARPD values of several WSOMMs (e.g., levoglucosan, 2-MTH and 274 

mannosan) specifically related to PM sources were close to or even below 10% (Figures 275 

2 and S1), and overestimation of uncertainties may lead to biased source apportionment 276 

results (Paatero and Hopke, 2003).  277 
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In previous studies, meso-erythritol was often used as a surrogate for the 278 

quantification of all isoprene SOA tracers (Ding et al., 2008; Hu et al., 2008; Lin et al., 279 

2012; Feng et al., 2023b). Due to differences in molecular structures, MS fragments, 280 

and signal intensities, quantification of target compounds using surrogates can be 281 

subject to errors. As shown in Figure S2a and c, the quantification results of 2-MG and 282 

2-MEH using authentic standards and meso-erythritol (surrogate) are strongly 283 

correlated (r =0.99, p < 0.01). But the mean concentration of 2-MG quantified using 284 

the authentic standard was 14.9% higher than that using the surrogate (Figure S2 b). 285 

The difference in the quantification of 2-MEH between using the authentic and 286 

surrogate standards was not apparent, which was attributed to the similarity of the 287 

structure of meso-erythrol and 2-MEH. To obtain more accurate measurement results 288 

of WSOMMs, authentic standards or at least surrogates with similar structures should 289 

be used for quantification.  290 

3.2 Adsorption of gaseous WSOMMs or their precursors on untreated filters 291 

Owning to the extremely low vapor pressures of the biomass burning tracers, 292 

saccharides, and sugar alcohols (Qin et al., 2021), these species were not detected in 293 

the Qb and Qbb samples from Sampler Ⅱ or showed similar concentrations as the field 294 

blanks. Therefore, only the measurement results of isoprene SOA tracers and 295 

dicarboxylic acids in Qb and Qbb samples are presented and discussed. When Qb and 296 

Qbb were considered as adsorbents for sampling gaseous WSOMMs, the mean F% 297 

values of isoprene SOA tracers and dicarboxylic acids are well above 50% (Table 2). 298 

However, significant amounts of the target species were observed in the Qb and Qbb 299 

samples, indicating that the quartz filter can adsorb semi-volatile WSOMMs in the gas 300 

phase or their precursors that undergo heterogeneous reactions at the filter surface. After 301 

the sampling air flowed through Qf and Qb of Sampler II, the vapor pressures of the 302 
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target compounds or precursors decreased significantly, resulting in lower 303 

concentrations in Qbb samples than in Qb samples (Table 2). 304 

Qin et al. (2021) collected particulate and gaseous WSOMMs at the same 305 

observation site by passing air samples through stacked Qf and Qb and a PUF plug. 306 

Similar to this study, Qf was used to determine the particulate WSOMMs. Assuming 307 

that the WSOMMs detected in filters and PUF after Qf are present in the gas phase, 308 

Figure 3 compares the concentrations of isoprene SOA tracers in different sampling 309 

matrices of this study and Qin et al. (2021) during the same period (August – September) 310 

of the year. In Figure 3a, the mean Qf and Qb concentrations of 2-MTs (13.5 ± 7.16 ng 311 

m⁻3 and 1.61 ± 1.53 ng m⁻3; Table 2) and C5-ATs (16.0 ± 14.7 ng m⁻3, 0.24 ± 0.13 ng 312 

m⁻3) are lower in this study than in Qin et al. (2021) (2-MTs 20.7 ± 17.6 ng m⁻3, 3.96 ± 313 

5.41 ng m⁻3; C5-ATs 22.0 ± 26.5 ng m⁻3, 1.18 ± 1.42 ng m⁻3). However, the Qbb samples 314 

in this study had comparable or even higher mean concentrations of 2-MTs (0.75 ± 0.87 315 

ng m⁻3) and C5-ATs (0.23 ± 0.29 ng m⁻3) than the PUF samples (2-MTs 0.99 ± 0.75 ng 316 

m⁻3; C5-ATs 0.065 ± 0.062 ng m⁻3; Figure 3c). Figure S3 shows that the F% of 2-MTs 317 

and C5-ATs (2-MTs 86.3 ± 8.90 ng m⁻3, C5-ATs 94.9 ± 5.80 ng m⁻3) are similar in this 318 

study and in Qin et al. (2021) (2-MTs 81.8 ± 9.85 ng m⁻3, C5-ATs 91.7 ± 7.69 ng m⁻3) 319 

under comparable meteorological conditions, although the sampling year and sampling 320 

media are different. Thus, there is no appreciable difference in the gas-particle 321 

partitioning results between the use of quartz filters and PUF for sampling isoprene 322 

SOA tracers in the gas phase. Based on PM2.5 data obtained from a nearby monitoring 323 

station using the same method as (Yu et al., 2019), the mean PM2.5 concentration during 324 

the sampling period in (Qin et al., 2021) (28.2 ± 10.3 μg m–3) was significantly (p < 325 

0.05) higher than in this study (15.3 ± 5.29 μg m–3; Figure S3b), indicating that particle 326 

loading may not be a major factor affecting the G-P partitioning of isoprene SOA tracers. 327 
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Considering the higher recoveries in the measurement of isoprene SOA tracers in filter 328 

samples (106 ± 1.90%) than in PUF samples (about 50%), which are largely due to the 329 

elution of PUF materials, quartz filters can be used instead of PUF for sampling. The 330 

SV-TAG method proposes that SS fiber filters are suitable for sampling SVOCs in the 331 

gas phase if their surface area is large enough (Zhao et al., 2013b). The specific fiber 332 

surface area of quartz filters (~130 cm2 cm⁻2) is slightly lower than that of SS fiber 333 

filters (~160 cm2 cm⁻2) (Mader and Pankow, 2001b; Zhao et al., 2013b), but the 334 

diameter of quartz filters (≥90 mm) used for ambient sampling can be much larger.  335 

Without considering the heterogeneous reactions on the filter surfaces, no 336 

excessive breakthrough (B < 33%) was observed for 2-MG and 2-MTs based on the 337 

measurement results of the Qb and Qbb samples from Sampler II, but the B values of C5-338 

ATs and dicarboxylic acids are close to 50% (complete breakthrough). These results 339 

suggest that bare quartz filters are not effective adsorbents for sampling C5-ATs and 340 

dicarboxylic acids in the gas phase. According to the equilibrium G-P partitioning 341 

theory, a greater fraction of SVOCs exists in the gas phase when temperature rises 342 

(Pankow, 1994a, 1994b), as the vapor pressure of SVOCs increases exponentially with 343 

temperature. More adsorption sites on filter surfaces can be blocked by H2O molecules 344 

with increased RH, leading to lower adsorption of SVOCs (Pankow et al., 1993). Since 345 

absorption by particulate organic matter (OM) is an important G-P partitioning 346 

mechanism for ambient SVOCs (Liang and Pankow, 1996; Liang et al., 1997), 347 

increased OC concentrations might correspond to higher particle-phase fractions of 348 

SVOCs. However, the A% values of isoprene SOA tracers and dicarboxylic acids show 349 

little dependence on temperature, RH, and OC concentrations (Figures S4–S6), 350 

indicating more complex mechanisms for the adsorption of WSOMMs than for non-351 

polar SVOCs (e.g., n-alkanes and PAHs). For example, due to the hygroscopicity of 352 
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WSOMMs, water molecules attached to filter surfaces can promote gaseous adsorption. 353 

Dissolution in aerosol liquid water is more important than absorption by particulate OM 354 

for the equilibrium between particle- and gas-phase WSOMMs (Kampf et al., 2013; 355 

Isaacman et al., 2016; Shen et al., 2018; Qin et al., 2021). Although the mean A% values 356 

of dicarboxylic acids increased with their subcooled liquid vapor pressure (po,*
L; Figure 357 

S7), this dependence was not observed when isoprene SOA tracers were included, 358 

which is assumed to result from their formation through heterogeneous reactions on 359 

filter surfaces.  360 

Since adsorption of gaseous WSOMMs on quartz filters is a potential source of 361 

artifacts when sampling particulate WSOMMs (Arhami et al., 2006), previous studies 362 

have adjusted the particulate concentrations of organic compounds by subtracting the 363 

amounts on Qb samples from those on Qf samples ([Qf]–[Qb]) (Mader and Pankow, 2000,  364 

2001a,  2001b). In this approach, the amounts of gaseous organic compounds 365 

adsorbed in Qf and Qb samples are assumed to be equal, and evaporation of the particle 366 

phase is neglected. However, Qb is exposed to lower concentrations of gaseous 367 

WSOMMs before Qf reaches equilibrium with the air sample (Mader and Pankow, 368 

2001b; Watson et al., 2009). Then, the [Qf]–[Qb] method may lead to an overestimation 369 

of particulate concentrations unless the sampling time is long enough (Hart and Pankow, 370 

1994; Subramanian et al., 2004).  371 

In Sampler II of this study, a third bare quartz filter (Qbb) was added after Qf and 372 

Qb, and the B values given in Table 2 also reflect the relationship between the amounts 373 

of gaseous WSOMMs adsorbed on two consecutive quartz filters. As such, it is more 374 

appropriate to estimate the amounts of gaseous WSOMMs adsorbed on Qf ([Qf*]) by 375 

assuming that the B value of Qf and Qb ([Qb]/([Qf*]+[Qb])) is identical to that of Qb and 376 

Qbb. In this case, the artifact-corrected particulate concentrations of the WSOMMs can 377 
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be calculated as [Qf]–[Qf*]. As Figure 4 shows, the [Qf], [Qf]–[Qb], and [Qf]–[Qf*] 378 

values of all six species have similar time series. However, except for C5-ATs, the mean 379 

[Qf] and [Qf]–[Qb] values of 2-MG, 2-MTs, and dicarboxylic acids are 33.8% – 78.1% 380 

and 11.1% – 40.3% higher than that of [Qf]–[Qf*]. Since the volatilization of particulate 381 

WSOMMs in Qf samples was not known, the values of [Qf]–[Qf*] can be regarded as a 382 

lower limit for filter-based measurements of particulate WSOMMs.  383 

3.3 Adsorption of gaseous WSOMMs or their precursors on treated filters 384 

The sampling efficiency of gaseous WSOMMs can be improved by treating the 385 

sampling medium with chemicals. Bao et al. (2012) collected gaseous organic acids 386 

using two tandem annular denuders coated with potassium hydroxide (KOH), and 387 

obtained a sampling efficiency up to 98% for short-chain dicarboxylic acids (C2 – C6). 388 

Kawamura and Kaplan (1987) and Bock et al. (2017) used KOH-impregnated quartz 389 

filters to collect motor vehicle emissions, and confirmed that engine exhaust is a source 390 

of dicarboxylic acids. In this study, the Qbb on Sampler I was treated with (NH4)2SO4 391 

or KOH on different sampling days (Table S1). Table 3 compares the measurement 392 

results of the Qb and (NH4)2SO4-treated Qbb samples from Sampler I with those of the 393 

collocated samples from Sampler II. The mean concentrations of 2-MTs and C5-ATs in 394 

the treated Qbb samples from Sampler Ⅰ were 3.34 ± 2.64 ng m⁻3 and 3.92 ± 3.25 ng m⁻3, 395 

respectively, which were 2.83 and 22.1 times higher than those in the untreated Qbb 396 

samples from Sampler II. While the collocated Qb samples had similar mean 397 

concentrations of 2-MTs and C5-ATs.  398 

Referring to the results of the chamber study, 2-MTs and C5-ATs are formed by the 399 

reactive uptake of epoxydiols of isoprene (IEPOX) through the acid-catalyzed ring 400 

opening (Surratt et al., 2006, 2010). The coated (NH4)2SO4 on Qbb can absorb water 401 

vapor and act as an acid to promote the hydrolysis of IEPOX on filters to form 2-MTs 402 
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and C5-ATs. In addition, inorganic sulfate on filters can also react with gaseous IEPOX 403 

as a nucleophile to form organosulfate esters and oligomeric forms of 2-MTs and C5-404 

ATs. As shown in Table S2, Qb and untreated Qbb samples from Sampler II also contain 405 

a certain amount of inorganic sulfate due to the heterogeneous reactions of SO2 (Pierson 406 

et al., 1980; Cheng et al., 2012), which are favored by the reactive uptake of IEPOX. 407 

The concentrations of SO4
2⁻ and NH4

+ in the Qb samples from Sampler I (SO4
2⁻ 0.13 ± 408 

0.056 μg m⁻3; NH4
+ 0.033 ± 0.026 μg m⁻3) and II (0.10 ± 0.040 μg m⁻3, 0.024 ± 0.022 409 

μg m⁻3) were comparable, indicating that there was no significant transfer of (NH4)2SO4 410 

from treated Qbb to Qb on Sampler I during sampling. This also explains the similar 411 

concentrations of 2-MTs and C5-ATs in Qb samples between Sampler I and II. During 412 

the derivatization process of sample analysis, the organosulfate and oligomeric forms 413 

of 2-MTs and C5-ATs can be converted to their monomeric forms by excess BSTFA 414 

(Lin et al., 2013a; Xie et al., 2014b); the conventional GC/EI-MS method also 415 

overestimates the concentrations of 2-MTs and C5-ATs due to the thermal 416 

decomposition of less volatile oligomers and organosulfates (Lopez et al., 2016; Cui et 417 

al., 2018). Consequently, 2-MTs and C5-ATs detected in the Qb and Qbb samples from 418 

both Sampler I and II were likely generated by heterogeneous reactions of gaseous 419 

IEPOX on quartz filter surfaces rather than by direct adsorption of gaseous molecules.  420 

 Unlike 2-MTs and C5-ATs, 2-MG in (NH4)2SO4-treated Qbb samples (0.16 ± 0.12 421 

ng m–3; Table 3) did no show higher mean concentration in comparison to that in 422 

untreated Qbb samples (0.24 ± 0.16 ng m–3). 2-MG is formed by the acid-catalyzed ring 423 

opening of MAE, an oxidation product of isoprene under high NOX conditions (Lin et 424 

al., 2013b). Surratt et al. (2007b) demonstrated that the formation of 2-MG is almost 425 

unaffected by changes in the acidity of the aerosol. Thus, 2-MG is stable in acidic 426 

aerosols and an equilibrium between the gas and particle phase could be achieved. The 427 
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mean concentrations of succinic acid, glutaric acid, and adipic acid in (NH4)2SO4-428 

treated Qbb samples were 11.3%, 57.4%, and 74.1% higher, respectively, than those in 429 

untreated Qbb samples (Table 3). One possible explanation is that (NH4)2SO4 is highly 430 

hygroscopic and promotes the dissolution of gaseous dicarboxylic acids by moisture 431 

absorption (Chen et al., 2021) or facilitates the heterogeneous formation of dicarboxylic 432 

acids (Yli et al., 2013; Bikkina et al., 2017). 433 

Table 4 shows that the mean concentrations of 2-MG (1.92 ± 1.38 ng m–3), succinic 434 

acid (7.05 ± 5.39 ng m–3), glutaric acid (1.50 ± 1.71 ng m–3), and adipic acid (1.16 ± 435 

1.20 ng m–3) in KOH-treated Qbb samples from Sampler I are up to 13.7 times higher 436 

than those in untreated Qbb samples from Sampler II. This can be explained by the 437 

formation of low-volatility organic compounds by neutralization reactions of gaseous 438 

organic acids on the surface of KOH-treated Qbb. As described in section 3.2, the 439 

breakthrough in the sampling of gaseous 2-MG (24.1 ± 10.2%) and 2-MTs (28.1 ± 440 

13.1%) is not excessively high when bare quartz filters are used. However, their 441 

concentrations in KOH- and (NH4)2SO4-treated Qbb samples increased substantially 442 

compared to untreated Qbb samples (Tables 3 and 4), indicating that a low B value does 443 

not guarantee high sampling efficiency of gaseous WSOMMs or their precursors. 444 

Owing to the transfer of KOH from treated Qbb to Qb on Sampler I, the mean 445 

concentrations of 2-MG and dicarboxylic acids in Qb samples from Sampler I are 1.84 446 

– 2.26 times higher than those in Sampler II (Table 4). The reactive uptake of organic 447 

acids in Qb samples from Sampler I during KOH treatment periods also led to increased 448 

WSOC and OC concentrations, and the transferred KOH on Qb accelerated the 449 

heterogeneous formation of SO4
2– and NO3

– (Table S2). 450 

4. Implications and conclusions 451 

In this study, the uncertainties for the concentrations of particulate WSOMMs (5.85% 452 
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– 19.9%) were determined by direct measurements of collocated Qf samples. The 453 

uncertainties for several compounds (e.g., levoglucosan and 2-MTH) were well below 454 

the default value (~20%) commonly used in previous studies. The uncertainty data 455 

presented in this work are useful for future modeling and field studies on atmospheric 456 

transport, transformation, and source apportionment of water-soluble organic aerosols. 457 

When the bare Qb and Qbb are considered as adsorbents for sampling gas-phase 458 

WSOMMs, the F% values obtained in this study are comparable to those obtained at 459 

the same sampling site using PUF as adsorbent. Based on the breakthrough of gaseous 460 

isoprene SOA tracers and dicarboxylic acids calculated from the measurement results 461 

of Qb and Qbb samples, a new method was developed to correct for the adsorption of 462 

gaseous organics on PM-loaded filter samples (Qf), which accounts for the decrease in 463 

gas-phase concentrations after the air sample passes through Qf. The adjusted Qf 464 

measurements could be used as a lower limit for the particulate concentrations of 465 

WSOMMs. 466 

By comparing the concentrations of isoprene SOA tracers and dicarboxylic acids 467 

between (NH4)2SO4-/KOH-treated and untreated Qbb samples, it was inferred that 468 

(NH4)2SO4 on quartz filters can promote the heterogeneous formation of 2-MTs and C5-469 

ATs by reactive uptake of IEPOX, and KOH can increase the adsorption of gaseous 470 

organic acids on quartz filters by neutralization reactions. Due to the influence of 471 

surface reactions, WSOMMs detected in adsorbents associated with SOA sources (e.g., 472 

2-MTs) may not indicate their existence in the gas phase. In further studies, chemically 473 

treated adsorbents can be developed for sampling gaseous WSOMMs with specific 474 

functional groups.  475 

 476 
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Table 1. Mean concentrations of WSOMMs (ng m–3) in Qf samples from Sampler I 

and II. 

Species Abbreviation Sampler I Sampler II 
Means of collocated 

samples 

Isoprene SOA tracers 

2-methylglyceric acid 2-MG 4.39 ± 3.29
 a

 4.57 ± 3.05 4.48 ± 3.15 

2-methylthreitol b 2-MTH 3.57 ± 1.83 3.82 ± 1.93 3.69 ± 1.87 

2-methylerythritol 2-MEH 9.20 ± 5.13 9.67 ± 5.29 9.43 ± 5.18 

2-methyltetrols  2-MTs c 12.8 ± 6.91 13.5 ± 7.16 13.1 ± 7.00 

cis-2-methyl-1,3,4-

trihydroxy-1-butene b 
cis-MTHB 3.47 ± 3.15 3.70 ± 3.12 3.58 ± 3.12 

3-methyl-2,3,4-

trihydroxy-1-butene b 
MTHB 2.14 ± 1.82 2.25 ± 1.85 2.19 ± 1.83 

trans-2-methyl-1,3,4-

trihydroxy-1-butene b 
trans-MTHB 10.0 ± 10.5 10.6 ± 10.3 10.3 ± 10.4 

C5-alkene triols  C5-ATs d 15.2 ± 14.9 16.0 ± 14.7 15.6 ± 14.7 

Dicarboxylic acid 

succinic acid  20.8 ± 13.9 22.6 ± 15.4 21.7 ± 14.5 

glutaric acid  8.31 ± 5.56 8.63 ± 4.98 8.47 ± 5.20 

adipic acid  5.93 ± 3.45 6.59 ± 3.94 6.26 ± 3.60 
Biomass burning tracers 

galactosan  0.36 ± 0.51 0.42 ± 0.63 0.39 ± 0.57 

mannosan  1.68 ± 1.04 1.78 ± 1.18 1.73 ± 1.11 

levoglucosan  21.5 ± 19.4 22.9 ± 20.2 22.2 ± 19.8 
Saccharides 

fructose  12.5 ± 8.87 13.6 ± 8.99 13.1 ±8.82 

glucose  9.29 ± 8.41 10.2 ± 9.04 9.75 ± 8.65 

sucrose  28.0 ± 32.8 29.7 ± 33.7 28.9 ± 33.2 

lactose  1.61 ± 1.37 1.69 ± 1.42 1.65 ± 1.40 

mannose  0.70 ± 0.61 0.79 ± 0.64 0.75 ± 0.62 
Sugar alcohols 

arabitol  5.97 ± 4.66 6.66 ± 4.51 6.31 ± 4.56 

pinitol  1.07 ± 0.82 1.15 ± 0.85 1.11 ± 0.84 

mannitol  16.9 ± 23.0 18.8 ± 23.4 17.9 ± 23.1 

sorbitol  1.00 ± 0.77 1.10 ± 0.72 1.05 ± 0.74 

inositol  2.11 ± 1.03 2.25 ± 1.09 2.18 ± 1.04 

chiro inositol  0.43 ± 0.41 0.47 ± 0.41 0.45 ± 0.41 
a Standard deviation; b compounds were quantified using meso-erythritol as the surrogate, and other 

compounds were quantified using authentic standards; c sum of 2-MTH and 2-MEH; d sum of trans-

MTHB, MTHB, and cis-MTHB. 
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Table 2. Mean concentrations (ng m⁻3), B, and F% of isoprene SOA tracers and 

dicarboxylic acids based on the measurement results of filter samples from Sampler II.  

Species Qf Qb Qbb B F% 

Isoprene SOA tracers 

2-MG 4.57 ± 3.05 0.85 ± 0.72 0.20 ± 0.13 24.1 ± 10.2 81.7 ± 9.98 

2-MTH 3.82 ± 1.93 0.62 ± 0.52 0.16 ± 0.16 21.4 ± 11.9 83.9 ± 9.36 

2-MEH 9.66 ± 5.29 1.13 ± 1.16 0.57 ± 0.70 32.2 ± 13.3 86.1 ± 10.1 

2-MTs 13.5 ± 7.16 1.74 ± 1.63 0.73 ± 0.86 28.1 ± 13.1 85.5 ± 9.62 

cis-MTHB 3.70 ± 3.12 0.053 ± 0.051 0.035 ± 0.025 42.4 ± 13.3 95.9 ± 4.38 

MTHB 2.25 ± 1.85 0.064 ± 0.035 0.030 ± 0.016 32.8 ± 8.00 92.7 ± 6.71 

trans-MTHB 10.6 ± 10.3 0.16 ± 0.21 0.099 ± 0.074 42.6 ± 13.5 95.2 ± 6.49 

C5-ATs 16.0 ± 14.7 0.29 ± 0.29 0.17 ± 0.11 40.0 ± 11.7 94.9 ± 5.80 

Dicarboxylic acids 

succinic acid 22.6 ± 15.4 6.17 ± 3.76 3.66 ± 2.18 39.7 ± 11.2 68.1 ± 8.22 

glutaric acid 8.63 ± 4.98 2.36 ± 1.46 1.18 ± 0.38 36.4 ± 12.1 69.4 ± 7.39 

adipic acid 6.59 ± 3.94 1.10 ± 0.70 0.68 ± 0.39 40.0 ± 13.8 77.6 ± 6.51 
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Table 3. Comparisons of the mean concentrations (ng m–3) of isoprene SOA tracers and 

dicarboxylic acids in the Qb and (NH4)2SO4-treated Qbb samples from Sampler I and 

the collocated untreated samples from Sampler II. 

Species 
Sampler Ⅰ  Sampler Ⅱ 

Qb Qbb Qbb/Qb  Qb Qbb Qbb/Qb 

Isoprene tracers 

2-MG 0.71 ± 0.73 0.16 ± 0.12 0.38 ± 0.25  1.01 ± 0.84 0.24 ± 0.15 0.36 ± 0.23 

2-MTH 0.54 ± 0.54 0.88 ± 0.64 2.40 ± 1.82  0.70 ± 0.61 0.19 ± 0.20 0.30 ± 0.20 

2-MEH 1.19 ± 1.29 2.46 ± 2.01 3.00 ± 1.90  1.42 ± 1.44 0.68 ± 0.89 0.49 ± 0.24 

2-MTs 1.73 ± 1.78 3.34 ± 2.64 0.59 ± 0.48  2.13 ± 2.00 0.87 ± 1.08 0.42 ± 0.23 

cis-MTHB 0.035 ± 0.024 1.05 ± 0.90 30.7 ± 15.1  0.061 ± 0.064 0.036 ± 0.029 0.83 ± 0.54 

MTHB 0.046 ± 0.025 0.62 ± 0.64 11.5 ± 7.74  0.067 ± 0.039 0.031 ± 0.018 0.50 ± 0.19 

trans-MTHB 0.10 ± 0.080 2.25 ± 1.75 21.9 ± 10.4  0.20 ± 0.27 0.10 ± 0.078 0.81 ± 0.45 

C5-ATs 0.19 ± 0.13 3.92 ± 3.25 20.3 ± 9.87  0.33 ± 0.37 0.17 ± 0.12 0.72 ± 0.38 

Dicarboxylic acid 

succinic acid 7.07 ± 3.86 4.67 ± 5.27 0.75 ± 0.68  8.07 ± 4.17 4.18 ± 2.76 0.63 ± 0.26 

glutaric acid 2.51 ± 1.55 1.99 ± 1.27 1.06 ± 0.72  2.97 ± 2.04 1.57 ± 1.13 0.67 ± 0.62 

adipic acid 1.08 ± 0.59 1.23 ± 1.29 1.41 ± 1.31  1.29 ± 0.74 0.71 ± 0.41 0.64 ± 0.31 
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Table 4. Comparisons of the mean concentrations (ng m–3) of isoprene SOA tracers and 

dicarboxylic acids in the Qb and KOH-treated Qbb samples from Sampler I and the 

collocated untreated samples from Sampler II. 

Species 
Sampler Ⅰ  Sampler Ⅱ 

Qb Qbb Qbb/Qb  Qb Qbb Qbb/Qb 

Isoprene tracers 

2-MG 1.74 ± 1.35 1.92 ± 1.38 1.92 ± 1.84  0.62 ± 0.51 0.14 ± 0.061 0.39 ± 0.32 

2-MTH 0.46 ± 0.47 0.15 ± 0.11 0.92 ± 0.95  0.51 ± 0.39 0.13 ± 0.11 0.31 ± 0.24 

2-MEH 0.93 ± 1.00 0.38 ± 0.25 0.81 ± 1.00  0.78 ± 0.60 0.43 ± 0.37 0.60 ± 0.49 

2-MTs 1.39 ± 1.44 0.47 ± 0.30 0.84 ± 0.94  1.29 ± 0.93 0.56 ± 0.48 0.47 ± 0.37 

cis-MTHB 0.068 ± 0.062 0.070 ± 0.090 1.60 ± 2.72  0.038 ± 0.020 0.031 ± 0.021 0.80 ± 0.25 

MTHB 0.056 ± 0.037 0.024 ± 0.027 0.92 ± 1.26  0.054 ± 0.032 0.029 ± 0.013 0.75 ± 0.74 

trans-MTHB 0.10 ± 0.12 0.033 ± 0.051 0.92 ± 1.12  0.11 ± 0.079 0.091 ± 0.076 0.91 ± 0.37 

C5-ATs 0.22 ± 0.16 0.12 ± 0.15 0.92 ± 1.30  0.21 ± 0.12 0.15 ± 0.11 0.82 ± 0.35 

Dicarboxylic acid 

succinic acid 16.0 ± 11.4 7.05 ± 5.39 0.62 ± 0.63  4.90 ± 2.72 3.08 ± 1.18 0.81 ± 0.93 

glutaric acid 3.81 ± 3.34 1.50 ± 1.71 0.43 ± 0.39  2.06 ± 1.03 1.14 ± 0.34 0.83 ± 0.93 

adipic acid 2.91 ± 5.63 1.16 ± 1.20 0.67 ± 0.57  1.60 ± 2.37 0.71 ± 0.43 1.08 ± 1.62 
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Figure 1 

 

Figure 1. Location of the sampling site (a) and scheme of collocated sampling with 

three stacked quartz filters (b). 
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Figure 2 

 

Figure 2. Comparisons of the concentrations of typical WSOMMs in collocated Qf 

samples (the red dashed line represents y=x). 

  



33 
 

Figure 3 

 

Figure 3. Comparisons of mean concentrations of 2-MTs and C5-ATs in (a) Qf, (b) Qb, 

and (c) Qbb/PUF samples between this study and Qin et al. (2021). 
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Figure 4 

 

Figure 4. Comparisons of particulate concentrations of isoprene SOA tracers and 

dicarboxylic acid before and after gaseous adsorption corrections in summer 2021 (N: 

nighttime; D: day time). 

 

 

 

 

 

 


