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Abstract. This paper describes the climate‐related forcings (CRFs) provided within the ‘b’ part of the

third simulation round of the Inter‐Sectoral Impact Model Intercomparison Project (ISIMIP3b). While

ISIMIP3a comprises historical impact models simulations forced by observational CRF and direct human

forcings (DHF), the ISIMIP3b CRFs are based on climate model simulations generated within the sixth

phase of the Coupled Model Intercomparison Project (CMIP6). In a first set of experiments (ISIMIP3b,

group I) the CMIP6‐based CRFs for the historical period are combined with historical observation‐based

DHF also considered in ISIMIP3a (e.g. land use patterns, water and agricultural management, and fishing

efforts). These group I simulations allow for the quantification of impacts of historical climate change by

comparison to simulations where the observational DHF are combined with simulated pre‐industrial

CRFs. In addition, the impacts of observed changes in CRFs can be compared to the impacts of simulated

changes in CRFs by comparing the ISIMIP3a simulations to the ISIMIP3b, group I simulations. The second

group of experiments (ISIMIP3b, group II) comprises future projections assuming constant observational

direct human forcings at 2015 levels to estimate the impact of climate change given today’s direct

human influences for the low emission scenario SSP1‐2.6, the high and the very high emission scenarios

SSP3‐7.0, SSP5‐8.5, respectively. The very high emissions scenarios and the assumption of fixed present

day direct human forcings particularly allow for testing the scalability of impacts in terms of global

temperature change. The provided CRFs comprise atmospheric CO₂ and CH4 concentrations,
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atmospheric and oceanic climate data, coastal water levels, tropical cyclone tracks and their associated

wind speed and precipitation fields. In addition to the CRFs data, this paper describes the experiments

belonging to group I and II and the rationale behind them. Another set of future projections accounting

for changing DHFs (ISIMIP3b, group III) is in preparation and will be described in another paper.

Introduction

This is the second paper of a series of three papers describing the experiments of the third simulation

round of the Inter‐Sectoral Impact Model Intercomparison Project ISIMIP (isimip.org). The project

provides a common scenario framework for cross‐sectorally consistent climate impact simulations. In its

third round it covers i) model evaluation and climate impact attribution experiments based on

observation‐based climate and direct human forcings (ISIMIP3a, first paper, (Frieler et al., 2023)), ii)

climate impact simulations driven by simulated climate‐related forcings based the sixth phase of the

Coupled Climate Model Intercomparison Project (CMIP6) assuming ISIMIP3a observational DHF in the

historical period and fixed 2015 DHF for the future simulations (ISIMIP3, group I+II, this paper), and iii)

an upcoming set of CMIP6‐based future projections where DHF vary according to given Shared

Socioeconomic Pathways (SSPs) (no adaptation scenarios) and in response to climate change impacts

(adaptation scenarios) (ISIMIP3b, group III). So while this paper only describes the ISIMIP3b

climate‐related forcings, the third paper will only address the DHFs that are still under development

while the CRF of the group III simulations will be identical to the future CRF described here.

Similar to the Coupled Model Intercomparison Project (CMIP) (Eyring et al., 2016) all simulations will be

freely available (https://data.isimip.org/) to allow for follow‐up analysis. The consistent design of the

simulations does not only allow for the comparison of climate impact simulations within each sector,

but also enables the bottom‐up integration of impacts across sectors. Thus, it provides a unique basis

for the estimation of the effects of climate change on, e.g., the economy, displacement and migration,

health, or water quality resolving the mechanisms along different impact channels and fully exploiting

the process‐understanding represented in the biophysical impact models.

Compared to ISIMIP2b, the ISIMIP3b CRF represent the following updates: i) climate forcing data based

on phase 6 of the Coupled Model Intercomparison Project (CMIP6) (Eyring et al., 2016) and

post‐processed by an improved bias adjustment and statistical downscaling method (see section 3.2),

and ii) large ensembles of potential realisations of tropical cyclone tracks, wind and precipitation fields

derived from two different modelling approaches assuming CMIP6 boundary conditions, while in

ISIMIP2b only one approach was used and precipitation fields were not included. In addition, we plan to

provide coastal water levels at high temporal resolution (upcoming). The approach to generate the data

is also described here.

The development of the ISIMIP3b protocol was coordinated by the ISIMIP‐Cross‐Sectoral Science Team

(CSST) at the Potsdam Institute for Climate Impact Research (PIK) along the same decision process as for

ISIMIP3a (Frieler, submitted 2023).
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This paper is accompanied by a simulation protocol (ISIMIP3b Simulation Protocol, 2023) providing all

technical details such as file and variable naming conventions, as well as sector‐specific output variables

to be reported by the participating modelling teams. This paper refers to the protocol version of

December 21st, 2023. However, as the protocol may still be updated due to addition of new variables,

correction of errors, or the inclusion of new sectors, contributors to ISIMIP should always refer to

protocol.isimip.org for the most up to date reference for planned impact model simulations.

The ISMIP3a and ISIMIP3b protocols have been jointly developed and participation in ISIMIP3 requires

contribution to both ISIMIP3a and ISIMIP3b, using the same impact model versions in order to allow for

the evaluation of the impact models future projections in ISIMIP3b.

In the following, we describe the rationale behind the individual scenario set‐ups (section 1). We then

introduce the individual climate‐related forcing data sets in the second section covering atmospheric

climate data including lighting and tropical cyclones tracks, wind and precipitation fields; ocean data;

coastal water levels; and atmospheric CO₂ as well as CH₄ concentrations.

1 Experiments and underlying rationale

The selection of ISIMIP3b scenarios (see Figure 1) was generally motivated by the aim to i) capture a

wide range of possible futures from low to high emission scenarios, ii) the availability of climate model

simulations, and iii) the provision of a long baseline simulation assuming pre‐industrial climate

conditions that allows for a robust estimation of reference return levels of extreme events. Given recent

mitigation efforts, some estimates of recoverable coal reserves, and decreasing prices for renewable

energies the emissions underlying SSP5‐8.5 have been criticised for not representing a meaningful

‘business as usual scenario’ (Hausfather & Peters, 2020). Therefore, within ISIMIP SSP5‐8.5 is not

considered a ‘business as usual scenario’, but rather a worst case scenario. Furthermore, its strong

warming signal allows testing to what degree the simulated impacts of climate may scale with global

mean temperature, which could potentially lead to translating impacts to other emission scenarios. In

addition, even under lower emission scenarios, global warming levels as the ones reached under

SSP5‐8.5 in 2100 will only be reached later in time as long as emissions are not reduced to zero. These

impacts of high warming levels would not be captured when only considering lower emission scenarios

ending in 2100. In response to the discussion, the ’average no climate protection policy’ SSP3‐7.0

(Hausfather & Peters, 2020) has been added to the ISIMIP3b protocol. However, SSP3‐7.0 has not been

designed as a business as usual scenario, either. Instead it is based on rather extreme assumptions

about land use changes and aerosol emissions e.g. leading to a scaling of precipitation with global mean

temperature that diverges from the scaling identified in the other scenarios (Shiogama et al., 2023).

All ISIMIP experiments are determined by the underlying set of CRFs and DHF, where each package of

CRF and DHF has a specific label that will then be included in the output file names to allow for an

identification of the experiments they belong to. The individual experiments are defined by the

combination of both types of forcing data sets, where the associated specifiers are indicated in brackets

in the subheadings naming the experiments (CRF specifier + DHF specifier). The different combinations
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of the default sets of ISIMIP3b CRFs (‘picontrol’, ‘historical’, ‘ssp126’, ‘ssp370’, and ‘ssp585’) and DHF

(‘histsoc’, ‘2015soc’, ‘1901soc’, ‘1850soc’, ‘nat’, and ‘2015soc‐from‐histsoc’) are sketched in Figure 1 and

described in more detail below.

The CRF forcing data described in this paper are mandatory; i.e. if impact models consider this forcing,

the specified dataset must be used; if an alternative input data set is used instead, the run cannot be

considered an ISIMIP3, group I + II simulation. The DHF for the historical period is identical to the

ISIMIP3a DHF listed in Table 1 of (Frieler, submitted 2023) where we also indicate whether the data set

is mandatory or optional. Optional forcing data could be used but is not mandatory. In addition, the

protocol includes a set of sensitivity experiments that are described as deviations from the default runs

and labelled by the baseline CRF and DHF settings and a third specifier indicating the deviation from this

default setting. The ISIMIP3b group I+II sensitivity runs include experiments with fixed levels of

atmospheric CO₂ concentrations (‘2015co2’), high levels in CO2 concentrations in combination with low

levels of climate change (‘ssp585co2’), and runs with lightning data that vary in response to climate

change (‘varlightning’), while lightning is fixed at present day levels in the default runs. These sensitivity

experiment runs are not depicted in Figure 1 but listed in Table 2.

Figure 1: Illustration of the default ISIMIP3b forcing data sets. Each ISIMIP3b experiment is defined by a

combination of a CRF data set with a DHF data set. The considered combinations are listed in Table 2

and the underlying rationale is described in section 1.1 and 1.2. Table 1 lists all data sets defining the

considered CRFs while the DHFs are based on the same datasets as in ISIMIP3a. Potentially required

spin‐up procedures are not included in the Figure, but described in section 1.1.

The ISMIP3b simulations are divided into two groups. Group I comprises the simulations from 1601 ‐

1849 (pre‐industrial) and 1850 ‐ 2014 (historical) assuming simulated pre‐industrial and historical CRFs

and different constant (‘nat’, ‘1850soc’, and ‘2015soc’) or varying (‘histsoc’) levels of DHF based on the
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same observational data used in ISIMIP3a (see Figure 1). Group II comprises the future projections

assuming constant 2015 levels of DHF (see Figure 1) including a baseline with pre‐industrial CRF (grey

line in the future projections part of Figure 1). All experiments are introduced in more detail below

(section 1.1 for group I and 1.2 for group II).

In contrast to ISIMIP3a, the CRFs provided for ISIMIP3b currently only comprise atmospheric (see

section 2.1) and oceanic climate data (see section 2.4), tropical cyclone tracks with associated wind and

precipitation fields (see section 2.2), and CO₂ and methane concentration (see section 2.5). We do not

yet provide associated coastal water levels (see section 2.2.3 for planned work), and lightning data (see

Table 5). Impact simulations that rely on the missing forcings cannot be generated within ISIMIP3b yet,

but we are currently developing their setup and will provide the forcings as soon as possible. The

ISIMIP3b atmospheric and oceanic climate data is derived from five different General Circulation Models

generated within the Coupled Model Intercomparison project, phase 6 (CMIP6).

Table 1: Climate‐Related Forcing datasets for ISIMIP3b.

Forcing Status Source, description

Climate‐related forcings (‘picontrol’, ‘historical’, ‘ssp126’, ‘ssp370’, ‘ssp585’)

Atmospheric forcings (‘picontrol’, ‘historical’, ‘ssp585’, ‘ssp370’, ‘ssp126’)

Gridded atmospheric

climate forcing

mandatory Bias‐adjusted data (pre‐industrial climate, historical climate, and

future projections for the SSP1‐2.6, SSP3‐7.0, and SSP5‐8.5

scenarios) generated by GFDL‐ESM4, IPSL‐CM6A‐LR, MPI‐ESM1‐2‐HR,

MRI‐ESM2‐0, and UKESM1‐0‐LL

within CMIP6, see section 2.1

Local atmospheric

climate forcing for lakes

mandatory Atmospheric data extracted from the data sets above for 72 lakes

that have been identified within the lake sector as locations (grid cell

of the ISIMIP 0.5° grid, ISIMIP3 local lake sites) where models can be

calibrated based on observed temperature profiles and hypsometry

within ISIMIP3b (depth and area).

Tropical cyclone tracks

with wind and

precipitation fields

mandatory Available on request (see section 2.2), samples of synthetic tropical

cyclone tracks derived from the five CMIP6 GCMs considered within

ISIMIP generated by two different statistical downscaling

approaches, see section 2.2.

MIT approach (Emanuel et al., 2008):

historical climate from IPSL‐CM6A‐LR, MPI‐ESM1‐2‐HR, UKESM1‐0‐LL

and GFDL‐ESM4 (all 1850‐2014), and from MRI‐ESM2‐0  (1950‐2014).

Future climate: ssp370 and ssp585 (2015‐2100) from IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, MRI‐ESM2‐0, UKESM1‐0‐LL, and ssp585

(2061‐2100) from GFDL‐ESM4.
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Two different configurations (SD and CRH, see section 2.2) of the

Columbia HAZard model (CHAZ, (Lee et al., 2018)):

pre‐industrial climate (1601‐2100) from  GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, MRI‐ESM2‐0, and UKESM1‐0‐LL.

historical climate (1850‐2014) from GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, MRI‐ESM2‐0, and UKESM1‐0‐LL

future climate (2015‐2100): ssp126, ssp370, ssp585 from

GFDL‐ESM4, IPSL‐CM6A‐LR, MPI‐ESM1‐2‐HR, MRI‐ESM2‐0, and

UKESM1‐0‐LL

Lightning mandatory Flash Rate Monthly Climatology from (Cecil, 2006), not changing with

climate change

Oceanic forcings (‘picontrol’, ‘historical’, ‘ssp585’, ‘ssp370’, ‘ssp126’)

Oceanic climate forcing mandatory Uncorrected data (pre‐industrial climate, historical climate, and

future projections for the SSP1‐2.6, SSP3‐7.0, and SSP5‐8.5

scenarios) generated by GFDL‐ESM4, IPSL‐CM6A‐LR, MPI‐ESM1‐2‐HR,

and UKESM1‐0‐LL  within CMIP6, see section 2.4

Coastal water levels

Coastal water levels mandatory Not available yet, but we plan to provide hourly water levels derived

from the atmospheric forcings described above combined with

long‐term sea‐level trends; see section 2.3.

Atmospheric composition or fluxes

Atmospheric CO₂
concentration

mandatory (Büchner & Reyer, 2022) based on the following sources:

1850‐2005: (Meinshausen et al., 2011);

2006‐2014: Global annual CO2 from NOAA Global Monthly Mean

CO₂ ((Lan et al., 2023);

2015‐2100: (Meinshausen et al., 2020)

Atmospheric CH₄
concentration

mandatory (Büchner & Reyer, 2022) based on the following sources:

1850‐2014: (Meinshausen et al., 2017);

2015‐2100: (Meinshausen et al., 2020)

Climate‐Related Forcings for the sensitivity experiment ‘varlightning’, using above forcing data except for:

Lightning data (‘varlightning’)

Varying lightning

according to climate

change

mandatory Lightning data has been generated for the ssp126,  ssp370, and

ssp850 climate projections from UKESM1‐0‐LL (Kaplan et al., 2023)

Climate‐Related Forcings for the ‘de‐biased’ sensitivity experiment

Global oceanic forcings

7
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Oceanic forcings based

on de‐biased

atmospheric forcings

mandatory Not available yet, simulated by the ocean biogeochemistry model

ocean‐biogeochemistry NEMO‐PISCES forced by a de‐biased version

of the IPSL‐CM6A‐LR‐based atmospheric forcing (see section 2.4.2)

Regional oceanic forcings

De‐biased oceanic forcing

based on observed

oceanic data for

individual variables and

regions

mandatory Not centrally provided, see section 2.4.3

1.1 ISIMIP3b, group I: Climate‐model based impact model simulations for the period

from 1601 to 2015

The group I experiments cover the years 1601‐1849 with pre‐industrial CRFs (‘picontrol’) and fixed 1850

direct human forcings (‘1850soc’) described in the grey column 3 of the ISIMIP3b scenario Table 2 as

well as the subsequent years 1850‐2014 considering pre‐industrial and historical climate‐related forcings

(‘picontrol’ or ‘historical’) and different assumptions about direct human forcings (‘histsoc’, ‘2015soc’,

‘1850soc’, and ‘nat’) as described in the grey column 4 of Table 2. The reasoning behind the individual

experiments are introduced below.

Pre‐industrial reference simulations (picontrol + histsoc, picontrol + 2015soc, picontrol +

2015soc‐from‐histsoc, picontrol + 1850soc, picontrol + nat; default): To estimate the impacts of

historical and future changes in the CRFs, the protocol includes reference simulations based on

pre‐industrial CRFs and DHF identical to those considered in the climate change scenario runs. In order

to allow for the fitting of extreme value distributions, e.g. to estimate reference 100 year return levels of

certain impacts, the runs are designed to includes the generation of large samples (at least 250 years)

of impact distributions distribution based on stable pre‐industrial CRFs (picontrol) and constant DHFs

(see ‘picontrol + 1850soc’, ‘picontrol + 2015soc’, and ‘picontrol + nat’ experiments in Table 2).

In addition, the protocol includes a reference experiment for the historical period (1850‐2014) with DHF

changing over time (histsoc) and 1850‐2014 pre‐industrial CRF (picontrol), while fixed 2015 DHF is

considered afterwards (2015‐2100) (‘picontrol + 2015soc‐from‐histsoc’). This run may be different from

the ‘picontrol + 2015soc’ simulation for this time window because of the lagged effects of increasing

DHF from 1850 to 2014. The ’histsoc’ DHF is identical to ISIMIP3a (Frieler, submitted 2023).

The complete pre‐industrial reference runs are divided in two parts. Only the first parts from the start

until 2014 belong to group I (grey fields in the table), while the second parts covering the period

2015‐2100 belong to group II (red parts of the table).

Comparing these reference simulations to the scenario experiments using historical CRFs (historical +

histsoc, historical + 2015soc, historical + 1850soc, historical + nat; default (see below)) allows for the
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estimation of the effects of simulated historical climate change conditional on the assumed DHF. The

historical climate‐related forcing (‘historical’) starts from the pre‐industrial climate simulation in 1850,

i.e. the ‘picontrol’ and ‘historical’ versions of the experiments have a common starting point. As some

impact indicators may have ‘internal’ trends not necessarily forced by external drivers (e.g. re‐growth of

forests), the comparison of the 1850‐2014 impact simulations forced by the ‘historical’ CRF to parallel

simulations using the ‘picontrol’ CRF is more appropriate to estimate the effects of historical climate

change than comparing an early period of the historical impact simulation to the end of the historical

period.

For models requiring a spin‐up, the ‘picontrol’ CRFs should be used in combinations with DHF i) at 1850

levels to spin‐up for the ‘1850soc’ and ‘histsoc’ experiments, ii) at 2015 levels to initialise the ‘2015soc’

experiment, and iii) set to zero to start the ‘nat’ experiments. For the spin‐up the ‘picontrol’ CRF should

be copied as often as needed. The ‘picontrol + 1850soc’ run from 1601‐1849 is part of the regular

experiments that should be reported and hence the spin‐up has to be finished before this pre‐industrial

period.

To allow for a quantification of the impacts of the anthropogenic CRFs, we also support historical

reference simulation assuming only natural CRF (‘hist‐nat’ simulations generated within the Detection

and Attribution Model Intercomparison Project (DAMIP) as sub‐MIP of CMIP6, (Gillett et al., 2016) by

providing the associated bias‐adjusted CRF as secondary climate input data (Lange et al., 2023).

However, associated simulations are not an official part of ISIMIP3b and not described in the associated

protocol.

Standard historical simulations based on historical climate‐related forcing and observed changes in

direct human forcing (historical + histsoc; default): The historical simulations (1850‐2014) are forced by

historical (‘historical’) CRFs and DHFs evolving according to observations (ISIMIP3a ‘histsoc’ DHF). The

ISIMIP3b ‘historical + histsoc’ experiment is comparable to the default ‘obsclim + histsoc’ run used in

ISIMIP3a but based on simulated CRFs. The simulated climate is different from the observed realisation

due to differences in the internal variability of the observed and simulated historical climate and

potential deficits in the climate model simulations. A comparison between the default ISIMIP3b

‘historical + histsoc’ impact model simulations to the associated ISIMIP3a results allows for a

quantification of the effects of the discrepancies between the observed and simulated CRFs on the

considered impact indicators. This experiment can be initialised from the spin‐up of the associated

pre‐industrial reference simulation in case  a spin‐up is needed.

Simulations with historical climate‐related forcing and fixed 2015 direct human forcing (historical +

2015soc; default): This historical experiment is similar to the standard historical experiment except that

it is forced by fixed 2015 DHF. It is introduced into the ‘first priority’ scenario‐set‐up to generate an

ensemble of historical cross‐sectorally consistent impact simulations that is as large as possible by not

excluding impact models that are not able to handle varying DHF. If a spin‐up is needed the experiment

can be initialised from the spin‐up of the associated pre‐industrial reference simulation (picontrol +

2015soc, default) described at the beginning of this section.
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Simulations with historical climate‐related forcing and fixed 1850 direct human forcing (historical +

1850soc; default): This historical experiment is also similar to the standard historical experiment but it is

forced by the fixed 1850 DHFs. It corresponds to the ‘obsclim + 1901soc’ simulation of ISIMIP3a. Here in

ISIMIP3b we consider the year 1850 instead of 1901 used in ISIMIP3a as this is the year where the

‘historical’ climate simulations with observed natural and human forcings start, i.e. a branch from the

pre‐industrial climate simulations assuming constant pre‐industrial forcings (‘picontrol’). If a spin‐up is

required it does not have to be newly generated as it is identical to the spin‐up for the default ‘picontrol

+ 1850soc’, ‘picontrol + histsoc’, and ‘historical + histsoc’ experiments and described in the beginning of

this section.

Simulations with historical climate‐related forcing and no direct human forcings (historical + nat;

default): Considering no direct human forcings (nature run) allows quantifying the effect of the

simulated historical climate change conditional on otherwise natural conditions, i.e. no direct human

influences on land use, water management etc.. This experiment is introduced as a companion

experiment to the ‘obsclim + nat’ simulations of ISIMIP3a. The comparison with the three historical

simulations with constant direct human forcings allows testing, to what degree the impact of climate

change on the simulated natural or human systems is conditional on the underlying direct human

forcing. This experiment is only included for the biomes and fisheries and marine ecosystems fisheries

sectors as models from other sectors usually need some basic information such as vegetation patterns

that are not available for natural‐only conditions. The biomes models generate their own natural‐only

vegetation patterns based on their dynamic representation of vegetation. A spin‐up does not have to be

newly generated but is identical to the spin‐up for the ‘picontrol + nat’ experiment described above.

‘De‐biased’ sensitivity simulations within the marine ecosystems and fisheries sector (FishMIP) with

de‐biased historical oceanic forcings and no or histsoc direct human forcings (historical + nat,

historical + histsoc; de‐biased): So far, the default oceanic forcing is not bias‐adjusted as globally the

observational data are to sparse to be used in a similar empirical way as for the bias‐adjustment of the

atmospheric forcing. However, the biases in the forcing are expected to also induce biases in the

historical and future impact simulations. To quantify these effects and to test a suggested

bias‐adjustment method based on comprehensive ocean‐biogeochemistry model simulations forced by

bias‐adjusted atmospheric forcings we include a sensitivity experiment where the default

climate‐related forcing is replaced by input data generated by a dynamical de‐biasing approach

(Lengaigne et al. 2025) using the NEMO‐PISCES physical‐biogeochemical ocean model (Madec, 2015),

which is the oceanic component of the IPSL‐CM6A‐LR climate model. Thus, the forcing data will first be

generated for IPSL‐CM6A‐LR, but later extended to other ISIMIP‐GCMs as described in subsection 2.4.2.

In contrast, the oceanic forcing for the regional component of the marine ecosystems and fisheries

sector have been bias‐adjusted by regional observational oceanic data as described in subsection 2.4.3.

In this case most models only use the bias‐adjusted inputs and not the raw ones. Nevertheless the

experiments are labeled as ‘de‐biased’ sensitivity experiments to ensure a consistent naming across

scales.
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1.2 ISIMIP3b, group II: Climate‐model based future impact model simulations with

constant 2015 direct human forcings

The ISIMIP3b, group II simulations comprise a set of future impact projections (2015‐2100) using fixed

levels of direct human forcings as considered in the historical simulations (‘2015soc’, ‘1850soc’, and

‘nat’) or reached at the end (2014) of the historical period in the ‘historical + histsoc’ runs

(‘2015soc‐from‐histsoc’). These runs are described in the red cells of Table 4.

Pre‐industrial reference simulations (picontrol + 2015soc, picontrol + 2015soc‐from‐histsoc, picontrol

+ 1850soc, picontrol + nat; default): These simulations are included into the ISIMIP3, group II part of the

protocol to allow for the estimation of the effect of climate change by comparing the future impact

projections to simulations assuming the same background DHF but pre‐industrial levels of CRF (see

description of baseline simulations in section 1.1).

Future impact projections assuming SSP‐RCP‐based climate‐related forcings starting from ‘historical +

histsoc’ simulations (ssp126 + 2015soc‐from‐histsoc, ssp370 + 2015soc‐from‐histsoc, ssp585 +

2015soc‐from‐histsoc; default): These runs are a continuation of the group I ‘historical + histsoc’

simulations assuming fixed 2015 direct human forcings for the future. Note that this experiment is

different from the experiment with fixed 2015 DHF for the future starting from the ‘historical + 2015soc’

group I experiment (see description below).

These experiments have been introduced to describe the impacts of different scenarios of changes in

the climate‐related systems on today’s natural systems and societies, i.e. assuming present day

population levels and distributions, land use patterns, water, and agricultural management measures

etc.. In many cases, the projected changes in natural and human systems can be interpreted as the pure

effect of the prescribed changes in the climate‐related systems. However, they could also partly result

from lagged effects of the historical changes in DHFs (‘histsoc’), CRF (‘historical’), or natural temporal

trends induced e.g. by re‐growth of forests. To be able to separate natural trends from the effects of

changing CRFs, these simulations can be compared to reference impact simulations with pre‐industrial

climate‐related forcings forced with the same direct human forcings (‘picontrol + 2015soc‐from‐histsoc’,

see description in group I section).

Future impact projections assuming SSP‐RCP‐based climate‐related forcings starting from historical

simulations with constant 2015 direct human forcings (ssp126 + 2015soc, ssp370 + 2015soc, ssp585 +

2015soc; default): These experiments continue the ‘historical + 2015soc’ experiments from ISIMIP3b,

group I using direct human forcings held constant at 2015 levels for the historical period. Although the

DHF in the future period is identical to the future simulations described above, the difference in

historical forcing may affect the impact simulations in the future period. These simulations are also

considered first priority as some of the impact models may not be able to handle varying direct human

forcings and therefore can only perform these experiments. Models participating in the
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‘2015soc‐from‐histsoc’ experiments described above are also asked to complete the ‘2015soc’ runs to

generate an as large as possible ensemble of consistent impact model simulations.

Future impact projections assuming SSP‐RCP‐based climate‐related forcings starting from historical

simulations assuming constant 1850 direct human forcings (ssp126 + 1850soc, ssp370 + 1850soc,

ssp585 + 1850soc; default): These experiments continue the default ‘historical + 1850soc’ experiments

considered in ISIMIP3b, group I. They are included to estimate the impact of changes in the

climate‐related systems conditional on 1850 levels of direct human forcings that can be compared to the

impact conditional on today’s levels of direct human forcings (‘2015soc’).

Future impact projections assuming SSP‐RCP‐based climate‐related forcings starting from historical

simulations assuming no direct human forcings (ssp126 + nat, ssp370 + nat, ssp585 + nat; default):

These experiments continue the default ‘historical + nat’ experiments in ISIMIP3b, group I. They are

included to estimate the effect of changes in the climate‐related systems (here climate change itself and

increasing CO₂ concentrations) assuming no direct human forcings.

CO₂ sensitivity simulations (ssp126 + 2015soc‐from‐histsoc, ssp370 + 2015soc‐from‐histsoc, ssp585 +

2015soc‐from‐histsoc, ssp585 + 2015soc, ssp585 + 1850soc, ssp585 + nat; 2015co2): To separate the

effects of increasing atmospheric CO₂ concentrations from the effects of other changes in the

climate‐related systems, the ISIMIP3b protocol includes sensitivity experiments where atmospheric CO₂

concentrations are held constant at 2015 levels. For SSP1‐2.6 and SSP3‐7.0, they are only introduced as

deviations from the default ‘2015soc‐from‐histsoc’ experiments while for SSP5‐8.5 the effect can also be

quantified conditional on all levels of direct human influences considered in the previous experiments.

Future lightning sensitivity simulations (ssp126 + 2015soc‐from‐histsoc, ssp370 +

2015soc‐from‐histsoc, ssp585 + 2015soc‐from‐histsoc; varlightning): To study the effects of future

changes in lightning flash rates as opposed to using a stationary lightning climatology, the ISIMIP3b

protocol includes sensitivity experiments where future lightning flash rates change along the RCPs. The

future lightning data sensitivity experiment is introduced as a deviation from the default

‘2015soc‐from‐histsoc” experiment and only for one climate model (UK‐ESM). This sensitivity

experiment has been  introduced for the fire sector.

Climate sensitivity simulations under high levels of CO₂ (ssp126 + 2015soc‐from‐histsoc, ssp585co2):

To study the effects of high atmospheric CO₂ concentration without accompanying changes in climate,

the ISIMIP3b protocol includes a sensitivity experiment where the atmospheric CO₂ concentration are

prescribed according to RCP8.5, while the other climate‐related forcings, in particular the atmospheric

forcings are from SSP1‐2.6. The future climate sensitivity experiment is introduced as a deviation from

the default ‘ssp126 + 2015soc‐from‐histsoc’ experiment. This sensitivity experiment has been

introduced for the peat sector.

‘De‐biased’ sensitivity simulations within the marine ecosystems and fisheries sector (FishMIP) with

de‐biased oceanic forcings and no or 2015soc direct human forcings for reference simulations based

on pre‐industrial oceanic forcing (picontrol + nat, picontrol + 2015soc‐from‐histsoc; de‐biased) and the
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associated simulations accounting for different levels of climate change (ssp126 + nat, ssp370 + nat,

ssp858 + nat, ssp126 + 2015soc‐from‐histsoc, ssp370 + 2015soc‐from‐histsoc, ssp585 +

2015soc‐from‐histsoc): These simulations represent the future extensions of the ‘de‐biased’ group I

simulations described above. They are designed to test the dynamical bias‐adjustment suggested for the

global oceanic forcings under different levels of climate change (ssp126, ssp370, ssp585). The regional

impact projections within the sector are also based on de‐biased oceanic forcings and are therefore also

labeled as ‘de‐biased’ sensitivity experiments to ensure a consistent labeling across scales.
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Experiment Short description Period: Pre‐industrial

1601‐1849

Period:

Historical

1850‐2014

Period: Future

2015‐2100

pre‐industrial

control

2015soc‐from‐hist

soc

1st priority

CRF: No changes in

the climate‐related

systems, CO₂ and CH₄
fixed at 1850 levels

picontrol picontrol picontrol

DHF: Varying

management before

2015, then fixed at

2015 levels thereafter

1850soc histsoc 2015soc‐from‐histsoc

pre‐industrial

control

2015soc

1st priority

CRF: No changes in

the climate‐related

systems, CO₂ and CH₄
fixed at 1850 levels

Does not have to be

simulated as the

following periods

already provide 251

simulation years

assuming stable

baseline CRF and DHF.

ensi

picontrol picontrol

DHF: Fixed at 2015

levels for all periods

2015soc 2015soc

pre‐industrial

control

1850soc

2nd priority

CRF: No changes in

the climate‐related

systems, CO₂ and CH₄
fixed at 1850 levels

Does not have to be

simulated as the

following periods

already provide 251

simulation years

assuming stable

baseline CRF and DHF.

picontrol picontrol

DHF: Fixed at 1850

levels for all periods

1850soc 1850soc

407

408

409

410

411

412

413

414

415
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pre‐industrial

control

nat

2nd priority

CRF: No changes in

the climate‐related

systems, CO₂ and CH₄
fixed at 1850 levels

Does not have to be

simulated as the

following periods

already provide 251

simulation years

assuming stable

baseline CRF and DHF.

picontrol picontrol

DHF: No direct

human influences

nat nat

RCP2.6

2015soc‐from‐hist

soc

1st priority

CRF: Simulated

historical changes in

climate‐related

systems, CO₂ and CH₄
concentrations as

observed in the

historical period,

then simulated

SSP1‐2.6 changes in

the climate‐related

systems

Identical to picontrol +

1850soc run described

above

historical ssp126

DHF: Varying

management before

2015, then fixed at

2015 levels thereafter

histsoc 2015soc‐from‐histsoc

RCP2.6

2015soc

1st priority

CRF: Simulated

historical changes in

climate‐related

systems, CO₂ and CH₄
concentrations as

observed in the

historical period,

then simulated

SSP1‐2.6 changes in

the climate‐related

systems

Identical to “picontrol

+ 2015soc” run

historical ssp126

DHF: Fixed at 2015

levels for all periods

2015soc 2015soc

RCP2.6

1850soc

2nd priority

CRF: Simulated

historical changes in

climate‐related

systems, CO₂ and CH₄
concentrations as

observed in the

Identical to “picontrol

+ 1850soc” run

historical ssp126
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historical period,

then simulated

SSP1‐2.6 changes in

the climate‐related

systems

DHF: Fixed at 1850

levels for all periods

1850soc 1850soc

RCP2.6

nat

2nd priority

CRF: Simulated

historical changes in

climate‐related

systems, CO₂ and CH₄
concentrations as

observed in the

historical period,

then simulated

SSP1‐2.6 changes in

the climate‐related

systems

Identical to “picontrol

+ nat” run

historical ssp126

DHF: No direct

human influences

nat nat

CO₂ sensitivity

RCP2.6

2015soc‐from‐hist

soc

2nd priority

CRF: Simulated

historical changes in

climate‐related

systems, CO₂ and CH₄
concentrations as

observed in the

historical period,

then simulated

SSP1‐2.6 changes in

the climate‐related

systems but fixed

2015 CO₂

concentrations

Identical to “picontrol

+ 1850soc” run

"histsoc"

version of

the historical

period of the

RCP2.6

experiment,

as described

above

ssp126

Sensitivity experiment:

2015co2

DHF: Varying

management before

2015, then fixed at

2015 levels thereafter

2015soc‐from‐histsoc

RCP7.0 CRF: Simulated

historical changes in

climate‐related

systems, CO₂ and CH₄

Identical to “picontrol

+ 1850soc” run

"histsoc"

version of

the historical

period of the

ssp370
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2015soc‐from‐hist

soc

1st priority

concentrations as

observed in the

historical period,

then simulated

SSP3‐7.0 changes in

the climate‐related

systems

RCP2.6

experiment

DHF: Varying

management before

2015, then fixed at

2015 levels thereafter

2015soc‐from‐histsoc

RCP7.0

2015soc

1st priority

CRF: Simulated

historical changes in

climate‐related

systems, CO₂ and CH₄
concentrations as

observed in the

historical period,

then simulated

SSP3‐7.0 changes in

the climate‐related

systems

Identical to “picontrol

+ 2015soc” run

Identical to

"historical +

2015soc"

run

described

above

ssp370

DHF: Fixed at 2015

levels for all periods

2015soc

RCP7.0

1850soc

2nd priority

CRF: Simulated

historical changes in

climate‐related

systems, CO₂ and CH₄
concentrations as

observed in the

historical period,

then simulated

SSP3‐7.0 changes in

the climate‐related

systems

Identical to “picontrol

+ 1850soc” run

Identical to

"historical +

1850soc"

run

described

above

ssp370

DHF: Fixed at 1850

levels for all periods

1850soc
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RCP7.0

nat

2nd priority

CRF: Simulated

historical changes in

climate‐related

systems, CO₂ and CH₄
concentrations as

observed in the

historical period,

then simulated

SSP3‐7.0 changes in

the climate‐related

systems

Identical to “picontrol

+ nat” run

Identical to

"historical +

nat" run

described

above

ssp370

DHF: No direct

human influences

nat

CO₂ sensitivity

RCP7

2015soc‐from‐hist

soc

2nd priority

CRF: Simulated

historical changes in

climate‐related

systems, CO₂ and CH₄
concentrations as

observed in the

historical period,

then simulated

SSP3‐7.0 changes in

the climate‐related

systems but CO₂

concentrations fixed

at 2015 levels

Identical to “picontrol

+ 1850soc” run

Identical to

"historical +

histsoc" run

described

above

ssp370

Sensitivity experiment:

2015co2

DHF: Varying

management before

2015, then fixed at

2015 levels thereafter

2015soc‐from‐histsoc

RCP8.5

2015soc‐from‐hist

soc

1st priority

CRF: Simulated

historical changes in

climate‐related

systems, CO₂ and CH₄
concentrations as

observed in the

historical period,

then simulated

SSP5‐8.5 changes in

Identical to “picontrol

+ 1850soc” run

Identical to

"historical +

histsoc" run

described

above

ssp585
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the climate‐related

systems

DHF: Varying

management before

2015, then fixed at

2015 levels thereafter

2015soc‐from‐histsoc

RCP8.5

2015soc

1st priority

CRF: Simulated

historical changes in

climate‐related

systems, CO₂ and CH₄
concentrations as

observed in the

historical period,

then simulated

SSP5‐8.5 changes in

the climate‐related

systems

Identical to “picontrol

+ 2015soc” run

Identical to

"historical +

2015soc"

run

described

above

ssp585

DHF: Fixed at 2015

levels for all periods

2015soc

RCP8.5

1850soc

2nd priority

CRF: Simulated

historical changes in

climate‐related

systems, CO₂ and CH₄
concentrations as

observed in the

historical period,

then simulated

SSP5‐8.5 changes in

the climate‐related

systems

Identical to “picontrol

+ 1850soc” run

Identical to

"historical +

1850soc"

run

described

above

ssp585

DHF: Fixed at 1850

levels for all periods

1850soc

RCP8.5

nat

2nd priority

CRF: Simulated

historical changes in

climate‐related

systems, CO₂ and CH₄
concentrations as

observed in the

historical period,

Identical to “picontrol

+ nat” run

Identical to

"historical +

nat" run

ssp585
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then simulated

SSP5‐8.5 changes in

the climate‐related

systems

DHF: No direct

human influences

nat

CO₂ sensitivity

RCP8.5

2015soc‐from‐hist

soc

1st priority

CRF: Simulated

historical changes in

climate‐related

systems, CO₂ and CH₄
concentrations as

observed in the

historical period,

then simulated

SSP5‐8.5 changes in

the climate‐related

systems but CO₂

concentrations fixed

at 2015 levels

Identical to “picontrol

+ 1850soc” run

Identical to

"historical +

histsoc" run

ssp585

Sensitivity experiment:

2015co2

DHF: Varying

management before

2015, then fixed at

2015 levels thereafter

2015soc‐from‐histsoc

CO₂ sensitivity

RCP8.5

2015soc

1st priority

CRF: Simulated

historical changes in

climate‐related

systems, CO₂ and CH₄
concentrations as

observed in the

historical period,

then simulated

SSP5‐8.5 changes in

the climate‐related

systems, but CO₂

concentrations fixed

at 2015 levels

Identical to “picontrol

+ 2015soc” run

Identical to

"historical +

2015soc"

run

ssp585

Sensitivity experiment:

2015co2

DHF: Fixed at 2015

levels for all periods

2015soc
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CO₂ sensitivity

RCP8.5

1850soc

2nd priority

CRF: Simulated

historical changes in

climate‐related

systems, CO₂ and CH₄
concentrations as

observed in the

historical period,

then simulated

SSP5‐8.5 changes in

the climate‐related

systems, but CO₂

concentrations fixed

at 2015 levels

Identical to “picontrol

+ 1850soc” run

Identical to

"historical +

1850soc"

run

ssp585

Sensitivity experiment:

2015co2

DHF: Fixed at 1850

levels for all periods

1850soc

CO₂ sensitivity

RCP8.5

nat

1st priority

CRF: Simulated

historical changes in

climate‐related

systems, CO₂ and CH₄
concentrations as

observed in the

historical period,

then simulated

SSP5‐8.5 changes in

the climate‐related

systems, but CO₂

concentrations fixed

at 2015 levels

Identical to “picontrol

+ nat” run

Identical to

"historical +

nat" run

ssp585

Sensitivity experiment:

2015co2

DHF: No direct

human influences

nat

Lightning

sensitivity RCP2.6

2015soc‐from‐hist

soc

2nd priority

CRF: Simulated

historical changes in

climate‐related

systems, CO₂ and CH₄
concentrations as

observed in the

historical period,

then simulated

SSP1‐2.6 changes in

the climate‐related

systems including

Identical to “picontrol

+ 1850soc” run

Identical to

"historical +

histsoc" run

ssp126

Sensitivity experiment:

varlightning
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future lightning

which in the default

case is considered

fixed at climatological

levels

DHF: Varying

management before

2015, then fixed at

2015 levels thereafter

2015soc‐from‐histsoc

Lightning

sensitivity RCP7.0

2015soc‐from‐hist

soc

2nd priority

CRF: Simulated

historical changes in

climate‐related

systems, CO₂ and CH₄
concentrations as

observed in the

historical period,

then simulated

SSP3‐7.0 changes in

the climate‐related

systems including

future lightning

which in the default

case is considered

fixed at climatological

levels

Identical to “picontrol

+ 1850soc” run

Identical to

"historical +

histsoc" run

ssp370

Sensitivity experiment:

varlightning

DHF: Varying

management before

2015, then fixed at

2015 levels thereafter

2015soc‐from‐histsoc

Lightning

sensitivity RCP8.5

2015soc‐from‐hist

soc

2nd priority

CRF: Simulated

historical changes in

climate‐related

systems, CO₂ and CH₄
concentrations as

observed in the

historical period,

then simulated

SSP5‐8.5 changes in

the climate‐related

systems including

future lightning

which in the default

Identical to “picontrol

+ 1850soc” run

Identical to

"historical +

histsoc" run

ssp585

Sensitivity experiment:

varlightning
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case is considered

fixed at climatological

levels

DHF: Varying

management before

2015, then fixed at

2015 levels thereafter

2015soc‐from‐histsoc

Climate

sensitivity,

RCP2.6 with

RCP8.5 CO₂

2015soc‐from‐hist

soc

2nd priority

CRF: Simulated

historical changes in

climate‐related

systems, CO₂ and CH₄
concentrations as

observed in the

historical period,

then CO₂ evolves

according to SSP5‐8.5

while all other CRFs

change according to

default SSP1‐2.6

forcing data

Identical to “picontrol

+ 1850soc” run

Identical to

"historical +

histsoc" run

ssp126

Sensitivity experiment:

ssp585co2

DHF: Varying

management before

2015, then fixed at

2015 levels thereafter

2015soc‐from‐histsoc

Bias sensitivity,

de‐biased

oceanic data for

pre‐industrial

control

nat

2nd priority

CRF: De‐biased

pre‐industrial oceanic

forcing, CO₂ fixed at

1850 levels

Not covered picontrol picontrol

Sensitivity experiment:

de‐biased

DHF: no direct

human influences

Not covered nat nat

Bias sensitivity,

de‐biased

oceanic data for

SSP1‐2.6

nat

2nd priority

CRF: De‐biased

simulated historical

oceanic forcing, then

de‐biased simulated

SSP1‐2.6 oceanic

forcing

Not covered historical ssp126

Sensitivity experiment:

de‐biased

DHF: no direct

human influences

Not covered nat nat
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Bias sensitivity,

de‐biased

oceanic data for

SSP3‐7.0

nat

2nd priority

CRF: De‐biased

simulated historical

oceanic forcing, then

de‐biased simulated

SSP3‐7.0 oceanic

forcing

Not covered historical ssp370

Sensitivity experiment:

de‐biased

DHF: no direct

human influences

Not covered nat nat

Bias sensitivity,

de‐biased

oceanic data for

SSP5‐8.5

nat

2nd priority

CRF: De‐biased

simulated historical

oceanic forcing, then

de‐biased simulated

SSP5‐8.5 oceanic

forcing

Not covered historical ssp585

Sensitivity experiment:

de‐biased

DHF: No direct

human influences

Not covered nat nat

Bias sensitivity,

de‐biased

oceanic data for

pre‐industrial

control

2015soc‐from‐hist

soc

2nd priority

CRF: De‐biased

pre‐industrial oceanic

forcing, CO₂ fixed at

1850 levels

Not covered picontrol picontrol

Sensitivity experiment:

de‐biased

DHF: Varying direct

human influences

before 2015, then

fixed at 2015 levels

thereafter

Not covered histsoc 2015soc‐from‐histsoc

Bias sensitivity,

de‐biased

oceanic data for

SSP1‐2.6

2015soc‐from‐hist

soc

2nd priority

CRF: De‐biased

simulated historical

oceanic forcing, then

de‐biased simulated

SSP1‐2.6 oceanic

forcing

Not covered historical ssp126

Sensitivity experiment:

de‐biased

DHF: Varying direct

human influences

before 2015, then

fixed at 2015 levels

thereafter

Not covered histsoc 2015soc‐from‐histsoc
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Table 2: ISIMIP3b climate‐model based experiments. The table provides a comprehensive list of all

ISIMIP3b, group I (grey) and group II (red) experiments defined by the assumed climate‐related forcings

(CRF) and direct human forcings (DHF). Here the climate‐related forcings are only described by the

climate (oceanic and atmospheric) and CO₂ forcings as we do not provide coastal water levels yet.

2 Climate‐related forcing data

2.1 Bias‐adjusted and statistically downscaled atmospheric climate forcing

For ISIMIP3b we provide the daily atmospheric forcings for the same variables as in ISIMIP3a on the

default 0.5° grid (see Table 3). These variables are from the output of CMIP6 climate model simulations,

selected and processed as described below. We use the climate simulations from the picontrol (for

pre‐industrial conditions), historical (for historical conditions), ssp126, ssp370, and ssp585 (for future

conditions under the scenarios SSP1‐2.6, SSP3‐7.0, and SSP5‐8.5, respectively) CMIP6 experiments.

24

Bias sensitivity,

de‐biased

oceanic data for

SSP3‐7.0

2015soc‐from‐hist

soc

2nd priority

CRF: De‐biased

simulated historical

oceanic forcing, then

de‐biased simulated

SSP3‐7.0 oceanic

forcing

Not covered historical ssp370

Sensitivity experiment:

de‐biased

DHF: Varying direct

human influences

before 2015, then

fixed at 2015 levels

thereafter

Not covered histsoc 2015soc‐from‐histsoc

Bias sensitivity,

de‐biased

oceanic data for

SSP5‐8.5

2015soc‐from‐hist

soc

2nd priority

CRF: De‐biased

simulated historical

oceanic forcing, then

de‐biased simulated

SSP5‐8.5 oceanic

forcing

Not covered historical ssp585

Sensitivity experiment:

de‐biased

DHF: Varying direct

human influences

before 2015, then

fixed at 2015 levels

thereafter

Not covered histsoc 2015soc‐from‐histsoc
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Table 3: Climate‐related atmospheric forcing data provided within ISIMIP3b. The upper limits of pr and

prsn correspond to 600 mm day‐1 and 300 mm day‐1, respectively, while the lower and upper limits of

tas, tasmax and tasmin correspond to −90°C and +70°C, respectively.

Variable Variable
specifier

Unit (maximum range,
inner bounds if
considered)

Resolution Datasets

Near‐Surface Relative
Humidity

hurs % ([1, 100], [0.01,
99.99])

0.5° grid,
daily

Bias‐adjusted and downscaled

from GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, MRI‐ESM2‐0, and

UKESM1‐0‐LL simulations

generated for CMIP6.

Near‐Surface Specific
Humidity

huss kg kg‐1 ([0.0000001,
0.1])

0.5° grid,
daily

Derived from bias‐adjusted and

downscaled hurs, ps, and tas from

GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, MRI‐ESM2‐0, and

UKESM1‐0‐LL simulations

generated for CMIP6.

Precipitation
(including snowfall)

pr kg m‐2 s‐1 ([0,
600/86400],
[0.1/86400, ∞[)

0.5° grid,
daily

Bias‐adjusted and downscaled

from GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, MRI‐ESM2‐0, and

UKESM1‐0‐LL simulations

generated for CMIP6.

Snowfall prsn kg m‐2 s‐1 ([0,
300/86400])

Maximum range and
inner bounds of
unitless snowfall ratio
(prsnratio = prsn/pr):

([0,1], [0.0001,0.9999])

0.5° grid,
daily

Derived from bias‐adjusted and

downscaled pr and prsnratio from

GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, MRI‐ESM2‐0, and

UKESM1‐0‐LL simulations

generated for CMIP6.

Surface Air Pressure ps Pa ([480, 110000]) 0.5° grid,
daily

Bias‐adjusted and downscaled

from GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, MRI‐ESM2‐0, and

UKESM1‐0‐LL simulations

generated for CMIP6.

Surface Downwelling
Longwave Radiation

rlds W m‐2 ([40, 600]) 0.5° grid,
daily

Bias‐adjusted and downscaled

from GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, MRI‐ESM2‐0, and

UKESM1‐0‐LL simulations

generated for CMIP6.

25

433

434

435

https://doi.org/10.5194/egusphere-2025-2103
Preprint. Discussion started: 2 June 2025
c© Author(s) 2025. CC BY 4.0 License.



Surface Downwelling
Shortwave Radiation

rsds W m‐2 ([0, 500])

Maximum range and
inner bounds of
normalized rsds used
during bias
adjustment:
([0,1], [0.0001,
0.9999])

0.5° grid,
daily

Bias‐adjusted and downscaled

from GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, MRI‐ESM2‐0, and

UKESM1‐0‐LL simulations

generated for CMIP6.

Near‐Surface Wind
Speed

sfcwind m s‐1
([0.1, 50], [0.01,∞[)

0.5° grid,
daily

Bias‐adjusted and downscaled

from GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, MRI‐ESM2‐0, and

UKESM1‐0‐LL simulations

generated for CMIP6.

Near‐Surface Air
Temperature

tas K ([183.15, 343.15]) 0.5° grid,
daily

Bias‐adjusted and downscaled

from GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, MRI‐ESM2‐0, and

UKESM1‐0‐LL simulations

generated for CMIP6.

Daily Maximum
Near‐Surface Air
Temperature

tasmax K ([183.15, 343.15])

Maximum range and
inner bounds
considered for
tasrange:
([0.01, ∞[, [0.01,∞[)

Maximum range and
inner bounds
considered for unitless
tasskew:
([0,1], [0.0001,0.9999])

0.5° grid,
daily

Derived from bias‐adjusted and

downscaled tasrange = tasmax ‐

tasmin and tasskew = (tas ‐

tasmin) / (tasmax ‐ tasmin) from

GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, MRI‐ESM2‐0, and

UKESM1‐0‐LL simulations

generated for CMIP6.

Daily Minimum
Near‐Surface Air
Temperature

tasmin K ([183.15, 343.15])

Maximum range and
inner bounds
considered for
tasrange:
([0.01, ∞[, [0.01,∞[)

Maximum range and
inner bounds
considered for unitless
tasskew:
([0,1], [0.0001,0.9999])

0.5° grid,
daily

Derived from bias‐adjusted and

downscaled tasrange = tasmax ‐

tasmin and tasskew = (tas ‐

tasmin) / (tasmax ‐ tasmin) from

GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, MRI‐ESM2‐0, and

UKESM1‐0‐LL simulations

generated for CMIP6.
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For the pre‐industrial conditions, 500 years of picontrol output data are used and harmonised across

General Circulation Models (GCM) with respect to the time range they cover. This is possible because

picontrol data only carry nominal year labels. We shift the GCM‐specific picontrol time ranges listed in

Table 4 to 1601–2100. For the historical and future climate conditions, we provide input data for

1850–2014 and 2015–2100, respectively, in line with the time ranges covered by the corresponding

CMIP6 experiments. The common time axis is important as the use of the input data should be

harmonised across all sectors. In particular, the year‐by‐year combination of the pre‐industrial

climate‐related forcing with the historical direct human forcing should be done in the same way across

all sectors and models.

Selection of climate models. To limit the number of mandatory impact simulations and hence lower the

barrier to participation in ISIMIP3b, we provide climate input data for only five selected CMIP6 climate

models. The basic characteristics of the five GCMs are listed in Table 4. The models were selected based

on data availability at the selection time (late 2019 to early 2020), performance in the historical period,

structural independence, process representation and equilibrium climate sensitivity (ECS).

To be included in ISIMIP3b, a GCM had to provide daily data for all variables listed in Table 3 except for

huss (which was derived from hurs, ps and tas, see below), ps if sea level pressure (psl) was available, so

a proxy for ps could be computed based on psl and tas, and sfcwind if zonal and meridional near‐surface

wind components (uas, vas) were available, so a proxy for sfcwind could be computed based on uas and

vas. Those daily data had to cover 500 picontrol years and all years of the historical, SSP1‐2.6, SSP3‐7.0,

and SSP5‐8.5. In addition, we favoured GCMs that provided the additional input data needed for the

tropical cyclone modelling (Table 5) and the fisheries and marine ecosystems sector (FishMIP; Table 10).

Table 4: Characteristics of CMIP6 climate models used in ISIMIP3b. Columns show (from left to right) the

climate model acronym, the horizontal grid size (longitude x latitude) of the original atmospheric output

data, the ensemble member used, the nominal time range covered by the picontrol data used, the

equilibrium climate sensitivity (ECS) according to (Meehl et al., 2020), and the main model reference

paper and the CMIP6 simulation data publications used. For definitions of climate model acronyms and

modelling groups see (Durack, n.d.).

GCM Grid size Member picontrol ECS References

GFDL‐ESM4 288 x 180 r1i1p1f1 0001–0500 2.6°C (Dunne et al., 2020; John et al., 2018;

Krasting et al., 2018)

IPSL‐CM6A‐LR 144 x 143 r1i1p1f1 1870–2369 4.6°C (Boucher et al., 2018, 2019, 2020)

MPI‐ESM1‐2‐HR 384 x 192 r1i1p1f1 1850–2349 3.0°C (Jungclaus et al., 2019; Mauritsen et al.,

2019; Schupfner et al., 2019)

MRI‐ESM2‐0 320 x 160 r1i1p1f1 1850–2349 3.2°C (Yukimoto, Kawai, et al., 2019; Yukimoto,

Koshiro, et al., 2019a, 2019b)
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UKESM1‐0‐LL 192 x 144 r1i1p1f2 1960–2459 5.3°C (Good et al., 2019; Sellar et al., 2019; Tang et

al., 2019)

According to a skill analysis (see Figure 2), the GCMs ACCESS‐CM2, AWI‐CM‐1‐1‐MR, CESM2,

CESM2‐WACCM, CMCC‐ESM2, EC‐Earth3‐AerChem, GFDL‐CM4, GFDL‐ESM4, HadGEM3‐GC31‐LL,

HadGEM3‐GC31‐MM, MPI‐ESM1‐2‐HR, MPI‐ESM1‐2‐LR, MRI‐ESM2‐0, NorESM2‐MM, SAM0‐UNICON,

TaiESM1, and UKESM1‐0‐LL perform relatively well in reproducing the main historically observed

characteristics of the atmosphere. From that list, only GFDL‐ESM4, MPI‐ESM1‐2‐HR, MRI‐ESM2‐0, and

UKESM1‐0‐LL provided all required daily data at the time of model selection. Another model that

fulfilled all those data requirements and shows an average performance in the historical period is

IPSL‐CM6A‐LR. These five GCMs were selected to be used in ISIMIP3b. With the exception of

GFDL‐ESM4, these models also provide the data needed for tropical cyclone modelling. GFDL‐ESM4 is

the model providing the most comprehensive oceanic bio‐geochemical forcings for FishMIP while other

models cover less and partly other oceanic variables (see Table 16). Three of the climate models

(GFDL‐ESM4, IPSL‐CM6A‐LR, UKESM1‐0‐LL) are successors of models already used in ISIMP2b and in the

ISIMIP Fast Track.

Figure 2: Relative space‐time root‐mean‐square deviation (RMSD) calculated from the climatological seasonal

cycle of the CMIP6 historical simulations (1980–1999) compared to observational datasets, for various CMIP6

GCMs (columns) and climate variables (rows), similar to Fig. 6 of (Bock et al., 2020). A relative performance is
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displayed, with blue shading being better and red shading worse than the median RMSD of all model results of

the CMIP6 ensemble. A diagonal split of a grid square shows the relative error with respect to the reference data

set (lower right triangle) and an alternative data set (upper left triangle), as listed in Table 5 of (Bock et al., 2020).

White boxes are used when data are not available for a given model and variable. Models selected for ISIMIP3b

are highlighted in red. Variables are (from top to bottom): Surface Downwelling Shortwave Radiation (rsds),

Surface Upwelling Shortwave Radiation (rsus), Surface Downwelling Longwave Radiation (rlds), Surface Upwelling

Longwave Radiation (rlus), Soil Moisture (sm), Ambient Fine Aerosol Optical Depth at 550 nm (od550lt1aer),

Ambient Aerosol Absorption Optical Thickness at 550 nm (abs550aer), Ambient Aerosol Optical Depth at 870 nm

(od870aer), Ambient Aerosol Optical Thickness at 550 nm (od550aer), Shortwave Cloud Radiative Effect (swcre),

Longwave Cloud Radiative Effect (lwcre), Top‐of‐Atmosphere Outgoing Shortwave Radiation (rsut),

Top‐of‐Atmosphere Outgoing Longwave Radiation (rlut), Total Cloud Cover Percentage (clt), Precipitation (pr),

Surface Temperature (ts), Near‐Surface Air Temperature (tas), Specific Humidity at 400 hPa (hus400), Sea Level

Pressure (psl), Geopotential Height at 500 hPa (zg500), Northward Wind at 200 hPa (va200), Northward Wind at

850 hPa (va850), Eastward Wind at 200 hPa (ua200), Eastward Wind at 850 hPa (ua850), Air Temperature at 200

hPa (ta200), and Air Temperature at 850 hPa (ta850). Produced with ESMValTool v2.0 (Andela, Broetz, de Mora,

Drost, Eyring, et al., 2020; Andela, Broetz, de Mora, Drost, Weigel, et al., 2020; Righi et al., 2020) .

The five GCMs are structurally independent in terms of their ocean and atmosphere model components.

Furthermore, all of them have a coupled climate and carbon cycle and in some cases, fully interactive

chemistry and aerosol components. We favoured models that applied prognostic couplings between

processes and model domains wherever possible to maximise the coverage of simulated feedbacks.

The five GCMs provide a good representation of both the mean and the range of the full CMIP6

multi‐model ensemble ECS. According to (Meehl et al., 2020), the CMIP6 multi‐model mean ECS is 3.7°C

, which is precisely met by the mean ECS of the five ISIMIP3b GCMs. The transient climate response

(TCR) of 2.0°C is also precisely met. This provides an improvement over ISIMIP2b. In that case the mean

ECS for the full CMIP5 was 3.2°C compared with a mean ECS of 3.72°C for the four ISMIP2b GCMs (see

Table S1 and S2 in (Jägermeyr et al., 2021)). The ISIMIP3b ensemble includes three models with

below‐average ECS (GFDL‐ESM4, MPI‐ESM1‐2‐HR, MRI‐ESM2‐0) and two models with above‐average

ECS (IPSL‐CM6A‐LR, UKESM1‐0‐LL) (see Table 12). In line with their ECS values, we find GFDL‐ESM4 and

UKESM1‐0‐LL to project the weakest and strongest global warming, respectively, under any future

scenario considered (see Figure 3). Under SSP5‐8.5, the global mean near‐surface temperature in 2100

is about 3°C larger in UKESM1‐0‐LL than in GFDL‐ESM4. Under SSP1‐2.6, the projections are about 1.5°C

apart. The ensemble mean warming of the ISIMIP3b CMIP6 models is significantly higher than the

warming of the ISIMIP2b CMIP5 models, across global land area by an average of 0.3°C, but over the

main breadbasket cropland regions by more than 0.5°C between 1983–2013 and 2069–2099, under

both SSP1‐2.6 and SSP5‐8.5 (Table S1 in (Jägermeyr et al., 2021).
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Figure 3: Time series of annual global mean near‐surface temperature change relative to pre‐industrial levels

(1601–1849 average) as simulated with GFDL‐ESM4, IPSL‐CM6A‐LR, MPI‐ESM1‐2‐HR, MRI‐ESM2‐0 and

UKESM1‐0‐LL (from top to bottom). Colour coding indicates the underlying CMIP6 experiments (grey:

pre‐industrial control, black: historical, blue: SSP1‐2.6, light red: SSP3‐7.0, dark red: SSP5‐8.5) with corresponding

time periods given at the top. Numbers to the right of the plot represent end‐of‐century warming levels under the

30

527

528

529

530

531

532

https://doi.org/10.5194/egusphere-2025-2103
Preprint. Discussion started: 2 June 2025
c© Author(s) 2025. CC BY 4.0 License.



different future scenarios, expressed as the global multi‐year mean near‐surface temperature change from

1601–1849 to 2070‐2100.

Bias adjustment and statistical downscaling. To make the GCM‐based climate forcing usable for the

impact modellers we apply a bias adjustment ensuring that the GCM simulations match the observed

distribution of climate data over the historical reference period (1979–2014). In addition to the bias

adjustment a statistical downscaling to our standard 0.5° grid is included in the pre‐processing of the

surface and near‐surface atmospheric variables (see Table 11). The method used for the bias adjustment

and statistical downscaling (BASD) in ISIMIP3b is version 2.5 of ISIMIP3BASD (Lange, 2019b, 2021a).

ISIMP3BASD has several advantages compared to the method used for bias adjustment and statistical

downscaling in ISIMIP2b (Frieler et al., 2017; Lange, 2017, 2018). First, it clearly separates the

adjustment of biases in climate model output at 1° or 2° resolution, whatever is closest to the original

output data, from the statistical downscaling to the target resolution of 0.5°. Compared to ISIMIP2b,

where climate model output was first spatially interpolated to the target resolution and then

bias‐adjusted, the new approach improves the spatial variability at the target resolution (Lange, 2019b).

Second, the new quantile mapping method preserves trends in each quantile of the distribution of the

daily data and adjusts biases in distribution quantiles of the daily data more accurately than the

ISIMIP2b bias adjustment methods (Lange, 2019b).

For trend preservation, we first produce pseudo‐future observations by shifting the historically observed

daily data by the simulated future climate change. Here, the signal of climate change is the difference or

the ratio between the inverse empirical cumulative distribution function of the historical period and the

respective distribution functions of each 36‐year period of the future. Using the difference ensures

additive trend preservation and using the ratio ensures multiplicative trend preservation under bias

adjustment. We apply additive trend preservation for near‐surface air temperature (tas), sea level

pressure (psl, see Table 6), and surface downwelling longwave radiation (rlds). We apply primarily

multiplicative trend preservation for precipitation including snowfall (pr), near‐surface wind speed

(sfcWind), and the range (tasrange = tasmax ‐ tasmin) between the daily maximum and minimum

near‐surface air temperatures (tasmax and tasmin, respectively) that can transition smoothly to additive

trend preservation for data with large negative biases in the historical period (Lange, 2019b). In a second

step, the future simulations are mapped onto the pseudo‐future observations by quantile mapping.

Both steps, the generation of the pseudo future observations and the quantile mapping of the future

simulations onto the pseudo observations, are applied for each day of the year separately. The

distributions include data from the 31 days around the considered day and all years of the reference or

future period, respectively. This means a sample size of 31x36 values for each day of the year. Through

this approach the bias adjustment implicitly also adjusts the multi‐year mean annual cycle and a mix of

year‐to‐year and day‐to‐day variability (Haerter et al., 2011).

In addition, the method adjusts the frequency of daily data falling outside of the inner bounds specified

in Table 11 (e.g. the dry day frequency, i.e. the number of days with precipitation below 0.1 mm day‐1).
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Four variables were adjusted and downscaled indirectly: near‐surface specific humidity (huss) was

derived from adjusted and downscaled near‐surface relative humidity (hurs), surface air pressure (ps),

and near‐surface air temperature (tas) using the equations of (Buck, 1981) as described in (Weedon et

al., 2010), snowfall (prsn) was derived from adjusted and downscaled precipitation including snow (pr)

and the snowfall ratio (prsnratio = prsn / pr), and daily maximum and daily minimum near‐surface air

temperatures (tasmax and tasmin, respectively) were derived from adjusted and downscaled tas, and

the tasrange = tasmax ‐ tasmin and skewness of the daily temperature cycle tasskew = (tas ‐ tasmin) /

(tasmax ‐ tasmin).

The basic characteristics of ISIMIP3BASD (version 1.0) are described in (Lange, 2019b). However, the

method finally used to generate the forcing data now provided within ISIMIP3b (ISIMIP3BASD version

2.5) deviates from the original version in some aspects. In the following we describe the most important

updates of the procedure relative to the one described in (Lange, 2019b). For a complete list of

differences between the two versions of the BASD method and the full history of which feature was

added in which update, see the CHANGELOG included in the archive of code version 2.5 (Lange, 2021a).

In (Lange, 2019b) the bias‐adjustment was applied on a monthly basis, i.e. the pseudo‐future

observations and the quantile mapping described above was applied to all daily January data, February

data and so forth. This approach can introduce discontinuities at the transition from one month to

another (see Figure 4). That is why for ISIMIP3b the adjustment is done in the running window mode

with steps of one day and a window width of 31 days as described above. This approach resolves the

discontinuity issue (see Figure 4), as suggested by (Themeßl et al., 2012); (Thrasher et al., 2012);

(Gennaretti et al., 2015); and (Grenier, 2018).

Figure 4: Global multi‐year daily mean near‐surface relative humidity for UKESM1‐0‐LL historical (1979‐2014) and

SSP5‐8.5 (2065‐2100), with historical simulated data in blue, future simulated data in green, future bias‐adjusted

data in red and orange, and observational reference data in black. A smooth annual cycle is produced if

ISIMIP3BASD v2.5 is applied in running‐window mode in steps of one day (orange, BA2). In contrast, a

month‐by‐month application, which was the only option in ISIMIP3BASD v1.0, generates discontinuities at each

turn of the month (red, BA1).
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Since ps, rlds and tas can show significant trends within the 36‐year training and application periods

ISIMIP3BASD v1.0 includes a detrending of these variables within these intervals before the pseudo

future observations and the transfer functions are estimated and applied. Afterwards the trend is added

back again. This is done to prevent the confusion of trends with interannual variability during quantile

mapping (Lange, 2019b; Maraun, 2013). In contrast to v1.0, in v2.5, applied to generate the ISIMIP3b

forcings data, the detrending is only applied if the trend is significantly different from zero at the 5%

level.

We also changed the method used to generate future pseudo‐observations of bounded variables

(equations (8) and (9) of (Lange, 2019b)), in order to stabilise results in some edge cases. If, e.g., the

historically observed relative dry‐day frequency was 0.0 while the simulated frequency was 0.8 for the

historical period and 0.9 for some future period, then, according to equation (9) of (Lange, 2019b), the

future pseudo‐observed frequency would be equal to . As1 − (1 − 0. 0)(1 − 0. 9)/(1 − 0. 8) = 0. 5

this is considered unrealistic we apply a revised version of equation (9) of (Lange, 2019b) that reads

𝑃
𝑜𝑏𝑠

𝑓𝑢𝑡
= {

if ,𝑃
𝑠𝑖𝑚

𝑓𝑢𝑡
𝑃
𝑠𝑖𝑚

ℎ𝑖𝑠𝑡
= 𝑃

𝑜𝑏𝑠

ℎ𝑖𝑠𝑡

if ,0 + (𝑃
𝑜𝑏𝑠

ℎ𝑖𝑠𝑡
− 0)(𝑃

𝑠𝑖𝑚

𝑓𝑢𝑡

− 0)/(𝑃
𝑠𝑖𝑚

ℎ𝑖𝑠𝑡
− 0) 𝑃

𝑠𝑖𝑚

𝑓𝑢𝑡
 ≤ 𝑃

𝑠𝑖𝑚

ℎ𝑖𝑠𝑡
> 𝑃

𝑜𝑏𝑠

ℎ𝑖𝑠𝑡

if ,1 − (1 − 𝑃
𝑜𝑏𝑠

ℎ𝑖𝑠𝑡
)(1 − 𝑃

𝑠𝑖𝑚

𝑓𝑢𝑡

)/(1 − 𝑃
𝑠𝑖𝑚

ℎ𝑖𝑠𝑡
) 𝑃

𝑠𝑖𝑚

𝑓𝑢𝑡
 ≥ 𝑃

𝑠𝑖𝑚

ℎ𝑖𝑠𝑡
< 𝑃

𝑜𝑏𝑠

ℎ𝑖𝑠𝑡

otherwise. (1)𝑃
𝑜𝑏𝑠

ℎ𝑖𝑠𝑡
+ 𝑃

𝑠𝑖𝑚

𝑓𝑢𝑡
− 𝑃

𝑠𝑖𝑚

ℎ𝑖𝑠𝑡

In this revised relation, the otherwise case applies if or𝑃
𝑠𝑖𝑚

𝑓𝑢𝑡
< 𝑃

𝑠𝑖𝑚

ℎ𝑖𝑠𝑡
< 𝑃

𝑜𝑏𝑠

ℎ𝑖𝑠𝑡

. Hence it applies to the aforementioned edge case, where it produces a less𝑃
𝑠𝑖𝑚

𝑓𝑢𝑡
> 𝑃

𝑠𝑖𝑚

ℎ𝑖𝑠𝑡
> 𝑃

𝑜𝑏𝑠

ℎ𝑖𝑠𝑡

extreme future pseudo‐observed relative frequency of . Equation (8) of0. 0 + 0. 9 − 0. 8 = 0. 1

(Lange, 2019b) was revised analogously to equation (9).

Furthermore, we refined the method used to generate future pseudo‐observations (step 5 of the bias

adjustment algorithm of (Lange, 2019b)) for all variables with at least one bound: In v1.0, the future

pseudo observations were generated by transferring simulated trends in all distribution quantiles to the

observational reference data. That included trends in, e.g., precipitation quantiles below the wet‐day

threshold. However, in some cases, the trend transfer turned many dry days into wet days, with a

profound impact on the shape of the distribution of future pseudo‐observed wet‐day precipitation. As a

result, simulated trends in wet‐day precipitation intensity were not well preserved. In v2.5, trend

transfers are restricted to values within threshold. This particularly improves the preservation of trends

in wet‐day precipitation intensities.
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We also modified the bias adjustment method for Near‐Surface Relative Humidity (hurs) because

ISIMIP3BASD v1.0 turned out to produce unrealistic distributions of hurs under climate change if there

are too many cases of supersaturation (hurs ≥ 100%) in the simulated data. This is the case for several

of the CMIP6 GCMs selected for ISIMIP3b, particularly in high‐latitude winter: While no supersaturations

are found in the observational reference data, the GCM simulates many supersaturations in the

historical reference period and even more so in a future period, under SSP5‐8.5 (see Figure 5).

ISIMIP3BASD v1.0 preserves this projected trend and hence produces future bias‐adjusted hurs data

with many supersaturations. In v2.5, this trend is no longer preserved. Instead, the supersaturation

probability is fixed at the observed level, which is zero or very close to zero in all seasons and grid cells

for W5E5. Future pseudo observations of hurs are generated by applying the revised (see above)

equation (8) of (Lange, 2019b) to all hurs values after capping them at 100%. The new approach was

motivated by findings from (Ruosteenoja et al., 2017, 2018). They analysed hurs data from CMIP5 and

showed that (i) supersaturations in those data are mostly spurious, resulting from, e.g., inconsistencies

in the interpolation of temperature and specific humidity to the near‐surface level, and (ii) climatological

mean value trends of hurs become more consistent with trends in relative humidity from the lowest

model level if hurs is capped at 100% before trends are calculated.

Figure 5: Empirical cumulative distribution functions of near‐surface relative humidity in high‐latitude winter

(November, 66.5°N, 133.5°E) for GFDL‐ESM4 historical (1979‐2014) and SSP5‐8.5 (2065‐2100), with historical

simulated data in blue, future simulated data in green, future bias‐adjusted data in red and orange, and

observational reference data in black. The simulated climate change signal is well preserved with ISIMIP3BASD

v2.5 using a fixed supersaturation (hurs ≥ 100%) probability and equation (1) applied to all hurs values after

capping them at 100% to generate future pseudo observations (orange, BA2). In contrast, the simulated climate

change signal is not well preserved if the supersaturation probability is allowed to change and equations (8) and

(9) of (Lange, 2019b) are used to generate future pseudo observations of hurs (red, BA1).

In addition, while ISIMIP3BASD v1.0 applies parametric quantile mapping to all climate variables, we

used a nonparametric approach for the bias adjustment of near‐surface relative humidity (hurs), the
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snowfall ratio (prsnratio), surface downwelling shortwave radiation (rsds), and the skewness of the daily

temperature (tasskew) since the parametric quantile mapping method previously used for those

variables suffered from occasionally unstable beta distribution fits.

Moreover, the parametric quantile mapping described in (Lange, 2019b) does not only adjust biases in

quantiles of the simulated daily data but also adjusts biases in the likelihood of individual events, as in

(Switanek et al., 2017). To avoid overfitting artefacts we did not adjust event likelihoods for ISIMIP3b.

Finally, the diurnal temperature range (tasrange) was ultimately bias‐adjusted using a Weibull

distribution, not a Rice distribution as described in (Lange, 2019b) because the Weibull distribution fits

the data better in most cases, in particular in the upper tail.

For further details of the application of ISIMIP3BASD v2.5 for ISIMIP3b, including the exact Python

commands and application periods used per CMIP6 experiment, see the ISIMIP3b bias adjustment fact

sheet (Lange, 2021b).

In addition, we use a new observational target dataset. Instead of using the EWEMBI dataset (E2OBS,

WFDEI and ERAI data merged and bias‐corrected for ISIMIP; (Lange, 2019a) in ISIMIP3b we adjust the

climate forcing data to version 2.0 of the W5E5 dataset (WFDE5 over land merged with ERA5 over the

ocean; (Lange et al., 2021). The data cover the entire globe at 0.5° horizontal and daily temporal

resolution from 1979 to 2019. W5E5 v2.0 is derived by applying version 2.0 of the WATCH Forcing Data

methodology (WFDE5; (Cucchi et al., 2020) to ERA5 reanalysis data (Hersbach et al., 2020) and

precipitation data from version 2.3 of the Global Precipitation Climatology Project (GPCP; (Adler et al.,

2003)).

The statistical downscaling method did not change between v1.0 and v2.5 of ISIMIP3BASD, i.e. for

ISIMIP3b we use the approach described (Lange, 2019b). This method adds the spatiotemporal

variability that is missing at the low spatial resolution at which the bias adjustment is done (1° or 2°,

depending on the GCM), compared to the target resolution of the downscaling (0.5°). The method is a

modified version of the MBCn algorithm from (Cannon, 2018), which in turn is a stochastic, multivariate,

non‐parametric quantile mapping method. We use it to transfer the statistical relationship between

low‐resolution and high‐resolution W5E5 data to the GCM output that was previously bias‐adjusted

using low‐resolution W5E5 data. In comparison to the approach used in ISIMIP2b (a spatial interpolation

to the target resolution followed by a bias adjustment at that resolution), the approach used in ISIMIP3b

is less prone to inflate temporal variability and deflate spatial variability, i.e. the ISIMIP3b approach

produces more realistic spatiotemporal variability patterns at the target resolution (Lange, 2019b).

2.2 Tropical cyclones

Table 5: Information about tropical cyclone tracks and windfields provided as climate‐related forcing

data within ISIMIP3b.
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Variable Variable
specifier

Unit Resolution Datasets

Time associated with a
given location of the
storm centre

time hours since
1950‐01‐01
00:00

along‐track, 2‐hourly
(MIT model)
6‐hourly (CHAZ model)

MIT (Emanuel et al., 2008)
and  CHAZ (Lee et al., 2018)

Latitudinal coordinate
of storm centre

lat degrees north along‐track, 2‐hourly
(MIT model)
6‐hourly (CHAZ model)

MIT (Emanuel et al., 2008)
and  CHAZ (Lee et al., 2018)

Longitudinal
coordinate of storm
centre

lon degrees east along‐track, 2‐hourly
(MIT model)
6‐hourly (CHAZ model)

MIT (Emanuel et al., 2008)
and  CHAZ (Lee et al., 2018)

Central pressure pres hPa along‐track, 2‐hourly MIT (Emanuel et al., 2008)

Maximum 1‐minute
sustained wind speed

windspa
tialmax

knots along‐track, 2‐hourly
(MIT model)
6‐hourly (CHAZ model)

MIT (Emanuel et al., 2008)
and  CHAZ (Lee et al., 2018)

Radius of maximum
wind speeds

rmw km along‐track, 2‐hourly MIT (Emanuel et al., 2008)

Wind speed on the
850 hPa pressure level

u850
v850

knots (MIT
model), ms‐1

(CHAZ model)

along‐track, 2‐hourly
(MIT model)
6‐hourly (CHAZ model)

MIT (Emanuel et al., 2008)
and  CHAZ (Lee et al., 2018)

Temperature on the
600 hPa pressure level

t600 K along‐track, 2‐hourly
(MIT model)
6‐hourly (CHAZ model)

MIT (Emanuel et al., 2008)
and  CHAZ (Lee et al., 2018)

Frequency of TC
occurrence

freqyear count per year annual MIT (Emanuel et al., 2008)

Gridded lifetime
maximum 1‐minute
sustained wind speed

windlifet
imemax

ms‐1 Per storm on a 300
arc‐seconds (~10 km)
grid

Wind fields calculated with
Holland and
Emanuel‐Rotunno wind
profiles (Holland, 1980, 2008)
for both sets of synthetic
tracks (CHAZ and MIT)

Maximum 24‐hourly
rainfall total during
the whole storm
duration

maxrain mm per storm on a 300
arc‐seconds (~10 km)
grid

Maximum 24‐hourly rainfall
(Zhu et al., 2013) calculated
for Holland and
Emanuel‐Rotunno wind
profiles for both sets of
synthetic tracks (CHAZ and
MIT)
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We provide large ensembles of potential realisations of TC tracks and intensities that are consistent with

the large‐scale atmospheric and oceanic conditions simulated by the 5 ISIMIP3b GCMs (see Table 4) and

for a selection of scenarios considered in ISIMIP3b (see Table 1). We provide gridded wind (maximum

1‐minute sustained wind speeds during the whole duration of the TC) and rainfall (maximum 24‐hourly

amounts of rain during the whole duration of the TC) fields at a spatial resolution of 300 arc‐seconds

(approximately 10 km) by the same approaches also applied to the historically observed tracks ((Frieler

et al., 2024), section 3.2).

The tracks are generated by two different statistical‐dynamical approaches that, forced by GCM data

(see Table 4), generate a large number of synthetic storms. Both methods to generate the TC tracks

consist of a genesis, a track, and an intensity module:

The MIT approach. Within MIT (Emanuel et al., 2008), the time‐evolving state of the atmosphere and

ocean surface given by the GCMs is randomly (uniformly distributed in time and space) seeded by weak

proto‐cyclones (genesis module). The seed disturbances are assumed to move with the GCM‐provided

large‐scale flow in which they are embedded, plus a westward and poleward component owing to

planetary curvature and rotation (track module). Their intensity is calculated using the Coupled

Hurricane Intensity Prediction System (CHIPS; (Emanuel et al., 2004), a simple axisymmetric hurricane

model coupled to a reduced upper ocean model to account for the effects of upper ocean mixing of cold

water to the surface (intensity module). Applied to the synthetically generated tracks, this model

simulates which of the seeded proto‐cyclones develop into TCs, reaching maximum 1‐minute sustained

wind speeds of at least 35 knots, or dissipate due to unfavourable environments. The probabilistic

seeding of proto‐cyclones is repeated until the desired number of storms per year is reached (in our

case, 1500). For each year, the share of proto‐cyclones that dissipated in the process is used to derive an

estimate of annual TC occurrences (freqyear). Extensive comparisons to historical events (Emanuel et

al., 2008) have revealed that the statistical properties of the simulated events are consistent with

historical TC genesis.

1500 tracks were generated globally and for each year of the ISIMIP3b period 1850—2100 (except for

GFDL‐ESM4, where tracks were only generated for 1850‐2014 and 2061‐2100, and MRI‐ESM2‐0 for

1950‐2100, see Table 1). Depending on the application, a simple subsampling (Meiler et al., 2022) or a

more advanced bias‐correction and emulation procedure (Geiger et al., 2021) might be necessary to

extract properly‐sized sets of potential realisations from the MIT ensembles.

The MIT track data shall be used for non‐commercial research or academic purposes only. Data can be

made available by the ISIMIP team upon written consent by Kerry Emanuel (MIT, email:

emanuel@mit.edu).

The CHAZ approach. CHAZ (Lee et al., 2018) seed disturbances are also initialised randomly, but, in

contrast to the MIT model, the global seeding rate and the local probabilities are derived from two

versions of a TC genesis index (TCGI, (Tippett et al., 2011) (genesis module) and intended to represent

the environmental conditions instead of being adjusted to produce a prescribed number of TCs. It is

noted that CHAZ’s projection of global and basin‐wide TC annual frequency is sensitive to the choice of

the particular variable used to represent moisture in its genesis module. Simulations using column
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relative humidity (CRH) as the moisture variable tend to project an overall increase in global TC

frequency, while those using saturation deficit (SD) show a decrease (Camargo et al., 2014), (Lee et al.,

2020). Both parameters describe how far the atmosphere is from saturation, and they have very similar

spatial patterns in the present climate, so historical data cannot be used to determine which variable is

the best choice to represent the climate. These two configurations reflect the uncertainty of TC

frequency projections (Sobel et al., 2021). Here we provide CHAZ downscaling using both choices of

moisture variable to account for this uncertainty.

Similar to MIT, CHAZ then moves the synthetic storms by advection of the environmental steering flow

plus a beta drift (track module). The evolution of synthetic storm intensity is calculated using the

surrounding atmospheric conditions through an empirical multiple linear regression model plus a

stochastic component (intensity module, (Lee et al., 2015, 2016)). The stochastic component accounts

for internal storm dynamics that do not depend explicitly on the environment. While, in MIT, TC

occurrence frequency is provided as an additional variable, in CHAZ, this information is implicitly

contained in the number of TCs that were seeded by the genesis module and that reached TC strength

according to the intensity module.

For ISIMIP3b, 20 different CHAZ realisations of the genesis and subsequent tracks are generated with 40

ensemble members each from the intensity module. For each of the 20 realisations, we compute wind

and rain fields for the first ensemble member from the intensity ensemble. The design of 20 realisations

allows CHAZ to generate similar numbers (~1800) of synthetic storms per year per GCM as the MIT

models over the historical period. The exact number of storms per year in CHAZ varies by GCM, by

scenario, by the choice of humidity variables in CHAZ’s genesis component (Lee et al., 2020). On

average, CHAZ generates 1817, 1802, 1820, 1810, 1842 storms per year for GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, MRI‐ESM2‐0, and UKESM1‐0‐LL, respectively. The CHAZ model has been shown to

capture the statistical properties of the observed storms when forced by a global reanalysis data (Lee et

al., 2018). Its CMIP6 downscaling results are reported in (Fosu et al., 2024). (Sobel et al., 2019) used

both models to study cyclone risk at Mumbai, India and showed that MIT and CHAZ generate

comparable return periods (frequency of exceedance) of maximum wind speeds at landfall. However, a

frequency bias‐correction might still be necessary, depending on the application (Meiler et al., 2022).

The track data generated by the CHAZ approach shall be used for non‐commercial research or academic

purposes only. Data can be made available by the ISIMIP team upon written consent by Chia‐Ying Lee

(Columbia University, email: cl3225@columbia.edu).

Table 6: Climate input data interpolated to 2° horizontal resolution and provided without bias

adjustment for tropical cyclone modelling with MIT and CHAZ.

Variable Variable specifier Unit Resolution Datasets

Sea Water
Potential
Temperature

thetao °C 2° grid, model specific
levels (m from surface
to 200m depth),
monthly

IPSL‐CM6A‐LR, MPI‐ESM1‐2‐HR,
MRI‐ESM2‐0, and UKESM1‐0‐LL
simulations generated for CMIP6.
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Sea Surface
Temperature

tos °C 2° grid over the
ocean, monthly

IPSL‐CM6A‐LR, MPI‐ESM1‐2‐HR,
MRI‐ESM2‐0, and UKESM1‐0‐LL
simulations generated for CMIP6.

Surface
Temperature

ts K 2° grid covering land
and ocean areas,
monthly

IPSL‐CM6A‐LR, MPI‐ESM1‐2‐HR,
MRI‐ESM2‐0, and UKESM1‐0‐LL
simulations generated for CMIP6.

ts may differ from tos in regions of
sea ice where tos refers to
temperatures under the ice while ts
refers to temperatures at the
surface.

Air Temperature ta K 2° grid;  15 pressure
levels (from 1000 to
30 hPa), monthly

IPSL‐CM6A‐LR, MPI‐ESM1‐2‐HR,
MRI‐ESM2‐0, and UKESM1‐0‐LL
simulations generated for CMIP6.

Specific Humidity hus kg kg‐1 2° grid; 15 pressure
levels (from 1000 to
30 hPa), monthly

IPSL‐CM6A‐LR, MPI‐ESM1‐2‐HR,
MRI‐ESM2‐0, and UKESM1‐0‐LL
simulations generated for CMIP6.

Relative Humidity
at 600 hPa

hur % 2° grid, monthly IPSL‐CM6A‐LR, MPI‐ESM1‐2‐HR,
MRI‐ESM2‐0, and UKESM1‐0‐LL
simulations generated for CMIP6.

Precipitable
water (water
vapour content
vertically
integrated
through the
atmospheric
column)

prw kg m‐2 2° grid, monthly IPSL‐CM6A‐LR, MPI‐ESM1‐2‐HR,
MRI‐ESM2‐0, and UKESM1‐0‐LL
simulations generated for CMIP6.

Sea Level
Pressure

psl Pa 2° grid, monthly IPSL‐CM6A‐LR, MPI‐ESM1‐2‐HR,
MRI‐ESM2‐0, and UKESM1‐0‐LL
simulations generated for CMIP6.

Eastward Wind ua m s‐1 2° grid; 200, 250, 850
hPa; monthly

IPSL‐CM6A‐LR, MPI‐ESM1‐2‐HR,
MRI‐ESM2‐0, and UKESM1‐0‐LL
simulations generated for CMIP6.

Northward Wind va m s‐1 2° grid; 200, 250, 850
hPa; monthly

IPSL‐CM6A‐LR, MPI‐ESM1‐2‐HR,
MRI‐ESM2‐0, and UKESM1‐0‐LL
simulations generated for CMIP6.

Eastward Wind ua m s‐1 2° grid; 250, 850 hPa;
daily

IPSL‐CM6A‐LR, MPI‐ESM1‐2‐HR,
MRI‐ESM2‐0, and UKESM1‐0‐LL
simulations generated for CMIP6.
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Northward Wind va m s‐1 2° grid; 250, 850 hPa;
daily

IPSL‐CM6A‐LR, MPI‐ESM1‐2‐HR,
MRI‐ESM2‐0, and UKESM1‐0‐LL
simulations generated for CMIP6.

2.3 Coastal water levels

Table 7: Coastal water level specifications

Variable Variable
specifier

Unit Resolution Datasets

Coastal water levels cwl m custom coastal grid

Hourly or daily
maxima

planned

We do not yet provide coastal water levels as forcing data for ISIMIP3b. However, we plan to generate

time series of coastal water levels from 1900 to 2100 at hourly resolution or for daily maxima. The data

set and method will be described in a separate manuscript. Similar to the hourly water level dataset of

ISIMIP3a (see section 3.3 of (Frieler et al., 2024) and (Treu et al., 2023)), we will combine longer‐term

annual sea level change with estimates of short‐term coastal water level variation. Concerning the

long‐term sea level change component, we will further develop the ISIMIP2b approach (Frieler et al.,

2017) and use tide gauge, satellite, vertical land motion and global climate model data to constrain a

model with observations and IPCC AR6 projections in a Bayesian setting. Modelled global contributions

from ice sheets and fingerprints are translated to regional sea level rise via fingerprints. A new aspect is

that we include an estimation of vertical land motion to provide relative coastal water levels instead of

geocentric coastal water levels. A version of the model that projects sea level rise at tide gauge stations

(and not all coastlines as is needed here) is currently in review ( (Perrette & Mengel, submitted 2024) ).

We plan to estimate the short‐term coastal water level variation by a machine‐learning approach that is

trained to reproduce simulations of the Global Surge and Tide Model (GTSM) model driven by ERA5

reanalysis data (Muis et al., 2020) or simulations from HighResMIP (Muis et al., 2023). We are currently

testing the dependency of the short‐term water level variation on available atmospheric information at

GCM resolution. If the predictive power is high enough we will use the findings to provide

computationally efficient water level projections specific for the ISIMIP GCMs.

2.4 Ocean data

In the default experiments, the ocean variables provided by the GCMs are not subject to

bias‐adjustment, unlike the atmospheric forcing data (section 2.4.1). This is due to the absence of a

comprehensive global observational oceanic dataset to serve as a reference for the adjustment.
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However, in order to mitigate potential biases in global impact model simulations stemming from biases

in raw oceanic forcing data, we provide a de‐biased version to be used in a sensitivity experiment (see

Table 2). They will be derived from an ocean‐biogeochemistry model forced by bias‐adjusted monthly

atmospheric surface flux data from four of the five ISIMIP3b GCMs. The approach preserves the monthly

variability of the underlying GCM while the daily variability is added from an independent simulation

(see section 2.4.2).

For the regional impact model simulations, observational data for individual variables have either been

applied directly (if the required forcing was observed) to rectify biases in regional oceanic forcings by

the delta method or have first been translated into the required forcing variable by model simulations

(see section 2.4.3). In the delta approach absolute simulated deviations from reference levels are added

to the observed reference levels. The regional bias‐adjustment is independent from the generation of

the global de‐biased forcing data.

In order to gauge the effects of these adjustments on the corresponding impact simulations, the

protocol includes sensitivity experiments (‘de‐biased’) grounded on these adjusted climate‐related

forcings (see Table 2). The comparison of associated impact simulation to the default ones is expected

to provide valuable insights into the effects of potential biases in the climate‐related forcings. The

‘de‐biased’ experiments are considered a starting point to develop methods to bias‐adjust the oceanic

forcings in further ISIMIP simulation rounds and make these simulations the default ones. Following the

ISIMIP ‘consistency framing’ the bias‐adjustment should also preserve the daily variability of the original

GCM simulations to allow for a cross‐sectoral integration on daily time scale.  .

2.4.1 Raw data without bias adjustment (default experiment)

In ISIMIP3b, a set of physical and biogeochemical ocean variables nearly identical to that in ISIMIP3a is

provided (see section 3.4, Table 8 of (Frieler et al., 2023) and Table 8 below). These variables are

obtained from the CMIP6 GCMs, which also supply the atmospheric forcing for ISIMIP3b, except for

MRI‐ESM2‐0, which lacks bio‐geochemical variables. In other models, only certain individual variables

are missing (see Table 8). Obtaining both atmospheric and oceanic variables from the same set of GCMs

ensures consistency between the fisheries and marine ecosystems sector and other ISIMIP sectors. The

available variables in ISIMIP3b are interpolated from the native grids of the ocean models to a regular 1°

grid. This resolution is comparatively lower than that of the ISIMIP3a ocean input data due to the

generally reduced native resolution of CMIP6 GCM simulations compared to the ocean model used to

generate the oceanic forcings based on observational atmospheric forcings for ISIMIP3a.

Table 8: Oceanic climate‐related forcing data provided within ISIMIP3b. Variables with suffixes ‐bot,

‐surf, and ‐vint were obtained from the seafloor, the top layer of the ocean, and vertical integration,

respectively.

Variable Variable
specifier

Unit Resolution Datasets
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Mass concentration of total
phytoplankton expressed as
chlorophyll

chl kg m‐3 1° grid,
vertically
resolved,
monthly

GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, UKESM1‐0‐LL

Sea floor depth deptho m 1° grid,
constant

GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, UKESM1‐0‐LL

Downward flux of particulate
organic carbon

expc‐bot mol m‐2
s‐1

1° grid,
monthly

GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, UKESM1‐0‐LL

Particulate organic carbon content intpoc kg m‐2 1° grid,
monthly

GFDL‐ESM4, MPI‐ESM1‐2‐HR,

UKESM1‐0‐LL

Net primary organic carbon
production by all types of
phytoplankton

intpp mol m‐2
s‐1

1° grid,
monthly

GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, UKESM1‐0‐LL

Net primary organic carbon
production by diatoms

intppdiat mol m‐2
s‐1

1° grid,
monthly

GFDL‐ESM4, IPSL‐CM6A‐LR,

UKESM1‐0‐LL

Net Primary Organic Carbon

Production by Other

Phytoplankton

intppmisc mol m‐2
s‐1

1° grid,
monthly

GFDL‐ESM4, IPSL‐CM6A‐LR,

UKESM1‐0‐LL

Net Primary Mole Productivity of

Carbon by Picophytoplankton

intpppico mol m‐2

s‐1
1° grid,

monthly

GFDL‐ESM4

Net Primary Organic Carbon
Production of Carbon by
Diazotrophs

intppdiaz mol m‐2
s‐1

1° grid,
monthly

GFDL‐ESM4, MPI‐ESM1‐2‐HR

Mixed layer depth defined by
delta rho = 0.125

mlotstmax m 1° grid,
monthly

IPSL‐CM6A‐LR, MPI‐ESM1‐2‐HR,

UKESM1‐0‐LL

Dissolved oxygen concentration o2, o2‐bot,
o2‐surf

mol m‐3 1° grid,
vertically
resolved, ocean
bottom and
surface fields,
monthly

GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, UKESM1‐0‐LL
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pH ph, ph‐bot,
ph‐surf

1 1° grid,
vertically
resolved, ocean
bottom and
surface fields,
monthly

GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, UKESM1‐0‐LL

Total phytoplankton carbon
concentration

phyc,
phyc‐vint

mol m‐3 1° grid,
vertically
resolved and
vertically
integrated,
monthly

GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, UKESM1‐0‐LL

Concentration of diatoms
expressed as carbon in sea water

phydiat,
phydiat‐vint

mol m‐3 1° grid,
vertically
resolved and
vertically
integrated,
monthly

GFDL‐ESM4, IPSL‐CM6A‐LR,

UKESM1‐0‐LL

Concentration of diazotrophs
expressed as carbon in Sea Water

phydiaz,
phydiaz‐vint

mol m‐3 1° grid,
vertically
resolved and
vertically
integrated,
monthly

GFDL‐ESM4, MPI‐ESM1‐2‐HR

Mole Content of Miscellaneous
Phytoplankton Expressed as
Carbon in Sea Water

phymisc,
phymisc‐vin
t

mol m‐2 1° grid,
vertically
resolved and
vertically
integrated,
monthly

GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, UKESM1‐0‐LL

Mole Concentration of
Picophytoplankton Expressed as
Carbon in Sea Water

phypico,
phypico‐vin
t

mol m‐3 1° grid,
vertically
resolved and
vertically
integrated,
monthly

GFDL‐ESM4

Net Downward Shortwave
Radiation at Sea Water Surface

rsndts W m‐2 1° grid,
monthly

GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR

Sea Ice Area Fraction siconc % 1° grid,
monthly

GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, UKESM1‐0‐LL
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Sea water salinity so, so‐bot,
so‐surf

0.001 1° grid,
vertically
resolved, ocean
bottom and
surface fields,
monthly

GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, UKESM1‐0‐LL

Sea water potential temperature thetao °C 1° grid,
vertically
resolved,
monthly

GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, UKESM1‐0‐LL

Ocean model cell thickness thkcello m 1° grid,
vertically
resolved,
monthly

GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, UKESM1‐0‐LL

Sea water potential temperature
at sea floor (bottom)

tob °C 1° grid,
monthly

GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, UKESM1‐0‐LL

Sea surface temperature tos °C 1° grid,
monthly

GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, UKESM1‐0‐LL

Sea water zonal velocity uo m s‐1 1° grid,
vertically
resolved,
monthly

IPSL‐CM6A‐LR, MPI‐ESM1‐2‐HR,

UKESM1‐0‐LL

Sea water meridional velocity vo m s‐1 1° grid,
vertically
resolved,
monthly

IPSL‐CM6A‐LR, MPI‐ESM1‐2‐HR,

UKESM1‐0‐LL

Concentration of
mesozooplankton expressed as
carbon in sea water

zmeso,
zmeso‐vint

mol m‐3 1° grid,
vertically
resolved and
vertically
integrated,
monthly

GFDL‐ESM4, IPSL‐CM6A‐LR,

UKESM1‐0‐LL

Concentration of
microzooplankton expressed as
carbon in sea water

zmicro,
zmicro‐vint

mol m‐3 1° grid,
vertically
resolved and
vertically
integrated,
monthly

GFDL‐ESM4, IPSL‐CM6A‐LR,

UKESM1‐0‐LL
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Total Zooplankton Carbon
Concentration

zooc,
zooc‐vint

mol m‐3 1° grid,
vertically
resolved and
vertically
integrated,
monthly

GFDL‐ESM4, IPSL‐CM6A‐LR,

MPI‐ESM1‐2‐HR, UKESM1‐0‐LL

2.4.2 Bias‐adjusted global ocean forcings (‘de‐biased’ sensitivity experiment)

GCMs have been shown to have limitations in accurately representing various aspects of the present

climate system (Eyring et al., 2023), (Séférian et al., 2020), that are also expected to affect regional

physical and biogeochemical oceanic projections (Li et al., 2016), (Tagliabue et al., 2021). In particular,

biases in sea‐surface temperature (SST, variable ‘tos’) and nutricline as well as thermocline depth

influence oceanic primary productivity, which in turn has major influence on various marine ecosystem

processes. Thus, reducing the substantial biases in GCMs' ocean variables through bias‐adjustment is

desirable. Typically, for bias‐adjustment of atmospheric variables, statistical approaches are used where

a transfer function is trained to map the simulated historical distribution of the relevant variables to the

observed distribution and then applied to future simulations. Yet for oceanic variables, the scarcity of

comprehensive sub‐surface observational data globally does not allow for a similar, direct adjustment of

the relevant variables. However, standalone ocean‐biogeochemistry simulations, when driven by

observation‐based atmospheric reanalysis data, have been demonstrated to considerably alleviate

SST‐related biases and typically provide satisfactory simulations of the physical ocean and marine

biogeochemistry for the historical period (e.g. (Tsujino et al., 2020), (Barrier et al., 2023). Thus, an

alternative process‐oriented bias‐adjustment approach has been developed that relies on a

comprehensive ocean‐biogeochemistry model that is forced by bias‐adjusted atmospheric forcings. The

adjustment of the ISIMIP3b oceanic forcings builds on such a dynamical de‐biasing approach (Lengaigne

et al., 2025), which relies on conducting forced oceanic simulations using the NEMO‐PISCES

physical‐biogeochemical ocean model (Madec, 2015), which is the oceanic component of the

IPSL‐CM6A‐LR climate model. The ocean model needs to be forced with high‐frequency (3‐hourly)

surface momentum, heat and freshwater fluxes. Since from the CMIP6 pre‐industrial, historical, and

future scenario simulations used in ISIMIP3b these variables are only available at monthly resolution,

additional steps are necessary to generate climatological high‐frequency fluxes first. In the following, we

first describe these preparatory steps, and then the de‐biasing strategy, in more detail.

High-frequency surface flux forcing. Initially, a climatological simulation spanning the historical

period from 1958 to 2022 is performed by forcing the ocean model NEMO‐PISCES with a single

repeating annual cycle representative of the 1990s’ climate conditions sourced from the “Repeat Year

Forcing” (RYF) from JRA55 reanalysis (Stewart et al., 2020). This simulation is driven using the CORE bulk

formulae (Large W. G., 2004), incorporating all surface atmospheric variables at 3‐hourly resolution from

JRA55 RYF as inputs and storing 3‐hourly momentum, heat and freshwater fluxes from this simulation.

These 3‐hourly JRA55 RYF fluxes are the added to the monthly seasonal flux anomalies available from

the ISIMIP3b climate models for the pre‐industrial (picontrol), historical (historical) and future SSP1‐2.6

(ssp126), SSP3‐7.0 (ssp370), and SSP5‐8.5 (ssp585) scenarios. In this way, 3‐hourly surface flux forcings
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are created for all ISIMIP3b scenarios. Notably, this procedure results in sub‐monthly variability

mirroring that of the JRA55 RYF, rather than the variability simulated by the coupled climate model. This

means that any projected changes in sub‐monthly variability due to climate change are not integrated in

the final de‐biased product. However, to date, marine ecosystem modellers have not analysed

sub‐monthly variability anyways (and most marine ecosystem models are not suited to account for

sub‐monthly variability of forcings), making this approach suitable.

Alternatively, de‐biased ocean simulations including GCM‐based sub‐monthly variability could be

constructed by an alternative approach. In this scenario, 3‐hourly surface atmospheric variables would

be extracted directly from each GCM simulation, rather than from JRA55 RYF forced oceanic simulations.

Forcing NEMO‐PISCES with these variables using bulk formulae would once again produce the necessary

3‐hourly surface fluxes, this time with variability consistent with the coupled GCM across all timescales.

This approach however requires running a separate ocean simulation for each GCM and scenario to

derive the surface fluxes, necessitating a much larger number of ocean model runs than the approach

using JRA55 RYF.  In addition, the 3‐hourly input from the GCMs is not available without gaps.

De‐biasing strategy. The 3‐hourly surface fluxes, constructed as described above, then serve as forcings

for another set of ocean model simulations. Notably, these simulations are not driven with bulk

formulae but directly with surface fluxes to enable an online implementation of the surface heat flux

feedbacks triggered by climate change into the forced ocean biogeochemistry model for historical and

future simulations (Lengaigne et al., 2025). For bias‐adjustment, the part of the anomalous surface

fluxes that directly depends on climate change‐induced SST warming is separated from the part that

does not. Only the latter part is used as a direct flux input to the ocean model, while the former is

implemented within NEMO‐PISCES as an online relaxation to the warming signal from the debiased

historical and future simulations using a spatially and seasonally variable feedback damping coefficient.

This SST feedback coefficient, derived from observed surface variables, represents the Newtonian

cooling negative feedback related to latent heat fluxes through the Clausius‐Clapeyron relationship and

the negative feedback related to upward long‐wave radiation through through Stefan’s law (Zhang and Li

2014) and the positive downward longwave radiation feedback related to increasing temperature

(Shakespeare et al. 2022). Application of this approach to the ocean model effectively reproduces the

global SST changes simulated by CMIP6 models, as demonstrated in (Lengaigne et al., 2025).

In this way, physical and biogeochemical ocean simulations are generated for picontrol and historical

climate forcings as well as for each of the future climate change scenarios, ensuring that the background

climatological state is constrained by the reanalysis, while still accounting for both interannual and

long‐term climate variability simulated by the underlying GCM. Consequently, the resulting

ocean‐biogeochemistry simulations considerably mitigate the strong present‐day climatological biases

identified in the coupled models. Depending on data availability for the relevant monthly fluxes, this

de‐biasing procedure can be applied to any climate model.

Additionally, to generate observation‐based oceanic forcings for ISIMIP3a, a reference simulation is also

forced with the full JRA55 forcing (Tsujino et al. 2018) that includes observed inter‐annual and decadal

variability. This oceanic forcing is expected to be a valuable additional climate‐related forcing for impact

model evaluation within ISIMIP3a akin to the GFDL‐MOM6‐COBALT2 reanalysis‐driven historical dataset
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used in ISIMIP3a ((Frieler et al., 2024). The set of variables included in the de‐biased dataset is a subset

to the one in the raw GCM dataset (Table 8), detailed  in Table 9.

Table 9: Bias‐adjusted ocean data to be used by global impact models in the ‘de‐biased’ sensitivity

experiment in the fisheries and marine ecosystems sector

Variable Variable
specifier

(variables in
brackets are not
directly available
as model output
but will have to
be derived in
post‐processing)

Unit Resolution Forcing datasets

Mass concentration of
total phytoplankton
expressed as
chlorophyll

chl kg m‐3 1° grid, vertically
resolved, monthly

JRA55+IPSL‐CM6A‐LR

Sea floor depth deptho m 1° grid, constant JRA55+IPSL‐CM6A‐LR

Downward flux of
particulate organic
carbon

expc‐bot mol m‐2 s‐1 1° grid, monthly JRA55+IPSL‐CM6A‐LR

Net primary organic
carbon production by all
types of phytoplankton

intpp mol m‐2 s‐1 1° grid, monthly JRA55+IPSL‐CM6A‐LR

Net primary organic
carbon production by
diatoms

intppdiat mol m‐2 s‐1 1° grid, monthly JRA55+IPSL‐CM6A‐LR

Net Primary Organic
Carbon Production by
Other Phytoplankton

intppmisc mol m‐2 s‐1 1° grid, monthly JRA55+IPSL‐CM6A‐LR

Mixed layer depth
defined by delta rho =
0.125

mlotstmax m 1° grid, monthly JRA55+IPSL‐CM6A‐LR

Dissolved oxygen
concentration

o2, (o2‐bot),
o2‐surf

mol m‐3 1° grid, vertically
resolved, ocean
bottom and
surface fields,
monthly

JRA55+IPSL‐CM6A‐LR

pH ph, (ph‐bot),
ph‐surf

1 1° grid, vertically
resolved, ocean

JRA55+IPSL‐CM6A‐LR
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bottom and
surface fields,
monthly

Total phytoplankton
carbon concentration

phyc, (phyc‐vint) mol m‐3 1° grid, vertically
resolved and
vertically
integrated,
monthly

JRA55+IPSL‐CM6A‐LR

Concentration of
diatoms expressed as
carbon in sea water

phydiat,
(phydiat‐vint)

mol m‐3 1° grid, vertically
resolved and
vertically
integrated,
monthly

JRA55+IPSL‐CM6A‐LR

Mole Content of
Miscellaneous
Phytoplankton
Expressed as Carbon in
Sea Water

phymisc,
(phymisc‐vint)

mol m‐2 1° grid, vertically
resolved and
vertically
integrated,
monthly

JRA55+IPSL‐CM6A‐LR

Net Downward
Shortwave Radiation at
Sea Water Surface

rsndts W m‐2 1° grid, monthly JRA55+IPSL‐CM6A‐LR

Sea water salinity so, (so‐bot),
so‐surf

0.001 1° grid, vertically
resolved, ocean
bottom and
surface fields,
monthly

JRA55+IPSL‐CM6A‐LR

Sea water potential
temperature

thetao °C 1° grid, vertically
resolved, monthly

JRA55+IPSL‐CM6A‐LR

Ocean model cell
thickness

thkcello m 1° grid, vertically
resolved, monthly

JRA55+IPSL‐CM6A‐LR

Sea water potential
temperature at sea floor
(bottom)

(tob) °C 1° grid, monthly JRA55+IPSL‐CM6A‐LR

Sea surface temperature tos °C 1° grid, monthly JRA55+IPSL‐CM6A‐LR

Sea water zonal velocity uo m s‐1 1° grid, vertically
resolved, monthly

JRA55+IPSL‐CM6A‐LR

Sea water meridional
velocity

vo m s‐1 1° grid, vertically
resolved, monthly

JRA55+IPSL‐CM6A‐LR

Concentration of
mesozooplankton

zmeso,
(zmeso‐vint)

mol m‐3 1° grid, vertically
resolved and
vertically

JRA55+IPSL‐CM6A‐LR
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expressed as carbon in
sea water

integrated,
monthly

Concentration of
microzooplankton
expressed as carbon in
sea water

zmicro,
(zmicro‐vint)

mol m‐3 1° grid, vertically
resolved and
vertically
integrated,
monthly

JRA55+IPSL‐CM6A‐LR

Total Zooplankton
Carbon Concentration

zooc, (zooc‐vint) mol m‐3 1° grid, vertically
resolved and
vertically
integrated,
monthly

JRA55+IPSL‐CM6A‐LR

2.4.3 Bias‐adjusted regional ocean forcings (‘de‐biased’ sensitivity experiment)

Regional marine ecosystem models are most often calibrated to reproduce observed environmental

variables when driven by observed sea surface and bottom temperature, primary production

(phytoplankton production), and zooplankton biomass. However, that would still lead to biases in the

historical simulations if the impact model was forced by biased simulated input data instead of

observational data. To reduce this effect the GCM‐based input data has been adjusted such that the

historical GCM simulations match observational data for certain regions (Eddy et al., 2025). The

adjustment is based on the delta approach where simulated and observational forcing data Xsim and Xobs

are averaged across a given historical reference period to determine the bias delta = mean (Xsim) ‐ mean

(Xobs) that is then subtracted from the simulated forcing data. This method preserves the trend in the

forcing data and its internal variability. Some ocean forcing variables are not an exact match with

variables used in regional marine ecosystem models. For example, sea water potential temperature

(thetao), concentration of diatoms (phydiat‐vint), or concentration of mesozooplankton (zmeso‐vint)

may first be converted to other indicators that are then used as input for the regional marine ecosystem

models.  In these cases the derived indicator is corrected using the delta method (see Table 10).

Table 10: Bias‐adjusted ocean data to be used by regional impact models in the ‘de‐biased’ sensitivity

experiment in the fisheries and marine ecosystems sector

Variable Variable
specifier

Unit Resolution Forcing datasets

Southern Benguela Current

Net primary organic
carbon production by all
types of phytoplankton

intpp mol m‐2 s‐1 1° grid, monthly Corrected based on observed

primary production for the southern

Benguela current based on the delta

method where the adjustment target

is data from 1978 for the EwE model

and 1990 for the Atlantis model
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Sea water potential
temperature

thetao °C 1° grid, vertically
resolved, monthly

Raw GCM temperature data

converted to temperatures at 0‐50,

50‐100, 100‐300 and 300‐500 m

according to the configuration for

the southern Benguela Atlantis

model, and 0‐50 and 300‐500 m for

the EwE model.

Cook Strait

Net primary organic
carbon production by all
types of phytoplankton

intpp mol m‐2 s‐1 1° grid, monthly Corrected based on observed

primary production for Cook Strait

using the delta method where

observational target data is from

1950

East Bass Strait

Net primary organic
carbon production by all
types of phytoplankton

intpp mol m‐2 s‐1 1° grid, monthly Corrected based on observed

primary production for East Bass

Strait using the delta method where

observational target data is from

1994

East Bering Sea

Concentration of
diatoms expressed as
carbon in sea water

phydiat‐vin
t

mol m‐3 1/4° grid, vertically
resolved and
vertically integrated,
monthly

Converted to phytoplankton size

classes used in East Bering Sea mizer

model then corrected using the delta

method for the period 1982–1993

Concentration of
diazotrophs expressed as
carbon in sea water

phydiaz‐vi
nt

mol m‐3 1/4° grid, vertically
resolved and
vertically integrated,
monthly

Converted to phytoplankton size

classes used in East Bering Sea mizer

model then corrected using the delta

method for the period 1982–1993

Concentration of
picoplankton expressed
as carbon in sea water

phypico‐vi
nt

mol m‐3 1/4° grid, vertically
resolved and
vertically integrated,
monthly

Converted to phytoplankton size

classes used in East Bering Sea mizer

model then corrected using the delta

method for the period 1982–1993

Concentration of
mesozooplankton
expressed as carbon in
sea water

zmeso‐vint mol m‐3 1/4° grid, vertically
resolved and
vertically integrated,
monthly

Converted to zooplankton size

classes used in East Bering Sea mizer

model then corrected using the delta

method for the period 1982–1993
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Concentration of
microzooplankton
expressed as carbon in
sea water

zmicro‐vint mol m‐3 1/4° grid, vertically
resolved and
vertically integrated,
monthly

Converted to zooplankton size

classes used in East Bering Sea mizer

model then corrected using the delta

method for the period 1982‐1993

Sea surface temperature tos °C 1/4° grid, monthly Corrected based on configuration for

the East Bering Sea mizer model

using the delta method for the

period 1982–1993

Hawai’i

Concentration of
diatoms expressed as
carbon in sea water

phydiat‐vin
t

mol m‐3 1/4° grid, vertically
resolved and
vertically integrated,
monthly

Converted to phytoplankton size

classes used in Hawaii mizer model

(Woodworth‐Jefcoats, 2022) then

corrected using the delta method

Concentration of
diazotrophs expressed as
carbon in sea water

phydiaz‐vi
nt

mol m‐3 1/4° grid, vertically
resolved and
vertically integrated,
monthly

Converted to phytoplankton size

classes used in Hawaii mizer model

then corrected using the delta

method

Concentration of
picoplankton expressed
as carbon in sea water

phypico‐vi
nt

mol m‐3 1/4° grid, vertically
resolved and
vertically integrated,
monthly

Converted to phytoplankton size

classes used in Hawaii mizer model

then corrected using the delta

method

Concentration of
mesozooplankton
expressed as carbon in
sea water

zmeso‐vint mol m‐3 1/4° grid, vertically
resolved and
vertically integrated,
monthly

Converted to zooplankton size

classes used in Hawaii mizer model

then corrected using the delta

method

Concentration of
microzooplankton
expressed as carbon in
sea water

zmicro‐vint mol m‐3 1/4° grid, vertically
resolved and
vertically integrated,
monthly

Converted to zooplankton size

classes used in Hawaii mizer model

then corrected using the delta

method

Sea water potential
temperature

thetao °C 1/4° grid, vertically
resolved, monthly

Converted to temperature used in

Hawaii Mizer model then corrected

based on observed sea water

potential temperature for Hawaii

using the delta method from
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1961–1980 with observed

temperature data from the World

Ocean Atlas

2.5 Future Lightning Data

For the ‘varlighting’ sensitivity experiment we provide temporally varying lightning density (strokes km‐2

day‐1) for the period 2015‐2100 on monthly resolution (monthly mean of daily lightning stroke density)

and the standard 0.5° global grid. This dataset may be used in a range of applications, for example, to

understand the influence of lightning on wildfire ignition or atmospheric composition.

The lightning density is derived from future climate simulations by UKESM1‐0‐LL and an empirical

relationship between Convective Available Potential Energy (CAPE) and lightning strokes based on the

WWLLN Global Lightning Climatology and time‐series (WGLC) (Kaplan & Lau, 2021, 2022). Daily mean

CAPE is calculated from non bias‐adjusted air temperature, air pressure, and specific humidity on

pressure levels from the surface to the top of the troposphere.

The relationship between daily CAPE and daily lightning is estimated by linear regression of

log‐transformed CAPE derived from the GCM‐calculated CAPE during the period of overlapping model

output and observed daily lightning from WGLC (2015‐2020) for each gridcell and month of the year.

Where <10 observations of daily lightning were available over the calibration period, we used global

mean regression parameters.

The empirical relationships are applied to the daily CAPE data from the UKESM1‐0‐LL simulations for all

three climate scenarios SSP1‐2.6, SSP3‐7.0, and SSP5‐8.5. The associated lightning densities were

monthly averaged. To maintain the spatial structure of lightning observed at present, lightning

anomalies compared to the simulated 2015‐2020 climatological reference were added to the observed

present‐day lightning climatology from WGLC for 2015‐2020. The ‘varlighning’ sensitivity experiment is

assumed to start from the default historical group I simulation, assuming the Flash Rate Monthly

Climatology (Cecil, 2006), not changing with climate change.

Table 11: Future lightning forcing data provided within ISIMIP3b.

Variable Variable
specifier

Unit Resolution Datasets

Monthly flash rate lightning km‐2 d‐1 0.5° grid,
monthly

Derived from UKESM1‐0‐LL (SSP1‐2.6,
SSP3‐7.0, and SSP5‐8.5) using an empirical
relationship between Convective Available
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Potential Energy (CAPE) and lightning
densities (Kaplan et al., 2023).

3 Conclusions

This paper gives an overview over the ISIMIP3b, group I and II experiments and the provided

climate‐related forcing data sets. The simulations assuming fixed 2015 direct human forcings and a low

(ssp126) and two high emission scenarios (ssp370 and ssp585) are designed to describe the impacts of

different levels of climate change on present day natural and human systems. The set‐up allows e.g. for

testing to what degree the (bio‐)physical impacts scale with global mean temperature change and could

therefore be translated to other global warming pathways than the ones considered here. While a

functional relationship between the considered impact indicator and global mean temperature change

(or other climate variables) could be trained on ssp585 simulations because of the high warming levels

reached, its performance could then be tested on ssp370 and ssp126. However, in such a setting it has

to be taken into account that ssp370 is different from the other scenarios with regard to particularly

high aerosol emissions and high decreases in forest areas going beyond the assumptions in the other

models. So it has been shown that the increase of global mean precipitation with global warming is

much weaker in SSP3‐7.0 than in the other scenarios (Shiogama et al., 2023).

This paper is intended to work as a catalogue where the climate impact modellers can find all relevant

information about the climate‐related forcings needed as reference for the impact model simulations

generated within the CMIP6‐based ISIMIP3b, group I (historical period) and group II (future projections).

As a continuous process we would like to improve or complement these data sets wherever possible. So

this paper can also be read as a call to either contribute by additional input data that allows other

sectors to join the current simulation round or by methods that could be used to generate additional

data sets for the next simulation round that will likely build on CMIP7 simulations. The following

climate‐related forcings have been identified as still missing and particularly critical to be added to a

fourth simulation round of ISIMIP: i) temporally resolved lightning data accounting for changes in

climate, ii) bias‐adjusted oceanic forcing data, iii) projected coastal water levels in high temporal

resolution accounting for extremes and representing the effects of long term sea level rise in line with

the underlying global climate simulations, and v) ozone concentration fields in line with the GCM

simulations. While a bias‐adjustment of the oceanic forcings is already suggested in section 2.4.2, the

approach does not preserve the daily variability of the raw oceanic forcings as it requires atmospheric

surface flux only available in monthly resolution from the ISIMIP3b GCMs. To ensure the consistency on

daily time scale, we have submitted an associated request for CMIP7 whose simulations will be used

within the next round of ISIMIP. The generation of high resolution coastal water levels is ongoing

research described in section 2.2.3. In particular the generation of the short term variability that will

have to be added to the long term trends in water levels still has to be developed and prove to fulfill the

demands. In addition, it would be great to also provide estimates of the extreme coastal water levels

associated with the tropical cyclone tracks and wind fields we provide within ISIMIP3b (see section 2.2).
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There is a general demand for higher resolution climate‐related forcings including both, the oceanic and

the atmospheric components ideally accounting for heat island effects. As the ISIMIP climate‐related

forcings have to be globally consistent in the sense that they have to represent the daily variability of

the underlying coarse resolution GCMs, we cannot use data from dynamical downscaling approaches

using boundary conditions from different GCM runs as for example available through CORDEX. However,

it seems to be appealing to harmonize the selection of the ISIMIP GCMs with a priority setting regarding

the GCM‐based boundary conditions within CORDEX.

The climate‐related forcings described here are also provided as input for the new ISIMIP3b, group III

simulations where the associated Direct Human Forcings (DHF) are not held constant at 2015 levels but

are projected into the future in line with i) the population growth and economic development

associated with the considered Shared Socioeconomic Pathways (SSPs) and mitigation measures

required to reach the prescribed levels of climate forcings associated with the climate projections (‘no

adaptation’ experiments) and ii) additionally accounting for the impacts of climate change (‘adaptation’

experiments). The collection of the associated DHF will be described in a separate paper.

Code and data availability. The MIT data on tropical cyclone tracks with wind and precipitation fields

data shall be used for non‐commercial research or academic purposes only. Data can be made available

by the ISIMIP team upon written consent by Kerry Emanuel (MIT, email: emanuel@mit.edu).

All other input data described are available for participating modelers with a respective account from

the DKRZ server. Data will be made publicly available, and most data are already publicly available at the

ISIMIP data repository at https://data.isimip.org/ (ISIMIP data repository, 2025) and availability is

documented in the ISIMIP Input data table

https://www.isimip.org/gettingstarted/input‐data‐bias‐adjustment/ (ISIMIP input data table, 2025)

where the way to access the data is described as well. Model output is already partly available

https://data.isimip.org/ (ISIMIP data repository, 2025). The ISIMIP repository fulfills the archive

standards as stated in the “GMD code and data policy”. The repository is hosted and maintained by the

Potsdam Institute for Climate Impact Research (PIK). Data can only be published or removed from the

repository by the ISIMIP data team, which is monitored by the ISIMIP steering committee according to

the organizational structure of ISIMIP. DOIs are used to refer to datasets in a persistent way. Whenever a

dataset is replaced for any reason a copy is kept on tape, and a new DOI is issued, while the old DOI is

kept online with information on how to retrieve the archived data. Detailed information can be found in

the ISIMIP terms of use at https://www.isimip.org/gettingstarted/terms‐of‐use/ (ISIMIP terms of use,

2023).
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