To the Editor:

We apologize for taking more time than planned to address the concerns of the reviewers. We
note that we have performed substantial additional analyses based on their request, with the
goal to elucidate the transfer of information in our machine-learning approach. We have
succeeded in this as detailed below, and it is reflected in the revised manuscript we have
prepared in the process. Thereto we have added a new section on model evaluation in the
Methods section (line 241). In the Results section we have replaced the previous AV attribution
subsection (previous manuscript line 283) with an improved IAV attribution analysis (line 323)
and added a new subsection and analysis on learning in feature space (line 360). We then add
a Discussion section to integrate the new results into the main argument of the manuscript.

We next provide a point-by-point response to the reviews, with the original remarks from
reviewer #1 (RC1) and #2 (RC2) in blue, and our response in regular font.

Reviewer 1)

R1C1: The authors should more clearly explain how EC-STILT, using only one year of data from
each of the three atmospheric CO. observation sites, was able not only to correct biases in
global NEE but also to more than double the global total NEE interannual variability (1AV)
compared to X-BASE. In the annual regional NEE estimates, EC-STILT shows larger deviations
from inversion estimates than X-BASE in regions with atmospheric constraints, such as the
Eurasian Boreal and South American Tropical regions. Meanwhile, regions without direct
atmospheric constraints—such as South American Temperate, Southern Africa, and Tropical
Asia—show substantial increases in NEE AV, contributing significantly to the increase in global
IAV. Based on these results, it is difficult to understand how atmospheric constraints led to
improved global NEE estimates and their IAV.

Thank you for your thoughtful assessment of our study. We agree that the submitted manuscript
did not adequately describe our hypothesis of how our model makes use of limited spatial and
temporal observations to improve over the full study time. And we did not provide an adequate
analysis to demonstrate our hypothesis. We have removed the section on attribution of IAV
based on the annual cycle of IAV, and replaced it with a new analysis (described above under
R2C1) which we hope will better address your concerns. We show that when the training sets
are compared in feature space, the performance by region is explained by the relationship of the
training distribution to the natural distribution. We believe that this confirms our hypothesis and
provides a mechanism by which a data-driven model can improve its performance over time
without a long-term constraint.

R1C2: The authors state, “This is because EC-STILT learns its land-surface response in
environmental space of the features instead of in geographic space like an inversion.” If this
interpretation is correct, then the neural network within EC-STILT adjusts biome-specific NEE
sensitivities to environmental drivers (e.g., temperature or moisture) in a way that minimizes the
loss function. For example, the model may predict stronger NEE sensitivity to moisture in



tropical forests, leading to increased IAV in regions with high moisture variability. But does this
sensitivity enhancement improve IAV only in some regions within a biome and not others, due to
spatial heterogeneity? While the neural network may function as a black box, | believe the
authors could still provide further insight based on available model outputs. For example,
exploring differences in learned climate/environmental sensitivities of NEE between EC_STILT
and X-BASE by regions and/or biome types could help readers better understand why the
model produced the observed results.

We agree that the submitted manuscript does not adequately demonstrate this hypothesis. We
believe that our new sections in Results (Sec. 4.5) and Discussion (lines 430) described in
R2C1 provide an analysis that can partially describe the mapping from learned distribution in
biophysical feature-space to NEE space.

R1C3: It is unclear why the authors chose to use only three tall-tower atmospheric CO.
observations, given the availability of long-term surface, aircraft, and satellite-based datasets.
Was there a decrease in model performance when more observations were included? Or was
the goal to test the efficiency of the system using a minimal number of atmospheric constraints?

The decision to only include a limited set of towers and years was taken because we faced
computational limits or barriers both in dataset creation and training. We hypothesize in the
paper that more towers might add information, but with regards to the new section describing
the distributional aspect of the learning process. We will add the paragraph above (R2C1)
describing the computational bottle-necks that led us to select only three towers over 1 year.

R1C4: The current EC-STILT system shows substantial regional deviations from
inversion-based estimates, with higher RMSE than X-BASE in some regions. While inversion
estimates are not ground truth, this suggests that the information from just three sites may be
insufficient to improve regional NEE distributions. Although the authors mention plans to
address this in future work, it would strengthen the manuscript to provide at least a preliminary
assessment—such as how results change when incorporating background in-situ
measurements from NOAA’'s ObsPack data.

We have added a paragraph to address this concern (lines 405), which is included below in the
response to R2C1.

Detailed comments

1. Line 2: The phrase "terrestrial land—atmosphere flux of CO:" seems to refer more
closely to net land flux or net biosphere exchange rather than net ecosystem
exchange (NEE). | suggest using “net ecosystem exchange” to make the intended
meaning clearer.

Fixed, thank you.



2. Lines 11-17: As noted earlier, while your study effectively reduces global NEE biases
and improves interannual variability using a limited number of atmospheric CO.
observations, it also leads to increased regional biases—assuming that inversion
estimates are reasonably close to the truth. Since a broader set of atmospheric CO: data
is available, including surface, aircraft, and satellite observations, it seems likely that
incorporating more of them could improve both global and regional NEE estimates.
Could you clarify why only a limited set of atmospheric observations was used in this
study?

As discussed above, we have added a paragraph which we believe addresses this
comment (lines 405), which is included above in the response to R2C1.

3. Lines 62-71: You mention a key limitation of the previous work by Upton et al.
(2024)—that the additional atmospheric information was aggregated and provided no
added value for resolving the spatial distribution of NEE. How your EC-STILT approach
overcome this limitation? Could you explicitly discuss which aspects of EC-STILT (i.e.,
global and regional NEE estimates and their IAV) show improvement over the previous
work, which do not, and what underlying factors might explain these differences.

This is addressed in new text in the discussion (lines 445) which is included in the
response to R2C1.

4, Line 125: As you discuss later in the manuscript, inversion-based terrestrial biosphere
flux estimates include not only fire emissions but also lateral fluxes. Since your study
assumes that NEE corresponds to the inversion estimate with fire emissions removed, it
would be helpful to state this assumption clearly at this point in the text.

We include the new text in the Data section (lines 180):

We do not include lateral transport fluxes in the current analysis. Crop and wood
harvest are important for regional and long term accounting (Ciais et al., 2022),
but are not critical for the instantaneous carbon budget that is represented in Eq.
1. The potential impact of riverine transport are discussed below in Sec. 5.1.

Line 176: Please provide more detail on how the lateral boundary conditions for the
region are derived from the 3D CO: fields provided by Jena CarbonScope, and how
these are applied in Equation (1).

We have added text, described above (R2 detailed comment 3) which addresses this
concern.



5. Lines 205-206: The way uncertainty is defined and prescribed seems to be a critical
component of your system, but the explanation provided is not sufficiently detailed.
Could you clarify how uncertainties were defined in your framework, and how the relative
weighting between atmospheric constraints and eddy-covariance observation constraints
was determined?

The relative weight of the two terms is a learned value in our model, as described at the
end of section 3.4. This method allows the model to estimate an optimal mix of the terms
based on a learned estimate of homoscedastic uncertainty for each of the different terms
of the objective function and is dependent on the inherent noise in the data, rather than
the scale or quality of the inputs. We added the text described in R2C4 to better describe
this process.

We use our cross-fold validation members to represent the model uncertainty in the
study, presenting the member mean and standard deviation. We intended to provide a
proof-of-concept, evaluating the value of including atmospheric mole fraction
observations in data-driven estimates of NEE. Nevertheless, to address the sources of
this model uncertainty, In line with R2C1, we now present a mechanism (Fig 9, section
4.5) which we believe adds nuance to the existing discussion of model uncertainty.

6. Lines 233-234: The phrase “with  only local driver variables, and no atmospheric
information” is somewhat unclear. It would be helpful to revise this sentence to more
specifically describe what is meant by “local drivers” and “no atmospheric information”.

The text (line 271) now reads:

When producing an estimate of global NEE, the model takes the driver variables
across the full land surface as inputs, but does not access any STILT footprint
data, LBC or NBF data, or mole-fraction data, which are only used in constraint
during training.

7. Figure 4: Please consider adding a panel showing the annual mean NEE from
X-BASE, so that readers can directly compare it with the EC-STILT results. Additionally,
for the panel showing the difference between EC-STILT and X-BASE, it would be helpful
either to adjust the colorbar style or to use the same colorbar range as in Figure 4A to
facilitate visual comparison.

Figure 4 has been updated to include the X-BASE panel. The color bar for the difference
has the original scale, but | believe that the new layout makes the visual interpretation
easier. Additionally, the standard deviation panel has been updated. The previous
version had a bug in the calculation and has been corrected.
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(CAPTION) Figure 4. Spatial distribution of global annual NEE A) Mean annual NEE for
EC-STILT in gC m? day' B) Mean annual NEE for X-BASE in gC m2 day™' C) The
difference in mean annual NEE between EC-STILT and X-BASE in gC m2 day™. D) The
standard deviation of mean annual NEE for the EC-STILT 10-member ensemble in gC
m2 day™’

Table 1 and Figure 5: Some values in the text, table, and Figure 5 are inconsistent.
Also, bold formatting in Figure 5 seems to incorrectly indicate better performance in
some cases—for example, the annual RMSE for Australia. Please review and correct
these issues.

Thank you, it is now fixed.

Lines 291-292: The statement “EC-STILT has modified its response by biome” should
be supported by a clearer explanation in the Methods section. Does this mean that the
relationship between driver variables and NEE is trained and applied in a biome-specific
manner? If so, please clarify how this is implemented.

This section has been replaced by a stronger attribution of IAV and description of the
mechanism



10. Lines 292-293: The sentence “When |AV is broken down by month (Fig. 7) across
boreal and temperate regions, the increases in monthly IAV occurs during the growing
season while in tropical regions show a change during the dry season” is interesting.
Could you provide a potential explanation for this pattern, or at least discuss possible
mechanisms that might be driving these seasonal differences across regions?

This section has been removed in favor of our new attribution of IAV and demonstration
of the learning mechanism described in R2C1 above.

11. Lines 300-303: Could you clarify which figure or table supports this part of the text?
We have created this table in the appendix at the request of the reviewer.

12. Figure 8: Some of the values shown in the figure do not match those reported in the
main text. Please review and correct these inconsistencies.

Corrected, thank you.

13. Line 330: Since the concept of “environmental response” is a central and novel aspect
of your system, it would be helpful to provide a more detailed explanation of how this is
defined and implemented in the Methods section. This would help readers better
interpret your results.

Thank you for pointing out that this was not sufficiently clear. We have added text to the
Methods (section 3.1, lines 155, new text underlined), which we hope, along with the
new discussion above in R2C1, makes this concept clear to the reader.

These latent spaces allow the model to learn complex non-linear relationships between
driver variables and NEE. Because these relationships are discovered in these abstract
non-geographic spaces, they can represent complex space-for-time and time-for-space

substitutions. We refer to the process of learning these non-linear, non-geographic
mappings between the input distribution and NEE as learning in 'environmental

response' space.

Lines 345-347: Table 1 suggests that the limited atmospheric observations used in
your study are not sufficient to effectively embed the atmospheric signal into the
EC-STILT ecosystem response or to guide the spatial and temporal distributions of the
estimated NEE.

Yes, this phrase is too enthusiastic, and we add ‘partially’ which we believe is supported
by the results.



14. Lines 379-381: It would be helpful to include supporting results for this statement
maybe in the supplementary material.

An example of the training results for the three towers used in the STILT operator for a
cross-validation member is now included in the appendix.
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(CAPTION) Figure A4. Per-tower representative STILT operator training performance
(estimated APPM CO, and observed APPM COQO,) for the final epoch of one ensemble
member. The black, dotted line is the one-to-one line. The blue line is the regression line.
The mean absolute error (MAE) and Pearson’s R are reported for each tower.

Reviewer 2)

R2C1: The authors claim that the inclusion of atmospheric CO, observations from three sites in
their model design improved CO, flux estimates in terms of capturing inter-annual variability
(IAV). Due to the unavailability of observational estimates, they compared their outputs with an
ensemble of inversion results and reported that the 1AV values for those two are closer
compared to X-BASE simulated values. But the authors did not explain how atmospheric CO,
observations covering only one year from these three sites add IAV to the model outputs?
Further, it is not clear why they did not use other atmospheric CO, observations (from additional
sites) and/or observations covering a longer period than just one year. It is not clear what are
the limiting factors for using more atmospheric observations. At this stage, it is not convincing
that these limited data can provide inter-annual constraints for simulated outputs.

We thank the reviewer for their critique of our paper. We recognize that the manuscript did not
fully demonstrate the mechanism by which 1AV is improved given the limited possible direct
constraint from a single year of data from a limited number of atmospheric tall tower locations.
We have performed substantial new analyses and we can now also provide a more formal view
of our understanding of the underlying model mechanism that allows it to better represent IAV.



With regard to the number of towers, this study aimed to provide a proof-of-concept system, so
that we limited the number of towers for computational reasons. This is mostly due to the large
time required to run STILT for new temporal and spatial domains and to train the machine
learning model with an increasing number of atmospheric time-series. We explicitly chose three
towers to cover the climate and ecological space as broadly as possible with a limited set of
sites, and chose a full year to encompass the full set of ecosystem flux responses within that
space. We agree that more towers and more years are very likely to improve the system, but the
additional towers and years would be of most benefit if they cover environmental conditions that
are not well represented by the current tower set. And although they might yield better fluxes,
they would not demonstrate the Method in a substantially different way than we can with the
current three towers.

A new paragraph (line 405) is now included in the discussion section to address this point:

We selected a limited subset of towers and training years to balance computational cost
and model performance in this proof-of-concept system. The computational cost of
additional towers and years is primarily associated with creating STILT footprints for a
new temporal and spatial domain, and is costly both in terms of computational and
human effort. We selected three sites with the specific goal to achieve good coverage of
different geographic, climate and ecological zones. This precluded the use of other
towers which we believe might have provided valuable constraints in training. The NOAA
ObsPack data (Masarie et al., 2014) could provide a large volume of additional training
data, both towers and years.. Following the analysis of section 4.5 we find that given the
structure of our model, one might be able to increase the performance of the model with
a targeted selection of towers. These would optimally represent the natural distribution of
the land surface, rather than including all measurement towers across observational
networks. Future experiments, similar to the EC representation analysis in (Pallandt et
al., 2022), can be performed to identify additional towers or years that might yield largest
improvements in our predictions.

In regard to the second part of this comment, we propose to improve the discussion about the
information gain between EC-STILT and X-BASE, and how that gain can improve the
representation of long-term global patterns such as IAV. We must first consider how these global
patterns in NEE, which would seem to depend on learning from a long-term atmospheric signal,
emerge from the local, hourly fluxes produced by EC-STILT. The following text, plus figures is
included in the revised manuscript:

In the Methods (starting line 241):

We perform several analyses by KG geophysical region to understand how model
performance is modified by the atmospheric information available during training. To
discover the regions which contribute to the global IAV in EC-STILT, we use the
covariance method described in Lee et al. (2023). This method uses the row sum of the
covariance matrix, scaled by the sum of the full covariance matrix to estimate the



per-pixel contribution to the IAV, which is in turn additive. We then sum by KG region to
determine the relative contribution.

To test our hypothesis that adding an atmospheric constraint improves the representation
of the land surface, we estimate the probability distribution functions (PDF) of the
model’s training data (such as temperature and VPD) by KG region. We also estimate
the PDF of the full land surface, as represented by the full dataset used to create a
global multi-year estimate of NEE. For the training data we estimate two different PDFs:
one PDF of the data provided from the eddy-covariance towers, which is the training set
for X-BASE, and one PDF representing additionally the areas of the land-surface which
are under the STILT footprints, which is the training set of our model. The footprint data
is weighted by the number of times that time and location is used during training. Global
and regional PDFs are generated from a random subsample of the full dataset. The
subsamples are per-year time series for ten percent of randomly selected spatial
locations. To quantify the relationship between the training PDFs and the full PDF, we
use two metrics that describe the distance between two distributions; Kullback-Leibler
and Jennsson-Shannon.

To understand the impact of the STILT data on our results, we train nearly identical
models with the same architecture and random state. We train an EC-only version of our
model which lacks the STILT operator, and so has no additional atmospheric information
during training. To test for potential influences from the atmospheric inversion data which
we use to calculate the LBC timeseries for each tall tower, we also train a model which
replaces the hourly LBC with the annual mean LBC for each time step. In this way this
mean-LBC model has no time-varying information on the background.state of the
atmosphere.

In the Results (starting line 323):

We find that EC-STILT attributes IAV to tropical drylands in regions Aw (tropical
savanah) and Bsh (semi-arid) (Fig. 7). This contrasts with the X-BASE NEE, which
attributes IAV to regions Dfb (humid continental), and Dfc (sub-arctic). Both figures show
the regional contribution of AV, relative to the overall IAV of the dataset. This metric
captures only the magnitude of the contribution, not the relative accuracy of the inferred
IAV, which varies strongly by region (Fig. 5). Recent studies (Metz et al., 2023, 2025;
Ahlstrém et al., 2015; Poulter et al., 2014) also suggest that arid regions are the
dominant source of the IAV in global NEE. The constraints that drive this result in our
system must come from atmospheric CO2 data, and we will try to trace the source of this
information in section 4.5.
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(CAPTION) Figure 7. Attribution of IAV by Koppen-Geiger land cover class. The figure
on the left is EC-STILT, the figure on right is X-BASE. The value represents the relative
contribution of the region to the overall global IAV. The attribution is calculated by the
covariance method described in (Lee et al., 2023) using annual detrended NEE
anomalies.

In the Results (starting line 360):

We analyse in Fig. 9 the coverage of the EC-only and EC-STILT training data in terms of
climate and ecological space by approximating the probability density function (PDF) of
the two joint distributions in feature-space (TA/VPD, and EVI/NDWI). We compare the
relative difference in the Kullback-Leibler distance (KLD) and Jennsen-Shannon metric
(JS) between the PDF of the full, or natural distribution of a random subset of all pixels,
either globally or by KG class, and the two training sets (Fig,9, Tabs. B1- B3). The two
variable pairs were chosen to create easily interpretable visualizations. We use subsets
of the full 10-dimensional distribution to save on computational costs.

At the global scale, the distribution of the EC training set is more concentrated in cooler,
and moderately productive regions than the EC-STILT set (Fig. 9, top panel, compare
the higher density in the warmer, more productive regions). In the second row, we can
see specifically how the training data changes the representation of a region which is not
directly observed. As with the global distributions, the EC-STILT distribution covers the
warmer, more water-stressed regions (Fig. 9, middle panel TA/VPD) and in the wetter,
more highly vegetated regions (Fig. 9, middle panel EVI/NDWI).

This distributional approach also explains why the model under-performs in regions that
are directly constrained by the atmospheric towers. In the third row, the Képpen-Geiger
class Cfb (temperate oceanic) which covers most of western Europe, we can see that in
both variable sets, the EC-only distribution is closer to the natural distribution (Fig. 9,
bottom row). Because of the environmental learning of EC-STILT, this means that the
inclusion of atmospheric towers may reduce the model’s skill in this region.



The specific impact of individual towers, and their interactions in feature space, are
inconsistent across regions, variable pairs and metrics. In tables B1 to B3, we expand
the analysis by quantifying the effect of adding or removing individual atmospheric
towers from training. The optimal distribution, shown in bold, characterized by the
minimum distance between the two PDFs, is enriched by adding 1-3 towers in 49 of 52
regions across both distributions (Tab. B1, B2). However when the full distribution from
all towers are considered (B3), the improvement of the tower-enriched distributions is
more modest, with only 9 of 26 regions (including global) having improved coverage by
the towers in both variable pairs.
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(CAPTION) Figure 9. Comparison between training set distributions in two multivariate
spaces. Both columns show the difference in distribution between the EC-only training
set (left), and the EC+Towers training set (right), and how they compare with the full
distribution of the global or regional data in feature space. The left is TA and VPD, the
right is EVI and NDWI. The top row is the full global set, the middle row is
Koppen-Geiger class Aw (‘tropical savanah’), the bottom row is Képpen-Geiger class Cfb
(temperate oceanic'). The contour lines represent the probability distribution function
(PDF) of each distribution. Two metrics are calculated for each: Kullback-Leibler (KLD)
and Jennsen-Shannon divergence (JS), which are measures of distance between the
two PDFs.

In the Discussion(line 430):

Because EC-STILT has no direct access to long-term information about the state of the
atmosphere, and yet produces an estimate of global annual NEE which is closer to the



atmospheric inversions, there must be some information within the available training
data which includes this information. The identically constructed model, trained without
the inclusion of the STILT operator (Sec. 3.6) does not produce an increased IAV (see
Appendix fig. B2), which removes the influence of the model architecture. We further
evaluate the influence on IAV of the LBC (Eq. 1), which is derived from atmospheric
inversions. In the results from our mean-LBC model, this change did not reduce the
observed IAV (see Appendix fig. B3), which means the LBC is not responsible for the
improvements in the 1AV in the standard EC-STILT.

To understand the increased IAV in the tropical dry regions (see section 4.3), we
hypothesize that our model can better represent the local NEE responses to climate
variations in these regions through a more complete representation of the natural
distribution of the biophysical drivers of NEE, as shown in Fig. 9. This improvement over
the information provided by the EC towers in feature-space explains EC-STILT’s
improved long-term performance using only a single year of observations. EC-STILT
learns to represent NEE using only 10 variables at an hourly time-step. With no static
variables, such as latitude or elevation, or PFT information, the model can be considered
largely independent of a particular spatial domain. The model only learns to map from a
training distribution of drivers to a training distribution of NEE. The quality and
completeness of this training distribution determines the model’s capacity to capture the
global phenomena.

The results from (Upton et al., 2024) also support the distribution hypothesis presented
above. In that study the atmospheric constraint uses a limited number of fixed pixel
locations to infer regional totals. This created an NEE product which was much closer in
magnitude and seasonality to an ensemble of atmospheric inversions, but did not
improve the IAV. This version of atmospheric constraint does not fundamentally change
the model’s available view of the land surface. From this we can see that the inclusion of
training data which fully includes the IAV signal, but that does not improve the
distributional representation of regions from which the 1AV emerges from the local
variance, does not improve the model’s ability to capture the IAV.

R2C2:1t should be noted that the reported correlation values are significant (R? = ~0.4) but
rather weak. This needs to be discussed and put into context. Further, the regional comparison
shows that regions without atmospheric constraint (e.g., Southern Africa) show higher
correlation values than regions with atmospheric constraint ( e.g., Europe - HUN). How can this
be explained?

For the first point regarding the R? we add the following text (line 494):

While the absolute increase in the R? of IAV with regard to the GCB23 inversions is
modest (0.42 for EC-STILT, 0.02 for X-BASE), it represents a meaningful increase over
previous data-driven flux models (Jung et al., 2019; Nelson et al., 2024). As seen above



in section 4.2 and figure 7, EC-STILT improves the estimation of AV in regions in the
southern hemisphere which are known to contribute to a large fraction of the global IAV.
However EC-STILT fails to improve the representation of IAV in the northern
hemisphere, or where the EC observational record dominates. Therefore, the modest
gain in R2, can be seen as a meaningful gain in the representation of the land surface in
regions which are otherwise poorly represented in the EC record.

For the second point, we have addressed this issue in the new sections above.

R2C3: | am also curious about why the performance of EC-STILT with regard to IAV is not
improved much in the European region, even if the atmospheric constraint is available. Again,
this needs to be explained and discussed in the manuscript.

We addressed this comment in a new figure (Fig. 9) which shows the distributional relationship
between the EC-only and EC-tower representations, and we hope better describes the
observed relationship between X-BASE and our model.

R2C4: Furthermore, the relative weights (wgc and wamy) in the objective function play an
important role in constraining the model. For a reader to better understand the constraints,
these weights should be provided and explained for each region.

These weights are not calculated by region, but are global values that the model learns during
training to mix the two terms. We will add a figure in the Appendix which shows the evolution of
the terms during model training, and new text in the methods (line 219, new text underlined):

This uncertainty is dependent on the inherent noise in the training data, rather than the
quality or quantity of training data. For EC-STILT these mixing parameters, 0% and
o%xrm » are added to the processing chain of the model after its initialization. During
training, using the normal backpropagation process that uses the chain rule to attribute
and update the free parameters of the neural network according to their contribution to
the loss value, the model also updates these mixing parameters. For the individual tasks
L € [EC, ATM ], the 02, parameter is used to create two terms; w, (Eq. 6), and s, (Eq.
7). These are then used to calculate the effective loss, balanced by the learned

uncertainty of the terms (Eq. 8). The evolution of th term ring training is provi
in Appendix Fig. A3.

Detailed comments:

1. L89: Amap of the locations of eddy-covariance towers used for the study may be
included, which will provide an understanding of the data availability around the globe.

Included in the appendix



2. L143: Authors did not properly explain what are the driver variables used in their model
to estimate CO, fluxes (NEE). A table of driver variables used in the EC-STILT model
and their sources should be included.

Included in the Data section

3. L192: Itis not clear how the authors calculate the LBC and ocean components for
each CO, observation. Is it with the help of STILT footprints?

The ocean term is created using STILT footprints directly, and is better described now in
the text referenced below in minor comment #6, the LBC uses the STILT particles which
are used to create the footprint.

The following sentences are added (lines 183):

The LBC values are calculated for each tall tower for each observation time. We
used the ensemble of STILT trajectories released at each data point to obtain the
mean ending position (lat, lon) as well as a mean ending height above the
ground. Using this information we sample global 3D fields, in this case the
optimized CO2 mole fractions from CarboScope, and obtain a mole fraction
associated with a measurement at the tower. We acknowledge that this method
is sensitive to biases in the global 3D fields, but for example at ATTO a
bias-corrected version of the LBC yielded very similar results to the CarboScope
LBC, please see Botia et al. (2022) for the full discussion.

4., L193: How is NEE,,.4 estimated? Here, it is not clear how the ecosystem-model is
designed for points where there are no eddy-covariance observations.

The model uses the 10 biophysical driver variables for every location and time-step.
These can be provided by a mix of EC measurements and MODIS observations, in the
case of the EC objective function term in training, or from a global datacube from ERA5
and MODIS data for non-EC locations for the STILT footprint term. This is described in
the first sentence of section 3.1, the drivers are described in table 1. We have updated
the description of the objective functions (sections 3.3, 3.4) to better reflect the terms in
figure 1.

5. L208: The authors should explain the back-propagation process with more clarity. It is
not clear from the description which and how parameters are getting updated. Also, |
think Figure 1 can be improved further to incorporate back-propagation in the final
stage.

The sentence:

For EC-STILT these mixing parameters, ¢%c and ¢%xry, are added to the
processing chain of the model after its initialization, and then during training, the



normal backpropagation process that neural networks use to update their
parameters, can also update these mixing parameters..

Is replaced by:

For EC-STILT these mixing parameters, ¢%c and ¢?xry, are added to the
processing chain of the model after its initialization. During training, using the
normal backpropagation process that uses the chain rule to attribute and update
the free parameters of the neural network according to their contribution to the
loss value, the model also updates these mixing parameters.

6. L235: How is IAV calculated?

We chose to use the simple standard deviation of the annual integral of NEE across the
study period (2001-2021), aggregated either globally, or by region. This is now included
in the text at line 273 (new text underlined).

When the model is run globally for years 2001-2021,_the standard deviation of
annual NEE (1AV) of the EC-STILT member mean...

7. L442: What are examples of the ‘meaningful non-biogenic flux’ terms that are not
included? And how would these bias the results?

The following text (line 537) is included in the discussion:

Any biogenic or non-biogenic flux terms which are not included, or adequately
represented temporally and spatially will bias the atmospheric target that the
model is trying to match in training. An example of this would be the non-fire
disturbance fluxes, or regrowth after disturbance. Another potentially important
term is the instantaneous riverine flux of CO,, coming from lateral riverine
transport. These terms could push the relative carbon balance towards CO,
release (disturbances) or towards CO, assimilation (regrowth), and during
training, the model would attempt to match this new local target balance. As seen
above, because of the distributional nature of the model’s learning and inference,
this new local balance could modify the global NEE response.

Minor comments:

1. L26 and further occurrences: Nelson* and Walther* et al., 2024 -> Nelson et al., 2024
2. L40 and further occurrences: Walther* and Besnard* et al., 2022 -> Walther et al., 2022

This reference style is included at the request of coauthors, and we hope copernicus
publications support the acceptance of dual-first author citations.

3. L75: Time-inverse -> Time-Inverted Corrected, thanks
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L114: Integrated Carbon Observatory System -> Integrated Carbon Observation
System Corrected

L126: RANDERSON et al., 2017 -> Randerson et al., 2017 Corrected

L193: APPMfoot need to be properly defined (preferably using an equation).

The description of this loss function with relation to the equation
PPMObs - PPMLBC - APPMOCGan = APPMNEE + APPMNBF
iS now:

For each observation, a pre-computed STILT footprint, along with associated
NBF, LBC and ocean data are retrieved. The observed mole fraction, LBC and
ocean contributions are used to create the left-hand side of eq 1. The ocean term
represents the flux from any pixels under the footprint, transported using the
footprint into concentration enhancements at the tower. To create the right-hand
side of eq. 1, which is the change in CO, mole fractions attributable to fluxes
within the footprint (APPM;,). The ecosystem-level model is then run for each
non-zero location in the STILT footprint, producing an estimate of local NEE. The
NEE inferences and NBF values are transported with the footprint into
concentration enhancements at the tower. This produces the two terms APPMygg,
and APPMyg: which are then added element-wise.

L199: SL (Eq. 6) -> (Eq. 7) Thanks, it is corrected now.
L245: Fig. 3C ->Fig. 4 C Corrected
Table 1, Figures: Please use the same precision as in the description. Corrected

0 L333-335: | suggest splitting this sentence into two for better readability. Corrected



