
To the Editor: 
We apologize for taking more time than planned to address the concerns of the reviewers. We 
note that we have performed substantial additional analyses based on their request, with the 
goal to elucidate the transfer of information in our machine-learning approach. We have 
succeeded in this as detailed below, and it is reflected in the revised manuscript we have 
prepared in the process. Thereto we have added a new section on model evaluation in the 
Methods section (line 241). In the Results section we have replaced the previous IAV attribution 
subsection (previous manuscript line 283) with an improved IAV attribution analysis (line 323) 
and added a new subsection and analysis on learning in feature space (line 360). We then add 
a Discussion section to integrate the new results into the main argument of the manuscript. 
 
We next provide a point-by-point response to the reviews, with the original remarks from 
reviewer #1 (RC1) and #2 (RC2) in blue, and our response in regular font.  
 ​  ​  

Reviewer 1) 

R1C1: The authors should more clearly explain how EC-STILT, using only one year of data from 
each of the three atmospheric CO₂ observation sites, was able not only to correct biases in 
global NEE but also to more than double the global total NEE interannual variability (IAV) 
compared to X-BASE. In the annual regional NEE estimates, EC-STILT shows larger deviations 
from inversion estimates than X-BASE in regions with atmospheric constraints, such as the 
Eurasian Boreal and South American Tropical regions. Meanwhile, regions without direct 
atmospheric constraints—such as South American Temperate, Southern Africa, and Tropical 
Asia—show substantial increases in NEE IAV, contributing significantly to the increase in global 
IAV. Based on these results, it is difficult to understand how atmospheric constraints led to 
improved global NEE estimates and their IAV.​
 

Thank you for your thoughtful assessment of our study. We agree that the submitted manuscript 
did not adequately describe our hypothesis of how our model makes use of limited spatial and 
temporal observations to improve over the full study time. And we did not provide an adequate 
analysis to demonstrate our hypothesis. We have removed the section on attribution of IAV 
based on the annual cycle of IAV, and replaced it with a new analysis (described above under 
R2C1) which we hope will better address your concerns. We show that when the training sets 
are compared in feature space, the performance by region is explained by the relationship of the 
training distribution to the natural distribution. We believe that this confirms our hypothesis and 
provides a mechanism by which a data-driven model can improve its performance over time 
without a long-term constraint.​
​
 R1C2: The authors state, “This is because EC-STILT learns its land-surface response in 
environmental space of the features instead of in geographic space like an inversion.” If this 
interpretation is correct, then the neural network within EC-STILT adjusts biome-specific NEE 
sensitivities to environmental drivers (e.g., temperature or moisture) in a way that minimizes the 
loss function. For example, the model may predict stronger NEE sensitivity to moisture in 



tropical forests, leading to increased IAV in regions with high moisture variability. But does this 
sensitivity enhancement improve IAV only in some regions within a biome and not others, due to 
spatial heterogeneity? While the neural network may function as a black box, I believe the 
authors could still provide further insight based on available model outputs. For example, 
exploring differences in learned climate/environmental sensitivities of NEE between EC_STILT 
and X-BASE by regions and/or biome types could help readers better understand why the 
model produced the observed results.​
​
We agree that the submitted manuscript does not adequately demonstrate this hypothesis. We 
believe that our new sections in Results (Sec. 4.5) and Discussion (lines 430) described in 
R2C1 provide an analysis that can partially describe the mapping from learned distribution in 
biophysical feature-space to NEE space. 

R1C3: It is unclear why the authors chose to use only three tall-tower atmospheric CO₂ 
observations, given the availability of long-term surface, aircraft, and satellite-based datasets. 
Was there a decrease in model performance when more observations were included? Or was 
the goal to test the efficiency of the system using a minimal number of atmospheric constraints?​
 

The decision to only include a limited set of towers and years was taken because we faced 
computational limits or barriers both in dataset creation and training. We hypothesize in the 
paper that more towers might add information, but with regards to the new section describing 
the distributional aspect of the learning process. We will add the paragraph above (R2C1) 
describing the computational bottle-necks that led us to select only three towers over 1 year. 

​
R1C4: The current EC-STILT system shows substantial regional deviations from 
inversion-based estimates, with higher RMSE than X-BASE in some regions. While inversion 
estimates are not ground truth, this suggests that the information from just three sites may be 
insufficient to improve regional NEE distributions. Although the authors mention plans to 
address this in future work, it would strengthen the manuscript to provide at least a preliminary 
assessment—such as how results change when incorporating background in-situ 
measurements from NOAA’s ObsPack data. 

We have added a paragraph to address this concern (lines 405), which is included below in the 
response to R2C1. 

Detailed comments 

1.​ Line ​ 2: The phrase "terrestrial land–atmosphere flux of CO₂" seems to refer more 
closely to net land flux or net biosphere exchange rather than net ecosystem ​
exchange (NEE). I suggest using “net ecosystem exchange” to make the intended 
meaning clearer. ​ ​
 ​ ​
Fixed, thank you. 



 

2.​ Lines ​11–17: As noted earlier, while your study effectively reduces global NEE biases 
and improves ​interannual variability using a limited number of atmospheric CO₂ ​
observations, it also leads to increased regional biases—assuming that inversion 
estimates are reasonably close to the truth. Since a broader set of atmospheric CO₂ data 
is available, including surface, aircraft, and satellite observations, it seems likely that 
incorporating more of them could improve both global and regional NEE estimates. 
Could you clarify why only a limited set of atmospheric observations was used in this 
study? ​​
 ​ ​
As discussed above, we have added a paragraph which we believe addresses this 
comment (lines 405), which is included above in the response to R2C1. 

 

3.​ Lines ​62–71: You mention a key limitation of the previous work by Upton et al. 
(2024)—that the additional atmospheric information was aggregated and provided no 
added value for resolving the spatial distribution of NEE. How your EC-STILT approach 
overcome this limitation? Could you explicitly discuss which aspects of EC-STILT (i.e., 
global and regional NEE estimates and their IAV) show improvement over the previous 
work, which do not, and what underlying factors might explain these differences.  

This is addressed in new text in the discussion (lines 445) which is included in the 
response to R2C1.​ ​
 ​  

4.​ Line ​ 125: As you discuss later in the manuscript, inversion-based terrestrial biosphere 
flux estimates include not only fire emissions but also lateral fluxes. Since your study 
assumes that NEE corresponds to the inversion estimate with fire emissions removed, it 
would be helpful to state this assumption clearly at this point in the text. ​  

We include the new text in the Data section (lines 180): 

We do not include lateral transport fluxes in the current analysis. Crop and wood 
harvest are important for regional and long term accounting (Ciais et al., 2022), 
but are not critical for the instantaneous carbon budget that is represented in Eq. 
1. The potential impact of riverine transport are discussed below in Sec. 5.1. 

Line ​ 176: Please provide more detail on how the lateral boundary conditions for the 
region are derived from the 3D CO₂ fields provided by Jena CarbonScope, and ​ how 
these are applied in Equation (1). ​  

We have added text, described above (R2 detailed comment 3) which addresses this 
concern. 



5.​ Lines ​205–206: The way uncertainty is defined and prescribed seems to be a critical 
component of your system, but the explanation provided is not sufficiently detailed. 
Could you clarify how uncertainties were defined in your framework, and how the relative 
weighting between atmospheric constraints and eddy-covariance observation constraints 
was determined?  

The relative weight of the two terms is a learned value in our model, as described at the 
end of section 3.4. This method allows the model to estimate an optimal mix of the terms 
based on a learned estimate of homoscedastic uncertainty for each of the different terms 
of the objective function and is dependent on the inherent noise in the data, rather than 
the scale or quality of the inputs. We added the text described in R2C4 to better describe 
this process. 

We use our cross-fold validation members to represent the model uncertainty in the 
study, presenting the member mean and standard deviation. We intended to provide a 
proof-of-concept, evaluating the value of including atmospheric mole fraction 
observations in data-driven estimates of NEE. Nevertheless, to address the sources of 
this model uncertainty, In line with R2C1, we now present a mechanism (Fig 9, section 
4.5) which we believe adds nuance to the existing discussion of model uncertainty. 

6.​ Lines ​233–234: The phrase “with ​ only local driver variables, and no atmospheric 
information” is somewhat unclear. It would be helpful to revise this sentence to more 
specifically describe what is meant by “local drivers” and “no atmospheric information”.  

The text (line 271) now reads: 

When producing an estimate of global NEE, the model takes the driver variables 
across the full land surface as inputs, but does not access any STILT footprint 
data, LBC or NBF data, or mole-fraction data, which are only used in constraint 
during training. 

7.​ Figure 4: Please consider adding a ​ panel showing the annual mean NEE from 
X-BASE, so that readers can ​directly compare it with the EC-STILT results. Additionally, 
for the ​panel showing the difference between EC-STILT and X-BASE, it would be helpful 
either to adjust the colorbar style or to use the same colorbar range as in Figure 4A to 
facilitate visual comparison. ​  

Figure 4 has been updated to include the X-BASE panel. The color bar for the difference 
has the original scale, but I believe that the new layout makes the visual interpretation 
easier. Additionally, the standard deviation panel has been updated. The previous 
version had a bug in the calculation and has been corrected. 



 

(CAPTION) Figure 4. Spatial distribution of global annual NEE A) Mean annual NEE for 
EC-STILT in gC m-2 day-1 B) Mean annual NEE for X-BASE in gC m−2 day−1 C) The 
difference in mean annual NEE between EC-STILT and X-BASE in gC m−2 day−1. D) The 
standard deviation of mean annual NEE for the EC-STILT 10-member ensemble in gC 
m-2 day−1 

8.​ Table ​ 1 and Figure 5: Some values in the text, table, and Figure 5 are inconsistent. 
Also, bold formatting in Figure 5 seems to incorrectly indicate better performance in 
some cases—for example, the annual RMSE for Australia. Please review and correct 
these issues. ​  

Thank you, it is now fixed. 

9.​ Lines ​291–292: The statement “EC-STILT has modified its response by biome” should 
be supported by a clearer explanation in the Methods section. Does this mean that the 
relationship between driver variables and NEE is trained and applied in a biome-specific 
manner? If so, please clarify how this is implemented. ​  

This section has been replaced by a stronger attribution of IAV and description of the 
mechanism 

 



10.​Lines ​292–293: The sentence “When IAV is broken down by month (Fig. 7) across 
boreal and temperate ​regions, the increases in monthly IAV occurs during the growing ​
season while in tropical regions show a change during the dry season” is interesting. 
Could you provide a potential explanation for this pattern, or at least discuss possible 
mechanisms that might be driving these seasonal differences across regions?  

This section has been removed in favor of our new attribution of IAV and demonstration 
of the learning mechanism described in R2C1 above. 

11.​Lines ​300–303: Could you clarify which figure or table supports this part of the text? 

We have created this table in the appendix at the request of the reviewer. 

12.​Figure 8: Some of the values shown in the figure do not match those reported in the 
main text. Please review and correct these inconsistencies.  

Corrected, thank you. 

13.​Line ​ 330: Since the concept of “environmental response” is a central and novel aspect 
of your system, it would be helpful to provide a more detailed explanation ​of how this is 
defined and implemented in the Methods section. This would help readers better 
interpret your results.  

Thank you for pointing out that this was not sufficiently clear. We have added text to the 
Methods (section 3.1, lines 155, new text underlined), which we hope, along with the 
new discussion above in R2C1, makes this concept clear to the reader. 

These latent spaces allow the model to learn complex non-linear relationships between 
driver variables and NEE. Because these relationships are discovered in these abstract 
non-geographic spaces, they can represent complex space-for-time and time-for-space 
substitutions. We refer to the process of learning these non-linear, non-geographic 
mappings between the input distribution and NEE as learning in 'environmental 
response' space. 

Lines ​345–347: Table 1 suggests ​ that the limited atmospheric observations used in 
your study are not ​ sufficient to effectively embed the atmospheric signal into the ​
EC-STILT ecosystem response or to guide the spatial and temporal distributions of the 
estimated NEE. 

Yes, this phrase is too enthusiastic, and we add ‘partially’ which we believe is supported 
by the results. ​ 

 



14.​Lines 379–381: It would be helpful to include supporting results for this statement ​
maybe in the supplementary material. ​  

An example of the training results for the three towers used in the STILT operator for a 
cross-validation member is now included in the appendix. 

 

(CAPTION) Figure A4. Per-tower representative STILT operator training performance 
(estimated ∆PPM CO2 and observed ∆PPM CO2) for the final epoch of one ensemble 
member. The black, dotted line is the one-to-one line. The blue line is the regression line. 
The mean absolute error (MAE) and Pearson’s R are reported for each tower. 

 

 

​
Reviewer 2) 
 
R2C1: The authors claim that the inclusion of atmospheric CO2 observations from three sites in 
their model design improved CO2 flux estimates in terms of capturing inter-annual variability 
(IAV). Due to the unavailability of observational estimates, they compared their outputs with an 
ensemble of inversion results and reported that the IAV values for those two are closer 
compared to X-BASE simulated values. But the authors did not explain how atmospheric CO2 
observations covering only one year from these three sites add IAV to the model outputs? 
Further, it is not clear why they did not use other atmospheric CO2 observations (from additional 
sites) and/or observations covering a longer period than just one year. It is not clear what are 
the limiting factors for using more atmospheric observations. At this stage, it is not convincing 
that these limited data can provide inter-annual constraints for simulated outputs. 

We thank the reviewer for their critique of our paper. We recognize that the manuscript did not 
fully demonstrate the mechanism by which IAV is improved given the limited possible direct 
constraint from a single year of data from a limited number of atmospheric tall tower locations. 
We have performed substantial new analyses and we can now also provide a more formal view 
of our understanding of the underlying model mechanism that allows it to better represent IAV. 



With regard to the number of towers, this study aimed to provide a proof-of-concept system, so 
that we limited the number of towers for computational reasons. This is mostly due to the large 
time required to run STILT for new temporal and spatial domains and to train the machine 
learning model with an increasing number of atmospheric time-series. We explicitly chose three 
towers to cover the climate and ecological space as broadly as possible with a limited set of 
sites, and chose a full year to encompass the full set of ecosystem flux responses within that 
space. We agree that more towers and more years are very likely to improve the system, but the 
additional towers and years would be of most benefit if they cover environmental conditions that 
are not well represented by the current tower set. And although they might yield better fluxes, 
they would not demonstrate the Method in a substantially different way than we can with the 
current three towers. 

A new paragraph (line 405) is now included in the discussion section to address this point: 

We selected a limited subset of towers and training years to balance computational cost 
and model performance in this proof-of-concept system. The computational cost of 
additional towers and years is primarily associated with creating STILT footprints for a 
new temporal and spatial domain, and is costly both in terms of computational and 
human effort. We selected three sites with the specific goal to achieve  good coverage of 
different geographic, climate and ecological zones. This precluded the use of other 
towers which we believe might have provided valuable constraints in training. The NOAA 
ObsPack data (Masarie et al., 2014) could provide a large volume of additional training 
data, both towers and years.. Following the analysis of section 4.5 we find that given the 
structure of our model, one might be able to increase the performance of the model with 
a targeted selection of towers. These would optimally represent the natural distribution of 
the land surface, rather than including all measurement towers across observational 
networks. Future experiments, similar to the EC representation analysis in (Pallandt et 
al., 2022), can be performed to identify additional towers or years that might yield largest 
improvements in our predictions. 

In regard to the second part of this comment, we propose to improve the discussion about the 
information gain between EC-STILT and X-BASE, and how that gain can improve the 
representation of long-term global patterns such as IAV. We must first consider how these global 
patterns in NEE, which would seem to depend on learning from a long-term atmospheric signal, 
emerge from the local, hourly fluxes produced by EC-STILT. The following text, plus figures is 
included in the revised manuscript: 

In the Methods (starting line 241): 

We perform several analyses by KG geophysical region to understand how model 
performance is modified by the atmospheric information available during training. To 
discover the regions which contribute to the global IAV in EC-STILT, we use the 
covariance method described in Lee et al. (2023). This method uses the row sum of the 
covariance matrix, scaled by the sum of the full covariance matrix to estimate the 



per-pixel contribution to the IAV, which is in turn additive. We then sum by KG region to 
determine the relative contribution. 

To test our hypothesis that adding an atmospheric constraint improves the representation 
of the land surface, we estimate the probability distribution functions (PDF) of the 
model’s training data (such as temperature and VPD) by KG region. We also estimate 
the PDF of the full land surface, as represented by the full dataset used to create a 
global multi-year estimate of NEE. For the training data we estimate two different PDFs: 
one PDF of the data provided from the eddy-covariance towers, which is the training set 
for X-BASE, and one PDF representing additionally the areas of the land-surface which 
are under the STILT footprints, which is the training set of our model.  The footprint data 
is  weighted by the number of times that time and location is used  during training. Global 
and regional PDFs are generated from a random subsample of the full dataset. The 
subsamples are per-year time series for ten percent of randomly selected spatial 
locations. To quantify the relationship between the training PDFs and the full PDF, we 
use two metrics that describe the distance between two distributions; Kullback-Leibler 
and Jennsson-Shannon. 

To understand the impact of the STILT data on our results, we train nearly identical 
models with the same architecture and random state. We train an EC-only version of our 
model which lacks the STILT operator, and so has no additional atmospheric information 
during training. To test for potential influences from the atmospheric inversion data which 
we use to calculate the LBC timeseries for each tall tower, we also train a model which 
replaces the hourly LBC with the annual mean LBC for each time step. In this way this 
mean-LBC model has no time-varying information on the background.state of the 
atmosphere. 

In the Results (starting line 323): 

We find that EC-STILT attributes IAV to tropical drylands in regions Aw (tropical 
savanah) and Bsh (semi-arid) (Fig. 7). This contrasts with the X-BASE NEE, which 
attributes IAV to regions Dfb (humid continental), and Dfc (sub-arctic). Both figures show 
the regional contribution of IAV, relative to the overall IAV of the dataset. This metric 
captures only the magnitude of the contribution, not the relative accuracy of the inferred 
IAV, which varies strongly by region (Fig. 5). Recent studies (Metz et al., 2023, 2025; 
Ahlström et al., 2015; Poulter et al., 2014) also suggest that arid regions are the 
dominant source of the IAV in global NEE. The constraints that drive this result in our 
system must come from atmospheric CO2 data, and we will try to trace the source of this 
information in section 4.5. 



 

(CAPTION) Figure 7. Attribution of IAV by Koppen-Geiger land cover class. The figure 
on the left is EC-STILT, the figure on right is X-BASE. The value represents the relative 
contribution of the region to the overall global IAV. The attribution is calculated by the 
covariance method described in (Lee et al., 2023) using annual detrended NEE 
anomalies. 

In the Results (starting line 360): 

We analyse in Fig. 9 the coverage of the EC-only and EC-STILT training data in terms of 
climate and ecological space by approximating the probability density function (PDF) of 
the two joint distributions in feature-space (TA/VPD, and EVI/NDWI). We compare the 
relative difference in the Kullback-Leibler distance (KLD) and Jennsen-Shannon metric 
(JS) between the PDF of the full, or natural distribution of a random subset of all pixels, 
either globally or by KG class, and the two training sets (Fig,9, Tabs. B1- B3). The two 
variable pairs were chosen to create easily interpretable visualizations. We use subsets 
of the full 10-dimensional distribution to save on computational costs. 

At the global scale, the distribution of the EC training set is more concentrated in cooler, 
and moderately productive regions than the EC-STILT set (Fig. 9, top panel, compare 
the higher density in the warmer, more productive regions). In the second row, we can 
see specifically how the training data changes the representation of a region which is not 
directly observed. As with the global distributions, the EC-STILT distribution covers the 
warmer, more water-stressed regions (Fig. 9, middle panel TA/VPD) and in the wetter, 
more highly vegetated regions (Fig. 9, middle panel EVI/NDWI). 

This distributional approach also explains why the model under-performs in regions that 
are directly constrained by the atmospheric towers. In the third row, the Köppen-Geiger 
class Cfb (temperate oceanic) which covers most of western Europe, we can see that in 
both variable sets, the EC-only distribution is closer to the natural distribution (Fig. 9, 
bottom row). Because of the environmental learning of EC-STILT, this means that the 
inclusion of atmospheric towers may reduce the model’s skill in this region. 



The specific impact of individual towers, and their interactions in feature space, are 
inconsistent across regions, variable pairs and metrics. In tables B1 to B3, we expand 
the analysis by quantifying the effect of adding or removing individual atmospheric 
towers from training. The optimal distribution, shown in bold, characterized by the 
minimum distance between the two PDFs, is enriched by adding 1-3 towers in 49 of 52 
regions across both distributions (Tab. B1, B2). However when the full distribution from 
all towers are considered (B3), the improvement of the tower-enriched distributions is 
more modest, with only 9 of 26 regions (including global) having improved coverage by 
the towers in both variable pairs. 

 

(CAPTION) Figure 9. Comparison between training set distributions in two multivariate 
spaces. Both columns show the difference in distribution between the EC-only training 
set (left), and the EC+Towers training set (right), and how they compare with the full 
distribution of the global or regional data in feature space. The left is TA and VPD, the 
right is EVI and NDWI. The top row is the full global set, the middle row is 
Köppen-Geiger class Aw (’tropical savanah’), the bottom row is Köppen-Geiger class Cfb 
(’temperate oceanic'). The contour lines represent the probability distribution function 
(PDF) of each distribution. Two metrics are calculated for each: Kullback-Leibler (KLD) 
and Jennsen-Shannon divergence (JS), which are measures of distance between the 
two PDFs. 

In the Discussion(line 430): 

Because EC-STILT has no direct access to long-term information about the state of the 
atmosphere, and yet produces an estimate of global annual NEE which is closer to the 



atmospheric inversions, there must be some information within the available training 
data which includes this information. The identically constructed model, trained without 
the inclusion of the STILT operator (Sec. 3.6) does not produce an increased IAV (see 
Appendix fig. B2), which removes the influence of the model architecture. We further 
evaluate the influence on IAV of the LBC (Eq. 1), which is derived from atmospheric 
inversions. In the results from our mean-LBC model, this change did not reduce the 
observed IAV (see Appendix fig. B3), which means the LBC is not responsible for the 
improvements in the IAV in the standard EC-STILT. 

To understand the increased IAV in the tropical dry regions (see section 4.3), we 
hypothesize that our model can better represent the local NEE responses to climate 
variations in these regions through a more complete representation of the natural 
distribution of the biophysical drivers of NEE, as shown in Fig. 9. This improvement over 
the information provided by the EC towers in feature-space explains EC-STILT’s 
improved long-term performance using only a single year of observations. EC-STILT 
learns to represent NEE using only 10 variables at an hourly time-step. With no static 
variables, such as latitude or elevation, or PFT information, the model can be considered 
largely independent of a particular spatial domain. The model only learns to map from a 
training distribution of drivers to a training distribution of NEE. The quality and 
completeness of this training distribution determines the model’s capacity to capture the 
global phenomena. 

The results from (Upton et al., 2024) also support the distribution hypothesis presented 
above. In that study the atmospheric constraint uses a limited number of fixed pixel 
locations to infer regional totals. This created an NEE product which was much closer in 
magnitude and seasonality to an ensemble of atmospheric inversions, but did not 
improve the IAV. This version of atmospheric constraint does not fundamentally change 
the model’s available view of the land surface. From this we can see that the inclusion of 
training data which fully includes the IAV signal, but that does not improve the 
distributional representation of regions from which the IAV emerges from the local 
variance, does not improve the model’s ability to capture the IAV. 

 

R2C2:It should be noted that the reported correlation values are significant (R2 = ~0.4) but 
rather weak. This needs to be discussed and put into context. Further, the regional comparison 
shows that regions without atmospheric constraint (e.g., Southern Africa)  show higher 
correlation values than regions with atmospheric constraint ( e.g., Europe - HUN). How can this 
be explained? 

For the first point regarding the R2 we add the following text (line 494): 

While the absolute increase in the R2 of IAV with regard to the GCB23 inversions is 
modest (0.42 for EC-STILT, 0.02 for X-BASE), it represents a meaningful increase over 
previous data-driven flux models (Jung et al., 2019; Nelson et al., 2024). As seen above 



in section 4.2 and figure 7, EC-STILT improves the estimation of IAV in regions in the 
southern hemisphere which are known to contribute to a large fraction of the global IAV. 
However EC-STILT fails to improve the representation of IAV in the northern 
hemisphere, or where the EC observational record dominates. Therefore, the modest 
gain in R2, can be seen as a meaningful gain in the representation of the land surface in 
regions which are otherwise poorly represented in the EC record. 

For the second point, we have addressed this issue in the new sections above. 

 

R2C3: I am also curious about why the performance of EC-STILT with regard to IAV is not 
improved much in the European region, even if the atmospheric constraint is available. Again, 
this needs to be explained and discussed in the manuscript. 

We addressed this comment in a new figure (Fig. 9) which shows the distributional relationship 
between the EC-only and EC-tower representations, and we hope better describes the 
observed relationship between X-BASE and our model. 

R2C4: Furthermore, the relative weights (𝝎EC and 𝝎ATM) in the objective function play an 
important role in constraining the model. For a reader to better understand the constraints, 
these weights should be provided and explained for each region. 

These weights are not calculated by region, but are global values that the model learns during 
training to mix the two terms. We will add a figure in the Appendix which shows the evolution of 
the terms during model training, and new text in the methods (line 219, new text underlined): 

This uncertainty is dependent on the inherent noise in the training data, rather than the 
quality or quantity of training data. For EC-STILT these mixing parameters, σ2

EC and 
σ2

ATM , are added to the processing chain of the model after its initialization. During 
training, using the normal backpropagation process that uses the chain rule to attribute 
and update the free parameters of the neural network according to their contribution to 
the loss value, the model also updates these mixing parameters. For the individual tasks 
L ∈ [EC, ATM ], the σ2L parameter is used to create two terms; wL (Eq. 6), and sL (Eq. 
7). These are then used to calculate the effective loss, balanced by the learned 
uncertainty of the terms (Eq. 8). The evolution of these terms during training is provided 
in Appendix Fig. A3. 

 

Detailed comments: 

1.​ L89: A map ​ of the locations of eddy-covariance towers used for the study may be ​
included, which will provide an understanding of the data ​ availability around the globe. ​ 

Included in the appendix 



2.​ L143: ​ Authors did not properly explain what are the driver variables used in their model 
to estimate CO2 fluxes (NEE). A table of driver variables used in the EC-STILT model 
and their sources should be included.  

Included in the Data section 

3.​ L192: It is not clear how the authors calculate the LBC and ocean components for ​
each CO2 observation. Is it with the help of STILT footprints? 

The ocean term is created using STILT footprints directly, and is better described now in 
the text referenced below in minor comment #6, the LBC uses the STILT particles which 
are used to create the footprint. 

The following sentences are added (lines 183): 

The LBC values are calculated for each tall tower for each observation time. We 
used the ensemble of STILT trajectories released at each data point to obtain the 
mean ending position (lat, lon) as well as a mean ending height above the 
ground. Using this information we sample global 3D fields, in this case the 
optimized CO2 mole fractions from CarboScope, and obtain a mole fraction 
associated with a measurement at the tower. We acknowledge that this method 
is sensitive to biases in the global 3D fields, but for example at ATTO a 
bias-corrected version of the LBC yielded very similar results to the CarboScope 
LBC, please see Botia et al. (2022) for the full discussion. 

4.​ L193: How is NEELand estimated? Here, it is not clear how the ecosystem-model is 
designed for points where there are no eddy-covariance observations. 

The model uses the 10 biophysical driver variables for every location and time-step. 
These can be provided by a mix of EC measurements and MODIS observations, in the 
case of the EC objective function term in training, or from a global datacube from ERA5 
and MODIS data for non-EC locations for the STILT footprint term. This is described in 
the first sentence of section 3.1, the drivers are described in table 1. We have updated 
the description of the objective functions (sections 3.3, 3.4) to better reflect the terms in 
figure 1. 

5.​ L208: The authors should explain the back-propagation process with more clarity. It is 
not clear from the description which and how parameters are getting updated. Also, I 
think Figure 1 can be ​improved further to incorporate back-propagation in the final 
stage. 

The sentence: 

For EC-STILT these mixing parameters, 𝜎2
EC and 𝜎2

ATM, are added to the 
processing chain of the model after its initialization, and then during training, the 



normal backpropagation process that neural networks use to update their 
parameters, can also update these mixing parameters..  

Is replaced by: 

For EC-STILT these mixing parameters, 𝜎2
EC and 𝜎2

ATM, are added to the 
processing chain of the model after its initialization. During training, using the 
normal backpropagation process that uses the chain rule to attribute and update 
the free parameters of the neural network according to their contribution to the 
loss value, the model also updates these mixing parameters. 

6.​ L235: How is IAV calculated? 

We chose to use the simple standard deviation of the annual integral of NEE across the 
study period (2001-2021), aggregated either globally, or by region. This is now included 
in the text at line 273 (new text underlined). 

When the model is run globally for years 2001-2021, the standard deviation of 
annual NEE (IAV) of the EC-STILT member mean… 

7.​ L442: What are examples of the ‘meaningful non-biogenic flux’ terms that are not 
included? And how would these bias the results? ​  

The following text (line 537) is included in the discussion: 

Any biogenic or non-biogenic flux terms which are not included, or adequately 
represented temporally and spatially will bias the atmospheric target that the 
model is trying to match in training. An example of this would be the non-fire 
disturbance fluxes, or regrowth after disturbance. Another potentially important 
term is the instantaneous riverine flux of CO2, coming from lateral riverine 
transport. These terms could push the relative carbon balance towards CO2 
release (disturbances) or towards CO2 assimilation (regrowth), and during 
training, the model would attempt to match this new local target balance. As seen 
above, because of the distributional nature of the model’s learning and inference, 
this new local balance could modify the global NEE response.  

Minor comments: 

1.​ L26 and further occurrences: Nelson* and Walther* et al., 2024 -> Nelson ​et al., 2024 ​  
2.​ L40 and further occurrences: Walther* and Besnard* et al., 2022 -> Walther et al., 2022  

This reference style is included at the request of coauthors, and we hope copernicus 
publications support the acceptance of dual-first author citations.​  

3.​ L75: ​ Time-inverse -> Time-Inverted ​ Corrected, thanks 



4.​ L114: ​ Integrated Carbon Observatory System -> Integrated Carbon Observation 
System ​ Corrected 

5.​ L126: ​ RANDERSON et al., 2017 -> Randerson et al., 2017  Corrected​  
6.​ L193: ​ ΔPPMfoot need to be properly defined (preferably using an equation).  

The description of this loss function  with relation to the equation  

PPMObs − PPMLBC − ∆PPMOcean = ∆PPMNEE + ∆PPMNBF 

is now: 

For each observation, a pre-computed STILT footprint, along with associated 
NBF, LBC and ocean data are retrieved. The observed mole fraction, LBC and 
ocean contributions are used to create the left-hand side of eq 1. The ocean term 
represents the flux from any pixels under the footprint, transported using the 
footprint into concentration enhancements at the tower. To create the right-hand 
side of eq. 1, which is the change in CO2 mole fractions attributable to fluxes 
within the footprint (∆PPMfoot). The ecosystem-level model is then run for each 
non-zero location in the STILT footprint, producing an estimate of local NEE. The 
NEE inferences and NBF values are transported with the footprint into 
concentration enhancements at the tower. This produces the two terms ∆PPMNEE, 
and ∆PPMNBF which are then added element-wise.​  

7.​ L199: SL (Eq. 6) -> (Eq. 7) ​ Thanks, it is corrected now. 
8.​ L245: Fig. 3 C -> Fig. 4 C ​ Corrected 
9.​ Table 1, Figures: Please use the same precision as in the description. ​ Corrected 
10.​L333-335: I suggest splitting this sentence into two for better readability.  Corrected​  
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