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Abstract. Carbon monoxide (CO) is an important trace gas
in the atmosphere. However, its sinks and sources in ter-
restrial ecosystems remain poorly quantified. Understanding
the terrestrial sink and source dynamics is crucial for bet-
ter assessing the global CO budget. In this study, we inves-5

tigated CO exchange in an Arctic peatland in northern Swe-
den to quantify the magnitude and key drivers of fluxes at
the site. We measured CO fluxes using the eddy covariance
method from August 2022 to September 2024. The study
site was characterized by a heterogeneous surface structure10

with elevated dry palsas surrounded by wetter areas of bog.
We found that the peatland was a net CO source during
the measurement period, with fluxes ranging from −0.29 to
0.34 nmol m−2 s−1 (25th and 75th percentiles). The fluxes
showed a systematic diurnal cycle, with daytime emission15

and nighttime uptake. Emissions were mainly driven by ra-
diation, suggesting photo-driven production. Soil uptake was
dependent on surface wetness, with higher consumption oc-
curring in the dry parts of the peatland, suggesting that oxic
conditions may favour CO uptake. We estimated through20

modelling that annual CO fluxes from the dry parts of the
peatland were −43.3 and −32.2 mg CO m−2 yr−1 and from
the wet parts 70.8 and 71.3 mg CO m−2 yr−1 in 2022–2023
and 2023–2024, respectively. Despite the relatively small
amount of CO released from the peatland, our study suggests25

that current global models may underestimate the CO source
from northern wetlands.

1 Introduction

Carbon monoxide (CO) is an indirect greenhouse gas that
plays a significant role in atmospheric chemistry by influ- 30

encing tropospheric oxidative capacity. In the troposphere,
CO is oxidized by hydroxyl radicals (OH), which are a key
oxidant for various chemical species, including methane and
other hydrocarbons. The oxidation of CO by OH accounts
for 40 % of OH removal, thereby reducing the oxidative ca- 35

pacity available for other trace gases and prolonging their
atmospheric lifetime (Daniel and Solomon, 1998; Lelieveld
et al., 2016). Most CO is emitted directly from anthro-
pogenic sources or is formed by the atmospheric oxidation
of methane and other volatile organic compounds (VOCs), 40

but natural systems are also known to release and consume
CO (Liu et al., 2018; Zheng et al., 2019). However, the mag-
nitude of CO sinks and sources in terrestrial ecosystems is
poorly quantified.

Terrestrial ecosystems can act as net sources or sinks of 45

CO, depending on the relative contributions of emissions
from vegetation and soil production and consumption. CO
production from vegetation and soil is commonly considered
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to result from abiotic processes, in which organic matter, lit-
ter, or plant material is degraded by radiation or tempera-
ture (Tarr et al., 1995; Derendorp et al., 2011; Lee et al.,
2012; Bruhn et al., 2013; Fraser et al., 2015; van Asperen
et al., 2015). However, biological CO production from plants5

has also been reported (Wang and Liao, 2016). Soil con-
sumption is a microbial process (Ragsdale, 2004; King and
Weber, 2007), found to depend on soil carbon content (In-
man et al., 1971; Moxley and Smith, 1998), soil water con-
tent (SWC) (King, 1999), and temperature (Whalen and10

Reeburgh, 2001). Soil consumption can occur under aerobic
and anaerobic conditions but with lower rates under anaero-
bic conditions (Conrad and Seiler, 1980). The exact chemical
pathways of both CO production and consumption remain
relatively unknown.15

Terrestrial CO exchange has been studied using cham-
ber measurements (King, 2000; Kisselle et al., 2002; Varella
et al., 2004; Bruhn et al., 2013; van Asperen et al., 2015; Sun
et al., 2018; Muller et al., 2025) and the flux gradient method
(Constant et al., 2008; van Asperen et al., 2024) across vari-20

ous ecosystems and climate regions. However, there is a lack
of continuous and year-round measurements, which has re-
cently been addressed by the eddy covariance (EC) tech-
nique (Pihlatie et al., 2016; Cowan et al., 2018; Murphy
et al., 2023). The EC technique provides direct and contin-25

uous ecosystem-scale gas exchange measurements with high
temporal resolution and minimal disturbance to the ecosys-
tem (Aubinet et al., 2012), which allows for the quantifica-
tion of temporal variability and flux drivers of CO exchange
at the ecosystem level.30

To our knowledge, no CO flux studies have been con-
ducted on terrestrial ecosystems in the Arctic region. Global
modelling studies suggest relatively low biogenic production
(Potter et al., 1996; Guenther et al., 2012) and soil consump-
tion (Liu et al., 2018) in this region due to the cold climate.35

However, biogenic CO sources may play a significant role
in high-latitude atmospheric chemistry since anthropogenic
sources are limited. Existing global chemistry and climate
models have been found to underestimate the observed CO
concentrations at northern high latitudes, indicating that CO40

sinks are overestimated or CO sources are underestimated in
this region (Stein et al., 2014; Szopa et al., 2021). To improve
our understanding of the CO budget, the contribution of ter-
restrial ecosystems must be more accurately quantified in the
Arctic region.45

The aim of this study was to assess the contribution of
biogenic CO fluxes in an Arctic peatland. We present a 2-
year time series of CO fluxes, covering both vegetative and
snow-covered periods, measured by the EC technique. We
examined the seasonal and diurnal variations in fluxes to50

quantify the magnitude of CO exchange and to identify the
primary meteorological and environmental variables driving
CO fluxes. In addition, we estimated the CO fluxes from two
different surface types, dry and wet, to investigate the possi-
ble differences in CO fluxes due to the surface heterogeneity.55

The measurements were conducted at the Stordalen peatland
in Abisko, northern Sweden, from August 2022 to September
2024.

2 Materials and methods

2.1 Study site 60

The study site, the Stordalen peatland (68°21′20.8′′ N,
19°02′42.1′′ E; 360 m a.s.l.), is located in the Arctic climate
region in Abisko, northern Sweden. This region is charac-
terized by long winters and relatively short summers. The
mean annual temperature and the mean annual precipita- 65

tion (1991–2020) for the area were 0.5 °C and 347 mm, re-
spectively (SMHI, 2024). The site is classified as a palsa
bog with mostly ombrotrophic conditions, which makes it
a nutrient-poor peatland. The surface structure of the study
site is influenced by microtopography and SWC. It is char- 70

acterized by elevated dry palsas surrounded by wetter ar-
eas of bog. Permafrost is found within the palsas, and the
degradation of permafrost has been observed in several parts
of the peatland, leading to a slow transition of the pal-
sas to wetter hollows (Malmer et al., 2005). The vegeta- 75

tion in the study area is classified into three main types
based on the surface structure: shrub-dominated palsas (Em-
petrum hermaphroditum, Rubus chamaemorus, Eriophorum
vaginatum, Dicranum elongatum, and Sphagnum fuscum),
sphagnum- and cotton-grass-dominated hollows (Sphagnum 80

balticum and Eriophorum angustifolium), and sedge- and
cotton-grass-dominated hollows (Carex rotundata and Erio-
phorum vaginatum) (Malmer et al., 2005).

2.2 Eddy covariance fluxes

2.2.1 Flux measurements 85

EC measurements were conducted at a height of 2.2 m in the
middle of the peatland from August 2022 to September 2024
(Fig. 1). The location of the EC tower was selected to encom-
pass both wet and dry surface types: wetter conditions were
found to the southeast (SE) of the tower, while drier condi- 90

tions were observed to the northwest (NW) of the tower.
Horizontal and vertical wind components were measured

with the Gill HS-50 (Gill Instrument Ltd., England, UK)
ultrasonic anemometer at a frequency of 10 Hz. The sonic
anemometer’s north was aligned 10° east relative to geo- 95

graphic north. CO mixing ratios were measured using Aero-
dyne quantum cascade laser spectroscopy (QCLS; Aerodyne
Research Inc., Billerica, MA, USA), which also simultane-
ously measured nitrous oxide (N2O) and water vapour (H2O)
mixing ratios at a frequency of 10 Hz. The horizontal sepa- 100

ration between the ultrasonic anemometer and gas inlet was
0.19 m. The EC inlet was connected to the gas analyser by
a 30 m long tube with an inner diameter of 8.13 mm and an
outer diameter of 12.0 mm. The gas analyser pressure was set
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Figure 1. (a) CE1RGB orthomosaic of the Stordalen peatland from
an CE2 unoccupied aerial vehicle (UAV) flight on 12 June 2024 and
(b) the surface map derived from the digital elevation map (DEM)
and flux footprints in the northwest (NW) and southeast (SE) di-
rections. Black lines represent flux footprint contours from 10 % to
80 %, and the location of the EC tower is marked by a red cross. The
yellow colour indicates the dry surface and the turquoise colour the
wet surface. UAV data were provided by the Swedish Infrastructure
for Ecosystem Science (SITES) under a CC BY 4.0 license; the red
cross was added by the authors.

to 35 TorrTS5 and regulated by an electronic valve. The gas
flow rate was approximately 16.2 L min−1.

2.2.2 Flux processing

The EC data processing was performed using EddyUH soft-
ware (Mammarella et al., 2016), following the recommen-5

dations given in Kohonen et al. (2020) for carbonyl sulfide
flux processing. Fluxes were calculated as half-hourly av-
erages, and linear detrending was used to separate the time
series into mean and fluctuating components. The coordi-
nate system was set using a 2D-coordinate rotation accord-10

ing to Kaimal and Finnigan (1994). Spikes were defined us-

ing a limit of the difference between subsequent 10 Hz data
points. If the difference between two data points exceeded
5 ppb for the CO mixing ratio and 5 ms−1 TS6 for the ver-
tical wind velocity component, the data point was consid- 15

ered to be a spike and replaced with the previous value. The
time lag was determined by maximizing the cross-covariance
between the CO mixing ratio and the vertical wind veloc-
ity component. Spectral corrections were applied to account
for the low- and high-frequency attenuation of the covari- 20

ance. High-frequency spectral corrections were made with
an experimental approach (Aubinet et al., 1999). The low-
frequency losses were corrected with a theoretical transfer
function according to Rannik and Vesala (1999).

The measurements included a longer gap from February 25

to April 2024 due to a broken scroll pump before its replace-
ment. In addition, several shorter gaps occurred due to dirty
inlet filters, power cuts, or other instrumentation problems,
during which the flux measurements were not running. In
total, the measurement period contained 24 212 calculated 30

half-hourly fluxes, which were subsequently quality filtered.
The calculated fluxes were accepted according to the follow-
ing criteria: the second wind rotation angle was less than 10°
in absolute value (removing 19 data points), the number of
spikes in the 30 min wind vertical velocity was less than 100 35

(removing 1577 data points), kurtosis of the CO mixing ra-
tio and vertical wind component was between 1 and 8 (re-
moving 950 data points), skewness of the CO mixing ratio
and vertical wind component was between−2 and 2 (remov-
ing 14 data points), and flux stationarity was less than 0.3 40

(removing 8981 data points). The low turbulent conditions
were filtered out using a threshold value for friction velocity
less than 0.1 ms−1 (removing 936 data points). In addition
to these criteria, a few remaining spikes were filtered based
on the standard deviation of a vertical wind velocity compo- 45

nent larger than 2 ms−1 and a CO mixing ratio larger than
9 ppb (removing 100 data points). Overall, the data coverage
for the measurement period was 31.7 %. The data coverage
across the different seasons is summarized in Table S1 in the
Supplement. 50

Finally, the relative contribution of the surface source area
to the measured flux was calculated using the 2D Flux Foot-
print Prediction (FFP) model (Kljun et al., 2015). We as-
sumed a constant boundary layer height of 1000 m because
the model is insensitive to boundary layer height at low mea- 55

surement heights, and we estimated the roughness length to
be 0.03 m based on the logarithmic wind profile in neutral
atmospheric conditions. The other model parameters, includ-
ing the wind speed, wind direction, Monin–Obukhov length,
standard deviation of the lateral wind velocity component, 60

and friction velocity, were obtained as output from the EC
flux post-processing. The flux footprint was presented as
90 % of the source area and was calculated for every half-
hourly flux with a spatial resolution of 0.5× 0.5 m.
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2.3 Ancillary measurements

Ancillary data used in this study were obtained from Inte-
grated Carbon Observation System (ICOS) measurements
(Lundin et al., 2023). These data include relative humid-
ity (RH), air pressure, air temperature (TS7Ta), photosyn-5

thetically active radiation (PAR), water table depth (WTD),
soil temperature (TsTS8 ), and SWC at 10 cm depth. Ts and
WTD represent the average of four measurement plots, while
SWC is based on the average of two measurement plots.
A detailed description of the ICOS instrumentation at the10

Stordalen peatland site (SE-Sto), along with access to the an-
cillary dataset, is available through the ICOS Carbon Portal
(https://data.icos-cp.eu/portal/, last access: 10 July 2025).

2.4 Surface map

The surface cover map was created using drone imagery and15

a digital elevation model (DEM) (Abisko Scientific Research
Station, 2025a, b). Elevated palsas were distinguished from
wetter vegetation using a DEM threshold value of 383.0 m.
Pixels with a DEM value higher than the threshold were clas-
sified as dry palsas, while pixels with a DEM value lower20

than the threshold were classified as wet hollows. The sur-
face cover map was saved with a resolution of 0.5× 0.5 m
and was used together with the footprint analysis to calcu-
late the contribution of dry and wet surfaces to the measured
half-hourly fluxes.25

2.5 Definition of seasons

We defined the seasons based on the following calendar
months: winter as December–February, spring as March–
May, summer as June–August, and autumn as September–
November. The beginning and end of the frozen period were30

determined according to Łakomiec et al. (2021), defined
as days when the daily average peat temperature at 10 cm
depth remained below/above 0 °C for 3 consecutive days.
The frozen periods during the measurement period were from
21 November 2022 to 11 May 2023 and 1 November 2023 to35

12 May 2024.

2.6 Statistical analysis

2.6.1 Flux driver analysis

The flux drivers were analysed using correla-
tion analysis and a random forest (RF) model40

(sklearn.ensemble.RandomForestRegressor), both per-
formed on half-hourly values. The correlation between CO
flux and meteorological and environmental variables was
quantified using Spearman’s rank correlation coefficients
(scipy.stats.spearmanr). To assess the importance of vari-45

ables in linear regression, the Akaike information criterion
(AIC) was used. The AIC is a metric used to compare
the fit of different regression models, designed to identify

the model that best balances goodness of fit and model
complexity (i.e., the number of model parameters) (Akaike, 50

1973). The preferred model is the one with the lowest AIC
value. In our case, this criterion was used to assess whether
the added complexity of including temperature as a driver of
CO flux is justified in addition to PAR.

To further investigate the drivers and detect potential non- 55

monotonic relationships not captured by simple linear anal-
ysis and Spearman’s correlations, we applied SHapley Addi-
tive exPlanation (SHAP) values derived from an RF model.
This approach allows for the identification of complex, non-
linear interactions that may not be captured by traditional 60

linear methods or by Spearman’s correlation. SHAP val-
ues were calculated using the SHAP library (https://shap.
readthedocs.io/TS9 ). The SHAP values provide a method to
understand the factors driving the model’s predictions by
quantifying the marginal contribution of each feature to the 65

output.
For the RF model, the data were split into a train-

ing (80 %) and a validation (20 %) set using a ran-
dom split (random_split function). The hyperparameters
– maximum depth (10, 12, 15, 20), number of estima- 70

tors (50, 100, 150, 200), and minimum samples per leaf
(2, 3, 4) – were optimized using a grid search func-
tion (sklearn.model_selection.GridSearchCV). The optimal
model was selected by minimizing the mean squared error
(MSE). After cross-validation, the optimal model was refit 75

using all available data, and SHAP values were calculated.
The statistical analysis in this section and the following sec-
tions was performed with Python 3.12.

2.6.2 Parametrization of carbon monoxide fluxes

Two statistical models were developed to simulate the half- 80

hourly CO fluxes and to assess the flux contributions from
wet and dry surfaces. The first model was a simple linear
model assuming a homogeneous surface structure and was
defined as

Fco = α ·PAR+β1 ·Ta+β2 ·Ta2
+ γ ·PAR ·Ta+ δ. (1) 85

TS10 The second model was a surface-type-specific model for
heterogeneous surfaces and was defined as

Fco = Fco,dry+Fco,wet, (2)

where Fco,dry and Fco,wet represent the contributions from
dry and wet surface types, respectively. These components 90

are defined as follows:

Fco,dry = fdry · (αdry ·PAR+β1dry ·Ta+β2dry ·Ta2

+ γdry ·PAR ·Ta+ δdry), (3)

Fco,wet = fwet · (αwet ·PAR+β1wet ·Ta+β2wet ·Ta2

+ γwet ·PAR ·Ta+ δwet), (4)

where fdry and fwet represent the footprint-weighted frac-
tion of dry and wet areas, respectively, which were estimated 95

https://data.icos-cp.eu/portal/
https://shap.readthedocs.io/
https://shap.readthedocs.io/
https://shap.readthedocs.io/
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from the surface map (Fig. 1); α represents the sensitivity
of CO fluxes to PAR; CE3β1 and β1 capture the linear and
quadratic effects of TS11Tair, respectively; γ represents the
interaction between PAR and Tair; and δ is the intercept term.

The model parameters, α, β1, β2, γ , and δ, were esti-5

mated using a Bayesian inference approach. Prior selection
followed the methodology proposed by Buzacott et al. (2024)
with two model runs. We used the first model run to esti-
mate the probable parameters for each land use separately
using the homogeneous surface type model (Eq. 1) and the10

second model run to estimate the probable parameters for
mixed contributions from both surface types using the het-
erogeneous surface type model (Eq. 2). For the first model
run, all priors were assumed to follow uniform distributions
(Table S3). Data were divided into wet and dry classes based15

on the threshold of 70 % of fluxes originating from wet or
dry surfaces. In addition, the model parameters were esti-
mated by assuming homogeneous surface structure, using all
data for parameter estimation. The resulting posterior distri-
butions were observed to follow approximately normal distri-20

butions (Supplement Fig. S8). For the second run, all avail-
able data with mixed surface contributions were used. The
prior distributions were defined based on the posterior infor-
mation obtained from the first model run. All prior distribu-
tions were defined as normal distributions, based on the 95 %25

confidence interval of the posteriors from the first model run,
as suggested by Buzacott et al. (2024). The decision to use
the 95 % confidence interval was made to ensure sufficient
flexibility for the parameters under the mixed contribution.
The priors for the second model run are presented in Ta-30

ble S3, and the posterior distributions from the second run
are shown in Fig. S9.

The model parameters were optimized through numeri-
cal sampling using the Markov chain Monte Carlo (MCMC)
method. The MCMC sampling was performed using the35

pm.sample function from Python’s PyMC library with 4
chains and 2000 samples in each chain, with a tuning period
of 2000, totalling 8000 samples. The output product from
the MCMC sampling consisted of posterior probability dis-
tributions for each optimized model parameter. The model40

performance for both models was evaluated by comparing
the predicted fluxes to the observed fluxes, using the root
mean square error (RMSE) and the coefficient of determi-
nation (R2) as performance metrics.

The models were initially fitted using data from March45

to November, excluding winter months. To investigate po-
tential seasonal variability in the model parameters, sepa-
rate analyses were subsequently conducted for each season
(spring, summer, and autumn). An initial model using only
PAR was tested, but Ta was added because it improved model50

performance (Table S2). The posterior parameter estimates
from the final model were then used to simulate CO fluxes
from both wet and dry surface types. Annual estimates were
derived by applying these posterior parameters to observed
PAR and Ta data from March to November, under the as-55

sumption that wintertime fluxes were negligible and there-
fore set to zero.

3 Results

3.1 Environmental conditions and flux footprint

The mean annual temperature for the first measurement year 60

(from August 2022 to August 2023) was 1.1 °C, while the
mean annual temperature for the second measurement year
(from August 2023 to August 2024) was −0.1 °C. The first
year was warmer than the long-term average annual tempera-
ture (1991–2020), while the second year was colder than the 65

long-term average (SMHI, 2024). The air temperature dur-
ing the measurement period ranged from −38.8 to 27.3 °C;
the minimum value was observed on 4 January 2024 and the
maximum value on 22 July 2024. The soil temperature at a
depth of 10 cm ranged from −12.2 to 11.3 °C, with the min- 70

imum recorded on 4 January 2024 and the maximum value
observed on 22 July 2024. The total accumulated precipita-
tion was 325 mm in the first measurement year and 298 mm
in the second year. In both years, annual precipitation was
lower than the long-term average (1991–2020) for this re- 75

gion (SMHI, 2024). The daily mean PAR varied from 0.2 to
688.4 µmol m−2 s−1, with the minimum value observed on
31 December 2022 and the maximum value on 1 July 2024.

The main wind directions during the study period were
from the southeast (SE) and the northwest (NW), with 45 % 80

of the measured fluxes coming from the wind sector between
40 and 180° (SE) and 54 % from the wind sector between 200
and 350° (NW). The distribution of wind directions was con-
sistent across different seasons and stability classes (Fig. S1),
although slight day–night differences were observed during 85

the non-frozen period, with SE winds more common at night
and NW winds more frequent during the day (Fig. S2). The
footprint-weighted average showed that fluxes from the NW
wind direction were predominantly associated with the drier
palsas, with 93 % of the fluxes originating from the palsas 90

and 7 % of the fluxes originating from the wetter surface
(Fig. 1). In contrast, fluxes from the SE direction were char-
acterized by 23 % originating from the drier palsas and 77 %
from the wetter surface.

3.2 Ecosystem-scale fluxes 95

3.2.1 Flux time series

The ecosystem-scale half-hourly CO fluxes ranged from
−0.29 to 0.34 nmol m−2 s−1 (25th and 75th percentiles),
showing both net uptake and emission. The fluxes had strong
seasonal variability, with the site acting as a net CO source 100

in spring and summer (average median fluxes of 0.17 and
0.24 nmol m−2 s−1, respectively) and a net sink in autumn
(−0.31 nmol m−2 s−1) (Fig. 2). The wintertime flux was mi-
nor (−0.09 nmol m−2 s−1) compared to the fluxes of other
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seasons. This seasonal pattern was consistent across both
years.

The CO flux showed a systematic diurnal cycle during the
vegetative period, with daytime emissions and nighttime up-
take. Emissions peaked at noon, reaching 1.11 nmol m−2 s−1

5

in summer and 0.73 nmol m−2 s−1 in spring, while nighttime
uptake was the strongest in autumn (−0.44 nmol m−2 s−1)
(Fig. 3). In contrast, winter fluxes lacked a clear diurnal cy-
cle. The diurnal pattern reflected seasonal differences, with
net positive daily fluxes (emissions) in spring and summer10

and net negative fluxes (uptake) in autumn.

3.2.2 Flux drivers

Seasonal and diurnal variations in CO fluxes were primarily
driven by the seasonal and diurnal cycles of environmental
conditions during the unfrozen period (Fig. 2). We found no15

significant correlation between wintertime fluxes and any en-
vironmental conditions (Fig. S3), and wintertime fluxes were
thus excluded from further analysis, with a focus on other
seasons. Spearman rank correlations showed that PAR and
temperature were the key factors explaining flux dynamics20

(Fig. 4). We found a positive correlation between half-hourly
CO flux and both PAR (0.71) and Ta (0.34), indicating that
fluxes increase with higher radiation and warmer tempera-
tures.

The analysis revealed a strong linear relationship between25

CO flux and PAR (R2
= 0.996, p = 1.47e− 8TS14 ), with

a regression slope of 0.0012 nmol m−2 s−1 and intercept of
−0.29 nmol m−2 s−1 (Fig. 5). The CO flux approached zero
at approximately 250 µmol m−2 s−1 PAR, a threshold that
aligned with seasonal shifts in net CO flux observed in the30

time series (Fig. 2). A nonlinear relationship was found be-
tween the CO flux and TA (Figs. 5, S4). Including TATS15

in the linear model reduced the AIC from 9014 (PAR only)
to 8836, suggesting that Ta is also a significant explanatory
variable for CO exchange.35

According to Spearman’s rank correlations, the correlation
between CO flux and Ts (0.12) was smaller than between the
CO flux and Ta (0.34) (Fig. 4). However, soil temperature
played an important role, especially in spring and autumn
flux dynamics, when the soil was frozen or unfrozen. The40

systematic soil consumption observed in the nighttime flux
began in spring after the soil melted and ceased in autumn
once the soil froze (Fig. 2). In the nighttime data, a higher
negative correlation was found with Ts (−0.41) than with
Ta (−0.28) (Fig. S5). The correlation analysis including the45

daytime and nighttime fluxes did not reveal any clear rela-
tionship between the CO flux and fdry (Fig. 4). However, in
the nighttime fluxes, a negative correlation between CO flux
and fdry (−0.30) was observed (Fig. S5).

The results from the SHAP values were consistent with the50

results of the Spearman correlations, with the highest posi-
tive fluxes associated with high PAR (Fig. 6). Ts and Ta were
found to be the second- and third-most important drivers,

with higher positive fluxes (emission) associated with low
soil temperature and high air temperature. In the nighttime 55

data, Ts was the most important driver, with the higher neg-
ative fluxes (uptake) associated with high soil temperature
(Fig. S6), consistent with Fig. 6. Additionally, SHAP val-
ues from all data and nighttime data indicated that higher
fdry led to decreased fluxes, meaning that higher fluxes were 60

observed in the wetter conditions (Figs. 6, S6). Figure S7
presents partial dependence plots of SHAP values for each
feature.

We analysed the CO fluxes from the NW and SE foot-
prints and found that fluxes from the NW footprint were 65

consistently lower than those from the SE footprint through-
out the study period (Fig. 7). On average, the net flux from
the NW footprint was −0.03 nmol m−2 s−1, whereas the
net flux from the SE footprint was 0.13 nmol m−2 s−1. The
nighttime flux from the NW footprint was on average 2.1 70

times larger than in the SE footprint (−0.23 nmol m−2 s−1

in NW vs. −0.11 nmol m−2 s−1 in SE). For example, in
July, the mean nighttime flux from the NW footprint was
−0.27 nmol m−2 s−1 compared to−0.14 nmol m−2 s−1 from
the SE footprint. This pattern was observed across all 75

months, with the exception of April, when the SE footprint
exhibited slightly lower fluxes (0.05 nmol m−2 s−1 in NW vs.
0.02 nmol m−2 s−1 in SE). The consistently lower nighttime
fluxes from the NW footprint suggest greater CO uptake by
the soil in this area compared to the SE footprint. 80

3.3 Estimate of fluxes from dry and wet surfaces using
Bayesian inference

3.3.1 Parameter distributions and model performance

Seasonal and surface-type-dependent variability was evi-
dent in the estimated model parameters, highlighting the in- 85

fluence of both environmental conditions and surface het-
erogeneity on CO exchange dynamics (Fig. S9). The sea-
sonal differences were less pronounced when Ta was in-
cluded as an explanatory variable compared to the model
using only PAR, suggesting that part of the observed sea- 90

sonality was explained by temperature. The intercept pa-
rameter (δ) exhibited clear seasonal patterns: values were
higher compared to other seasons in spring (δdry =−0.125
and δwet =−0.106 nmol m−2 s−1), indicating reduced CO
uptake when the soil remained frozen. In contrast, lower 95

intercepts were observed in summer (δdry =−0.572 and
δwet =−0.231 nmol m−2 s−1) and autumn (δdry =−0.582
and δwet =−0.175 nmol m−2 s−1), reflecting enhanced up-
take during warmer conditions. Across all seasons, the in-
tercept was lower on dry surfaces than on wet surfaces, with 100

the largest differences occurring in summer and autumn. Sea-
sonal and surface-dependent variations were also apparent in
other model parameters; however, the interpretation is com-
plicated by the collinearity between PAR and Ta, which may
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Figure 2. TS12Time series of (a) CO flux, (b) photosynthetically active radiation (PAR), (c) air temperature (Ta) and soil temperature at
10 cm depth (Ts), and (d) water table depth (WTD) and soil water content (SWC) at 10 cm depth. The solid line represents the 7 d rolling
average (a–d), and the dots indicate half-hourly flux (a).

confound individual parameter estimates and limit the ability
to isolate their respective effects.

Model performance was calculated using the posterior pa-
rameter sets from the second run and is presented in Ta-
ble S4. The RMSE between different models ranged from5

0.32 nmol m−2 s−1 to 0.37 nmol m−2 s−1, and R2 values
ranged from 0.20 to 0.77. Overall, the model performance
was the best in summer and the poorest in autumn. The
mean of the predicted values follows the 1 : 1 line, with no
obvious bias towards high or low values (Fig. S10). The10

model performance was slightly better in the heterogenous
surface models compared to the homogeneous surface mod-
els, with an average RMSE improvement of approximately
0.015 nmol m−2 s−1 and R2 increases of 0.042.

3.3.2 Annual cumulative flux15

We estimated the annual cumulative fluxes applying the
posterior parameters from our seasonal model to the PAR
and Tair data from March to November (Fig. S9). The
difference in annual fluxes between the seasonally pa-
rameterized and non-seasonally parameterized models was20

small (Fig. S11). However, as we observed seasonal vari-

ation in model parameters, we chose to use the sea-
sonal model for calculating annual fluxes to better repre-
sent temporal dynamics. The annual cumulative flux for
dry surfaces was −43.3 mg CO m−2 yr−1 in 2022–2023 and 25

−32.2 mg CO mg CO m−2 yr−1 in 2023–2024, while for wet
surfaces, it was 70.8 mg CO m−2 yr−1 in 2022–2023 and
71.3 mg CO m−2 yr−1 in 2023–2024. There was a signif-
icant difference between wet and dry surfaces, with dry
surfaces acting as CO sinks and wet surfaces as CO 30

sources. Interannual variability in annual cumulative fluxes
was minor. The cumulative annual flux in the homoge-
neous model was −0.03 mg CO m−2 yr−1 in 2022–2023 and
11.4 mg CO m−2 yr−1 in 2023–2024. The confidence inter-
vals and standard deviations of annual estimates are pre- 35

sented in Table S5.

4 Discussion

4.1 Flux magnitude and temporal variations

Our results show that CO flux dynamics are influenced by
environmental conditions, particularly radiation and temper- 40

ature, and vary according to the surface cover type. We found
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Figure 3. Diurnal cycle of CO flux (mean and standard deviation)
in (a) spring, (b) summer, (c) autumn, and (d) winter.

Figure 4. The correlation matrix of Spearman’s rank correlation co-
efficients for CO flux (FcoTS13 ) and flux drivers: soil temperature at
a depth of 10 cm (Ts), photosynthetically active radiation (PAR), air
temperature (Ta), and fraction of dry surface area (fdry), calculated
for half-hourly values during March–November.

that the wet surfaces of the peatland emit CO, while the drier
areas of the peatland act as CO sinks. This study provides
new insights into the magnitude and drivers of biogenic CO
fluxes in Arctic peatlands, contributing to a better under-
standing of the role of terrestrial ecosystems in the CO bud-5

get.

Figure 5. Binned mean and standard deviation between CO flux
and (a) photosynthetically active radiation (PAR) and (b) air tem-
perature (Ta) during March–November. The data are divided into
10 equally sized bins, and blue dots represent the 30 min fluxes. A
linear regression line is fitted to PAR.

Figure 6. The SHapley Additive exPlanation (SHAP) values of the
random forest (RF) model for CO flux drivers photosynthetically
active radiation (PAR), air temperature (Ta), soil temperature at a
depth of 10 cm (Ts), soil water content at a depth of 10 cm (SWC),
and fraction of dry surface area (fdry). The SHAP values indicate
the impact each feature has on the model output, with a negative
value indicating a reduced flux and a positive value an increased
flux. The blue colour represents low feature values and the red
colour high feature values. The zero line is the baseline (the av-
erage prediction). The SHAP values were calculated using the data
collected from March to November.

The CO fluxes reported in this study are similar in mag-
nitude to the fluxes reported in previous EC flux studies
in a boreal cropland and two temperate grasslands, with
mean fluxes ranging from −1 to 2 nmol m−2 s−1 (Pihlatie 10

et al., 2016; Cowan et al., 2018; Murphy et al., 2023). The
modelled annual fluxes in this study ranged from −32 to
71 mg CO m−2 yr−1. When compared with annual fluxes re-
ported in other EC studies, particularly from temperate re-
gions where values range from 360 to 880 mg CO m−2 yr−1

15

(Cowan et al., 2018; Murphy et al., 2023), our results indicate
a lower contribution of biogenic CO emissions from Arctic
peatlands relative to temperate grasslands.
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Figure 7. The boxplot of NW (yellow) and SE (turquoise) CO fluxes in different months (a) for all PAR levels and (b) in dark conditions for
PAR< 1 µmol m−2 s−1. The box represents the interquartile range (IQR), with the lower limit at the 25th percentile and the upper limit at
the 75th percentile, while the whiskers indicate the minimum and maximum values. Black dots represent outliers, defined as 1.5× IQR.

Consistent with earlier studies, our results show clear sea-
sonal variations in CO fluxes (Pihlatie et al., 2016; Cowan
et al., 2018). The site acted as a net source of biogenic CO
during the spring and summer and a net sink during the
autumn. The highest net emissions were observed in sum-5

mer, although the difference between summer and spring
was smaller than would be expected if fluxes were deter-
mined solely by radiation from living plants. Spring emis-
sions began even before snowmelt and the onset of the grow-
ing season, suggesting that CO degradation from senescent10

plants and litter from the previous year may contribute to
the emissions. This is also supported by other studies report-
ing that senescent plants and litter emit higher amounts of
CO than living plants (Tarr et al., 1995; Derendorp et al.,
2011; Lee et al., 2012). Early spring CO emissions were re-15

ported by Pihlatie et al. (2016) from reed canary grass, where
high emissions were observed after snowmelt before the start
of crop growth. Another factor probably contributing to the
relatively high net emissions in the spring was frozen soil,
which results in significantly lower nighttime CO consump-20

tion compared to the summer and autumn periods.
The largest net CO consumption was observed during

late summer and early autumn in the nighttime data. Night-
time was defined as periods when PAR was less than
1 µmol m−2 s−1. In high latitudes, dark conditions during25

mid-summer are limited, and therefore we have only lim-
ited nighttime data available for the summer months. The
summer diurnal plot (Fig. 3) includes the effects of radiation
on fluxes during nighttime hours (19:00 to 04:00CE4 ), when
net uptake was observed, making it difficult to fully under-30

stand the development of soil uptake throughout the grow-
ing season. However, we observed that the highest net up-
take occurred in late summer and autumn. We speculate that
microbial communities responsible for CO consumption re-
quire time to develop (King and Weber, 2007; Cordero et al.,35

2019), which could explain the higher consumption in late
summer and autumn rather than in early or mid-summer. In

autumn, when CO production ceases due to PAR limitation,
consumption became more visible and was also observed in
daytime fluxes. In August, both soil and air temperature were 40

higher than in September and October, suggesting that ther-
mal production, in the absence of radiation, may influence
the net flux and reduce CO consumption.

The importance of soil temperature as a driver of CO
fluxes increased in autumn, when the site was mainly a 45

net sink of CO. The transition from a net source to a net
sink of CO occurred when the PAR level dropped below
250 µmol m−2 s−1. This shift from a net source to a net sink
in autumn is a result of a decreased photoproduction of CO
due to limited daytime radiation in high latitudes and may 50

also indicate increased CO consumption in the soil. A simi-
lar shift has also been observed in a boreal cropland (Pihlatie
et al., 2016) but not in temperate ecosystems (Cowan et al.,
2018; Murphy et al., 2023). The soil consumption in autumn
continued until the soil froze. 55

The contribution of wintertime fluxes to the total CO flux
was relatively small compared to fluxes observed in other
seasons, likely due to both limited production and consump-
tion. The lack of correlation between wintertime fluxes and
environmental variables suggests minimal CO activity dur- 60

ing winter or at least no significant process that would result
in a net flux different from zero. The limited daylight and
snow cover may prevent CO emissions, while CO consump-
tion likely ceased due to frozen soil. Due to the small flux
during the winter, this study focused primarily on spring, the 65

growing season, and autumn fluxes.

4.2 Processes and flux drivers

We observed a systematic diurnal cycle, with daytime emis-
sions peaking at noon and nighttime uptake, a pattern con-
sistent with other studies (Pihlatie et al., 2016; Cowan et al., 70

2018). Daytime emissions followed the pattern of PAR, sug-
gesting that CO production is driven by radiation, likely due
to photodegradation of organic matter, litter, or living plants
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(Tarr et al., 1995; Derendorp et al., 2011; King et al., 2012;
Bruhn et al., 2013; Muller et al., 2025). Our flux driver
analysis indicated that PAR is the primary factor driving
ecosystem-scale CO fluxes. The linear relationship between
PAR and CO, also reported in Bruhn et al. (2013), suggests5

an underlying abiotic process, with no obvious limiting biotic
factors controlling the emissions. However, thermal produc-
tion (Lee et al., 2012; van Asperen et al., 2015) and biotic
production of living plants (Wang and Liao, 2016) have also
been reported as potential sources of CO at the ecosystem10

scale. For example, a recent study found that heat-controlled
biogenic CO production from plants is linked to biotic pro-
cesses rather than photoproduction (Muller et al., 2025). Un-
fortunately, using the EC technique, we cannot determine the
exact source process of these emissions.15

Our analysis indicates that air temperature is an important
factor influencing CO exchange. Both AIC and SHAP val-
ues indicate that air temperature is a statistically significant
driver, together with PAR, with higher emission observed at
warmer temperatures. This was also supported by our resid-20

ual analysis, which revealed a nonlinear relationship in the
flux residuals derived from the linear model of PAR (Fig. S4).
Due to the correlation between temperature and radiation, it
is challenging to fully disentangle their independent effects
on CO fluxes. We propose that photodegradation and ther-25

mal degradation may occur simultaneously. However, as the
net nighttime CO fluxes were mostly negative, if thermal
degradation does occur, it is likely much smaller than the
observed nighttime CO consumption. The measured night-
time CO consumption is hence a net sum of microbial CO30

consumption and abiotic CO production via thermal degra-
dation, both of which are likely driven by temperature. How-
ever, we cannot exclude the possibility of heat-controlled bi-
otic sources contributing to CO fluxes (Muller et al., 2025).

According to our driver analysis, we were not able to iden-35

tify relationships between environmental drivers and CO up-
take as clearly as we did for CO emissions. We found that
soil temperature was an important driver, and CO uptake
was observed only during the unfrozen periods. However, we
did not find any clear relationship between soil temperature40

and CO flux during the unfrozen period. Several factors may
explain this: during the daytime, net fluxes were primarily
driven by radiation, and at nighttime, when CO uptake was
observed, the data were limited due to low turbulent condi-
tions and the lack of dark conditions in summer. As men-45

tioned earlier, thermal production, which is the one potential
source of CO, and soil consumption are both likely driven by
temperature, which may lead to similar responses for each
process, thereby minimizing the changes observed in net flux
(King, 2000).50

In addition to temperature, SWC has been proposed as a
potential driver of CO uptake. Low SWC can limit micro-
bial processes, while high SWC may prevent gas diffusion
in the soil (Moxley and Smith, 1998). However, we could
not identify a clear relationship between CO flux and SWC,55

but we observed systematically lower fluxes from the drier
footprint compared to the wetter footprint. This was seen in
both daytime and nighttime data, as well as in SHAP values.
The higher consumption observed in drier conditions sug-
gests that CO uptake is larger under oxic conditions than un- 60

der anoxic conditions. This is consistent with other studies,
which have found that most CO consumption occurs under
oxic conditions (Funk et al., 1994; Rich and King, 1999).
This is expected, as CO is reactive and can be oxidized to
CO2 (Bartholomew and Alexander, 1979; King and Weber, 65

2007). It is also possible that in wet conditions, CO diffusion
was prevented in the soil, as proposed in Moxley and Smith
(1998).

4.3 Flux modelling

We used the regression model to estimate CO fluxes from the 70

dry and wet surfaces and to calculate the annual fluxes from
these two surfaces. The modelling approach has its own limi-
tations in terms of data coverage and the modelling approach
used. Our data coverage for the full measurement period was
31.7 %, which is relatively low but within the expected range 75

for EC measurements for gases with a low signal-to-noise ra-
tio. In the data filtering, we followed standard quality control
procedures (Mauder and Foken, 2006), with the most com-
mon reason for data exclusion being failure to meet the sta-
tionarity criterion. The limited data coverage causes uncer- 80

tainty in the annual fluxes, especially during nighttime and
spring and autumn seasons when fewer data points are avail-
able.

We observed seasonal variability in the model parame-
ters (Fig. S9), and thus to reduce the potential seasonal bias 85

caused by uneven data distribution, we applied seasonal pa-
rameterization in the model. However, the comparison be-
tween the seasonal and non-seasonal models showed no sig-
nificant difference in annual flux estimates (Fig. 11), suggest-
ing that the seasonal biases do not lead to major errors in the 90

overall annual budgets.
It is important to note that the annual fluxes reported in this

study are based on modelled estimates. The model performed
well for the existing dataset and was used as a tool to estimate
fluxes for both wet and dry surfaces. However, we did not test 95

the model’s predictive power on unseen data. In particular,
the second-degree polynomial function used to represent the
temperature response may not generalize well to other years
or conditions. Furthermore, the use of this function during
winter may lead to overestimation of fluxes at low tempera- 100

tures, as the polynomial structure predicts emissions in cold
conditions.

The heterogeneous surface structure models are found to
perform better than homogeneous models in heterogeneous
EC footprints (Ludwig et al., 2024; Tikkasalo et al., 2025). In 105

our analysis, the heterogeneous model performed better than
the homogeneous model, reducing RMSE by 2.4 %–7.5 %.
The parameter distributions of the homogeneous model typi-
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cally settled between the wet and dry parameter distributions,
most often closer to the dry distributions. The reason that the
homogenous parameters were closer to the dry surface type
is likely related to wind directions, which show a slight bias
toward the NW (Fig. S1). If the wind direction distributions5

were more strongly biased toward a single wind direction, a
larger difference in model performance between the hetero-
geneous and homogeneous models could be expected. We
also found that the SE footprint contained a higher propor-
tion of nighttime data compared to the NW footprint, which10

may introduce a potential bias in the model, as fluxes in the
SE region could be underestimated due to the lower turbu-
lent conditions (Fig. S2). However, we consider the impact
on our modelling approach and results to be minimal.

4.4 Future research15

The Stordalen peatland has slowly transitioned from
dry, permafrost-dominated palsa areas to wetter, sedge-
dominated fens due to global warming (Varner et al., 2022).
The land cover changes have been observed on decadal
timescales (Varner et al., 2022). This is also important in20

terms of CO exchange because in the future, we can ex-
pect increased surface wetness (more sedge- and open-water-
dominated vegetation), which may also lead to higher CO
emissions. To better understand the annual variability and
future changes in CO fluxes, longer-term measurements are25

needed.
In our 2-year study period, we did not expect significant

changes in the wet and dry surface classes at either seasonal
or annual scale. This assumption is important, as to accu-
rately characterize heterogenous EC fluxes, we need an ac-30

curate surface cover classification. The seasonality of surface
wetness in the Stordalen peatland was studied by Łakomiec
et al. (2021), and they did not observe any significant sea-
sonal changes in wet and dry classes. However, in the model,
we assumed that the flux from each wet and dry pixel had35

uniform responses within each area. In practice, this assump-
tion may not be valid, as the vegetation within each surface
class may not be completely homogeneous. In the wet class
in particular, the surface structure is a mixture of open-water
areas, sedges, and mosses, which likely contribute differently40

to the flux. We can expect seasonal and annual variations
in open-water areas and sedge cover on the peatland, even
though it does not directly affect our wet and dry classifi-
cation. To better understand the contribution of different sur-
face structures within the wet and dry classes, other methods,45

such as chamber measurements, are needed.
Although the annual CO flux from the Stordalen peatland

is relatively low, our findings suggest that current process-
based models may inaccurately represent wetlands as CO
sinks rather than sources (Guenther et al., 2012; Liu et al.,50

2018). When compared to the process-based CO model
by Liu et al. (2018), our CO fluxes show a clear diver-
gence. In that model, non-forested boreal wetlands are clas-

sified as a small CO sink, with an average annual flux of
−217 mg CO m−2 yr−1. In contrast, our results indicate that 55

these ecosystems may act as net CO sources, emphasizing
the need for further research to better understand the environ-
mental drivers and variability of CO fluxes at the ecosystem
scale in high-latitude wetlands.

5 Conclusions 60

To interpret the role of wetlands in the global CO budget, we
studied ecosystem-scale CO fluxes in Arctic peatlands. Our
results revealed previously unknown biogenic sources of CO
from northern peatlands to the atmosphere. The reason that
these sources were unknown is partly due to the lack of long- 65

term measurements at the ecosystem level but also an incom-
plete understanding of CO processes. We also report that CO
flux magnitude depends on surface wetness with uptake from
dry areas and emission from wet areas. This study provides a
new dataset that is valuable for modelling and a new param- 70

eterization of current process-based CO models. Our study
suggests that current global models may underestimate the
CO source from northern wetlands.
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