10

15

20

Radiation and surface wetness drive carbon monoxide fluxes from
an Arctic peatland

Asta Laasonen', Alexander Buzacott', Kukka-Maaria Kohonen'2, Erik Lundin?®, Alexander Meire?,
Mari Pihlatie* °, and Ivan Mammarella'

nstitute for Atmospheric and Earth System Research (INAR)/ Physics, Faculty of Science, University of Helsinki, Finland
?Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland

3Swedish Polar Research Secretariat, Abisko Scientific Research Station, Abisko, Sweden

“Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Finland

SInstitute for Atmospheric and Earth System Research (INAR) / Agricultural and Forest Sciences, University of Helsinki,
Finland

Correspondence: Asta Laasonen (asta.laasonen @helsinki.fi)

Abstract. Carbon monoxide (CO) is an important trace gas in the atmosphere. However, its sinks and sources in terrestrial
ecosystems remain poorly quantified. Understanding the terrestrial sink and source dynamics is crucial for better assessing
the global CO budget. In this study, we investigated CO exchange in an Arctic peatland in northern Sweden to quantify the
magnitude and key drivers of fluxes at the site. We measured CO fluxes using the eddy covariance method from August 2022
to September 2024. The study site was characterized by a heterogeneous surface structure with elevated dry palsas surrounded
by wetter areas of bog. We found that the peatland was a net CO source during the measurement period, with fluxes ranging
from —0.29 to 0.34 nmol m~2 s~! (25th and 75th percentiles). The fluxes showed a systematic diurnal cycle, with daytime
emission and nighttime uptake. Emissions were mainly driven by radiation, suggesting photo-driven production. Soil uptake
was dependent on surface wetness, with higher consumption occurring in the dry parts of the peatland, suggesting that oxic

conditions may favor CO uptake. Fhe-annual-cuomulative-CO-flux+or-We estimated by modeling that annual CO fluxes from

the dry parts of the peatland wa&es&mafeek&e%&%mg@@fn—yr—tﬂ%%were were —2023-and—52-43.3 and 32.2 mg COm™

yr— i - : 3-, and from the wet parts were 70.8 and 71.3 mg CO
m~2 yr~! in 20222023 and 84-mg-CO-m—2yr—in2023-2024-2024, respectively. Despite the relatively small amount of

CO released from the peatland, our study suggests that current global models may underestimate the CO source from northern

wetlands.

1 Introduction

Carbon monoxide (CO) is an indirect greenhouse gas that plays a significant role in atmospheric chemistry by influencing
tropospheric oxidative capacity. In the troposphere, CO is oxidized by hydroxyl radicals (OH), which are a key oxidant for
various chemical species, including methane and other hydrocarbons. The oxidation of CO by OH accounts for 40% of OH
removal, thereby reducing the oxidative capacity available for other trace gases and prolonging their atmospheric lifetime

(Daniel and Solomon, 1998; Lelieveld et al., 2016). Most CO is emitted directly from anthropogenic sources or is formed by
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the atmospheric oxidation of methane and other volatile organic compounds (VOCs), but natural systems are also known to
release and consume CO (Liu et al., 2018; Zheng et al., 2019). However, the magnitude of CO sinks and sources in terrestrial
ecosystems is poorly quantified.

Terrestrial ecosystems can act as net sources or sinks of CO, depending on the relative contributions of emissions from veg-
etation and soil production and consumption. CO production from vegetation and soil is related-to-abiotie-processes-commonly
considered to result from abiotic processes, in which organic matter, litter, or plant material are degraded by radiation or tem-
perature (Tarr et al., 1995; Derendorp et al., 2011; Lee et al., 2012; Bruhn et al., 2013; Fraser et al., 2015; Van Asperen et al.,
2015). However, biological CO production from plants has also been reported (Wang and Liao, 2016). Soil consumption is a
microbial process (Ragsdale, 2004; King and Weber, 2007), found to depend on soil carbon content (Inman et al., 1971; Moxley
and Smith, 1998), soil water content (SWC) (King, 1999), and temperature (Whalen and Reeburgh, 2001). Soil consumption
can occur under aerobic and anaerobic conditions, but with lower rates under anaerobic conditions (Conrad and Seiler, 1980).
The exact chemical pathways of both CO production and consumption remain relatively unknown.

Terrestrial CO exchange has been studied using chamber measurements
King, 2000; Kisselle et al., 2002; Varella et al., 2004; Bruhn et al., 2013; Van Asperen et al.,
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and the flux gradient method (Constant et al., 2008; van Asperen et al., 2024) across various ecosystems and climate regions.
However, there is a lack of continuous and year-round measurements, which has recently been addressed by the eddy co-
variance (EC) technique (Pihlatie et al., 2016; Cowan et al., 2018; Murphy et al., 2023). The EC technique provides direct
and continuous ecosystem-scale gas exchange measurements with high temporal resolution and minimal disturbance to the
ecosystem (Aubinet et al., 2012), which allows the quantification of temporal variability and flux drivers of CO exchange at
the ecosystem level.

To our knowledge, no CO flux studies have been conducted on terrestrial ecosystems in the Arctic region. Global modeling
studies suggest relatively low biogenic production (Potter et al., 1996; Guenther et al., 2012) and soil consumption (Liu et al.,
2018) in this region due to the cold climate. However, biogenic CO sources may play a significant role in high-latitude atmo-
spheric chemistry since anthropogenic sources are limited. Existing global chemistry and climate models have been found to
underestimate the observed CO concentrations at northern high latitudes, indicating that CO sinks are overestimated or CO
sources are underestimated in this region (Stein et al., 2014; Szopa et al., 2021). To improve our understanding of the CO
budget, the contribution of terrestrial ecosystems must be more accurately quantified in the Arctic region.

The aim of this study was to assess the contribution of biogenic CO fluxes in an Arctic peatland. We present a two-year time
series of CO fluxes, covering both the vegetative and snow-covered periods, measured by the EC technique. We examined the
seasonal and diurnal variations in fluxes to quantify the magnitude of CO exchange and to identify the primary meteorological
and environmental variables driving CO fluxes. In addition, we estimated the CO fluxes from two different surface types,
dry and wet, to investigate the possible differences in CO fluxes due to the surface heterogeneity. The measurements were

conducted at Stordalen peatland in Abisko, northern Sweden, from August 2022 to September 2024.

2015; Sun et al., 2018; Muller et al., 2025
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2 Materials and methods
2.1 Study site

The study site, Stordalen peatland (68°21°20.8”N, 19°02°42.1”E, 360 m.a.s.l.), is located in the Arctic climate region in Abisko,
northern Sweden. This region is characterized by long winters and relatively short summers. The mean annual temperature and
aceumulated-the mean annual precipitation (1991-2020) for the area were 0.5°C and 347 mm, respectively (SMHI, 2024).
The site is classified as a palsa bog with mostly ombrotrophic conditions, which makes it a nutrient-poor peatland. The sur-
face structure of the study site is influenced by microtopography and sei-water-econtertSWC. It is characterized by elevated
dry palsas surrounded by wetter areas of bog. Permafrost is found within the palsas, and the degradation of permafrost has
been observed in several parts of the peatland, leading to a slow transition of the palsas to wetter hollows (Malmer et al.,
2005). The vegetation in the study area is classified into three main types based on the surface structure: shrub-dominated pal-
sas (Empetrum hermaphroditum, Rubus chamaemorus, Eriophorum vaginatum, Dicranum elongatum, and Sphagnum fuscum),
sphagnum- and cotton grass-dominated hollows (Sphagnum balticum and Eriophorum angustifolium), and sedge- and cotton

grass-dominated hollows (Carex rotundata and Eriophorum vaginatum) (Malmer et al., 2005).
2.2 Eddy covariance fluxes
2.2.1 Flux measurements

EC measurements were conducted at a height of 2.2 m in the middle of the peatland from August 2022 to September 2024~
2024 (Fig. 1). The location of the EC tower was selected to encompass both wet and dry surface types: wetter conditions were
found to the southeast (SE) of the tower, while drier conditions were observed to the northwest (NW) of the tower.

Horizontal and vertical wind components were measured with the Gill HS-50 (Gill Instrument Ltd., England, UK) ultrasonic
anemometer at a frequency of 10 Hz. The sonic anemometerwas-oriented-’s north was aligned 10° east relative to the-geographic
north. CO mixing ratios were measured using Aerodyne quantum cascade laser spectroscopy (QCLS: Aerodyne Research Inc.,
Billerica, MA, USA), which also simultaneously measured nitrous oxide (N2O) and water vapor (HoO) mixing ratios at a
frequency of 10 Hz. The horizontal separation between ultrasonic anemometer and gas inlet was 0.19 m. The EC inlet was
connected to the gas analyzer by a 30-m long tube with an inner diameter of 8.13 mm and an outer diameter of 12.0 mm. The
gas analyzer pressure was set to 35 Torr and regulated by an electronic valve. The gas flow rate was approximately 16.2 L

min—?!.

2.2.2 Flux processing
The EC data processing was performed using the EddyUH software (Mammarella et al., 2016), following the recommendations
given in (Kohonen et al., 2020) for carbonyl sulfide flux processing. Fluxes were calculated as half-hourly averages, and linear

detrending was used to separate the time series into mean and fluctuating components. The coordinate system was set using a

2D-coordinate rotation according to Kaimal and Finnigan (1994). Spikes were defined using a limit of the difference between
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subsequent 10 Hz data points. If the difference between two data points exceeded 5 ppb for the CO mixing ratio and 5 ms™*
for the vertical wind velocity component, the data point was considered as a spike and replaced with the previous value. The
time lag was determined by maximizing the cross-covariance between the CO mixing ratio and the vertical wind velocity
component. Spectral corrections were applied to account for the low- and high-frequency attenuation of the covariance. High-
frequency spectral corrections were made with an experimental approach (Aubinet et al., 1999). The low-frequency losses were
corrected with a theoretical transfer function according to Rannik and Vesala (1999).

The measurements included a longer gap from February to April 2024 due to a broken scroll pump before its replacement.
In addition, several shorter gaps occurred due to dirty inlet filters, power cuts, or other instrumentation problems, during which
the flux measurements were not running. In total, the measurement period contained 24,212 calculated half-hourly fluxes,
which were subsequently quality filtered. The calculated fluxes were accepted according to the following criteria: the second
wind rotation angle was less than 10° in absolute value (removing 19 data points); the number of spikes in the 30-minute wind
vertical velocity was less than 100 (removing 1,577 data points); kurtosis of the CO mixing ratio and vertical wind component
was between 1 and 8 (removing 950 data points); skewness of the CO mixing ratio and vertical wind component was between
—2 and 2 (removing 14 data points); and flux stationary-stationarity was less than 0.3 (removing 8,981 data points). The low
turbulent conditions were filtered out using a threshold value for friction velocity less than 0.1 ms™! (removing 936 data
points). In addition to these criteria, a few remaining spikes were filtered based on the standard deviation of w-vertical wind
velocity component larger than 2 ms~! and CO mixing ratio larger than 9 ppb (removing 100 data points). Overall, the data
coverage for the measurement period was 34%--31.7%. The data coverage across the different seasons is summarized in Table
SI.

Finally, the relative contribution of the surface source area to the measured flux was calculated using the two-dimensional

Flux Footprint Prediction (FFP) model (Kljun et al., 2015). We assumed a constant boundary layer height of 1000 m, because

the model is insensitive to boundary layer height at low measurement heights, and estimated the roughness length to be 0.03

m based on the logarithmic wind profile in neutral atmospheric conditions. The other model parameters, including wind speed,
wind direction, Monin-Obukhov length, standard deviation of lateral wind velocity component, and friction velocity, were

obtained as output from the EC flux post-processing. The flux footprint was presented as 90% of the source area and was

calculated for every half-hourly flux with a spatial resolution of 0.5 x 0.5 m.

2.3 Ancillary measurements

Ancillary data used in this study —Fer-theflax—caleulation;

relative humidity (RH), air pressure, and-air temperature (Fairywere-used—tn-the-fhixanalysisin-addition-te—FairTa), photo-
synthetically active radiation (PAR), water table depth (WTD), soil temperature (FsoilTs), and seil-water-content-(SWE)-at
a-SWC at 10 cm depth(Tsei also-used—Tsoil= ¢ 5 as-an—. Ts and WTD represent the average of
four measurement plotsand-SW-C—as—an—, while SWC is based on the average of two measurement plots. AH-data—and-the

AANAAAR AANARARRAARTEISARAAANANAS

site-deseription—can-be-aceessed-from-the-A detailed description of the ICOS instrumentation at the Stordalen peatland site



120 (SE-Sto), along with access to the ancillary dataset, is available through the ICOS Carbon Portal database-undinet-al2023)
(https://data.icos-cp.eu/portal/, last access: 10 July 2025).

2.4 Surface map

The surface cover map was created using drone imagery and a digital elevation model (DEM) (Abisko Scientific Research
Station, 2025a, b). Elevated palsas were distinguished from wetter vegetation using a DEM threshold value of 383.0 m. Pixels
125 with a DEM value higher than the threshold were classified as dry palsas, while pixels with a DEM value lower than the
threshold were classified as wet hollows. The surface cover map was saved with a resolution of 0.5 x 0.5 m and was used

together with the footprint analysis to calculate the contribution of dry and wet surfaces to the measured half-hourly fluxes.
2.5 Definition of seasons

We defined the seasons based on the calendar months: winter as December—February, spring as March—May, summer as June-

130 August, and autumn as September—November. The beginning and end of the frozen period were determined according to
Lakomiec et al. (2021), defined as days when the daily average peat temperature at 10 cm depth remained below/above 0°C for
three consecutive days. The frozen periods during the measurement period were from 21 November 2022 to 11 May 2023 and
1 November 2023 to 12 May 2024.

2.6 Statistical analysis
135 2.6.1 Flux driver analysis

The flux drivers were analyzed using correlation analysis and a Random Ferestforest (RF) model (sklearn.ensemble.RandomForestRegress
both performed on half-hourly values. The correlation between CO flux and meteorological and environmental variables was
quantified using Spearman’s rank correlation coefficients (scipy.stats.spearmanr). To assess the importance of the—variables
variables in linear regression, the Akaike Information Criterion (AIC) was used. To-interpret-the-RF-model5-The AIC is a
140 metric used to compare the fit of different regression models, designed to identify the model that best balances goodness of fit
and model complexity (i.e., the number of model parameters) (Akaike, 1973). The preferred model is the one with the lowest
AIC value. In our case, this criterion was used to assess whether the added complexity of including temperature as a driver of
To further investigate the drivers and detect potential nonmonotonic relationships not captured by simple linear analysis and
145 Spearman’s correlations, we applied SHAP (SHapley Additive exPlanations) values derived from an RF model. This approach

allows for the identification of complex, nonlinear interactions that may not be captured by traditional linear methods or b
Spearman’s correlation. SHAP values were calculated using the SHAP library (https://shap.readthedocs.io/). The SHAP values

provide a method to understand the factors driving the model’s predictions by quantifying the marginal contribution of each

feature to the output.



https://data.icos-cp.eu/portal/
https://shap.readthedocs.io/

150

155

160

165

170

175

For the RF model, the data were split into a training (80%) and a validation (20%) set using a random split (random_split
function). The hyperparameters— maximum depth (10, 12, 15, 20), number of estimators (50, 100, 150, 200), and minimum
samples per leaf (2, 3, 4)— were optimized using a grid search function (sklearn.model_selection.GridSearchCV). The optimal
model was selected by minimizing the mean square-squared error (MSE). After cross-validation, the optimal model was refit
using all available data and SHAP-values were calculated. The statistical analysis in this section and the following sections

was performed with Python 3.12.

2.6.2 Parametrization of carbon monoxide fluxes

Two statistical models were developed to simulate the 30-minute-half-hourly CO fluxes and to assess the flux contributions

from wet and dry surfaces. The first model was a simple linear model assuming a homogeneous surface structure and defined

as:
FCO:a*PAR—l—gﬁlﬂ“giﬁ%Tf—i—'y*PAR*Ta—i—é, (1
where-e-is-the-slope-and-3-is-thefluxintereept—The second model was a surface-type-specific model for heterogeneous surfaces

and was defined as:

Fco = ldry * (Oédry * PARFco,dry + ﬁdry) + fwet * (awet * PAR + 5wet) -,Fco,wet (2)

where F, and F, represent the contributions from dry and wet surface types, respectively. These components are defined

as follows:,

Feowet = fwet * (et ¥ PAR + Blyeq % Ta + B2y * Ta? + Ywet * PAR * Ta 4 Gy “4)

where fyy and fy,, represent the footprint-weighted fraction of dry and wet areas, respectively, which were estimated from the

surface map (Fig. 1)—Fhe-terms-aqry—; o represents the sensitivity of CO fluxes to PAR; 81 and Sg-eorrespond-to-the-stope
the linear and quadratic effects of Tair, respectively; v represents the interaction between PAR and Tair, and ¢ is the intercept

term. _

The model parameters, o, B5erarysBarys Bwerl, 82, 7, and 0 were estimated using a Bayesian inference approach.

AR

Prior selection followed the methodology proposed by Buzacott et al. (2024) with two model runs. We used the first model run
to estimate the probable parameters for each land use separately using the homogeneous surface type model (Eq. 1) and the
second model run to estimate the probable parameters for mixed contributions from both surface types using the heterogeneous

surface type model (Eq. 2).



180

185

190

195

200

205

210

For the first model run, all priors were assumed to follow uniform distributions (Table $+S3). Data were divided into wet
and dry classes based on the threshold of 70% of fluxes originating from wet or dry surfaces. In addition, the model parameters
were estimated by assuming homogeneous surface structure, using all data for parameter estimation. The resulting posterior
distributions were observed to follow approximately normal distributions (Fig. S7)-

S8). For the second run, all available data with mixed surface contributions were used. The prior distributions were defined
based on the posterior information obtained from the first model run. All prior distributions were defined as normal distribu-
tions, based on the 95% confident interval of the posteriors from first model run, as suggested by Buzacott et al. (2024). The
decision to use 95% confidence interval was made to ensure sufficient flexibility for the parameters under the mixed contribu-
tion. The priors for the second model run are presented in Table S1-S3 and the posterior distributions from the second run are

The model parameters were optimized numerically sampling using the Markov chain Monte Carlo (MCMC) method. The
MCMC sampling was performed using pm.sample function from Python’s PyMC library with 4 chains and 2000 samples
in each chain, and tuning period 2000, in total 8000 samples. The output product from the MCMC sampling consisted of
posterior probability distributions for each optimized model parameter. The model performance for both models was evaluated
by comparing the predicted fluxes to the observed fluxes, using the root mean square error (RMSE) and the coefficient of
determination (R?) as performance metrics.

The models were initially fit-to-ab-fitted using data from March to November, excluding winter data—Then-months. To
investigate potential seasonal variability in the model parameters, separate analyses were subsequently conducted for each
season (spring, summer, and autumn)te-explore-potential-seasonal-variability-in-the-model-parameters. An initial model using

only PAR was tested, but Ta was added because it improved model performance (Table S2). The posterior parameter setsfrom
the-second-modelrun—were-estimates from the final model were then used to simulate the-fluxes—frem-CO fluxes from both

wet and dry surfacessurface types. Annual estimates were ealeulated-as-the-cumulative-sums-of-the-simulated-fluxes-derived

by applying these posterior parameters to observed PAR and Ta data from March to November, under the assumption that
wintertime fluxes were negligible and therefore set to zero.

3 Results
3.1 Environmental conditions and flux footprint

The mean annual temperature for the first measurement year (from August 2022 to August 2023) was 1.1°C, while the mean
annual temperature for the second measurement year (from August 2023 to August 2024) was -0.1°C. The first year was warmer
than the long-term average annual temperature (1991-2020), while the second year was colder than the long-term average
(SMHI, 2024). The air temperature during the measurement period ranged from —38.8°C to 27.3°C;-with-; the minimum value
was observed on 4 January 2024, and the maximum value on 22 July 2024. The soil temperature at a depth of 10 cm ranged

from —12.2°C to 11.3°C, with the minimum recorded on 4 January 2024 and the maximum value observed on 22 July 2024.

The total accumulated precipitation fer-thefirstmeasarement-year-was 325 mm and-forthe-second-measurement-yearit-was
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in the first measurement year and 298 mm in the second year. In both years, annual precipitation was lower than the long-term
average (1991-2020) for this region (SMHI, 2024). The daily mean PAR varied from 0.2 to 688.4 ymol m~2s~!, with the
minimum value observed on 31 December 2022 and the maximum value on 1 July 2024.

The main wind directions during the study period were from the southeast (SE) and the northwest (NW), with 45% of the
measured fluxes coming from the wind sector between 40’ < and 180%-° > (SE) and 54% from the wind sector between 2000 °

and 350%-° (NW). The distribution of wind directions was consistent across different seasons and stability classes (Fig. S1)-

although slight day—night differences were observed during the non-frozen period, with SE winds more common at night
and NW winds more frequent during the day (Fig. S2). The footprint-weighted average showed that fluxes from the NW wind

direction were predominantly associated with the drier palsas, with 93% of the fluxes originated from the palsas and 7% of
the fluxes originated from the wetter surface (Fig. 1). In contrast, fluxes from the SE direction were characterized by 23%

originating from drier palsas and 77% from wetter surface.
3.2 [Ecosystem scale fluxes
3.2.1 Flux timeseries

The ecosystem-scale half-hourly CO fluxes ranged from —0.29 to 0.34 nmol m~2 s~! (25th and 75th percentiles), showing

both net uptake and emission. The fluxes had strong seasonal variability, with the highest-emissions-observed-in-summer-and
the-highestuptake-inavtomn-(Fig-2)-On-a-daily-seale;the-site-acted-si ngagggl\gas anet CO source for-mostof-the-in spring and
summer -with-(average median fluxes of 0.17 amet-m—2s—-and 0.24 nmol m~ 1, respectively—tnautumn-the site-turned
inte-), and as a net sink for-CO-with-an-average-flux-of-in autumn (-0.31 nmol m~2 s~!-) (Fig. 2). The wintertime flux was
minor (-0.09 nmol m~2 s~!) compared to the fluxes of other seasons. The patternwherethe site-acted-as-CO-souree-in-spring
and-summer-and-CO-sink-in-autumn-This seasonal pattern was consistent across both measurement-years.

The CO flux showed a systematic diurnal cycle during the Vegetatwe perlod btrt—ne—sueh%ye}e—was—ebsefved—m—fhewfeﬂime

with daytime emissions and nighttime uptake. Emissions peaked at noon, reaching 1.11 nmol m~2 s™—! at-neen—while-the
mmm%wmﬁnmol m~2 571 In-spring. the maximum mean emission was

—2.—1

in spring, while nighttime uptake was strongest in autumn
(-0.44 nmol m~—2 s71) (Fig. 3). In contrast, winter fluxes lacked a clear diurnal cycle. The diurnal pattern reflected seasonal

differences, with net positive daily fluxes (emissions) in spring and summer, and net negative fluxes (uptake) in autumn. ¥
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3.2.2 Flux drivers

Seasonal and diurnal variations in CO fluxes were primarily driven by the seasonal and diurnal cycles of environmental condi-
tions during the unfrozen period (Fig. 2). We found no significant correlation between wintertime fluxes and any environmental
conditions (Fig. $253) and thus wintertime fluxes were excluded from further analysis, with a focus on other seasons. Spear-
man rank correlations showed that PAR and temperature were the key factors explaining flux dynamics (Fig. 4). We found a
positive correlation between half-hourly CO flux and both PAR (0.71) and Fair-Ta (0.34), indicating that fluxes increase with
higher radiation and warmer temperatures.

The oo e b e e o L L LT e e L e e o

correlation-was-ebserved-analysis revealed a strong linear relationship between CO flux and PAR ;+while-anenlinearcorrelation

was-found-with-Tair—The linearregression-for-binned PAR had-a-(R? = 0.996, p = 1.47e-8), with a regression slope of 0.0012
nmol m~2 s~! and an-intercept of —-0.29 nmol m~2 s~! with-an-RZ-value of 0:996-and-a-p-value-of +-474e-8(Fig. 5). The CO
flux was-zero-whenPAR-was-approached zero at approximately 250 pmol m™2s~! —Fhis-threshold-vatue-was-also-observed

hao f] 1raacaria hara tha o nad o na O <o A 3n Qi g han PAR layua axecandad Ao ate 0O EEPEN
t W S t a—to s ivje SP W acaappro a y O

=25=LPAR, a threshold that aligned with seasonal shifts in
net CO flux observed in the time series (Fig. 2). Pue-to-positive-correlation-betweenPAR-and-Tair-A nonlinear relationship was

—2.—1

PAR—Fhe-AlCHorusing-onty PAR-as-an-explanatory—variable-5, S4). Including TA in the linear regression—was90+4—while
i i i model reduced the AIC to-8836-Thissuggests-thatTair-from 9014 (PAR only) to 8836, suggesting
that Ta is also a petential-driverof- CO-flux;-despite-the-multicollinearity betweenPAR-and Tairsignificant explanatory variable

for CO exchange.

According to Spearman’s rank correlations, the correlation between CO flux and Fsei-Ts (0.12) was smaller than between
the CO flux and Fair-Ta (0.34) (Fig. 4). However, soil temperature played an important role, especially in spring and autumn
flux dynamics, when the soil was frozen or unfrozen. The systematic soil consumption observed in the nighttime flux began in
spring after the soil melted and ceased in autumn once the soil froze (Fig. 2). In the nighttime data, a higher negative correlation
was found with Fseil-Ts (-0.41) than with Fair-Ta (-0.28) (Fig. S3S5). The correlation analysis including the daytime and
nighttime fluxes did not reveal any clear relationship between the CO flux and fyy (Fig. 4). However, in the nighttime fluxes, a

negative correlation between CO flux and fyy (-0.30) was observed (Fig. S3S5).

results from the SHAP values were consistent with the results of the Spearman correlations, with the highest positive fluxes
associated with high PAR (Fig. 6). Fsotl-and-TairTs and Ta were found to be the second and the third most important drivers,

with higher positive fluxes (emission) associated with low soil temperature and high air temperature. In the nighttime data,

Tsetl-Ts was the most important driver with the higher negative fluxes (uptake) associated with high soil temperature (Fig.
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5486), consistent with Fig. 6. Additionally, SHAP values from both all data and nighttime data indicated that higher f4, led to
decreased fluxes, meaning that higher fluxes were observed in the wetter conditions (Fig. 6, Fig—53S6). Figure S5-S7 presents
partial dependence plots of SHAP values for each feature.

We analyzed the CO fluxes from the NW and SE footprints and found that fluxes from the NW footprint were consistently

lower than those from the SE footprmt throughout the study period (Fig. Sé)—Systefﬂa&c—aJr}yJ}eweﬁﬂe%%ﬁes—&ndﬂﬂghmme

7). On average, the net flux
from the NW footprint was —0.03 nmol m~2 s~ !, whereas the net flux from the SE footprint shewed-atowerfhax—TFhe tower

nighttime-flux-indicates-thatsoil-consumptionin-was 0,13 nmol m—2 s—!. The nighttime flux from the NW footprlnt f&hfghef

was on average 2.1 times larger than in the SE footprmt :

~(-0.23 nmol m 2 s~ in NW vs. -0.11

—2 571

compared

to —0.14 nmol m—2 s—! from the SE footprint. This pattern was observed across all months, with the exception of April when
the SE footprint exhibited slightly lower fluxes (0.05 nmol m—2 s~! in NW vs. 0.02 nmol m~2 s~ in SE). The consistentl

lower nighttime fluxes from the NW footprint suggest greater CO uptake by the soil in this area compared to the SE footprint.

3.3 Estimate of fluxes from dry and wet surface using Bayesian inference

3.3.1 Parameter distributions and model performance

structures-in-both-parameters-Seasonal and surface-type-dependent variability was evident in the estimated model parameters
highlighting the influence of both environmental conditions and surface heterogeneity on CO exchange dynamics (Fig. 759).

pronounced when Ta was included as an explanatory variable, compared to the model using only PAR, suggesting that part of
the observed seasonality was explained by temperature. The mtercept @wmmm
were higher compared to other seasons in spring (5
W@MM@Q&@%@WM when the
soil was stittfrozen—Fheintereept-was-more negative remained frozen. In contrast, lower intercepts were observed in summer

10
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nmol m~ reflecting enhanced uptake during warmer conditions. Across all seasons, the intercept was lower on dry

surfaces than on wet surfaces, with the ¢

argest-largest differences
occurring in summer and autumn. Seasonal and surface-dependent variations were also apparent in other model parameters;
however, the interpretation is complicated by the collinearity between PAR and Ta, which may confound individual parameter

estimates and limit the ability to isolate their respective effects.
Model performance was calculated using the posterior parameter sets from the second run and is presented in Table $2S4.

The RMSE between different models ranged from 6:33-0.32 nmol m~2 s~! to0 6:46-0.37 nmol m~2 s~! and R? values ranged
from 0-47-t0-6-740.20 to 0.77. Overall, the model performance was best in summer and poorest in autumn. The mean of the
predicted values follows the 1:1 line, with no obvious bias towards high or low values (Fig. S8S10). The model performance

was slightly better in the heterogenous surface models compared to the homogeneous surface models, though-the-difference

was-relatively-smatwith an average RMSE improvement of approximately 0.015 nmol m~2 s~! and R? increases of 0.042.

3.3.2 Annual cumulative flux

We estimated the annual cumulative fluxes using-applying the posterior parameters from the-second-medelrun-—The-cumulative

seasonal-parametrizationour seasonal model to the PAR and Tair data from March to November (Fig. S9). The difference in
annual fluxes between the seasonally parameterized and non-seasonally parameterized models was small (Fig. S11). However.

as we observed seasonal variation in model parameters, we chose to use the seasonal model for calculating annual fluxes

to better represent temporal dynamics. The annual cumulative flux for dry surfaces was —44:6-43.3 mg CO m~2 yr! in

2022-2023 and —5+-5-32.2 mg CO mg CO m~2 yr—! in 2023-2024, while for wet surfaces, it was 92:7-70.8 mg CO m~2 yr~!
in 2022-2023 and 84-4-71.3 mg CO m~2 yr~! in 2023-2024. There was a significant difference between wet and dry surfaces,
with dry surfaces acting as CO sinks and wet surfaces as CO sources. Interannual variability in annual cumulative fluxes was
minor. The cumulative annual flux in the homogeneous model was ++:6-0.03 mg CO m~2 yr~! in 2022-2023 and 4:2-11.4
mg COm~—2 yr~!
S$385.

in 2023-2024. The confidence intervals and standard deviations of annual estimates are presented in Table
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4 Discussion

4.1 Eeosystem-sealefluxesFlux magnitude and temporal variations

4.1.1 Fluxmagnitade-and-temporal-variations

Our results show that CO flux dynamics are influenced by the environmental conditionsand—, particularly radiation and
temperature, and vary according to the surface cover type. We found that the wet surfaces of the peatland emit CO, while
the drier areas of the peatland act as CO sinks. This study provides new insights into the magnitude and drivers of biogenic CO
fluxes in Arctic peatlands, contributing to a better understanding of the role of terrestrial ecosystems to the CO budget.

The CO fluxes reported in this study are similar in magnitude to the fluxes reported in previous EC flux studies in a boreal

cropland and two temperate grasslands, with mean fluxes ranging from —1 to 2 nmol m~2 s~! (Pihlatie et al., 2016; Cowan

et al., 2018; Murphy et al., 2023). The modelled annual fluxes in this study ranged from —32 to 71 mg CO m 2 yr—!, When
compared with annual fluxes reported in other EC studies, particularly from temperate regions where values range from 360
to 880 mg CO m~2 2018; Murphy et al.,

emissions from Arctic peatlands relative to temperate grasslands.
Consistent with earlier studies, our results show clear seasonal variations in CO fluxes (Pihlatie et al., 2016; Cowan et al.,

r~! (Cowan et al., 2023), our results indicate a lower contribution of biogenic CO

2018). The site acted as a net source of biogenic CO during the spring and summer, and a net sink during the autumn. The
highest net emissions were observed in summer, although the difference between summer and spring was smaller than would
be expected if fluxes were determined solely by radiation from living plants. Spring emissions began even before snowmelt and
the onset of the growing season, suggesting that CO degradation from senescent plants and litter from the previous year may
contribute to the emissions. This is also supported by other studies reporting that senescent plants and litter emit higher amounts
of CO than living plants (Perendorp-etals204HtLee-etals2042)(Tarr et al., 1995; Derendorp et al., 2011; Lee et al., 2012).
Early spring CO emissions were reported by Pihlatie et al. (2016) from reed canary grass, where high emissions were observed
after snowmelt before the start of the crop growth. Another factor probably contributing to the relatively high net emissions
in the spring was frozen soil, which results in significantly lower nighttime CO consumption compared to the summer and
autumn periods.

The largest net CO consumption was observed during late summer and early autumn in the nighttime data. Nighttime was
defined as periods when PAR was less than 1 gmol m~2s~!. In high latitudes, dark conditions during mid-summer are limited,
and therefore we have only a-tittle-limited nighttime data available for the summer months. The summer diurnal plot (Fig.
3) includes the effects of radiation on fluxes during nighttime hours (7 pm to 4 am), when net uptake was observed, making
it difficult to fully understand the development of soil uptake throughout the growing season. However, we observed that
the highest net uptake occurred in late summer and autumn. We speculate that microbial communities responsible for CO
consumption require time to develop (King and Weber, 2007; Cordero et al., 2019), which could explains-explain the higher
consumption in late summer and autumn, rather than in early or mid-summer. In autumn, when CO production ceases due

to PAR limitation, consumption became more visible and was also observed in daytime fluxes. In August, both soil and air
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375 temperature were higher than in September and October, suggesting that thermal production, in the absence of radiation, may
influence the net flux and reduce CO consumption.
The importance of soil temperature as a driver for CO fluxes increased in autumn, when the site was mainly a net sink of
CO. The transition from a net source to a net sink of CO occurred when PAR level dropped below 250 pzmol m~2s~!. This
shift from a net source to a net sink in autumn is a result of a decreased photoproduction of CO due to limited daytime radiation
380 in high latitudes and may also indicate increased CO consumption in the soil. Similar-A similar shift has also been observed
in a boreal cropland (Pihlatie et al., 2016), but not in temperate ecosystems (Cowan et al., 2018; Murphy et al., 2023). The soil
consumption in autumn continued until the soil froze.
The contribution of wintertime fluxes to the total CO flux was relatively small compared to fluxes observed in other seasons,
likely due to both limited production and consumption. The lack of correlation between wintertime fluxes and environmental

385 variables suggests minimal CO activity during winter, or at least no significant process that would result in a net flux differ-

ent from zero. The limited daylight and snow cover may prevent CO emissions, while thefrozen-—seil-likelyeeased-the CO
eonsamption-CO consumption likely ceased due to frozen soil. Due to the small flux during the winter, this study focused pri-

marily on spring, growing season, and autumn fluxes. Heweverfuture-studiesshould-also-give-attentionto-wintertime-fluxes
as-wel-

390 4.2 Processes and flux drivers

We observed a systematic diurnal cycle, with daytime emissions peaking at noon and nighttime uptake, a pattern consis-
tent with other studies (Pihlatie et al., 2016; Cowan et al., 2018). Daytime emissions followed the pattern of PAR, suggest-
ing that the CO production is driven by radiation, likely due to photodegradation of organic matter, litter or living plants
395 . Our flux driver analysis indicated that PAR is the primary factor drlvmg ecosystem scale CO fluxes. Unfertunately;using-the

-The linear relationship between

PAR and CO, also reported in Bruhn et al. (2013), suggests tewards-an-an underlying abiotic process, with no obvious limiting
biotic factors controlling the emissions.

and-However,

400 thermal production (Lee et al., 2012; Van Asperen et al., 2015) ofa WMMWM
have also been reported as potential sources of CO at the ecosystem scale. For example, a recent study found that heat-controlled
using the EC technique, we cannot determine the exact source process of these emissions.

Our analysis indicates that air temperature is an important factor influencing CO —tn-our-anatysis;we were unable to-exclude

405 thepotentialinfluence-of-airtemperature-on-CO-exchange. Both AIC and SHAP values indicate that air temperature is a statis-
tically significant driver, together with PAR, with higher emission observed at warmer temperatures. This was also supported

by our residual analysis, which revealed a non-linear relationship in the flux residuals derived from the linear model of PAR
Fi

. S4). Due to the correlation between temperature and radiation, it is challenging to fully disentangle their independent
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effects on CO fluxes. We propose that photo- and thermal degradation may occur simultaneously. However, as the net night-
time CO fluxes were mostly negative, if thermal degradation does occur, it is likely much smaller than the observed nighttime
CO consumption. The measured nighttime CO consumption is hence a net sum of microbial CO consumption and abiotic CO
production via thermal degradation, both of which are likely driven by temperature. However, we cannot exclude the possibility

According to our driver analysis, we were not able to identify relationships between environmental drivers and CO up-
take as clearly as we did for CO emissions. We found that soil temperature was an important driver and CO uptake was
observed only during the unfrozen periods. However, we did not find any clear relationship between soil temperature and CO
flux during the unfrozen period. Several factors may explain this: during the daytime, net fluxes were primarily driven by
phetepreductionradiation, and at nighttime, when CO uptake was observed, the data were limited due to low turbulent condi-
tions and the lack of dark conditions in summer. As mentioned earlier, both-thermal-produetionthermal production, which is the
one potential source of CO and soil consumption are both likely driven by temperature, which may lead to similar responses
for each process, thereby minimizing the changes observed in net flux (King, 2000).

In addition to temperature, SWC has been proposed as a potentlal driver of CO uptake. with-an-eptimal-range-of- SWEC—

Low SWC can limit microbial processes, while
high SWC may prevent gas diffusion in the soil (Moxley and Smith, 1998). However, we could not identify a clear relationship

between CO flux and SWC, but we observed systematically lower fluxes from the drier footprint compared to the wetter
footprint. This was seen in both daytime and nighttime data, as well as in SHAP values. The higher consumption observed in
drier conditions suggests that CO eonsumption-uptake is larger under oxic conditions than under anoxic conditions;—whieh-.

This is consistent with other studiestFunk-et-al;1994;Rich-and-King;1999)—, which have found that most CO consumption
, 1994; Rich and Kin

to CO, (Bartholomew and Alexander, 1979; King and Weber, 2007). It is also possible that in wet conditions, CO diffusion

occurs under oxic conditions (Funk et al. 1999). This is expected, as CO is reactive and can be oxidized

was prevented in the soil, as proposed in Moxley and Smith (1998) A-similar-difference-in-fluxes-between-the NW-and-SE

4.3 Flux modeling

4.3.1 Meodelparameters-and-annual-flux

regression model to estimate CO fluxes from the dry and wet surfaces, and to calculate the annual fluxes from these two
surfaces. The modeling results-indi H i

has its own limitations in terms of data coverage as well as the modeling approach. Our data coverage for the full measurement
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period was 31.7%, which is relatively low but within the expected range for EC measurements for gases with low signal-to-noise
ratio. In the data filtering, we followed standard quality control procedure (Mauder and Foken, 2006) with the most common
reason for data exclusion being failure to meet the stationarity criterion. The limited data coverage causes uncertainty in the
annual fluxes, especially during nighttime and spring and autumn seasons when fewer data points are available.

We observed seasonal variability in the model parameters (Fig. 59), and thus to reduce the potential seasonal bias caused by
uneven data distribution, we applied seasonal parameterization in the model. However, the comparison between the seasonal
and non-seasonal models showed no significant difference in annual flux estimates (Fig. 11), suggesting that the seasonal biases
do not lead to major errors in the overall annual budgets.

It is important to note that the annual fluxes reported in this study are based on modeled estimates. The model performed
well for the existing dataset and was used as a tool to estimate fluxes for both wet and dry surfaces. However, we did not
test the model’s predictive power on unseen data. In particular, the second-degree polynomial function used to represent the
temperature response may not generalize well to other years or conditions. Furthermore, the use of this function during winter
may lead to overestimation of fluxes at low temperatures, as the polynomial structure predicts emissions in cold conditions.

The heterogeneous surface-structure models are found to perform better than homogeneous models in heterogeneous EC
footprints (Ludwig et al., 2024; Tikkasalo et al., 2025).

In our analysis, the heterogeneous model performed better
than the homogeneous model, reducing RMSE 2.4-7.5%. The parameter distributions of the homogeneous model typically
settled between the wet and dry parameter distributions, most often closer to the dry distributions. The reason that the homoge-

nous parameters were closer to the dry surface type is likely related to wind directions, which show a slight bias toward the
NW (Fig. S1). If the wind direction distributions were more strongly biased toward a single wind direction, a larger difference

in model performance between the heterogeneous and homogeneous models could be expected. We also found that the SE

footprint contained a higher proportion of nighttime data compared to the NW footprint, which may introduce a potential bias
in the model, as fluxes in the SE region could be underestimated due to the more lower turbulent conditions (Fig. S2). However.
we consider the impact on our modeling approach and results is minimal.
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area—0-83210% km2The Stordalen peatland has slowly transitioned from d ermafrost dominated palsa areas to wetter,
sedge dominated fens due to global warming (Varner et al., 2022). The land cover changes have been observed on decadal

timescales (Varner et al., 2022). This is important also in terms of CO exchange, because in the future, we can expect increased

surface wetness (more sedge- and open water-dominated vegetation), which eerrespends-te—an-average-annualflux-of —261
o - < A & y

aoorcar—w atasS: oug d ta

{Guentheret-al5 2012 Eivetal ;2048 may also lead to higher CO emissions. To better understand the annual variability and
future changes of CO fluxes, longer term measurements are needed.

4.4.1 Limitatiens-and-uneertainties

early-summer2024;-and-thus-we-assumed-that-In our two-year study period, we did not expect significant changes in the wet
and dry elasses-doesnothavesignificantseasonal-changes—surface classes at either seasonal or annual scale. This assumption is
important, as accurately characterizing heterogenous EC fluxes, we need an accurate surface cover classification. The seasonal-

ity of surface wetness in Sterdalen-mire-the Stordalen peatland was studied by Lakomiec et al. (2021) and they did not observe

any significant seasonal changes in wet and dry classes. We-also-assumed-that-the-surface-wetness-doesnoet-have-significan

grooar-wath g-aSP arros awsS-anaparSa oap

In-the-modeling-However, in the model, we assumed that the flux from each wet and dry pixel eontributes-equally-to-the
totak-fluxhad uniform responses within each area. In practice, this assumption may not be valid, as the vegetation within each
surface class may not be completely homogeneous. Especially in the wet class, the surface structure is a mixture of open water
areas, sedges, and mosses, which likely contribute differently to the flux. We can expect seasonal and annual variations in open
water areas and sedge cover on the peatland, even though it does not directly affect our wet and dry classification. To better
understand the contribution of different surface structures within the wet and dry classes, other methods, such as chamber

measurements s-are needed.

the annual CO flux from the Stordalen peatland is relatively low, our findings suggest that current process-based models ma
inaccurately represent wetlands as CO sinks rather than sources (Guenther et al., 2012; Liu et al., 2018). When compared to
the i i rocess-based CO model by Liu et al. (2018
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our CO fluxes show a clear divergence. In that model, non-forested boreal wetlands are classified as a small CO sink, with

an average annual flux of =217 mg CO m~2 yr~!. In contrast, our results indicate that these ecosystems may act as net CO
sources, emphasizing the need for further research to better understand the anntat-environmental drivers and variability of CO

fluxes —esesr s e s e st e e e b e Ll e s el b e il L e

interpret the role of wetlands in the global CO budget, we studied ecosystem-scale CO fluxes in Arctic peatlands. Our results

revealed previously unknown biogenic sources of CO from northern peatlands to the atmosphere;—which-. The reason that
these sources were unknown is partly due to the lack of long-term measurements at the ecosystem level, but also due-to-the
laek-of-knowledge-of-to an incomplete understanding of CO processes. We also report that CO flux magnitude depends on
surface wetness with uptake from dry areas and emission from wet areas. This study waslimited-to-a-single-peatland-and-two

rovides a new dataset valuable for modeling and new parametrization of current
process-based CO models. Our study suggests that current global models may underrestimate-underestimate the CO source

from northern wetlands.

Code and data availability. The data and code used for the analyses are available on the author’s GitHub (https://github.com/astatuulia/co_
flux_SE-Sto). The meteorological data can be downloaded from the ICOS Carbon Portal database (https://www.icos-cp.eu, last access: 5

March 2025).
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(b)

Figure 1. The-surface-map-(a) Aerial drone image of the study site and (b) the surface map derived from the digital elevation map (DEM) and
flux footprints in the northwest (NW) and southeast (SE) directionsfa

{b)-and-the-SE-footprint-(e). Black lines represent flux footprint contours from 10% to 80%, and the location of the EC tower is marked by

ared cross. The yellow color indicates the dry surface and the turquoise color the wet surface.
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Figure 2. Timeseries of (a) CO flux, (b) photosynthetically active radiation (PAR), (c) air temperature (FairTa) and soil temperature at 10 cm
depth (FseilTs), and (d) water table depth (WTD) and soil water content at 10 cm depth (SWC). The solid line represents the 7-day rolling

average (a-d) and the dots indicates half-hourly flux (a).
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Figure 4. The correlation matrix of Spearman’s rank correlation coefficients for CO flux (Fco) and flux drivers: soil temperature at a depth
of 10 cm (FseitTs), photosynthetically active radiation (PAR), air temperature (FairTa), and fraction of dry surface area (fury), calculated for

half-hourly values during March—November.
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Figure 5. Binned mean and standard deviation between CO flux and (a) photosynthetically active radiation (PAR) and (b) air temperature
(FairTa) during March—-November. The data is divided in ten equal-sized bins and blue dots represent the 30-minute fluxes. A linear regression

line is fitted to PAR.
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Figure 6. The SHAP (SHapley Additive exPlanations) values of the Random forest (RF) model for CO flux drivers photosynthetically active
radiation (PAR), air temperature (FaitTa), soil temperature at a depth of 10 cm (FseitTs), soil water content at a depth of 10 cm (SWC), and
fraction of dry surface area (fary ). The SHAP values indicate the impact each feature has on the model output, with a negative value indicating
areduced flux and a positive value an increased flux. The blue color represents low feature values and red color high feature values. The zero

line is the baseline (the average prediction). The SHAP values are-were calculated using the data collected from March to November.
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Figure 7. The boxplot of NW (yellow) and SE (turquoise) CO flux in different months a) all PAR levels and b) in dark conditions PAR <1

2

mol m~2 s~!. The box represents the interquartile range (IQR), with the lower limit at the 25th percentile and the u

er limit at the 75th
ercentile, while the whiskers indicate the minimum and maximum values. Black dots represent outliers, defined as 1.5 x IQR.

23



530 Author contributions. A.L. and L.M. designed the study. A.L., LM., E.L. and A.M. participated in the field measurements. A.B., KM.K.,
.M., M.P. contributed to data analysis and helped interpret the results. A.L. performed the data processing, data analysis and wrote the

original draft. All authors contributed the reviewing and editing the final version.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. We acknowledge financial support from Research Council of Finland (NPERM project nr 341349, ICOS-FIRI), ICOS-
535 FI via University of Helsinki funding, EU-INTERACT, the EU Horizon Europe + Framework Programme for Research and Innovation
(GreenFeedback nr. 101056921 and LiweFor nr. 101079192). We thank the Abisko Scientific Research Station and research infrastructures
ICOS Sweden and SITES (both funded by the Swedish Research Council) for the support of the work done at the Abisko. Lastly, we
acknowledge the use of Grammarly (https://www.grammarly.com/) and ChatGPT (https://chatgpt.com/) to check grammar and improve text

clarity during the preparation of this manuscript.

24


https://www.grammarly.com/
https://chatgpt.com/

540

545

550

555

560

565

570

References

Abisko Scientific Research Station: UAV - Digital Terrain Model from Stordalen Mire, 2024-06-12, Swedish Infrastructure for Ecosystem
Science (SITES) Spectral, 2025a.

Abisko Scientific Research Station: UAV - RGB orthomosaic from Stordalen Mire, 2024-06-12, Swedish Infrastructure for Ecosystem
Science (SITES) Spectral, 2025b.

Akaike, H.: Maximum likelihood identification of Gaussian autoregressive moving average models, Biometrika, 60, 255-265, 1973.

Aubinet, M., Grelle, A., Ibrom, A., Rannik, U., Moncrieff, J., Foken, T., Kowalski, A., Martin, P., Berbigier, P., Bernhofer, C., Clement, R.,
Elbers, J., Granier, A., Griilnwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., and Vesala, T.: Estimates
of the Annual Net Carbon and Water Exchange of Forests: The EUROFLUX Methodology, in: Advances in ecological research, vol. 30,
pp. 113-175, Elsevier, https://doi.org/https://doi.org/10.1016/S0065-2504(08)60018-5, 1999.

Aubinet, M., Vesala, T., and Papale, D.: Eddy covariance: a practical guide to measurement and data analysis, Springer Science & Business
Media, 2012.

Bartholomew, G. and Alexander, M.: Microbial metabolism of carbon monoxide in culture and in soil, Applied and Environmental Microbi-
ology, 37, 932-937, 1979.

Bruhn, D., Albert, K. R., Mikkelsen, T. N., and Ambus, P.: UV-induced carbon monoxide emission from living vegetation, Biogeosciences,
10, 7877-7882, https://doi.org/10.5194/bg-10-7877-2013, 2013.

Buzacott, A. J., van den Berg, M., Kruijt, B., Pijlman, J., Fritz, C., Wintjen, P., and van der Velde, Y.: A Bayesian inference approach to
determine experimental Typha latifolia paludiculture greenhouse gas exchange measured with eddy covariance, Agricultural and Forest
Meteorology, 356, 110 179, 2024.

Conrad, R. and Seiler, W.: Role of microorganisms in the consumption and production of atmospheric carbon monoxide by soil, Applied and
Environmental Microbiology, 40, 437—-445, 1980.

Constant, P., Poissant, L., and Villemur, R.: Annual hydrogen, carbon monoxide and carbon dioxide concentrations and surface to air ex-
changes in a rural area (Québec, Canada), Atmospheric Environment, 42, 5090-5100, 2008.

Cordero, P. R., Bayly, K., Man Leung, P., Huang, C., Islam, Z. F., Schittenhelm, R. B., King, G. M., and Greening, C.: Atmospheric carbon
monoxide oxidation is a widespread mechanism supporting microbial survival, The ISME journal, 13, 2868-2881, 2019.

Cowan, N., Helfter, C., Langford, B., Coyle, M., Levy, P., Moxley, J., Simmons, 1., Leeson, S., Nemitz, E., and Skiba, U.: Sea-
sonal fluxes of carbon monoxide from an intensively grazed grassland in Scotland, Atmospheric Environment, 194, 170-178,
https://doi.org/https://doi.org/10.1016/j.atmosenv.2018.09.039, 2018.

Daniel, J. S. and Solomon, S.: On the climate forcing of carbon monoxide, Journal of Geophysical Research: Atmospheres, 103, 13 249—
13 260, https://doi.org/https://doi.org/10.1029/981D00822, 1998.

Derendorp, L., Quist, J., Holzinger, R., and R6ckmann, T.: Emissions of H2 and CO from leaf litter of Sequoiadendron giganteum, and their
dependence on UV radiation and temperature, Atmospheric environment, 45, 7520-7524, 2011.

Fraser, W. T., Blei, E., Fry, S. C., Newman, M. F., Reay, D. S., Smith, K. A., and McLeod, A. R.: Emission of methane, carbon monoxide,
carbon dioxide and short-chain hydrocarbons from vegetation foliage under ultraviolet irradiation, Plant, cell & environment, 38, 980-989,

2015.

25


https://doi.org/https://doi.org/10.1016/S0065-2504(08)60018-5
https://doi.org/10.5194/bg-10-7877-2013
https://doi.org/https://doi.org/10.1016/j.atmosenv.2018.09.039
https://doi.org/https://doi.org/10.1029/98JD00822

575

580

585

590

595

600

605

610

Funk, D. W., Pullman, E. R., Peterson, K. M., Crill, P. M., and Billings, W. D.: Influence of water table on carbon
dioxide, carbon monoxide, and methane fluxes from Taiga Bog microcosms, Global Biogeochemical Cycles, 8, 271-278,
https://doi.org/https://doi.org/10.1029/94GB01229, 1994.

Guenther, A., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T. a., Emmons, L., and Wang, X.: The Model of Emissions of Gases and
Aerosols from Nature version 2.1 (MEGAN?2. 1): an extended and updated framework for modeling biogenic emissions, Geoscientific
Model Development, 5, 1471-1492, 2012.

Inman, R. E., Ingersoll, R. B., and Levy, E. A.: Soil: a natural sink for carbon monoxide, Science, 172, 1229-1231, 1971.

Kaimal, J. C. and Finnigan, J. J.: Atmospheric boundary layer flows: their structure and measurement, Oxford university press, 1994.

King, G.: Attributes of atmospheric carbon monoxide oxidation by Maine forest soils, Applied and Environmental Microbiology, 65, 5257—
5264, 1999.

King, G. M.: Land use impacts on atmospheric carbon monoxide consumption by soils, Global biogeochemical cycles, 14, 1161-1172, 2000.

King, G. M. and Weber, C. F.: Distribution, diversity and ecology of aerobic CO-oxidizing bacteria, Nature Reviews Microbiology, 5, 107—
118, 2007.

King, J. Y., Brandt, L. A., and Adair, E. C.: Shedding light on plant litter decomposition: advances, implications and new directions in
understanding the role of photodegradation, Biogeochemistry, 111, 57-81, 2012.

Kisselle, K. W., Zepp, R. G., Burke, R. A., de Siqueira Pinto, A., Bustamante, M. M., Opsahl, S., Varella, R. F., and Viana, L. T.: Seasonal soil
fluxes of carbon monoxide in burned and unburned Brazilian savannas, Journal of Geophysical Research: Atmospheres, 107, LBA-18,
2002.

Kljun, N., Calanca, P., Rotach, M., and Schmid, H. P.: A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP),
Geoscientific Model Development, 8, 3695-3713, 2015.

Kohonen, K.-M., Kolari, P., Kooijmans, L. M. J., Chen, H., Seibt, U., Sun, W., and Mammarella, I.: Towards standardized processing of eddy
covariance flux measurements of carbonyl sulfide, Atmospheric Measurement Techniques, 13, 3957-3975, https://doi.org/10.5194/amt-
13-3957-2020, 2020.

Lakomiec, P., Holst, J., Friborg, T., Crill, P, Rakos, N., Kljun, N., Olsson, P.-O., Eklundh, L., Persson, A., and Rinne, J.: Field-scale CH4
emission at a subarctic mire with heterogeneous permafrost thaw status, Biogeosciences, 18, 5811-5830, https://doi.org/10.5194/bg-18-
5811-2021, 2021.

Lee, H., Rahn, T., and Throop, H.: An accounting of C-based trace gas release during abiotic plant litter degradation, Global Change Biology,
18, 1185-1195, 2012.

Lelieveld, J., Gromov, S., Pozzer, A., and Taraborrelli, D.: Global tropospheric hydroxyl distribution, budget and reactivity, Atmospheric
Chemistry and Physics, 16, 12477-12 493, 2016.

Liu, L., Zhuang, Q., Zhu, Q., Liu, S., Van Asperen, H., and Pihlatie, M.: Global soil consumption of atmospheric carbon monoxide: an
analysis using a process-based biogeochemistry model, Atmospheric Chemistry and Physics, 18, 7913-7931, 2018.

Ludwig, S. M., Schiferl, L., Hung, J., Natali, S. M., and Commane, R.: Resolving heterogeneous fluxes from tundra halves the growing
season carbon budget, Biogeosciences, 21, 1301-1321, https://doi.org/10.5194/bg-21-1301-2024, 2024.

Lundin, E., Crill, P, Grudd, H., Holst, J., Kristoffersson, A., Meire, A., Molder, M., and Rakos, N.: ETC L2 Meteo, Abisko-Stordalen Palsa
Bog, 2021-12-31-2023-08-31, https://hdl.handle.net/11676/7FmuhOKAOTvnJD1fZxjYMduv, 2023.

26


https://doi.org/https://doi.org/10.1029/94GB01229
https://doi.org/10.5194/amt-13-3957-2020
https://doi.org/10.5194/amt-13-3957-2020
https://doi.org/10.5194/amt-13-3957-2020
https://doi.org/10.5194/bg-18-5811-2021
https://doi.org/10.5194/bg-18-5811-2021
https://doi.org/10.5194/bg-18-5811-2021
https://doi.org/10.5194/bg-21-1301-2024
https://hdl.handle.net/11676/7FmuhOKAOTvnJD1fZxjYMduv

615

620

625

630

635

640

645

Malmer, N., Johansson, T., Olsrud, M., and Christensen, T. R.: Vegetation, climatic changes and net carbon sequestration in a North-
Scandinavian subarctic mire over 30 years, Global Change Biology, 11, 1895-1909, https://doi.org/https://doi.org/10.1111/j.1365-
2486.2005.01042.x, 2005.

Mammarella, 1., Peltola, O., Nordbo, A., Jirvi, L., and Rannik, U.: Quantifying the uncertainty of eddy covariance fluxes due to the use of
different software packages and combinations of processing steps in two contrasting ecosystems, Atmospheric Measurement Techniques,
9, 4915-4933, 2016.

Mauder, M. and Foken, T.: Impact of post-field data processing on eddy covariance flux estimates and energy balance closure, Meteorolo-
gische Zeitschrift, 15, 597-610, 2006.

Moxley, J. and Smith, K.: Factors affecting utilisation of atmospheric CO by soils, Soil Biology and Biochemistry, 30, 65-79, 1998.

Muller, J. D., Qubaja, R., Koh, E., Stern, R., Bohak, Y. L., Tatarinov, F., Rotenberg, E., and Yakir, D.: Leaf carbon monoxide emissions under
different drought, heat, and light conditions in the field, New Phytologist, 245, 2439-2450, 2025.

Murphy, R., Lanigan, G., Martin, D., and Cowan, N.: Carbon monoxide fluxes measured using the eddy covariance method from an inten-
sively managed grassland in Ireland, Environmental Science: Atmospheres, 3, 1834-1846, 2023.

Pihlatie, M., Rannik, U., Haapanala, S., Peltola, O., Shurpali, N., Martikainen, P. J., Lind, S., Hyvonen, N., Virkajdrvi, P., Zahniser, M.,
and Mammarella, I.: Seasonal and diurnal variation in CO fluxes from an agricultural bioenergy crop, Biogeosciences, 13, 5471-5485,
https://doi.org/10.5194/bg-13-5471-2016, 2016.

Potter, C. S., Klooster, S. A., and Chatfield, R. B.: Consumption and production of carbon monoxide in soils: a global model analysis of
spatial and seasonal variation, Chemosphere, 33, 1175-1193, 1996.

Ragsdale, S. W.: Life with carbon monoxide, Critical reviews in biochemistry and molecular biology, 39, 165-195, 2004.

Rannik, U. and Vesala, T.: Autoregressive filtering versus linear detrending in estimation of fluxes by the eddy covariance method, Boundary-
Layer Meteorology, 91, 259-280, 1999.

Rich, J. J. and King, G.: Carbon monoxide consumption and production by wetland peats, FEMS Microbiology Ecology, 28, 215-224,
https://doi.org/10.1111/j.1574-6941.1999.tb00577 .x, 1999.

SMHI: Dataseries with normal values for the period 1991-2020, https://www.smhi.se/data/temperatur-och-vind/temperatur/
dataserier-med-normalvarden-for-perioden-1991-2020, last access: 2025-03-05, 2024.

Stein, O., Schultz, M. G., Bouarar, 1., Clark, H., Huijnen, V., Gaudel, A., George, M., and Clerbaux, C.: On the wintertime low bias of
Northern Hemisphere carbon monoxide found in global model simulations, Atmospheric chemistry and physics, 14, 9295-9316, 2014.
Sun, W., Kooijmans, L. M., Maseyk, K., Chen, H., Mammarella, L., Vesala, T., Levula, J., Keskinen, H., and Seibt, U.: Soil fluxes of carbonyl
sulfide (COS), carbon monoxide, and carbon dioxide in a boreal forest in southern Finland, Atmospheric Chemistry and Physics, 18,

1363-1378, 2018.

Szopa, S., Naik, V., Adhikary, B., Artaxo, P., Berntsen, T., Collins, W., Fuzzi, S., Gallardo, L., Kiendler-Scharr, A., Klimont, Z., H. Liao,
N. U, and Zanis, P.: Short-lived Climate Forcers, p. 817-922, Cambridge University Press, 2021.

Tarr, M. A., Miller, W. L., and Zepp, R. G.: Direct carbon monoxide photoproduction from plant matter, Journal of Geophysical Research:
Atmospheres, 100, 11403-11413, 1995.

Tikkasalo, O.-P., Peltola, O., Alekseychik, P., Heikkinen, J., Launiainen, S., Lehtonen, A., Li, Q., Martinez-Garcia, E., Peltoniemi, M.,
Salovaara, P., Tuominen, V., and Mikipid, R.: Eddy-covariance fluxes of CO2, CH4 and N2O in a drained peatland forest after clear-

cutting, Biogeosciences, 22, 1277-1300, https://doi.org/10.5194/bg-22-1277-2025, 2025.

27


https://doi.org/https://doi.org/10.1111/j.1365-2486.2005.01042.x
https://doi.org/https://doi.org/10.1111/j.1365-2486.2005.01042.x
https://doi.org/https://doi.org/10.1111/j.1365-2486.2005.01042.x
https://doi.org/10.5194/bg-13-5471-2016
https://doi.org/10.1111/j.1574-6941.1999.tb00577.x
https://www.smhi.se/data/temperatur-och-vind/temperatur/dataserier-med-normalvarden-for-perioden-1991-2020
https://www.smhi.se/data/temperatur-och-vind/temperatur/dataserier-med-normalvarden-for-perioden-1991-2020
https://www.smhi.se/data/temperatur-och-vind/temperatur/dataserier-med-normalvarden-for-perioden-1991-2020
https://doi.org/10.5194/bg-22-1277-2025

650

655

660

Van Asperen, H., Warneke, T., Sabbatini, S., Nicolini, G., Papale, D., and Notholt, J.: The role of photo-and thermal degradation for CO 2
and CO fluxes in an arid ecosystem, Biogeosciences, 12, 41614174, 2015.

van Asperen, H., Warneke, T., Carioca de Aratjo, A., Forsberg, B., José Filgueiras Ferreira, S., Rockmann, T., van der Veen, C., Bulthuis,
S., Ramos de Oliveira, L., de Lima Xavier, T., et al.: The emission of CO from tropical rainforest soils, Biogeosciences, 21, 3183-3199,
2024.

Varella, R., Bustamante, M., Pinto, A., Kisselle, K., Santos, R., Burke, R., Zepp, R., and Viana, L.: Soil fluxes of CO2, CO, NO, and N20
from an old pasture and from native savanna in Brazil, Ecological Applications, 14, 221-231, 2004.

Varner, R. K., Crill, P. M., Frolking, S., McCalley, C. K., Burke, S. A., Chanton, J. P., Holmes, M. E., Coordinators, I. P., Saleska, S., and
Palace, M. W.: Permafrost thaw driven changes in hydrology and vegetation cover increase trace gas emissions and climate forcing in
Stordalen Mire from 1970 to 2014, Philosophical Transactions of the Royal Society A, 380, 20210 022, 2022.

Wang, M. and Liao, W.: Carbon monoxide as a signaling molecule in plants, Frontiers in Plant Science, 7, 572, 2016.

Whalen, S. and Reeburgh, W.: Carbon monoxide consumption in upland boreal forest soils, Soil Biology and Biochemistry, 33, 1329-1338,
2001.

Zheng, B., Chevallier, F.,, Yin, Y., Ciais, P., Fortems-Cheiney, A., Deeter, M. N., Parker, R. J., Wang, Y., Worden, H. M., and Zhao, Y.: Global
atmospheric carbon monoxide budget 2000-2017 inferred from multi-species atmospheric inversions, Earth System Science Data, 11,

1411-1436, https://doi.org/10.5194/essd-11-1411-2019, 2019.

28


https://doi.org/10.5194/essd-11-1411-2019

