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Abstract. Carbon monoxide (CO) is an important trace gas in the atmosphere. However, its sinks and sources in terrestrial

ecosystems remain poorly quantified. Understanding the terrestrial sink and source dynamics is crucial for better assessing

the global CO budget. In this study, we investigated CO exchange in an Arctic peatland in northern Sweden to quantify the

magnitude and key drivers of fluxes at the site. We measured CO fluxes using the eddy covariance method from August 2022

to September 2024. The study site was characterized by a heterogeneous surface structure with elevated dry palsas surrounded5

by wetter areas of bog. We found that the peatland was a net CO source during the measurement period, with fluxes ranging

from –0.29 to 0.34 nmol m−2 s−1 (25th and 75th percentiles). The fluxes showed a systematic diurnal cycle, with daytime

emission and nighttime uptake. Emissions were mainly driven by radiation, suggesting photo-driven production. Soil uptake

was dependent on surface wetness, with higher consumption occurring in the dry parts of the peatland, suggesting that oxic

conditions may favor CO uptake. The annual cumulative CO flux for
:::
We

::::::::
estimated

:::
by

::::::::
modeling

::::
that

::::::
annual

:::
CO

:::::
fluxes

:::::
from10

the dry parts of the peatland was estimated to be -44 mg CO m−2 yr−1 in 2022
::::
were

:
–2023 and -52

:::
43.3

:::
and

:::::
–32.2

:
mg CO m−2

yr−1in 2023–2024, while the flux for the wet parts of the peatland was 93 ,
:::
and

:::::
from

:::
the

:::
wet

:::::
parts

::::
were

::::
70.8

:::
and

::::
71.3

:
mg CO

m−2 yr−1 in 2022–2023 and 84 mg CO m−2 yr−1 in 2023–2024.
:::::
2024,

::::::::::
respectively.

:
Despite the relatively small amount of

CO released from the peatland, our study suggests that current global models may underestimate the CO source from northern

wetlands.15

1 Introduction

Carbon monoxide (CO) is an indirect greenhouse gas that plays a significant role in atmospheric chemistry by influencing

tropospheric oxidative capacity. In the troposphere, CO is oxidized by hydroxyl radicals (OH), which are a key oxidant for

various chemical species, including methane and other hydrocarbons. The oxidation of CO by OH accounts for 40% of OH

removal, thereby reducing the oxidative capacity available for other trace gases and prolonging their atmospheric lifetime20

(Daniel and Solomon, 1998; Lelieveld et al., 2016). Most CO is emitted directly from anthropogenic sources or is formed by
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the atmospheric oxidation of methane and other volatile organic compounds (VOCs), but natural systems are also known to

release and consume CO (Liu et al., 2018; Zheng et al., 2019). However, the magnitude of CO sinks and sources in terrestrial

ecosystems is poorly quantified.

Terrestrial ecosystems can act as net sources or sinks of CO, depending on the relative contributions of emissions from veg-25

etation and soil production and consumption. CO production from vegetation and soil is related to abiotic processes
:::::::::
commonly

:::::::::
considered

::
to

:::::
result

::::
from

::::::
abiotic

:::::::::
processes, in which organic matter, litter, or plant material are degraded by radiation or tem-

perature (Tarr et al., 1995; Derendorp et al., 2011; Lee et al., 2012; Bruhn et al., 2013; Fraser et al., 2015; Van Asperen et al.,

2015).
:::::::
However,

:::::::::
biological

:::
CO

::::::::::
production

::::
from

:::::
plants

::::
has

:::
also

:::::
been

:::::::
reported

:::::::::::::::::::
(Wang and Liao, 2016)

:
. Soil consumption is a

microbial process (Ragsdale, 2004; King and Weber, 2007), found to depend on soil carbon content (Inman et al., 1971; Moxley30

and Smith, 1998), soil water content
::::::
(SWC) (King, 1999), and temperature (Whalen and Reeburgh, 2001). Soil consumption

can occur under aerobic and anaerobic conditions, but with lower rates under anaerobic conditions (Conrad and Seiler, 1980).

The exact chemical pathways of both CO production and consumption remain relatively unknown.

Terrestrial CO exchange has been studied using chamber measurements (King, 2000; Kisselle et al., 2002; Varella et al., 2004; Bruhn et al., 2013; Van Asperen et al., 2015; Sun et al., 2018)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(King, 2000; Kisselle et al., 2002; Varella et al., 2004; Bruhn et al., 2013; Van Asperen et al., 2015; Sun et al., 2018; Muller et al., 2025)35

and the flux gradient method (Constant et al., 2008; van Asperen et al., 2024) across various ecosystems and climate regions.

However, there is a lack of continuous and year-round measurements, which has recently been addressed by
:::
the

:
eddy co-

variance (EC) technique (Pihlatie et al., 2016; Cowan et al., 2018; Murphy et al., 2023). The EC technique provides direct

and continuous ecosystem-scale gas exchange measurements with high temporal resolution and minimal disturbance to the

ecosystem (Aubinet et al., 2012), which allows the quantification of temporal variability and flux drivers of CO exchange at40

the ecosystem level.

To our knowledge, no CO flux studies have been conducted on terrestrial ecosystems in the Arctic region. Global modeling

studies suggest relatively low biogenic production (Potter et al., 1996; Guenther et al., 2012) and soil consumption (Liu et al.,

2018) in this region due to the cold climate. However, biogenic CO sources may play a significant role in high-latitude atmo-

spheric chemistry since anthropogenic sources are limited. Existing global chemistry and climate models have been found to45

underestimate the observed CO concentrations at northern high latitudes, indicating that CO sinks are overestimated or CO

sources are underestimated in this region (Stein et al., 2014; Szopa et al., 2021). To improve our understanding of the CO

budget, the contribution of terrestrial ecosystems must be more accurately quantified in the Arctic region.

The aim of this study was to assess the contribution of biogenic CO fluxes in an Arctic peatland. We present a two-year time

series of CO fluxes, covering both the vegetative and snow-covered periods, measured by the EC technique. We examined the50

seasonal and diurnal variations in fluxes to quantify the magnitude of CO exchange and to identify the primary meteorological

and environmental variables driving CO fluxes. In addition, we estimated the
::
CO

:
fluxes from two different surface types,

dry and wet, to investigate the possible differences in CO fluxes due to the surface heterogeneity. The measurements were

conducted at Stordalen peatland in Abisko, northern Sweden, from August 2022 to September 2024.
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2 Materials and methods55

2.1 Study site

The study site, Stordalen peatland (68°21’20.8”N, 19°02’42.1”E, 360 m.a.s.l.), is located in the Arctic climate region in Abisko,

northern Sweden. This region is characterized by long winters and relatively short summers. The mean annual temperature and

accumulated
::
the

:::::
mean

::::::
annual

:
precipitation (1991–2020) for the area were 0.5°C and 347 mm, respectively (SMHI, 2024).

The site is classified as a palsa bog with mostly ombrotrophic conditions, which makes it a nutrient-poor peatland. The sur-60

face structure of the study site is influenced by microtopography and soil water content
::::
SWC. It is characterized by elevated

dry palsas surrounded by wetter areas of bog. Permafrost is found within the palsas, and the degradation of permafrost has

been observed in several parts of the peatland, leading to a slow transition of the palsas to wetter hollows (Malmer et al.,

2005). The vegetation in the study area is classified into three main types based on the surface structure: shrub-dominated pal-

sas (Empetrum hermaphroditum, Rubus chamaemorus, Eriophorum vaginatum, Dicranum elongatum, and Sphagnum fuscum),65

sphagnum- and cotton grass-dominated hollows (Sphagnum balticum and Eriophorum angustifolium), and sedge- and cotton

grass-dominated hollows (Carex rotundata and Eriophorum vaginatum) (Malmer et al., 2005).

2.2 Eddy covariance fluxes

2.2.1 Flux measurements

EC measurements were conducted at a height of 2.2 m in the middle of the peatland from August 2022 to September 2024.70

::::
2024

::::
(Fig.

:::
1). The location of the EC tower was selected to encompass both wet and dry surface types: wetter conditions were

found to the southeast (SE) of the tower, while drier conditions were observed to the northwest (NW) of the tower.

Horizontal and vertical wind components were measured with the Gill HS-50 (Gill Instrument Ltd., England, UK) ultrasonic

anemometer at a frequency of 10 Hz. The sonic anemometerwas oriented
:
’s
:::::
north

:::
was

:::::::
aligned 10° east relative to the geographic

north. CO mixing ratios were measured using Aerodyne quantum cascade laser spectroscopy (QCLS: Aerodyne Research Inc.,75

Billerica, MA, USA), which also simultaneously measured nitrous oxide (N2O) and water vapor (H2O) mixing ratios at a

frequency of 10 Hz. The horizontal separation between ultrasonic anemometer and gas inlet was 0.19 m. The EC inlet was

connected to the gas analyzer by a 30-m long tube with an inner diameter of 8.13 mm and an outer diameter of 12.0 mm. The

gas analyzer pressure was set to 35 Torr and regulated by an electronic valve. The gas flow rate was approximately 16.2 L

min−1.80

2.2.2 Flux processing

The EC data processing was performed using the EddyUH software (Mammarella et al., 2016), following the recommendations

given in (Kohonen et al., 2020) for carbonyl sulfide flux processing. Fluxes were calculated as half-hourly averages, and linear

detrending was used to separate the time series into mean and fluctuating components. The coordinate system was set using a

2D-coordinate rotation according to Kaimal and Finnigan (1994). Spikes were defined using a limit of the difference between85
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subsequent 10 Hz data points. If the difference between two data points exceeded 5 ppb for the CO mixing ratio and 5 ms−1

for the vertical wind velocity component, the data point was considered as a spike and replaced with the previous value. The

time lag was determined by maximizing the cross-covariance between the CO mixing ratio and the vertical wind velocity

component. Spectral corrections were applied to account for the low- and high-frequency attenuation of the covariance. High-

frequency spectral corrections were made with an experimental approach (Aubinet et al., 1999). The low-frequency losses were90

corrected with a theoretical transfer function according to Rannik and Vesala (1999).

The measurements included a longer gap from February to April 2024 due to a broken scroll pump before its replacement.

In addition, several shorter gaps occurred due to dirty inlet filters, power cuts, or other instrumentation problems, during which

the flux measurements were not running. In total, the measurement period contained 24,212 calculated half-hourly fluxes,

which were subsequently quality filtered. The calculated fluxes were accepted according to the following criteria: the second95

wind rotation angle was less than 10° in absolute value (removing 19 data points); the number of spikes in the 30-minute wind

vertical velocity was less than 100 (removing 1,577 data points); kurtosis of
::
the

:
CO mixing ratio and vertical wind component

was between 1 and 8 (removing 950 data points); skewness of
:::
the CO mixing ratio and vertical wind component was between

–2 and 2 (removing 14 data points); and flux stationary
:::::::::
stationarity

:
was less than 0.3 (removing 8,981 data points). The low

turbulent conditions were filtered out using a threshold value for friction velocity less than 0.1 ms−1 (removing 936 data100

points). In addition to these criteria, a few remaining spikes were filtered based on the standard deviation of w
::::::
vertical

:::::
wind

::::::
velocity

::::::::::
component larger than 2 ms−1 and CO mixing ratio larger than 9 ppb (removing 100 data points). Overall, the data

coverage for the measurement period was 34%.
::::::
31.7%.

::::
The

::::
data

:::::::
coverage

::::::
across

:::
the

:::::::
different

:::::::
seasons

:
is
:::::::::::
summarized

::
in

:::::
Table

:::
S1.

Finally, the relative contribution of the surface source area to the measured flux was calculated using the two-dimensional105

Flux Footprint Prediction (FFP) model (Kljun et al., 2015). We assumed a constant boundary layer height of 1000 m
:
,
:::::::
because

::
the

::::::
model

::
is

:::::::::
insensitive

::
to

::::::::
boundary

:::::
layer

:::::
height

::
at
::::

low
:::::::::::
measurement

:::::::
heights,

:
and estimated the roughness length to be 0.03

m
:::::
based

::
on

:::
the

::::::::::
logarithmic

::::
wind

::::::
profile

::
in

::::::
neutral

::::::::::
atmospheric

:::::::::
conditions. The other model parameters, including wind speed,

wind direction, Monin-Obukhov length, standard deviation of lateral wind velocity component, and friction velocity, were

obtained as output from the EC flux post-processing. The flux footprint was presented as 90% of the source area and was110

calculated for every half-hourly flux with a spatial resolution of 0.5 x 0.5 m.

2.3 Ancillary measurements

In addition to the flux data , other supporting measurements were
:::::::
Ancillary

::::
data

:
used in this study . For the flux calculation,

::::
were

:::::::
obtained

:::::
from

::
the

:::::::::
Integrated

::::::
Carbon

::::::::::
Observation

:::::::
System

::::::
(ICOS)

::::::::::::
measurements

:::::::::::::::::
(Lundin et al., 2023).

::::::
These

:::
data

:::::::
include

relative humidity (RH), air pressure, and air temperature (Tair)were used. In the flux analysis, in addition to Tair,
:::
Ta),

:
photo-115

synthetically active radiation (PAR), water table depth (WTD), soil temperature (Tsoil
::
Ts), and soil water content (SWC ) at

a
::::
SWC

::
at

:
10 cm depth(Tsoil) were also used. Tsoil and WTD are presented as an

:
.
:::
Ts

:::
and

:::::
WTD

::::::::
represent

::::
the average of

four measurement plotsand SWC as an
:
,
:::::
while

:::::
SWC

::
is

:::::
based

:::
on

:::
the

:
average of two measurement plots. All data and the

site description can be accessed from the
::
A

:::::::
detailed

:::::::::
description

:::
of

:::
the

:::::
ICOS

:::::::::::::
instrumentation

::
at
:::

the
:::::::::

Stordalen
:::::::
peatland

::::
site
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::::::::
(SE-Sto),

:::::
along

::::
with

::::::
access

::
to

:::
the

:::::::
ancillary

:::::::
dataset,

::
is

:::::::
available

:::::::
through

:::
the ICOS Carbon Portal database (Lundin et al., 2023)120

:
(https://data.icos-cp.eu/portal/

:
,
:::
last

::::::
access:

:::
10

:::
July

::::::
2025).

2.4 Surface map

The surface cover map was created using drone imagery and a digital elevation model (DEM) (Abisko Scientific Research

Station, 2025a, b). Elevated palsas were distinguished from wetter vegetation using a DEM threshold value of 383.0 m. Pixels

with a DEM value higher than the threshold were classified as dry palsas, while pixels with a DEM value lower than the125

threshold were classified as wet hollows. The surface cover map was saved with a resolution of 0.5 x 0.5 m and was used

together with the footprint analysis to calculate the contribution of dry and wet surfaces to the measured half-hourly fluxes.

2.5 Definition of seasons

We defined the seasons based on the calendar months: winter as December–February, spring as March–May, summer as June-

August, and autumn as September–November. The beginning and end of the frozen period were determined according to130

Łakomiec et al. (2021), defined as days when the daily average peat temperature at 10 cm depth remained below/above 0°C for

three consecutive days. The frozen periods during the measurement period were from 21 November 2022 to 11 May 2023 and

1 November 2023 to 12 May 2024.

2.6 Statistical analysis

2.6.1 Flux driver analysis135

The flux drivers were analyzed using correlation analysis and a Random Forest
:::::
forest (RF) model (sklearn.ensemble.RandomForestRegressor),

both performed on half-hourly values. The correlation between CO flux and meteorological and environmental variables was

quantified using Spearman’s rank correlation coefficients (scipy.stats.spearmanr). To assess the importance of the variables

:::::::
variables

::
in
::::::

linear
:::::::::
regression, the Akaike Information Criterion (AIC) was used. To interpret the RF model ,

:::
The

::::
AIC

::
is
::
a

:::::
metric

::::
used

::
to

::::::::
compare

:::
the

::
fit

::
of

:::::::
different

:::::::::
regression

:::::::
models,

::::::::
designed

::
to

::::::
identify

:::
the

::::::
model

:::
that

::::
best

:::::::
balances

::::::::
goodness

:::
of

::
fit140

:::
and

:::::
model

::::::::::
complexity

::::
(i.e.,

:::
the

:::::::
number

::
of

:::::
model

::::::::::
parameters)

:::::::::::::
(Akaike, 1973)

:
.
:::
The

::::::::
preferred

::::::
model

::
is

:::
the

:::
one

::::
with

:::
the

::::::
lowest

:::
AIC

::::::
value.

::
In

:::
our

:::::
case,

:::
this

:::::::
criterion

::::
was

::::
used

::
to

::::::
assess

:::::::
whether

:::
the

:::::
added

:::::::::
complexity

:::
of

::::::::
including

::::::::::
temperature

::
as

:
a
::::::
driver

::
of

:::
CO

:::
flux

::
is
:::::::
justified

::
in

:::::::
addition

::
to

:::::
PAR.

:

::
To

::::::
further

:::::::::
investigate

:::
the

::::::
drivers

:::
and

::::::
detect

:::::::
potential

::::::::::::
nonmonotonic

:::::::::::
relationships

:::
not

:::::::
captured

:::
by

:::::
simple

:::::
linear

:::::::
analysis

::::
and

:::::::::
Spearman’s

:::::::::::
correlations,

:::
we

::::::
applied SHAP (SHapley Additive exPlanations)

:::::
values

::::::
derived

:::::
from

::
an

:::
RF

::::::
model.

::::
This

::::::::
approach145

:::::
allows

:::
for

:::
the

:::::::::::
identification

:::
of

::::::::
complex,

::::::::
nonlinear

::::::::::
interactions

:::
that

:::::
may

:::
not

::
be

::::::::
captured

::
by

:::::::::
traditional

:::::
linear

::::::::
methods

::
or

:::
by

:::::::::
Spearman’s

::::::::::
correlation.

::::::
SHAP

:::::
values were calculated using the SHAP library (https://shap.readthedocs.io/). The SHAP values

provide a method to understand the factors driving the model’s predictions by quantifying the marginal contribution of each

feature to the output. The statistical analysis in this section and following sections was performed with Python 3.12.17.

5
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For the RF model, the data were split into a training (80%) and a validation (20%) set using a random split (random_split150

function). The hyperparameters— maximum depth (10, 12, 15, 20), number of estimators (50, 100, 150, 200), and minimum

samples per leaf (2, 3, 4)— were optimized using a grid search function (sklearn.model_selection.GridSearchCV). The optimal

model was selected by minimizing the mean square
::::::
squared

:
error (MSE). After cross-validation, the optimal model was refit

using all available data and SHAP-values were calculated.
:::
The

::::::::
statistical

::::::::
analysis

::
in

:::
this

:::::::
section

:::
and

:::
the

:::::::::
following

:::::::
sections

:::
was

:::::::::
performed

::::
with

::::::
Python

:::::
3.12.155

2.6.2 Parametrization of carbon monoxide fluxes

Two statistical models were developed to simulate the 30-minute
:::::::::
half-hourly CO fluxes and to assess the flux contributions

from wet and dry surfaces. The first model was a simple linear model assuming a homogeneous surface structure and defined

as:

Fco = α ∗PAR+ββ1∗Ta+
::::

β2∗Ta2 + γ ∗PAR * Ta+ δ
:::::::::::::::::::

, (1)160

where α is the slope and β is the flux intercept. The second model was a surface-type-specific model for heterogeneous surfaces

and was defined as:

Fco = fdry ∗ (αdry ∗PARFco,dry
::::

+βdry)+ fwet ∗ (αwet ∗PAR+βwet),Fco,wet
::::

(2)

where
:::::
Fco,dry:::

and
::::::
Fco,wet ::::::::

represent
::
the

:::::::::::
contributions

:::::
from

:::
dry

:::
and

:::
wet

:::::::
surface

:::::
types,

::::::::::
respectively.

:::::
These

:::::::::::
components

::
are

:::::::
defined

::
as

:::::::
follows:165

Fco,dry = fdry ∗ (αdry ∗PAR+β1dry ∗Ta+β2dry ∗Ta2 + γdry ∗PAR * Ta+ δdry)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(3)

Fco,wet = fwet ∗ (αwet ∗PAR+β1wet ∗Ta+β2wet ∗Ta2 + γwet ∗PAR * Ta+ δwet)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(4)

:::::
where fdry and fwet represent the footprint-weighted fraction of dry and wet areas, respectively, which were estimated from the

surface map (Fig. 1). The terms αdry :
;
::
α

::::::::
represents

:::
the

:::::::::
sensitivity

::
of

::::
CO

:::::
fluxes

::
to

:::::
PAR;

:::
β1

:
and βdry correspond to the slope170

and intercept for the dry surface, while αwet and βwet are the slope and intercept for the wet surface. The unknown
::
β1

:::::::
capture

::
the

::::::
linear

:::
and

::::::::
quadratic

::::::
effects

::
of

::::
Tair,

:::::::::::
respectively;

::
γ

::::::::
represents

:::
the

:::::::::
interaction

::::::::
between

::::
PAR

:::
and

::::
Tair,

::::
and

:
δ
::
is
:::
the

::::::::
intercept

::::
term.

:

:::
The

:
model parameters, α, β, αdry, βdry, αwet, and βwet :

1,
:::
β2,

:::
γ,

:::
and

::
δ were estimated using a Bayesian inference approach.

Prior selection followed the methodology proposed by Buzacott et al. (2024) with two model runs. We used the first model run175

to estimate the probable parameters for each land use separately using the homogeneous surface type model (Eq. 1) and the

second model run to estimate the probable parameters for mixed contributions from both surface types using the heterogeneous

surface type model (Eq. 2).
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For the first model run, all priors were assumed to follow uniform distributions (Table S1
::
S3). Data were divided into wet

and dry classes based on the threshold of 70% of fluxes originating from wet or dry surfaces. In addition, the model parameters180

were estimated by assuming homogeneous surface structure, using all data for parameter estimation. The resulting posterior

distributions were observed to follow approximately normal distributions (Fig. S7).

:::
S8).

:
For the second run, all available data with mixed surface contributions were used. The prior distributions were defined

based on the posterior information obtained from the first model run. All prior distributions were defined as normal distribu-

tions, based on the 95% confident interval of the posteriors from first model run, as suggested by Buzacott et al. (2024). The185

decision to use 95% confidence interval was made to ensure sufficient flexibility for the parameters under the mixed contribu-

tion. The priors for the second model run are presented in Table S1.
::
S3

:::
and

:::
the

::::::::
posterior

::::::::::
distributions

:::::
from

:::
the

::::::
second

:::
run

:::
are

:::::
shown

::
in

::::
Fig.

:::
S9.

:

The model parameters were optimized numerically sampling using the Markov chain Monte Carlo (MCMC) method. The

MCMC sampling was performed using pm.sample function from Python’s PyMC library with 4 chains and 2000 samples190

in each chain, and tuning period 2000, in total 8000 samples. The output product from the MCMC sampling consisted of

posterior probability distributions for each optimized model parameter. The model performance for both models was evaluated

by comparing the predicted fluxes to the observed fluxes, using the root mean square error (RMSE) and the coefficient of

determination (R2) as performance metrics.

The models were initially fit to all
::::
fitted

::::::
using data from March to November, excluding winter data. Then

::::::
months.

:::
To195

:::::::::
investigate

:::::::
potential

::::::::
seasonal

:::::::::
variability

::
in

:::
the

::::::
model

::::::::::
parameters,

:
separate analyses were

::::::::::
subsequently

:
conducted for each

season (spring, summer, and autumn)to explore potential seasonal variability in the model parameters.
:::
An

:::::
initial

::::::
model

:::::
using

::::
only

::::
PAR

:::
was

::::::
tested,

:::
but

::
Ta

::::
was

:::::
added

:::::::
because

::
it

::::::::
improved

:::::
model

:::::::::::
performance

:::::
(Table

::::
S2). The posterior parameter sets from

the second model run were
:::::::
estimates

:::::
from

:::
the

::::
final

::::::
model

::::
were

::::
then

:
used to simulate the fluxes from

:::
CO

:::::
fluxes

:::::
from

::::
both

wet and dry surfaces
::::::
surface

::::
types. Annual estimates were calculated as the cumulative sums of the simulated fluxes

::::::
derived200

::
by

::::::::
applying

:::::
these

:::::::
posterior

::::::::::
parameters

::
to

::::::::
observed

::::
PAR

::::
and

:::
Ta

::::
data

::::
from

::::::
March

::
to

::::::::::
November,

:::::
under

:::
the

::::::::::
assumption

::::
that

:::::::::
wintertime

:::::
fluxes

::::
were

:::::::::
negligible

:::
and

::::::::
therefore

:::
set

::
to

::::
zero.

3 Results

3.1 Environmental conditions and flux footprint

The mean annual temperature for the first measurement year (from August 2022 to August 2023) was 1.1°C, while the mean205

annual temperature for the second measurement year (from August 2023 to August 2024) was -0.1°C. The first year was warmer

than the long-term average annual temperature (1991–2020), while the second year was colder than the long-term average

(SMHI, 2024). The air temperature during the measurement period ranged from –38.8°C to 27.3°C, with
:
; the minimum value

was observed on 4 January 2024
:
, and the maximum value on 22 July 2024. The soil temperature at a depth of 10 cm ranged

from –12.2°C to 11.3°C, with the minimum recorded on 4 January 2024 and the maximum value observed on 22 July 2024.210

The total accumulated precipitation for the first measurement year was 325 mm , and for the second measurement year , it was
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::
in

::
the

::::
first

:::::::::::
measurement

::::
year

::::
and 298 mm

::
in

:::
the

::::::
second

::::
year. In both years, annual precipitation was lower than the long-term

average (1991–2020) for this region (SMHI, 2024). The daily mean PAR varied from 0.2 to 688.4 µmol m−2s−1, with the

minimum value observed on 31 December 2022 and the maximum value on 1 July 2024.

The main wind directions during the study period were from the southeast (SE) and the northwest (NW), with 45% of the215

measured fluxes coming from the wind sector between 400
:
°
:
and 1800 °

:
(SE) and 54% from the wind sector between 2000

:
°

and 3500
:
° (NW). The distribution of wind directions was consistent across different seasons and stability classes (Fig. S1).

:
,
:::::::
although

:::::
slight

:::::::::
day–night

:::::::::
differences

:::::
were

::::::::
observed

::::::
during

:::
the

:::::::::
non-frozen

:::::::
period,

::::
with

:::
SE

:::::
winds

:::::
more

::::::::
common

::
at

:::::
night

:::
and

::::
NW

:::::
winds

:::::
more

:::::::
frequent

::::::
during

::
the

::::
day

::::
(Fig.

::::
S2). The footprint-weighted average showed that fluxes from the NW wind

direction were predominantly associated with the drier palsas, with 93% of the fluxes originated from the palsas and 7% of220

the fluxes originated from the wetter surface (Fig. 1). In contrast, fluxes from the SE direction were characterized by 23%

originating from drier palsas and 77% from wetter surface.

3.2 Ecosystem scale fluxes

3.2.1 Flux timeseries

The ecosystem-scale half-hourly CO fluxes ranged from –0.29 to 0.34 nmol m−2 s−1 (25th and 75th percentiles), showing225

both net uptake and emission. The fluxes had strong seasonal variability, with the highest emissions observed in summer and

the highest uptake in autumn (Fig. 2). On a daily scale, the site acted
::
site

::::::
acting as a net CO source for most of the

::
in spring and

summer , with
:
(average median fluxes of 0.17 nmol m−2s−1 and 0.24 nmol m−2 s−1, respectively. In autumn, the site turned

into
:
),

:::
and

:::
as a net sink for CO, with an average flux of

::
in

::::::
autumn

::
(–0.31 nmol m−2 s−1. )

:::::
(Fig.

::
2).

:
The wintertime flux was

minor (-0.09 nmol m−2 s−1) compared to the fluxes of other seasons. The pattern , where the site acted as CO source in spring230

and summer and CO sink in autumn
::::
This

:::::::
seasonal

::::::
pattern

:
was consistent across both measurement years.

The CO flux showed a systematic diurnal cycle during the vegetative period, but no such cycle was observed in the wintertime

fluxes (Fig. 3). In spring and summer, emissions occurred during the daytime , while the consumption occurred during the

nighttime (from 6 pm to 4 am), with the maximum emission observed at noon. The mean net CO flux was positive in both

spring and summer, indicating that emissions dominated the net flux during these seasons. In contrast, autumn showed a235

negative mean flux, indicating that CO uptake predominated. The maximum mean daytime emission was highest in summer,

::::
with

:::::::
daytime

::::::::
emissions

::::
and

::::::::
nighttime

:::::::
uptake.

:::::::::
Emissions

::::::
peaked

::
at

:::::
noon,

:
reaching 1.11 nmol m−2 s−1 at noon, while the

minimum value observed at night was –0.33
:
in
:::::::
summer

::::
and

::::
0.73 nmol m−2 s−1 . In spring, the maximum mean emission was

0.73 nmol m−2s−1, and the minimum nighttime value was –0.14
::
in

::::::
spring,

:::::
while

::::::::
nighttime

::::::
uptake

::::
was

::::::::
strongest

::
in

:::::::
autumn

:::::
(-0.44 nmol m−2 s−1

:
)
:::::
(Fig.

::
3).

:::
In

:::::::
contrast,

::::::
winter

:::::
fluxes

::::::
lacked

::
a

::::
clear

::::::
diurnal

::::::
cycle.

:::
The

:::::::
diurnal

::::::
pattern

:::::::
reflected

::::::::
seasonal240

:::::::::
differences,

:::::
with

:::
net

:::::::
positive

::::
daily

::::::
fluxes

:::::::::
(emissions)

:::
in

:::::
spring

::::
and

:::::::
summer,

::::
and

:::
net

:::::::
negative

::::::
fluxes

:::::::
(uptake)

::
in

:::::::
autumn. In

autumn, the net flux was negative, showing consumption at night and flux close to zero at noon, with maximum values of 0.01

nmol m−2s−1 and minimum values of –0.44 nmol m−2s−1.

8



3.2.2 Flux drivers

Seasonal and diurnal variations in CO fluxes were primarily driven by the seasonal and diurnal cycles of environmental condi-245

tions during the unfrozen period (Fig. 2). We found no significant correlation between wintertime fluxes and any environmental

conditions (Fig. S2
:::
S3) and thus wintertime fluxes were excluded from further analysis, with a focus on other seasons. Spear-

man rank correlations showed that PAR and temperature were the key factors explaining flux dynamics (Fig. 4). We found a

positive correlation between half-hourly CO flux and both PAR (0.71) and Tair
::
Ta

:
(0.34), indicating that fluxes increase with

higher radiation and warmer temperatures.250

The main drivers identified based on the correlation analysis , PAR and Tair were fitted against CO flux (Fig. 5). A linear

correlation was observed
:::::::
analysis

:::::::
revealed

:
a
:::::
strong

:::::
linear

::::::::::
relationship

:
between CO flux and PAR , while a nonlinear correlation

was found with Tair. The linear regression for binned PAR had a
:::
(R2

::
=
::::::
0.996,

:
p
::
=

:::::::
1.47e-8),

:::::
with

:
a
:::::::::
regression slope of 0.0012

nmol m−2 s−1 and an intercept of –0.29 nmol m−2 s−1 with an R2-value of 0.996 and a p-value of 1.474e-8 (Fig. 5). The CO

flux was zero when PAR was
:::::::::
approached

:::::
zero

::
at

::::::::::::
approximately 250 µmol m−2s−1 . This threshold value was also observed255

in the flux timeseries, where the site turned to net CO source in spring when PAR levels exceeded approximately 250 µmol

m−2s−1 and autumn sink when PAR levels were below 250 µmol m−2s−1
::::
PAR,

:
a
::::::::
threshold

:::
that

:::::::
aligned

::::
with

:::::::
seasonal

:::::
shifts

::
in

::
net

::::
CO

:::
flux

::::::::
observed

::
in

:::
the

::::
time

:::::
series (Fig. 2). Due to positive correlation between PAR and Tair

:
A
::::::::
nonlinear

::::::::::
relationship

::::
was

:::::
found

:::::::
between

:::
the

:::
CO

::::
flux

:::
and

:::
TA (Fig. 4), we used the AIC to assess whether Tair could be an additional driver together with

PAR. The AIC for using only PAR as an explanatory variable
:
5,
::::
S4).

:::::::::
Including

:::
TA in the linear regression was 9014, while260

adding the Tair to the linear model reduced the AIC to 8836. This suggests that Tair
::::
from

::::
9014

:::::
(PAR

:::::
only)

::
to

:::::
8836,

:::::::::
suggesting

:::
that

::
Ta

:
is also a potential driver of CO flux, despite the multicollinearity between PAR and Tair

::::::::
significant

::::::::::
explanatory

:::::::
variable

::
for

::::
CO

::::::::
exchange.

According to Spearman’s rank correlations, the correlation between CO flux and Tsoil
::
Ts

:
(0.12) was smaller than between

the CO flux and Tair
::
Ta

:
(0.34) (Fig. 4). However, soil temperature played an important role, especially in spring and autumn265

flux dynamics, when the soil was frozen or unfrozen. The systematic soil consumption observed in the nighttime flux began in

spring after the soil melted and ceased in autumn once the soil froze (Fig. 2). In the nighttime data, a higher negative correlation

was found with Tsoil
::
Ts

:
(-0.41) than with Tair

::
Ta

:
(-0.28) (Fig. S3

::
S5). The correlation analysis including the daytime and

nighttime fluxes did not reveal any clear relationship between the CO flux and fdry (Fig. 4). However, in the nighttime fluxes, a

negative correlation between CO flux and fdry (-0.30) was observed (Fig. S3
::
S5).270

To further investigate the drivers and detect potential nonmonotonic relationships not captured by simple linear analysis

and Spearman’s correlations, we applied SHAP values derived from an RF model. This approach allows for the identification

of complex, nonlinear interactions that may not be captured by traditional linear methods or by Spearman’s correlation. The

results from the SHAP values were consistent with the results of the Spearman correlations, with the highest positive fluxes

associated with high PAR (Fig. 6). Tsoil and Tair
::
Ts

:::
and

:::
Ta were found to be the second and the third most important drivers,275

with higher positive fluxes (emission) associated with low soil temperature and high air temperature. In the nighttime data,

Tsoil
::
Ts was the most important driver with the higher negative fluxes (uptake) associated with high soil temperature (Fig.
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S4
::
S6), consistent with Fig. 6. Additionally, SHAP values from both all data and nighttime data indicated that higher fdry led to

decreased fluxes, meaning that higher fluxes were observed in the wetter conditions (Fig. 6, Fig. S3
:::
S6). Figure S5

::
S7 presents

partial dependence plots of SHAP values for each feature.280

We analyzed the CO fluxes from
::
the

:
NW and SE footprints and found that fluxes from the NW footprint were consistently

lower than those from the SE footprint
:::::::::
throughout

:::
the

:::::
study

::::::
period (Fig. S6). Systematically lower net fluxes and nighttime

fluxes were observed from NW footprint across all months, with the exception in April, when
::
7).

:::
On

::::::::
average,

:::
the

:::
net

::::
flux

::::
from

:::
the

::::
NW

:::::::
footprint

::::
was

:::::
–0.03

:::::
nmol

::::
m−2

::::
s−1,

:::::::
whereas

:::
the

:::
net

::::
flux

::::
from

:
the SE footprint showed a lower flux. The lower

nighttime flux indicates that soil consumption in
:::
was

::::
0.13

:::::
nmol

::::
m−2

::::
s−1.

::::
The

::::::::
nighttime

::::
flux

::::
from the NW footprint is higher285

:::
was

:::
on

::::::
average

:::
2.1

:::::
times

:::::
larger than in the SE footprint . The same was observed in SHAP analysis and correlation coefficients

in nighttime data where the surface wetness was driving the ecosystem scale fluxes .
:::::
(–0.23

:::::
nmol

::::
m−2

::::
s−1

::
in

::::
NW

:::
vs.

:::::
–0.11

::::
nmol

::::
m−2

::::
s−1

:
in
::::
SE).

::::
For

:::::::
example,

::
in

::::
July,

:::
the

:::::
mean

::::::::
nighttime

:::
flux

:::::
from

::
the

::::
NW

::::::::
footprint

:::
was

:::::
–0.27

:::::
nmol

::::
m−2

:::
s−1,

:::::::::
compared

::
to

:::::
–0.14

::::
nmol

::::
m−2

::::
s−1

::::
from

:::
the

:::
SE

::::::::
footprint.

::::
This

::::::
pattern

::::
was

::::::::
observed

:::::
across

:::
all

:::::::
months,

::::
with

:::
the

::::::::
exception

::
of

:::::
April

:::::
when

::
the

:::
SE

::::::::
footprint

::::::::
exhibited

:::::::
slightly

:::::
lower

:::::
fluxes

:::::
(0.05

::::
nmol

:::::
m−2

:::
s−1

::
in

::::
NW

:::
vs.

::::
0.02

:::::
nmol

::::
m−2

::::
s−1

::
in

::::
SE).

::::
The

::::::::::
consistently290

:::::
lower

::::::::
nighttime

:::::
fluxes

::::
from

:::
the

::::
NW

:::::::
footprint

:::::::
suggest

::::::
greater

:::
CO

::::::
uptake

:::
by

::
the

::::
soil

::
in

:::
this

::::
area

::::::::
compared

:::
to

::
the

:::
SE

::::::::
footprint.

:

3.3 Estimate of fluxes from dry and wet surface using Bayesian inference

3.3.1 Parameter distributions and model performance

We estimated the wet and dry fluxes numerically using a Bayesian inference approach with two model runs. The first model run

used a threshold of 70% to separate the wet and dry fluxes and in the second model run the mixed contributions of fluxes were295

considered. The posterior parameter distributions from the first run are presented in Fig. S7. The distributions of parametersα

and β, and the residuals were found to be approximately normally distributed. The posterior parameters from the first run were

used as priors for the second run by assuming a normal distribution for the priors. The posterior distributions from the second

run are shown in Fig. 7. Overall, there was no significant difference between the posterior distributions of α and β between the

two model runs.300

Clear seasonal variations were observed in both model parameters, α and β, as well as differences between the two surface

structures in both parameters
:::::::
Seasonal

:::
and

::::::::::::::::::::
surface-type-dependent

::::::::
variability

::::
was

::::::
evident

::
in

:::
the

::::::::
estimated

::::::
model

::::::::::
parameters,

::::::::::
highlighting

:::
the

::::::::
influence

::
of

::::
both

::::::::::::
environmental

:::::::::
conditions

:::
and

:::::::
surface

:::::::::::
heterogeneity

:::
on

:::
CO

::::::::
exchange

::::::::
dynamics

:
(Fig. 7

:::
S9).

The strongest radiation response (α) was observed in summer with a stronger response on dry surfaces than on wet surfaces.

The difference in radiation response was observed in summer but not in spring and autumn
:::::::
seasonal

:::::::::
differences

:::::
were

::::
less305

:::::::::
pronounced

:::::
when

:::
Ta

:::
was

::::::::
included

::
as

::
an

::::::::::
explanatory

::::::::
variable,

::::::::
compared

::
to

:::
the

::::::
model

:::::
using

::::
only

::::
PAR,

:::::::::
suggesting

::::
that

::::
part

::
of

::
the

::::::::
observed

::::::::::
seasonality

:::
was

:::::::::
explained

::
by

::::::::::
temperature. The intercept

::::::::
parameter

:::
(δ)

::::::::
exhibited

::::
clear

::::::::
seasonal

:::::::
patterns:

::::::
values

::::
were

::::::
higher

::::::::
compared

::
to

:::::
other

::::::
seasons

::
in

::::::
spring (β) was less negative in spring than in summer and autumn, indicating lower

soil uptake in spring,
::::
δdry :

=
::::::
–0.125

:::::
nmol

::::
m−2

:::
s−1

::::
and

::::
δwet :

=
::::::
–0.106

:::::
nmol

::::
m−2

:::::
s−1),

::::::::
indicating

:::::::
reduced

:::
CO

::::::
uptake when the

soil was still frozen. The intercept was more negative
::::::::
remained

::::::
frozen.

::
In

:::::::
contrast,

:::::
lower

:::::::::
intercepts

::::
were

::::::::
observed

::
in

:::::::
summer310
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::::
(δdry::

=
::::::
–0.572

::::
nmol

::::
m−2

::::
s−1

:::
and

::::
δwet::

=
::::::
–0.231

::::
nmol

:::::
m−2

::::
s−1)

:::
and

::::::
autumn

:::::
(δdry::

=
::::::
–0.582

::::
nmol

::::
m−2

::::
s−1

:::
and

::::
δwet::

=
::::::
–0.175

::::
nmol

:::::
m−2

::::
s−1),

:::::::::
reflecting

::::::::
enhanced

::::::
uptake

::::::
during

:::::::
warmer

:::::::::
conditions.

:::::::
Across

::
all

::::::::
seasons,

:::
the

::::::::
intercept

:::
was

::::::
lower on dry

surfaces than
::
on

:
wet surfaces, with the difference in intercept observed in all seasons, but being the largest

:::::
largest

::::::::::
differences

::::::::
occurring in summer and autumn.

:::::::
Seasonal

::::
and

:::::::::::::::
surface-dependent

::::::::
variations

:::::
were

::::
also

:::::::
apparent

::
in
:::::

other
::::::
model

::::::::::
parameters;

:::::::
however,

:::
the

:::::::::::
interpretation

::
is
:::::::::::
complicated

::
by

:::
the

::::::::::
collinearity

:::::::
between

::::
PAR

:::
and

:::
Ta,

::::::
which

::::
may

::::::::
confound

::::::::
individual

:::::::::
parameter315

:::::::
estimates

::::
and

::::
limit

:::
the

::::::
ability

::
to

:::::
isolate

:::::
their

::::::::
respective

::::::
effects.

:

Model performance was calculated using the posterior parameter sets from the second run and is presented in Table S2
::
S4.

The RMSE between different models ranged from 0.33
:::
0.32

:
nmol m−2 s−1 to 0.40

::::
0.37 nmol m−2 s−1 and R2 values ranged

from 0.17 to 0.74
::::
0.20

::
to

::::
0.77. Overall, the model performance was best in summer and poorest in autumn. The mean of the

predicted values follows the 1:1 line, with no obvious bias towards high or low values (Fig. S8
:::
S10). The model performance320

was slightly better in the heterogenous surface models compared to the homogeneous surface models, though the difference

was relatively small
:::
with

:::
an

::::::
average

::::::
RMSE

::::::::::::
improvement

::
of

::::::::::::
approximately

:::::
0.015

::::
nmol

:::::
m−2

:::
s−1

:::
and

:::
R2

::::::::
increases

::
of

:::::
0.042.

Posterior parameter distributions of the model parameters α and β after the second model run. The parameters for wet

(turquoise) and dry (yellow) are estimated considering the mixed contributions from both wet and dry surfaces. Homogeneous

parameters represents the parameters without considering surface structure (green).325

3.3.2 Annual cumulative flux

We estimated the annual cumulative fluxes using
:::::::
applying the posterior parameters from the second model run. The cumulative

annual fluxes are shown in Fig. ??. We found that when seasonality was not considered, the models estimated larger uptake

compared to when seasonality in parameterization was included. For the final annual cumulative flux estimates, we used the

seasonal parametrization
:::
our

:::::::
seasonal

::::::
model

::
to

:::
the

::::
PAR

::::
and

:::
Tair

::::
data

:::::
from

::::::
March

::
to

:::::::::
November

::::
(Fig.

::::
S9).

::::
The

:::::::::
difference

::
in330

:::::
annual

::::::
fluxes

:::::::
between

:::
the

::::::::
seasonally

::::::::::::
parameterized

::::
and

::::::::::::
non-seasonally

::::::::::::
parameterized

::::::
models

::::
was

:::::
small

::::
(Fig.

:::::
S11).

::::::::
However,

::
as

:::
we

::::::::
observed

:::::::
seasonal

::::::::
variation

::
in

::::::
model

::::::::::
parameters,

:::
we

:::::
chose

:::
to

:::
use

:::
the

::::::::
seasonal

::::::
model

:::
for

:::::::::
calculating

::::::
annual

::::::
fluxes

::
to

:::::
better

::::::::
represent

::::::::
temporal

::::::::
dynamics. The annual cumulative flux for dry surfaces was –44.0

:::
43.3

:
mg CO m−2 yr−1 in

2022–2023 and –51.5
:::
32.2

:
mg CO mg CO m−2 yr−1 in 2023–2024, while for wet surfaces, it was 92.7

::::
70.8 mg CO m−2 yr−1

in 2022–2023 and 84.4
:::
71.3

:
mg CO m−2 yr−1 in 2023–2024. There was a significant difference between wet and dry surfaces,335

with dry surfaces acting as CO sinks and wet surfaces as CO sources. Interannual variability in annual cumulative fluxes was

minor. The cumulative annual flux in the homogeneous model was 11.6
::::
-0.03

:
mg CO m−2 yr−1 in 2022–2023 and 4.2

::::
11.4

mg CO m−2 yr−1 in 2023–2024. The confidence intervals and standard deviations of annual estimates are presented in Table

S3
::
S5.

Probability distribution of cumulative annual fluxes in wet (turquoise), dry (yellow) surfaces and in homogeneous surface340

(green) (a) using seasonal parametrization and (b) using no seasonality in parametrization.
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4 Discussion

4.1 Ecosystem scale fluxes
::::
Flux

::::::::::
magnitude

::::
and

::::::::
temporal

:::::::::
variations

4.1.1 Flux magnitude and temporal variations

Our results show that CO flux dynamics are influenced by the environmental conditionsand
:
,
::::::::::
particularly

::::::::
radiation

::::
and345

::::::::::
temperature,

::::
and vary according to the surface cover type. We found that the wet surfaces of the peatland emit CO, while

the drier areas of the peatland act as CO sinks. This study provides new insights into the magnitude and drivers of biogenic CO

fluxes in Arctic peatlands, contributing to a better understanding of the role of terrestrial ecosystems to the CO budget.

The CO fluxes reported in this study are similar in magnitude to the fluxes reported in previous EC flux studies in a boreal

cropland and two temperate grasslands, with mean fluxes ranging from –1 to 2 nmol m−2 s−1 (Pihlatie et al., 2016; Cowan350

et al., 2018; Murphy et al., 2023).
:::
The

::::::::
modelled

::::::
annual

:::::
fluxes

:::
in

:::
this

:::::
study

::::::
ranged

::::
from

::::
–32

::
to

:::
71

:::
mg

:::
CO

::::
m−2

:::::
yr−1.

::::::
When

::::::::
compared

::::
with

::::::
annual

:::::
fluxes

::::::::
reported

::
in

::::
other

::::
EC

::::::
studies,

::::::::::
particularly

:::::
from

::::::::
temperate

::::::
regions

::::::
where

::::::
values

:::::
range

::::
from

::::
360

::
to

:::
880

:::
mg

::::
CO

::::
m−2

::::
yr−1

::::::::::::::::::::::::::::::::::
(Cowan et al., 2018; Murphy et al., 2023)

:
,
:::
our

::::::
results

:::::::
indicate

:
a
:::::
lower

:::::::::::
contribution

::
of

:::::::
biogenic

::::
CO

::::::::
emissions

::::
from

::::::
Arctic

::::::::
peatlands

::::::
relative

::
to

:::::::::
temperate

:::::::::
grasslands.

:

Consistent with earlier studies, our results show clear seasonal variations in CO fluxes (Pihlatie et al., 2016; Cowan et al.,355

2018). The site acted as a net source of biogenic CO during the spring and summer, and a net sink during the autumn. The

highest net emissions were observed in summer, although the difference between summer and spring was smaller than would

be expected if fluxes were determined solely by radiation from living plants. Spring emissions began even before snowmelt and

the onset of the growing season, suggesting that CO degradation from senescent plants and litter from the previous year may

contribute to the emissions. This is also supported by other studies reporting that senescent plants and litter emit higher amounts360

of CO than living plants (Derendorp et al., 2011; Lee et al., 2012)
::::::::::::::::::::::::::::::::::::::::::::::
(Tarr et al., 1995; Derendorp et al., 2011; Lee et al., 2012).

Early spring CO emissions were reported by Pihlatie et al. (2016) from reed canary grass, where high emissions were observed

after snowmelt before the start of the crop growth. Another factor probably contributing to the relatively high net emissions

in the spring was frozen soil, which results in significantly lower nighttime CO consumption compared to the summer and

autumn periods.365

The largest net CO consumption was observed during late summer and early autumn in the nighttime data. Nighttime was

defined as periods when PAR was less than 1 µmol m−2s−1. In high latitudes, dark conditions during mid-summer are limited,

and therefore we have only a little
::::::
limited nighttime data available for the summer months. The summer diurnal plot (Fig.

3) includes the effects of radiation on fluxes during nighttime hours (7 pm to 4 am), when net uptake was observed, making

it difficult to fully understand the development of soil uptake throughout the growing season. However, we observed that370

the highest net uptake occurred in late summer and autumn. We speculate that microbial communities responsible for CO

consumption require time to develop
::::::::::::::::::::::::::::::::::::
(King and Weber, 2007; Cordero et al., 2019), which could explains

::::::
explain

:
the higher

consumption in late summer and autumn, rather than in early or mid-summer. In autumn, when CO production ceases due

to PAR limitation, consumption became more visible and was also observed in daytime fluxes. In August, both soil and air
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temperature were higher than in September and October, suggesting that thermal production, in the absence of radiation, may375

influence the net flux and reduce CO consumption.

The importance of soil temperature as a driver for CO fluxes increased in autumn, when the site was mainly a net sink of

CO. The transition from a net source to a net sink of CO occurred when PAR level dropped below 250 µmol m−2s−1. This

shift from a net source to a net sink in autumn is a result of a decreased photoproduction of CO due to limited daytime radiation

in high latitudes and may also indicate increased CO consumption in the soil. Similar
:
A
::::::
similar

:
shift has also been observed380

in a boreal cropland (Pihlatie et al., 2016), but not in temperate ecosystems (Cowan et al., 2018; Murphy et al., 2023). The soil

consumption in autumn continued until the soil froze.

The contribution of wintertime fluxes to the total CO flux was relatively small compared to fluxes observed in other seasons,

likely due to both limited production and consumption. The lack of correlation between wintertime fluxes and environmental

variables suggests minimal CO activity during winter, or at least no significant process that would result in a net flux differ-385

ent from zero. The limited daylight and snow cover may prevent CO emissions, while the frozen soil likely ceased the CO

consumption
:::
CO

::::::::::
consumption

::::::
likely

:::::
ceased

::::
due

::
to

:::::
frozen

::::
soil. Due to the small flux during the winter, this study focused pri-

marily on spring, growing season,
:
and autumn fluxes. However, future studies should also give attention to wintertime fluxes

as well.

4.2 Processes and
:::
flux

:
drivers390

We observed a systematic diurnal cycle, with daytime emissions peaking at noon and nighttime uptake, a pattern consis-

tent with other studies (Pihlatie et al., 2016; Cowan et al., 2018). Daytime emissions followed the pattern of PAR, suggest-

ing that the CO production is driven by radiation, likely due to photodegradation of organic matter, litter or living plants

(Tarr et al., 1995; Derendorp et al., 2011; King et al., 2012; Bruhn et al., 2013). The
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Tarr et al., 1995; Derendorp et al., 2011; King et al., 2012; Bruhn et al., 2013; Muller et al., 2025)

:
.
:::
Our

:
flux driver analysis indicated that PAR is the primary factor driving ecosystem scale CO fluxes. Unfortunately, using the395

EC technique, we cannot determine the exact source process of these emissions. However, the
::::
The linear relationship between

PAR and CO, also reported in Bruhn et al. (2013), suggests towards an
::
an

:::::::::
underlying abiotic process, with no obvious limiting

biotic factors controlling the emissions.

Previous studies have reported both photoproduction (King et al., 2012; Bruhn et al., 2013; Fraser et al., 2015) and
::::::::
However,

thermal production (Lee et al., 2012; Van Asperen et al., 2015) of
:::
and

:::::
biotic

:::::::::
production

::
of

:::::
living

:::::
plants

::::::::::::::::::::
(Wang and Liao, 2016)400

::::
have

:::
also

::::
been

::::::::
reported

::
as

:::::::
potential

::::::
sources

::
of

::::
CO

:
at
:::
the

:::::::::
ecosystem

:::::
scale.

:::
For

::::::::
example,

:
a
:::::
recent

:::::
study

:::::
found

:::
that

:::::::::::::
heat-controlled

:::::::
biogenic

:::
CO

:::::::::
production

::::
from

::::::
plants

:
is
::::::
linked

::
to

::::
biotic

:::::::::
processes

:::::
rather

:::
than

::::::::::::::
photoproduction

:::::::::::::::::
(Muller et al., 2025).

::::::::::::
Unfortunately,

::::
using

:::
the

:::
EC

:::::::::
technique,

:::
we

::::::
cannot

::::::::
determine

:::
the

:::::
exact

::::::
source

::::::
process

::
of

:::::
these

:::::::::
emissions.

:::
Our

:::::::
analysis

::::::::
indicates

:::
that

:::
air

::::::::::
temperature

:
is
:::
an

::::::::
important

:::::
factor

:::::::::
influencing

:
CO . In our analysis, we were unable to exclude

the potential influence of air temperature on CO exchange. Both AIC and SHAP values indicate that air temperature is a statis-405

tically significant driver, together with PAR, with higher emission observed at warmer temperatures.
::::
This

::::
was

:::
also

:::::::::
supported

::
by

:::
our

:::::::
residual

::::::::
analysis,

:::::
which

:::::::
revealed

::
a
:::::::::
non-linear

::::::::::
relationship

::
in

:::
the

::::
flux

:::::::
residuals

:::::::
derived

::::
from

:::
the

::::::
linear

:::::
model

::
of

:::::
PAR

::::
(Fig.

::::
S4).

::::
Due

::
to

:::
the

:::::::::
correlation

::::::::
between

::::::::::
temperature

::::
and

::::::::
radiation,

::
it

::
is

::::::::::
challenging

::
to

::::
fully

::::::::::
disentangle

::::
their

:::::::::::
independent
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:::::
effects

:::
on

:::
CO

::::::
fluxes.

:
We propose that photo- and thermal degradation may occur simultaneously. However, as the net night-

time CO fluxes were mostly negative, if thermal degradation does occur, it is likely much smaller than the observed nighttime410

CO consumption. The measured nighttime CO consumption is hence a net sum of microbial CO consumption and abiotic CO

production via thermal degradation, both of which are likely driven by temperature.
::::::::
However,

:::
we

:::::
cannot

:::::::
exclude

:::
the

:::::::::
possibility

::
of

::::::::::::
heat-controlled

:::::
biotic

:::::::
sources

::::::::::
contributing

::
to

:::
CO

::::::
fluxes

::::::::::::::::
(Muller et al., 2025)

:
.

According to our driver analysis, we were not able to identify relationships between environmental drivers and CO up-

take as clearly as we did for CO emissions. We found that soil temperature was an important driver and CO uptake was415

observed only during the unfrozen periods. However, we did not find any clear relationship between soil temperature and CO

flux during the unfrozen period. Several factors may explain this: during the daytime, net fluxes were primarily driven by

photoproduction
:::::::
radiation, and at nighttime, when CO uptake was observed, the data were limited due to low turbulent condi-

tions and the lack of dark conditions in summer. As mentioned earlier, both thermal production
::::::
thermal

::::::::::
production,

:::::
which

::
is

:::
the

:::
one

:::::::
potential

::::::
source

::
of
::::

CO and soil consumption are both likely driven by temperature, which may lead to similar responses420

for each process, thereby minimizing the changes observed in net flux (King, 2000).

In addition to temperature, SWC has been proposed as a potential driver of CO uptake. with an optimal range of SWC .

Very low SWC may reduce microbial activity, while very high SWC prevents
:::
Low

:::::
SWC

::::
can

::::
limit

::::::::
microbial

:::::::::
processes,

:::::
while

::::
high

::::
SWC

::::
may

:::::::
prevent gas diffusion in the soil (Moxley and Smith, 1998). However, we could not identify a clear relationship

between CO flux and SWC, but we observed systematically lower fluxes from the drier footprint compared to the wetter425

footprint. This was seen in both daytime and nighttime data, as well as in SHAP values. The higher consumption observed in

drier conditions suggests that CO consumption
:::::
uptake

:
is larger under oxic conditions than under anoxic conditions, which

:
.

::::
This is consistent with other studies(Funk et al., 1994; Rich and King, 1999). ,

::::::
which

::::
have

:::::
found

::::
that

::::
most

::::
CO

:::::::::::
consumption

:::::
occurs

:::::
under

::::
oxic

:::::::::
conditions

:::::::::::::::::::::::::::::::::
(Funk et al., 1994; Rich and King, 1999)

:
.
::::
This

:
is
::::::::
expected,

:::
as

:::
CO

::
is

::::::
reactive

::::
and

:::
can

::
be

::::::::
oxidized

::
to

::::
CO2:::::::::::::::::::::::::::::::::::::::::::::::::

(Bartholomew and Alexander, 1979; King and Weber, 2007)
:
. It is also possible that in wet conditions, CO diffusion430

was prevented in the soil, as proposed in Moxley and Smith (1998). A similar difference in fluxes between the NW and SE

footprints in the Stordalen peatland was reported in Łakomiec et al. (2021), where they found that methane emissions were

systematically lower in NW footprint than SE footprint.

4.3 Flux modeling

4.3.1 Model parameters and annual flux435

To simulate the fluxes from wet and dry surfaces, we used the linear relationship between CO flux and PAR
:::
We

:::::
used

:::
the

::::::::
regression

::::::
model

::
to

::::::::
estimate

:::
CO

::::::
fluxes

::::
from

:::
the

::::
dry

::::
and

:::
wet

::::::::
surfaces,

::::
and

::
to

::::::::
calculate

:::
the

::::::
annual

::::::
fluxes

::::
from

:::::
these

::::
two

:::::::
surfaces. The modeling results indicated that the difference between wet and dry surfaces was pronounced in both slope and

intercept. The higher radiation response on dry surfaces compared to wet surfaces suggests that dry surfaces emit more CO than

wet surfaces. The difference in radiation response between wet and dry surfaces was observed in summer but not in
::::::::
approach440

:::
has

::
its

::::
own

:::::::::
limitations

::
in

:::::
terms

::
of

::::
data

:::::::
coverage

::
as

::::
well

::
as
:::
the

::::::::
modeling

:::::::::
approach.

:::
Our

::::
data

::::::::
coverage

::
for

:::
the

::::
full

:::::::::::
measurement
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:::::
period

::::
was

::::::
31.7%,

:::::
which

::
is

:::::::
relatively

::::
low

:::
but

:::::
within

:::
the

:::::::
expected

:::::
range

:::
for

:::
EC

::::::::::::
measurements

::
for

:::::
gases

::::
with

:::
low

:::::::::::::
signal-to-noise

::::
ratio.

::
In

:::
the

::::
data

::::::::
filtering,

:::
we

:::::::
followed

::::::::
standard

::::::
quality

::::::
control

:::::::::
procedure

::::::::::::::::::::::
(Mauder and Foken, 2006)

::::
with

:::
the

::::
most

::::::::
common

:::::
reason

:::
for

::::
data

::::::::
exclusion

:::::
being

::::::
failure

::
to
:::::
meet

:::
the

::::::::::
stationarity

:::::::
criterion.

::::
The

::::::
limited

::::
data

::::::::
coverage

::::::
causes

::::::::::
uncertainty

::
in

:::
the

:::::
annual

::::::
fluxes,

:::::::::
especially

:::::
during

::::::::
nighttime

::::
and spring and autumn

::::::
seasons

:::::
when

:::::
fewer

::::
data

:::::
points

:::
are

::::::::
available.445

:::
We

:::::::
observed

::::::::
seasonal

::::::::
variability

::
in

:::
the

::::::
model

:::::::::
parameters

::::
(Fig.

::::
S9),

:::
and

::::
thus

::
to

::::::
reduce

:::
the

:::::::
potential

::::::::
seasonal

:::
bias

::::::
caused

:::
by

::::::
uneven

::::
data

::::::::::
distribution,

:::
we

::::::
applied

::::::::
seasonal

::::::::::::::
parameterization

::
in

:::
the

::::::
model.

::::::::
However,

:::
the

::::::::::
comparison

:::::::
between

:::
the

::::::::
seasonal

:::
and

:::::::::::
non-seasonal

::::::
models

::::::
showed

:::
no

:::::::::
significant

::::::::
difference

::
in

::::::
annual

:::
flux

::::::::
estimates

::::
(Fig.

::::
11),

:::::::::
suggesting

:::
that

:::
the

:::::::
seasonal

::::::
biases

::
do

:::
not

::::
lead

::
to

:::::
major

:::::
errors

::
in

:::
the

::::::
overall

::::::
annual

:::::::
budgets.

:

:
It
::
is
:::::::::
important

::
to

::::
note

:::
that

:::
the

::::::
annual

::::::
fluxes

:::::::
reported

::
in

::::
this

:::::
study

:::
are

:::::
based

::
on

::::::::
modeled

::::::::
estimates.

::::
The

::::::
model

:::::::::
performed450

:::
well

:::
for

::::
the

:::::::
existing

::::::
dataset

:::
and

::::
was

:::::
used

::
as

::
a

:::
tool

:::
to

:::::::
estimate

:::::
fluxes

:::
for

:::::
both

:::
wet

::::
and

:::
dry

::::::::
surfaces.

::::::::
However,

:::
we

:::
did

::::
not

:::
test

:::
the

:::::::
model’s

::::::::
predictive

::::::
power

::
on

:::::::
unseen

::::
data.

::
In

:::::::::
particular,

:::
the

::::::::::::
second-degree

::::::::::
polynomial

:::::::
function

:::::
used

::
to

::::::::
represent

:::
the

::::::::::
temperature

:::::::
response

::::
may

:::
not

:::::::::
generalize

::::
well

::
to

::::
other

:::::
years

::
or

::::::::::
conditions.

:::::::::::
Furthermore,

:::
the

:::
use

::
of

:::
this

:::::::
function

::::::
during

::::::
winter

:::
may

::::
lead

:::
to

::::::::::::
overestimation

::
of

::::::
fluxes

::
at

:::
low

::::::::::::
temperatures,

::
as

:::
the

::::::::::
polynomial

::::::::
structure

::::::
predicts

:::::::::
emissions

::
in

::::
cold

:::::::::
conditions.

The difference in intercepts between wet and dry suggests that soil consumption differed between the two surfaces. Higher455

uptake was found in dry palsas during summer and autumn, but not during spring. The seasonality in intercepts supports the

results of higher net uptake in late summer and autumn, as observed in the measurements.

The heterogeneous surface-structure models are found to perform better than homogeneous models in heterogeneous EC

footprints (Ludwig et al., 2024; Tikkasalo et al., 2025). However, we did not find significant difference in model performance

between the heterogeneous and homogeneous models. In our case,
::
In

:::
our

:::::::
analysis,

:
the

:::::::::::
heterogeneous

::::::
model

:::::::::
performed

:::::
better460

:::
than

::::
the

:::::::::::
homogeneous

::::::
model,

::::::::
reducing

::::::
RMSE

:::::::::
2.4–7.5%.

::::
The

:
parameter distributions of the homogeneous model typically

settled between the wet and dry parameter distributions, most often closer to the dry distributions. The reason that the homoge-

nous parameters were closer to the dry surface type is likely related to wind directions, which show a slight bias toward the

NW (Fig. S1). If the wind direction distributions were more strongly biased toward a single wind direction, a larger difference

in model performance between the heterogeneous and homogeneous models could be expected.
:::
We

::::
also

:::::
found

::::
that

:::
the

:::
SE465

:::::::
footprint

::::::::
contained

::
a

:::::
higher

:::::::::
proportion

::
of

:::::::::
nighttime

:::
data

:::::::::
compared

::
to

:::
the

::::
NW

::::::::
footprint,

:::::
which

::::
may

::::::::
introduce

:
a
::::::::
potential

::::
bias

::
in

::
the

::::::
model,

::
as

::::::
fluxes

::
in

:::
the

::
SE

::::::
region

:::::
could

::
be

:::::::::::::
underestimated

:::
due

::
to

:::
the

::::
more

:::::
lower

::::::::
turbulent

:::::::::
conditions

::::
(Fig.

::::
S2).

::::::::
However,

::
we

::::::::
consider

:::
the

:::::
impact

:::
on

:::
our

::::::::
modeling

::::::::
approach

:::
and

::::::
results

::
is

::::::::
minimal.

Our analysis show that in Stordalen peatland the annual flux for wet surfaces is 76-85 mg CO m−2 yr−1 and the annual flux

for palsas (dry surfaces) ranges from –52 to -44 mg CO m−2 yr−1. When comparing our results to annual fluxes presented470

in other studies, the flux in temperate zone ranges from 360–880 mg CO m2 yr−1 (Cowan et al., 2018; Murphy et al., 2023),

indicating a much higher contribution of biogenic CO emissions from temperate grasslands compared to arctic peatlands.

4.4
:::::

Future
::::::::
research

By comparing our results to the process-based CO model(Liu et al., 2018) we observe that our fluxes differ from the modeled

fluxes. In the modeling, non-forested boreal wetlands are modeled as a small sink of CO (net flux: -0.18 Tg CO yr−1,475
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area 0.83*106 km2
:::
The

::::::::
Stordalen

::::::::
peatland

::::
has

::::::
slowly

::::::::::
transitioned

:::::
from

:::
dry,

::::::::::
permafrost

:::::::::
dominated

:::::
palsa

:::::
areas

::
to
:::::::

wetter,

:::::
sedge

:::::::::
dominated

::::
fens

:::
due

:::
to

:::::
global

::::::::
warming

:::::::::::::::::
(Varner et al., 2022).

::::
The

::::
land

:::::
cover

:::::::
changes

:::::
have

::::
been

::::::::
observed

:::
on

:::::::
decadal

::::::::
timescales

:::::::::::::::::
(Varner et al., 2022).

::::
This

::
is

::::::::
important

::::
also

::
in

:::::
terms

::
of

:::
CO

:::::::::
exchange,

::::::
because

::
in
:::
the

::::::
future,

:::
we

:::
can

::::::
expect

::::::::
increased

::::::
surface

:::::::
wetness

:::::
(more

::::::
sedge-

::::
and

::::
open

::::::::::::::
water-dominated

:::::::::
vegetation), which corresponds to an average annual flux of –261

mg CO m−2 yr−1 for non-forested boreal wetlands. Although the annual flux of CO from Stordalen peatland is relatively480

small, our study suggests that current process-based models incorrectly define wetlands as CO sinks instead of CO sources

(Guenther et al., 2012; Liu et al., 2018)
::::
may

::::
also

::::
lead

::
to

:::::
higher

::::
CO

:::::::::
emissions.

::
To

:::::
better

::::::::::
understand

:::
the

::::::
annual

::::::::
variability

::::
and

:::::
future

:::::::
changes

::
of

:::
CO

::::::
fluxes,

::::::
longer

::::
term

::::::::::::
measurements

:::
are

::::::
needed.

4.4.1 Limitations and uncertainties

Solving heterogeneous EC fluxes relies on an accurate surface cover map. In this study , we had only one drone image from485

early summer 2024, and thus we assumed that
:
In
::::

our
:::::::
two-year

:::::
study

::::::
period,

:::
we

:::
did

::::
not

:::::
expect

:::::::::
significant

:::::::
changes

::
in

:
the wet

and dry classes does not have significant seasonal changes.
::::::
surface

::::::
classes

::
at

::::
either

::::::::
seasonal

::
or

::::::
annual

::::
scale.

::::
This

::::::::::
assumption

::
is

::::::::
important,

::
as

:::::::::
accurately

::::::::::::
characterizing

:::::::::::
heterogenous

:::
EC

::::::
fluxes,

::
we

:::::
need

::
an

:::::::
accurate

::::::
surface

:::::
cover

:::::::::::
classification.

:
The seasonal-

ity of surface wetness in Stordalen mire
:::
the

::::::::
Stordalen

:::::::
peatland was studied by Łakomiec et al. (2021) and they did not observe

any significant seasonal changes in wet and dry classes. We also assumed that the surface wetness does not have significant490

annual variations, which is likely true in short-time periods. In the long-term, however, the surface structure is slowly changing

more wet due to the global warming, as permafrost thaws and palsas collapse.

In the modeling,
::::::::
However,

::
in

:::
the

::::::
model,

:
we assumed that the flux from each wet and dry pixel contributes equally to the

total flux
:::
had

:::::::
uniform

::::::::
responses

::::::
within

::::
each

::::
area. In practice, this assumption may not be valid, as the vegetation within each

surface class may not be completely homogeneous. Especially in the wet class, the surface structure is a mixture of open water495

areas, sedges, and mosses, which likely contribute differently to the flux.
:::
We

:::
can

::::::
expect

:::::::
seasonal

:::
and

::::::
annual

::::::::
variations

::
in
:::::
open

::::
water

:::::
areas

::::
and

:::::
sedge

:::::
cover

::
on

:::
the

::::::::
peatland,

:::::
even

::::::
though

::
it

::::
does

:::
not

:::::::
directly

:::::
affect

:::
our

::::
wet

:::
and

:::
dry

::::::::::::
classification. To better

understand the contribution of different surface structures within the wet and dry classes, other methods, such as chamber

measurements , are needed.

We found that the model parameters showed seasonal variations, and to reduce the model uncertainty, we used seasonal500

parametrization. The developed models without seasonal parametrization did not perform well in early-spring conditions when

the soil was frozen. Therefore, we calculated the annual fluxes by assuming winter fluxes to be zero and calculating the

cumulative flux for March to November by parameterizing the model parameters for different seasons separately. Without

this seasonal parametrization, the modeled cumulative fluxes overestimate the sinkin spring, when soil is frozen but emission

occurs (Fig. 7).505

The annual estimates for wet and dry presented in this study are based on the modeled values. In future studies,
::::::::
Although

::
the

::::::
annual

::::
CO

:::
flux

:::::
from

:::
the

::::::::
Stordalen

:::::::
peatland

::
is
::::::::
relatively

::::
low,

:::
our

:::::::
findings

:::::::
suggest

:::
that

:::::::
current

:::::::::::
process-based

:::::::
models

::::
may

::::::::::
inaccurately

::::::::
represent

::::::::
wetlands

::
as

:::
CO

:::::
sinks

:::::
rather

::::
than

:::::::
sources

::::::::::::::::::::::::::::::::
(Guenther et al., 2012; Liu et al., 2018)

:
.
:::::
When

:::::::::
compared

::
to

the cumulative annual flux for the gap-filled data should also be estimated. To
:::::::::::
process-based

::::
CO

:::::
model

:::
by

::::::::::::::
Liu et al. (2018)
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:
,
:::
our

:::
CO

:::::
fluxes

:::::
show

::
a
::::
clear

::::::::::
divergence.

::
In

::::
that

::::::
model,

:::::::::::
non-forested

:::::
boreal

::::::::
wetlands

:::
are

::::::::
classified

::
as

::
a
:::::
small

:::
CO

:::::
sink,

::::
with510

::
an

:::::::
average

::::::
annual

:::
flux

:::
of

::::
–217

:::
mg

::::
CO

::::
m−2

:::::
yr−1.

::
In

::::::::
contrast,

:::
our

::::::
results

:::::::
indicate

::::
that

::::
these

::::::::::
ecosystems

::::
may

:::
act

::
as

:::
net

::::
CO

::::::
sources,

:::::::::::
emphasizing

:::
the

::::
need

:::
for

::::::
further

:::::::
research

::
to

:
better understand the annual

:::::::::::
environmental

::::::
drivers

::::
and variability of CO

fluxes , longer-term measurements are needed. In addition, in the annual estimates, we assumed that the wintertime flux is zero,

which should be investigated futher in future studies
:
at
:::
the

:::::::::
ecosystem

:::::
scale

::
in

::::
high

::::::
latitude

::::::::
wetlands.

5 Conclusions515

As CO indirectly affects Earth’s radiative balance, understanding the sinks and sources of atmospheric CO is crucial. To

interpret the role of wetlands in the
:::::
global CO budget, we studied ecosystem-scale CO fluxes in Arctic peatlands. Our results

revealed previously unknown biogenic sources of CO from northern peatlands to the atmosphere, which .
::::
The

::::::
reason

::::
that

::::
these

:::::::
sources

::::
were

::::::::
unknown

:
is partly due to the lack of long-term measurements at the ecosystem level, but also due to the

lack of knowledge of
::
to

::
an

::::::::::
incomplete

::::::::::::
understanding

::
of

:
CO processes. We also report that CO flux magnitude depends on520

surface wetness with uptake from dry areas and emission from wet areas. This study was limited to a single peatland and two

years of data. Thus, to capture the annual variations and to obtain a broader understanding of CO flux dynamics in wetlands

in response to changing climate, continuous, long-term measurements from multiple wetland sites are necessary. Despite these

limitations, this study provides new data set
:::::::
provides

:
a
::::
new

::::::
dataset valuable for modeling and new parametrization of current

process-based CO models. Our study suggests that current global models may underrestimate
:::::::::::
underestimate

:
the CO source525

from northern wetlands.

Code and data availability. The data and code used for the analyses are available on the author’s GitHub (https://github.com/astatuulia/co_

flux_SE-Sto). The meteorological data can be downloaded from the ICOS Carbon Portal database (https://www.icos-cp.eu, last access: 5

March 2025).
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Figure 1. The surface map
::
(a)

:::::
Aerial

:::::
drone

:::::
image of the study site and

::
(b)

::
the

::::::
surface

::::
map

:::::
derived

::::
from

:::
the

:::::
digital

:::::::
elevation

:::
map

::::::
(DEM)

:::
and

flux footprints in the northwest (NW) and southeast (SE) directions(a), the relative contribution of wet and dry surfaces in the NW footprint

(b), and the SE footprint (c). Black lines represent flux footprint contours from 10% to 80%
:
, and the location of the EC tower is marked by

:
a red cross. The yellow color indicates the dry surface and the turquoise color the wet surface.
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Figure 2. Timeseries of (a) CO flux, (b) photosynthetically active radiation (PAR), (c) air temperature (Tair
::
Ta) and soil temperature at 10 cm

depth (Tsoil
::
Ts), and (d) water table depth (WTD) and soil water content at 10 cm depth (SWC). The solid line represents the 7-day rolling

average (a-d) and the dots indicates half-hourly flux (a).

19



Figure 3. Diurnal cycle of CO flux (mean and standard deviation) in (a) spring, (b) summer, (c) autumn,
:
and (d) winter.

20



Figure 4. The correlation matrix of Spearman’s rank correlation coefficients for CO flux (Fco) and flux drivers: soil temperature at a depth

of 10 cm (Tsoil
::
Ts), photosynthetically active radiation (PAR), air temperature (Tair

::
Ta), and fraction of dry surface area (fdry), calculated for

half-hourly values during March–November.
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Figure 5. Binned mean and standard deviation between CO flux and (a) photosynthetically active radiation (PAR) and (b) air temperature

(Tair
::
Ta) during March–November. The data is divided in ten equal-sized bins and blue dots represent the 30-minute fluxes. A linear regression

line is fitted to PAR.

Figure 6.
:::
The SHAP

:::::::
(SHapley

:::::::
Additive

::::::::::
exPlanations)

:
values of the

::::::
Random

:::::
forest

:
(RF)

:
model for CO flux drivers photosynthetically active

radiation (PAR), air temperature (Tair
::
Ta), soil temperature at a depth of 10 cm (Tsoil

::
Ts), soil water content at a depth of 10 cm (SWC), and

fraction of dry surface area (fdry). The SHAP values indicate the impact each feature has on the model output, with a negative value indicating

a reduced flux and a positive value an increased flux. The blue color represents low feature values and red color high feature values. The zero

line is the baseline (the average prediction). The SHAP values are
:::
were

:
calculated

::::
using

:::
the data

::::::
collected

:
from March to November.
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Figure 7.
:::
The

::::::
boxplot

::
of

::::
NW

::::::
(yellow)

:::
and

:::
SE

::::::::
(turquoise)

:::
CO

::::
flux

:
in
:::::::
different

::::::
months

::
a)

::
all

::::
PAR

::::
levels

::::
and

::
b)

:
in
::::
dark

::::::::
conditions

::::
PAR

:::
<1

::::
µmol

::::
m−2

:::
s−1.

::::
The

:::
box

::::::::
represents

::
the

::::::::::
interquartile

::::
range

::::::
(IQR),

:::
with

:::
the

::::
lower

::::
limit

::
at
:::
the

::::
25th

:::::::
percentile

:::
and

:::
the

:::::
upper

::::
limit

:
at
:::
the

::::
75th

::::::::
percentile,

::::
while

:::
the

::::::
whiskers

:::::::
indicate

::
the

::::::::
minimum

:::
and

::::::::
maximum

:::::
values.

:::::
Black

:::
dots

:::::::
represent

::::::
outliers,

::::::
defined

::
as

:::
1.5

:
×
::::
IQR.

:
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