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Abstract.

The clouds over the Southern Ocean (SO) play a vital role in defining the Earth’s energy budget. The cloud properties over the

SO are known to be different from their Northern Hemisphere counterparts. As a result, monitoring cloud properties over the

SO, including macro- and microphysical properties, is of particular interest.

We analysed three passive remote sensing satellite datasets, the MODIS Collection 6.1, the AVHRR CMSAF CLARA-A3,5

and the AVHRR PATMOS, over the SO. We validated the cloud mask, cloud top height, and cloud phase for 2015 using Level

2 data retrieved from the passive sensors with active CloudSat-CALIOP sensors. We compared the effective radius and cloud

optical depth amongst the three passive sensors datasets.

This research found that there are substantial uncertainties in cloud top height, cloud optical depth, and cloud thermodynamic

phase, over the SO. The extent of which varies depending on the cloud property and retrieval algorithm used. The cloud mask10

comparison revealed that only around two-thirds of passive sensor observations agree with active sensor observations, and in

the case of AVHRR PATMOS the agreement is lower. In the comparison of cloud top height, a mean absolute bias of 0.65 km

(AVHRR CMSAF), 1.03 km (MODIS), and 1.31 km (AVHRR PATMOS) was observed for single-layer cloud scenes cases.

This mean bias increased to 1.86 km (AVHRR CMSAF), 3.22 km (MODIS), and 3.34 km (AVHRR PATMOS) for multilayered

cloud scenes. Ice phase dominates the multilayer cloud top thermodynamic phase in 2015, while liquid is the dominant top15

phase for single-layer cases. In general, the passive sensor and active sensor phases agree for liquid phase and ice phase except

for AVHRR PATMOS, which frequently misidentified liquid phase as ice phase. In the comparison of cloud effective radius,

it was observed that the disagreement between the passive sensors was greater in presence of multilayer clouds. The effective

radius disagreement was largely higher for ice clouds. We found that the presence of sea ice strongly influences the retrieval of

cloud optical depth at high latitudes, with most passive optical depths higher over sea ice than over ocean. This work highlights20

the areas where passive cloud retrieval algorithms over the SO could be improved.
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1 Introduction

The role of clouds is vital to the Earth’s energy budget. The Southern Ocean (SO) is one of the cloudiest places on the planet.

Climate simulations and reanalyses (Trenberth and Fasullo, 2010; Schuddeboom and McDonald, 2021; Zelinka et al., 2020)

over the SO shows a persistent negative bias in shortwave (SW) radiation and an overestimation of the outgoing long wave25

(LW) radiation. Schuddeboom and McDonald (2021) compared Coupled Model Intercomparison Project Phase 6 (CMIP6)

simulations with satellite data and identified substantial discrepancies in the representation of clouds, particularly with low-

level clouds. This inconsistency leads to the simulations exhibiting an inverse correlation between the mean and compensating

errors of SW cloud radiative effects (CRE), which is prevalent over the SO. Zelinka et al. (2020) examined the climate sensi-

tivity of the CMIP6 for 27 global climate simulations, and found that the previous climate models had made the SW low cloud30

feedback component stronger. They found that a substantial shift in the SW cloud feedback from high-latitudes in the Coupled

Model Intercomparison Project Phase 5 (CMIP5) models to extratropics has occurred in the CMIP6 models, especially over

the SO. The uncertainty in the models demonstrates a need to understand Southern Ocean atmospheric and ocean properties,

particularly cloud properties.

Compared against the clouds over the North Atlantic and the North Pacific, SO clouds have a higher probability of cloud35

glaciation (Davies et al., 2017), and the increased presence of supercooled liquid water (Huang et al., 2015; Morrison et al.,

2011; Ovarlez et al., 2002). Davies et al. (2017) examined the plane parallel albedo bias, and concluded that SO clouds have

a smaller heterogeneity bias than those over the Northern Hemisphere. Hu et al. (2010) examined Cloud-Aerosol Lidar with

Orthogonal Polarisation (CALIOP; Young et al., 2008) observations and discovered that the supercooled liquid water retrieval

at mid-latitudes, is dependent on the cloud top temperature and cloud top height, and that supercooled water clouds were more40

common over the SO. Huang et al. (2015) compared clouds over the North Atlantic against those over the SO, using a merged

radar-lidar product and discovered that the presence of boundary layer clouds and mid-level clouds, with smaller droplet sizes

was more prevalent over the SO. Mace et al. (2009) employed a merged radar-lidar product, to demonstrate that mid- and

low-level multilayer clouds are present in more than half of the scenes over the SO (poleward of the ocean polar front), which

is more frequent than their North Atlantic and Pacific counterparts. In a study conducted using upper air soundings from a45

collection of SO field campaigns, Truong et al. (2020) found the presence of multilayer clouds in over half the scenes over the

high-latitudes of the SO. Further investigation uncovered a bias in the thermodynamic structure, specifically the frequency of

the occurrence of multilayer clouds, in the ECMWF’s fifth-generation atmospheric reanalysis (ERA5) (Truong et al., 2022) over

the Southern Ocean. ERA5 more commonly simulated relatively thick single-layer clouds than inferred from the soundings.

They demonstrated that the radiative transfer through these clouds is sensitive to cloud microphysics, as thin multilayer clouds50

can help reduce downward shortwave surface radiation over the SO. These findings highlight the unique characteristics of SO,

and a need to understand the influence of multilayer clouds in retrieving cloud properties over the SO.

Previous research on cloud property retrievals, revealed a dependency on the presence of multilayer clouds for CRE re-

trievals, which was further reinforced in studies such as L’Ecuyer et al. (2019), Hinkelman and Marchand (2020) and Yost

et al. (2023). L’Ecuyer et al. (2019) concluded that multilayer clouds contribute to enhancing LW radiation by 10.4 W/m2 and55
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reducing SW radiation by 22.3 W/m2 and are often misclassified as single-layer, thick ,mid-level-clouds, leading to global CRE

biases. Hinkelman and Marchand (2020) evaluated the Clouds and the Earth’s Radiant Energy System (CERES, Minnis et al.,

2011) observations and Cloud-Aerosol Lidar with Orthogonal Polarisation (CloudSat) CALIOP data (Sassen et al., 2008 and

Wang et al., 2013) against field observations from Macquarie Island Cloud and Radiation Experiment (MICRE; Marchand,

2020). They observed that there exists a bias of -10 W/m2 in LW CRE and concluded that the factors contributing to this60

bias, includes low clouds, multilayer clouds, and precipitating clouds. The CERES Visible Infrared Imaging Radiometer Suite

(VIIRS) observations, were evaluated with CALIOP observations by Yost et al. (2023) and it was found that multilayer clouds

are one of the main contributors to errors in the retrieval of cloud top height.

Previous studies have conducted regional analyses to resolve some of the uncertainties over the SO, either typically em-

phasising comparisons with land observations, or concentrating on single satellite records (Ahn et al., 2018; Hinkelman and65

Marchand, 2020; Kang et al., 2021; McFarquhar et al., 2021; Xi et al., 2022). In recent years there have been several field cam-

paigns over the SO: such as Clouds Aerosols Precipitation Radiation and atmospheric Composition over the Southern Ocean

(CAPRICORN; McFarquhar et al., 2021) I and II; the Southern Ocean Clouds, Radiation, Aerosol Transport Experimental

Study (SOCRATES; McFarquhar et al., 2021); Measurements of Aerosols, Radiation, and Clouds over the Southern Ocean

(MARCUS; McFarquhar et al., 2019, McFarquhar et al., 2021); and MICRE. Ahn et al. (2018) compared cloud phase retrieved70

between Moderate Resolution Imaging Spectroradiometer (MODIS, Menzel et al., 2008), CALIOP, and in-situ observations

and found that mixed-phase clouds are often underestimated by the satellite observations. Xi et al. (2022) also observed that

the presence of mixed phases dominated the MARCUS campaign observations. Kang et al. (2021) examined MODIS, CERES

and Himawari satellite observations against SOCRATES field observations. They found that a low bias of the cloud effective

radius is due to compensating errors between non- or lightly precipitating cases and heavily precipitating cases. Despite these75

campaigns, the lack of long-term data continuity and spatial coverage remains a challenge.

Satellite observations are one of the primary tools for monitoring the weather and climate globally and are particularly

important over the remote SO, where in-situ observations are sparse. Satellite instruments such as Advanced Very-High-

Resolution Radiometer (AVHRR; Pavolonis and Heidinger, 2004), have been making observations since the early 1980s,

which if sufficiently stable and accurate, could begin to provide information on the cloud response to a changing climate.80

Passive satellite cloud retrievals forward models typically assume a single-layer cloud. This results in large negative biases for

retrievals of cloud top height particularly in the presence of multilayer clouds. Hence in this paper, we focus on the quality of

satellite retrievals over the SO.

In this study, we analyse three well-known global passive satellite datasets: AVHRR Pathfinder Atmospheres-Extended

(PATMOS-X, Heidinger et al., 2014), AVHRR Satellite Application Facility on Climate Monitoring (CMSAF; Karlsson et al.,85

2023b), and MODIS (Menzel et al., 2015) over the SO. We validate the cloud top height and phase with merged CloudSat

CALIOP data, and compare the cloud optical depth and effective radius. We perform the analysis at the monthly level (L3),

followed by an in depth analysis into instantaneous observations (L2). The results are analysed separately for single and

multilayer clouds and a case study illustrates the main findings.
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2 Data90

The analysis considers cloud information from two different satellite instruments MODIS and AVHRR and 3 different algo-

rithms/data providers. Active satellite instruments CloudSat-CALIOP, are used to validate the data. A brief overview of all the

datasets used is given below.

2.1 Cloudsat-CALIOP P1 R05

The CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite instruments (CALIPSO), were launched in April95

2006. The satellites are part of the NASA Afternoon Constellation, known as the A-train, a coordinated group of satellites

crossing the equator from south to north within seconds of each other in an afternoon orbit. CloudSat exited the A-train in

February 2018, to a lower orbit, due to technical difficulties, and CALIPSO rejoined it in September 2018 to form the C-Train.

CALIPSO officially ceased its operation in September 2023, while CloudSat was switched to daytime-only observations in

December 2021. CloudSat (Stephens et al., 2002) uses the Cloud Profiling Radar (CPR) to observe the vertical profiles of the100

clouds. The CPR onboard CloudSat has a vertical resolution of 500 m and horizontal resolution of 1.7 km operating at W-band

(94 GHz). CALIPSO (Winker et al., 2003;Young et al., 2008) uses CALIOP , a lidar with two wavelengths of 532 nm and 1064

nm, to measure vertical profiles of cloud and aerosol. The CALIOP GEWEX cloud product (NASA/LARC/SD/ASDC, 2019),

is the L3 product derived from temporal averaging of 5 km cloud merged layer products version 4, for a month.

The merged CloudSat-CALIOP product, is obtained from collocating the observations from both the CPR and CALIOP105

instruments. The temperature profile for the merged product is obtained from the European Centre for Medium-Range Weather

Forecasts (ECMWF) and MODIS radiance data is used as supplementary information for cloud classification. The dataset is

made available by the Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University. The CloudSat-

CALIOP merged dataset includes the L2 retrieved cloud property data, and is provided under different product names for

different cloud and radiation properties. In this study, we have used the 2B-CLDCLASS-LIDAR (Sassen et al., 2008; Wang110

et al., 2013), 2B-FLXHR-LIDAR (Henderson et al., 2013; L’Ecuyer et al., 2008) and the 2B-CWC-RVOD products (Leinonen

et al., 2016). The 2B-CLDCLASS-LIDAR (hereby known as 2BCL) combines the advantages of LIDAR and RADAR to get

an understanding of cloud vertical profile, cloud classification and cloud properties such as cloud layer top or cloud top height

(CTH), cloud base height (CBH) and cloud phase (CPH). The 2B-FLXHR-LIDAR (hereby known as 2BFL) retrieval product,

provides the broadband fluxes and heating rates from the CloudSat-CALIOP observations, which are useful in understanding115

the flux rates and optical depth of the clouds. The data products are available throughout the day for CTH, however, the revisit

time is 16 days due to its orbit. The L2 data product with a spatial resolution of 5 km for 2015 is used for this comparison.

For the climatology of 7 years (2009-2016), L3 monthly data from CALIOP, CAL_LID_L3_GEWEX_Cloud-Standard-V1 is

used.
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2.2 Moderate Resolution Imaging Spectroradiometer (MODIS)120

The AQUA satellite, with a MODIS sensor onboard, was launched in 2002 and is also part of the A-train. The instrument

has 36 spectral bands (wavelengths 0.4–14.4 µm). Every five minutes, the MODIS sensor scans an area of 2330 km2. The

MODIS-AQUA L3 monthly data product CLDPROP_M3_MODIS_Aqua (Platnick et al., 2019) is used for the analysis of

L3 data. The data includes cloud properties such as CTH, cloud fraction (CFC), cloud optical depth/thickness (COD/COT)

and cloud effective radius (CER). The MYD06_L2 (hereby known as MYD06; Platnick et al., 2015) contains data products125

retrieved from the MODIS instrument on the AQUA platform. The L2 data consists of 1 km resolution pixels, with cloud

microphysical properties and 5 km resolution for all other retrieved properties. The MYD06 1 km retrieval, classifies pixels as

cloudy and partially cloudy. We have considered clear, cloudy and partially cloudy for our analysis. The MYD06 collection

uses the CO2 slicing method and the Infrared Window Approach (IRW) to retrieve cloud top properties (Menzel et al., 2015).

2.3 Advanced Very-High-Resolution Radiometer130

The AVHRR is a broadband radiometer with five or six spectral channels in the visible, near IR and IR. The instrument is a

cross-tracking scanning radiometer with a resolution of 1.1 km. The AVHRR instrument was first launched in late 1978, and

has since been operated continuously onboard NASA Polar Operational Environmental Satellites (POES), and more recently

onboard the European MetOp platforms. The latest AVHRR has six channels, out of which only five can be transmitted at any

given time. The NOAA-19 satellite is used for the L2 analysis.135

2.3.1 AVHRR CMSAF

CLARA-A3 (The CMSAF Cloud, Albedo and Surface Radiation dataset from AVHRR data – third edition) is a climate data

record derived from the polar-orbiting AVHRR instrument, of cloud, surface albedo, and surface radiation budget products for

the period 1979-2024 (45 years; Karlsson et al., 2023c). The major advantage of this dataset is the global coverage and the

period available for analysis. The CLARA-A3 edition (Karlsson et al., 2023b) contains retrieved cloud properties such as CTH,140

CPH and cloud water path (CWP). The CLARA-3 dataset is available for instantaneous, daily, and monthly periods and was

released in mid-2023. The resolution of the data used in the analysis is 5 km data. The CLARA A3 uses an artificial neural

network (ANN), trained on collocated AVHRR-CC data (Håkansson et al., 2018) to obtain cloud-top properties. In the case

of cloud microphysics, traditional retrieval methods look-up tables (LUTs) are created based on the Nakajima-King approach

Nakajima and King (1990).145

2.3.2 AVHRR PATMOS

The AVHRR PATMOS provides a climate record of atmospheric cloud properties and brightness temperatures retrieved by

merging the information from AVHRR, and the collocated High-resolution Infra-Red Sounder (HIRS, Foster et al., 2023). The

algorithm was developed by the National Oceanic and Atmospheric Administration (NOAA) and the Cooperative Institute for

Meteorological Satellite Studies (CIMSS). The climate data record includes 44 years of data (1979-2023), with a resolution150
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of 0.1°x 0.1° grid globally (Foster et al., 2023). The data set includes CTH, CER, COD, and ice water path (IWP). Multiple

algorithms are referenced in the product, in particular the Advanced Baseline Imager Cloud Height Algorithm (ACHA; Calvert

and Pavolonis, 2010), MODIS CO2 slicing algorithm (Menzel et al., 2008), and Daytime Cloud Optical and Microphysical

Properties (DCOMP; Walther et al., 2013). The ACHA CTH algorithm in this study uses 11, 12µm observations along with the

split-window approach (Heidinger and Pavolonis, 2009), and data from the AVHRR Extended (CLAVAR-x). When AVHRR is155

combined with HIRS information, the CO2 CTH can be determined.

2.4 Validation of polar satellites over the Southern Ocean

There have been numerous validation studies which we summarise here. Common to most studies, the validation results are

generally reported for cloud globally and not as a function of specific regions. The validation of these data products over the

SO has been mostly performed using monthly products.160

The MODIS products have been compared with CALIOP in several studies. Holz et al. (2008) found that CTH is under-

estimated by MODIS by 1.4 ± 2.9 km globally, when compared with the 1 km CALIOP product, and in the case of the 5

km CALIOP product, the difference is -2.6 ± 3.9 km. Yang et al. (2021) compared the CTHs of MODIS AQUA, MODIS

TERRA, CALIOP, CloudSat and the Advanced Himawari Imager on Himawari-8 (HW8), with ground-based Ka-band zenith

radar (KAZR), at the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) site in NW China.165

They observed the minimum mean CTH differences between passive satellite sensors and KAZR are -0.35 km (-0.88 km for

multilayer) for MODIS Terra, -0.87 km (-1.58 km for multilayer) for MODIS Aqua, -0.69 km (-1.70 km for multilayer) for

Himawari-8 (HW8).

Karlsson and Johansson (2013) compared the CLARA-A1 (The CMSAF, Cloud, Albedo and Surface Radiation dataset from

AVHRR, data-edition one) dataset with CALIOP observations, and found that the overall bias in the CTH changes with the170

optical depth of the cloud with biases increasing with COD decreasing (< 0.35). The study also inferred that the CTHs of

high clouds (> 8 km) are underestimated and boundary layer clouds (<2 km) are overestimated. Additionally, the research

highlighted a substantial underestimation of cloudiness in polar regions, particularly during polar winter.

Foster et al. (2023) found that AVHRR PATMOS Version 6, has improved the performance of cloud property retrievals,

especially around the polar region from the previous version. The cloud fraction increased by 3% from Version 5 to Version 6,175

although the variation and seasonality of cloud optical depth across the satellite data decreased.

Karlsson and Devasthale (2018) evaluated four global cloud climate records, the International Satellite Cloud Climatology

Project (ISCCP), European Space Agency (ESA) Climate Change Initiative (CCI) V3, CLARA-A2 and PATMOS-X V5,

against each other and a CALIPSO dataset. The study uncovered large biases in cloud cover, notably in the southern polar

region, with major differences between the PATMOS-X and CLARA-A2 datasets in the cloud fraction. The PATMOS-X180

gives similar cloud amounts when compared to CALIOP observations. Furthermore, indications of orbital drift phenomena

were detected in the PATMOS-X dataset, which was linked to the changing solar zenith and solar azimuth angle and surface

temperatures resulting in increased cloud amount detection.
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Chang et al. (2010) studied all the retrieval methods for CTHs from the Twelfth Geostationary Operational Environmental

Satellite (GOES-12) data, and found that there exists a negative bias of 2.5 km ±1 km for all CTHs retrieved as two-layer185

and 4.5 km ± 2 km for cases with more than two layers. Sourdeval et al. (2016) found that the IWP retrieval quality can be

impacted by multilayer clouds and proposed an IWP retrieval method for multilayer conditions. They statistically analysed the

results to conclude that the new method is successful for retrieving IWPs ranging from 0.5 to 1000 g m−2.

2.5 Multilayer clouds and detection

Mace et al. (2009) used the CloudSat-CALIPSO product to show that mid- and low-level multilayer clouds are present in190

more than half of the scenes over the SO (along the ocean polar front), which is more often than their Arctic counterparts.

Similar studies, have found that ignoring the multilayer structure of clouds can lead to errors in the retrieval of cloud properties

such as cloud top pressure, cloud optical depth, and cloud fraction (Chen et al., 2000; Heidinger and Pavolonis, 2005; Joiner

et al., 2010). L’Ecuyer et al. (2019) found that the multilayer clouds contribute to enhancing LW radiation by 10.4 W/m2 and

reducing SW radiation by 22.3 W/m2 and they are often misclassified as single-layer thick mid-clouds leading to global CRE195

of -17.1 W/m2. The study also confirmed that the discrepancy in radiative fluxes, indicates that clouds with similar top of the

atmosphere radiative signatures can have varying impacts at the surface and on atmospheric heating.

Several multilayer cloud detection algorithms for global satellite instruments, with visible to infrared bands have been

developed (Baum et al., 1994; Joiner et al., 2010; Kawamoto et al., 2002). In general, the multilayer detection algorithms are

limited to thin-cirrus over low clouds, ocean areas or two-layer retrieval systems (Joiner et al., 2010; Sun-Mack et al., 2006).200

MODIS, AVHRR, CERES have used CALIOP datasets to train decision tree algorithms to refine the multilayer cloud detection

algorithms (Li et al., 2011; Marchant et al., 2020; Sun-Mack et al., 2006; Simpsom et al., 2001).

In the multilayer detection flag for MODIS MYDO6 (Level-2 data; Marchant et al., 2020), the multilayer classification

agreement with CloudSat-CALIOP merged product is only 34% (Wang et al., 2016). New Artificial intelligence (AI) methods

have brought the accuracy for multilayer detection to around 60% for geostationary satellites such as Himawari (Li et al., 2022;205

Ritman et al., 2022; Tan et al., 2022; Ritman et al., 2022). In this analysis we use the multilayer detection algorithm described

in Ritman et al. (2022).

3 Methodology

The comparison of the satellite cloud datasets has two main components. Firstly, we compare the Level 3 (L3) monthly cloud

products. Secondly, we analyse the Level 2 (L2) instantaneous cloud property data. Level 3 cloud products (CTH, CFC, CPH)210

are compared for 7 years, from 2009-2016 for CALIOP (Global Energy and Water Cycle Experiment, GEWEX cloud prod-

uct; NASA/LARC/SD/ASDC, 2019), AVHRR CMSAF (CMSAF CLARA A3) and MODIS (CLDPROP_D3_MODIS_Aqua).

Note that the AVHRR PATMOS product does not have a L3 product and is therefore not included in the L3 analysis. In order to

further understand the origin of the retrieval bias in passive satellite cloud data, a comparison of Level 2 retrieved cloud prop-

erties from the satellite datasets is performed for one year (2015). The role of multilayer clouds in this bias is evaluated, along215
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with the role of sea ice. The study area selected for the comparison is 40◦S to 70◦S latitude and 180◦E to 180◦W longitude

over the SO. The following sections describe in detail the methods used for the comparison and analysis of L3 and L2 data.

3.1 Level 3 monthly data comparison

In this analysis, the passive sensor type (flavour) of CALIOP L3 data (GEWEX product) is considered for CTH. The ECMWF

Reanalysis v5 (ERA-5, Hersbach et al., 2020) sea surface temperature (SST) data was analysed to understand if the surface220

temperature conditions were influencing the clouds during the time period. Seasonal climatology analysis was performed by

considering the austral spring (September, October, November, hereby SON), summer (December, January, February, hereby

DJF), autumn (March, April, May, hereby MAM) and winter (June, July, August, hereby JJA). Each seasonal composite was

resampled onto a regular 0.25◦x 0.25◦resolution grid for all three sensors. The cloud properties analysed were cloud top height,

cloud fraction and fraction of liquid clouds. The comparison was conducted using the correlation of the passive sensors against225

the active sensor, along with statistical error metrics such as mean bias error (MBE), mean absolute error (MAE) and root mean

square error (RMSE). The results and discussion for this analysis are described in section 4.1.

3.2 Level 2 orbit comparison

The L2 passive sensor data for 2015 from AVHRR CMSAF (CLARA A3), AVHRR PATMOS (Version 6), and MODIS AQUA

(MYD06 Collection 6) were collocated with active sensor data from the merged CloudSat-CALIOP retrieval. 4000 CloudSat-230

CALIOP granules were collocated with 20,000 MYD06, 365 AVHRR CMSAF and 365 AVHRR PATMOS granules. Each

granule contained the cloud products such as CTH, COD, CER, CPH, latitude, longitude and common time of collocations.

The dataset details are given in Table 1.

The CloudSat-CALIOP products 2BCL, 2BFL and 2BCR, were collocated with passive sensors, pixel-by-pixel for a time

matching of ±1min for MODIS MYDO6 and ±3min for AVHRR (Karlsson and Johansson, 2013) and ±5 km horizontal235

resolution. Figure 1 shows the collocation process for MYD06 and CloudSat-CALIOP data. The active sensors and passive

sensor collocated datasets for AVHRR CMSAF (AC), AVHRR PATMOS (AP) and MODIS (MYD) were again time and

geolocation matched against each other to obtain collocations for all four sensors for the year 2015 (Figure 1b). In order for a

pixel to be considered a daytime pixel, the solar zenith angle has to be in between a range of 35◦and 80◦. A solar zenith angle

of < 80 degrees is considered day, 80–100◦is considered twilight, and > 100◦is considered night (Karlsson et al., 2016). We240

observed that our datasets, MYD and AC, had solar zenith angles ranging from 35 to 84◦, while AP had a range up to 100◦.

Hence, a solar zenith angle mask with a range of 35◦and 80◦ensures a like-for-like comparison for the collocated datasets.

In order to understand the multilayer cloud influence, a simple empirical multilayer detection (Ritman et al., 2022) mask

developed from 2BCL using the difference between two layers and cloud classification was applied to the collocated data. The

multilayer cloud mask condition uses the coarsest altitude resolution of 0.3 km, with a minimum gap to define layers of 0.1 km.245

The cloud layer in the L2 data was first analysed for cloud conditions and classified accordingly as no clouds, quality issues,

or cloud layers. The number of cloud layers was assessed using the mask condition and classified as multilayer or single-layer
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clouds. After applying the multilayer detection mask to the collocated pixels, cloud properties were analysed for the multilayer

and single-layer conditions.

The cloud properties from the collocated three passive sensors (MYD06, AC, AP) and the active sensor (CloudSat-CALIOP)250

were examined and evaluated against each other. Vertical profiles of case studies with retrieved cloud properties (CTH, COD,

CER, and CPH) were also investigated to understand the sensor retrievals. The passive sensor CTH and CFC were validated

statistically with the active sensor using all the data from 2015. Furthermore, the cloud properties retrieval of COD and CER

were compared as a function of the thermodynamic phase (CPH) and multilayer flag. A sea ice flag obtained from AVHRR

PATMOS data, was used to further understand the potential effects of sea ice on the retrievals. The evaluation of cloud mask255

performance skill scores for active and passive sensors was conducted using the Kuiper skill score (KSS; Hanssen and Kuipers,

1965). True positive rates (TPR) and False positive rates (FPR) were calculated using the KSS formula as shown in the equation

KSS = TPR−FPR =
tp

(tp + fn)
− fp

(fp+ tn)
, (1)

where tp is the number of true positives, fp is the number of false positives, fn is the number of false negatives, and tn is the260

number of true negatives. A KSS of 1 indicates a high skill score and zero indicates no skill.

Each data set has different definitions of cloud mask and cloud mask uncertainty. The cloud mask for AP has categories

including clear sky (0), probably clear (1), probably cloudy (2) and cloudy (3). This was converted to clear (0), encompassing

clear sky and probably clear, and cloudy (1), combining probably cloudy and cloudy, for comparison with the other satellite

cloud masks. Similarly, MYD06 cloud mask, confidently clear (11), probably clear (10), uncertain (01) and cloudy (00) were265

classified into cloudy (0) and clear (1). Meanwhile, the AC had only two classifications: clear (0) or cloudy (1).

We analysed approximately 1.2 million pixels for each sensor in the L2 data. Upon applying the multilayer mask, we

observed that approximately 25% (300000) of the collocated data consisted of multilayer scenes across the SO. Figure 2 shows

the final collocated swaths used in the analysis.

The following sections discuss the results for the monthly data and pixel-wise data comparison for the passive and active270

sensors.

4 Results and Discussion

4.1 L3 monthly seasonal comparison

The L3 monthly data cloud properties for three sensors: AVHRR CMSAF (CLARA A3), MODIS (CLDPROP _D3_MODIS_Aqua);

and CALIOP (CAL_LID_L3_GEWEX_Cloud), were compared for 7 years (2009-2016). The dataset details used for compar-275

ison are given in Table 1.
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4.1.1 Cloud Top Height

Figure 3 shows the difference in CTH for the top most layer between the active and passive sensors, alongside the SST for the

full period and by season. When the data is analysed as a function of latitude band in the ocean region from 62◦S to 70◦S, both

passive sensors generally overestimate the CTHs compared with the active sensor CTHs, except during winter (JJA), when280

only MODIS overestimates the CTH. This region is typically covered by sea ice during this time of year. The SST also shows

variation during corresponding season with a low SST in winter and a high SST in summer. However, there does not seem to

be a strong correlation with the differences. In the poles over the land area irrespective of the seasons, AVHRR CMSAF tends

to underestimate the CTHs, while MODIS tends to overestimate the CTH. As per Noel et al. (2018), the cloud amount detected

by the active sensors and passive sensors varies overall when comparing L3 monthly data. As CALIOP is an active sensor, it285

is more sensitive to high-thin clouds (CTH > 8 km) and the vertical distribution of the clouds. The presence of atmospheric

temperature inversions may cause the passive sensor to either underestimate or overestimate the CTHs in the boundary layer

(Marchand and Ackerman, 2010). Thus, factors such as the presence of multilayer clouds, differences in sensor sensitivity,

differences in sensor resolution, and differences in retrieval algorithms may account for some of the poor agreement.

Table 2 summarises the comparisons, with mean CTH values in Table 2a and the statistics for the comparison with CALIOP290

in Table 2b by season and overall. It can be observed that the active sensor correlation with the passive sensors for the overall

monthly CTHs is low with values ranging from 0.35 for CALIOP-AVHRR CMSAF (C-A) and 0.32 for CALIOP-MODIS (C-

M). The CTH difference between the C-A sensors for DJF ranges from -1 to 1 km for the study domain, while for C-M it ranges

from 0 to 4 km. The MBE for passive with the active sensor is 0.46 km for C-A and 1.12 km for C-M. The RMSE for C-A is

2.33 km; for C-M, the value is 2.60 km; and for A-M, it is 1.23 km, which is consistent with both correlation and MBE trend.295

Overall, the MBE between the MODIS-AVHRR CMSAF (A-M) passive sensors is larger for the CLARA-A3 dataset (0.95

km), but the correlation is better (0.67). Overall, there is a positive mean bias error for the passive sensors AVHRR CMSAF

and MODIS CTHs.

The seasonal comparison of the C-M data over the course of a year shows that the austral autumn (SON) has the weakest

correlation (0.28) and MBE (1.25 km). Meanwhile, the inverse is true for the austral summer (DJF) with a correlation of 0.36300

and MBE of 1.05 km with > 1 km, positive bias over the mid-latitudes, and smaller bias (±0.5 km) over the high-latitudes.

Another intriguing observation is that in austral winter (JJA), MODIS overestimates (> 1 km) the CTHs in the high-latitude and

underestimates (> 1.5 km) in the mid-latitudes with an MBE of 1.25 km. The seasonal comparison of CTHs for C-A shows that

the correlation is highest in the austral spring (SON) for C-A (0.34) and lowest in the summer (DJF -0.15). AVHRR CMSAF

tends to overestimate the CTHs in the mid-latitudes and underestimate them in the high-latitudes during winter, with an overall305

MBE of 0.25 km. In all other seasons, AVHRR CMSAF tends to overestimate the CTHs across the region, with the exception

of Antarctica.

The passive sensor comparison shows that DJF has the highest correlation at 0.68, whereas JJA has the lowest at 0.45.

Additionally, DJF exhibits the lowest mean bias error of 0.09 km for C-A among all seasons and 0.98 km for C-M. This may

be due to the seasonality of cloud cover over the SO, as JJA tends to have more high-clouds (Bromwich et al., 2012) and passive310
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sensors fail to detect the cloud due to poor sensor sensitivity to optically thin high clouds. The results indicate that the AVHRR

CMSAF generally overestimates the CTHs compared to CALIOP. Conversely, MODIS tends to underestimate the CTHs.

4.1.2 Cloud Fraction

The comparison of CFC for the active sensor and passive sensor data overall and seasonally is shown in Figure 4. The overall

7-year mean CFC values for the SO were 0.82 for CALIOP, 0.86 for MODIS, and 0.85 for AVHRR CMSAF. This is consistent315

with the findings of the review study conducted by Bromwich et al. (2012). The cloud fraction for all sensors, both passive

and active, has more cloud cover over the mid-latitudes (40◦S to 60◦S) than over the high-latitudes (> 60◦S). In general, the

cloud cover decreases (< 70%) towards very high-latitudes near the coast of Antarctica for all sensors, which is also consistent

with findings of Bromwich et al. (2012). This decrease, especially in winter, is likely due to the presence of sea ice near the

Antarctic coast. This inhibits the flux of water vapour (surface evaporation), as presented in studies by Frey et al. (2018) and320

Wall et al. (2017). The high cloudiness for this area can be attributed to the frequent synoptic-scale and mesoscale depressions

and intense cyclonic activity around the Antarctic Continent (Carrasco et al., 2003; King and Turner, 1997; Simmonds et al.,

2003). In general, the passive sensors have higher cloud coverage than CALIOP observations for the higher latitude.

The detailed mean and statistics for the CFC comparison are given in Table 3. It’s intriguing to note that the correlation

between the passive sensors (AVHRR CMSAF and MODIS) and the active sensor (CALIOP) is low (0.52 and 0.48) over325

the whole period. On the other hand, the correlation between the passive sensors is higher (0.87), which suggests that the L3

passive retrievals may have a different systematic bias. Bromwich et al. (2012) also observed a difference in the cloud cover

for the passive and active sensors, they attributed this to the spatial resolution issues of the active sensor when compared to

the passive sensor. The results of this analysis indicate that the active sensor cloud cover was less than the passive sensors, by

approximately 4% for MODIS and AVHRR CMSAF. Note that we are comparing against the CALIOP passive sensor adjusted330

data set.

We found that CFC values are slightly lower in JJA (winter), with a mean of 0.83 and 0.82, respectively, compared to DJF

(summer) when we compared AVHRR CMSAF and MODIS L3 data. In the case of MODIS, the high latitude CFC for JJA

is approximately 60%, the lowest amongst all the sensors. This can be attributed to the presence of sea ice. For the active

sensor, JJA has the lowest CFC (0.81). It’s also observed that there is a notable difference in cloud cover over land for different335

passive sensors. MODIS overestimates the cloud cover over land; on the other hand, AVHRR CMSAF underestimates the cloud

cover compared to the active sensors. In the RMSE and MAE seasonal analysis for all sensor comparisons, it was found that

JJA has the highest value for both amongst all seasons. However, for the MBE, it’s the opposite, with JJA having the lowest

value (≈0.01 km) for all sensors. The correlation also follows the same trend as MBE errors: low in JJA and high in DJF. For

comparisons among the passive sensors, the agreement of pixels identified as cloudy by both sensors is more consistent, and340

the root mean square error (RMSE) is low for all seasons. All of the comparison’s seasonal findings are consistent with the

conclusions of Bromwich et al. (2012).
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The results indicate that CALIOP detects fewer clouds than the passive sensors. This could be due to a difference in resolution

or in the approach taken to make the L3 data set comparable with passive sensors. The total cloud cover for the SO was found

to be around 86% (MODIS), 85% (AVHRR CMSAF) for passive sensors and 82% for CALIOP.345

4.1.3 Cloud fraction for liquid clouds

The overall cloud fraction of liquid water clouds (hereafter CFL) and seasonal distributions are illustrated in this Figure 5.

For the entire year, CALIOP, AVHRR CMSAF, and MODIS show the presence of liquid clouds at around 50%. In terms

of the correlation for the CFLs, the passive sensor comparison is better (0.71) than the active sensor comparison (0.37 C-A

and 0.44 C-M). Lachlan-Cope (2010) observed that over Antarctica, ice clouds are more prevalent and along the coast of350

Antarctica, mixed-phase clouds are more prevalent. Other studies also observed that mixed-phase clouds are prevalent over the

SO (Ahn et al., 2017; Huang et al., 2012; Mace et al., 2021) as they are usually misclassified more over the SO. From Figure

5, we can conclude that AVHRR CMSAF is identifying more liquid clouds over the high-latitudes than other products, while

other passive products classify the clouds as ice clouds or mixed-phase clouds. In the A-M seven-year monthly comparison,

the overall correlation stands at a higher level (0.71) compared to both passive-active comparisons. The comparison’s mean355

and statistical analysis are given in Table 4. The comparison shows that AVHRR CMSAF primarily overestimates the CFL,

while MODIS tends to underestimate it when compared to CALIOP. However, around the high-latitudes, towards the coast of

Antarctica the AVHRR CMSAF underestimates the CFL when compare to CALIOP. In the case of seasonal comparisons, the

correlations for passive sensors against active sensors are low overall in all seasons. For all the sensors, the CFL is consistently

higher in DJF and the lowest in JJA. When we look at the MBE, AVHRR CMSAF has a negative bias for all seasons, while360

MODIS has a positive bias for all seasons compared to CALIOP. AVHRR CMSAF exhibits the smallest bias in JJA and

the highest in DJF, while MODIS displays the smallest bias in DJF and the highest in JJA. This suggests a discrepancy in

cloud classification during the liquid phase between the sensors in DJF. This disagreement can be attributed to the presence

of supercooled liquid in DJF (Huang et al., 2015; Bodas-Salcedo et al., 2016). The C-A seasonal comparison reveals that the

AVHRR CMSAF overestimates the liquid cloud cover across the study region in DJF and JJA, with the exception of Antarctica,365

where it underestimates the amount of liquid cloud. However, in SON and MAM towards the latitudes > 55◦S, both sensors

underestimate the CFL. The presence of sea ice explains this difference in SON and MAM. In summary, the comparison of the

L3 data for the CTH shows a bias in the retrieval between passive sensors, underestimating the CTH by around 1 km compared

to the active sensor: the mean bias error was 0.96 km (C-A) and 1.12 km (C-M). The study of L3 CFC and CFL revealed

that AC overestimates the amount of clouds compared to observations made by MODIS and CALIOP, with the overestimation370

increasing during the winter months.
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4.2 Results for Level 2 pixel-wise comparison

4.3 Case study

Figure 6 shows the swath for the (11µm) brightness temperature from MODIS (MYD) and merged CloudSat-CALIOP track,

for a Case Study on 10-01-2015 at 22:50 UTC. The collocated data for CTH, COD, CER, and CPH for the swath are illustrated375

in Figure 7. The Figure displays MODIS (MYD) values in red, AVHRR PATMOS (AP) in orange, AVHRR CMSAF (AC) in

black, and the CloudSat-CALIOP merged data (hereby known as CC) in blue. The top panel shows the CTH for all sensors

(AC, AP, MYD, and CC), as well as the vertical profile of COD from the CC dataset (2BFL). The CTH for CC at a COD limit

of 0.5 is also shown (cyan) to illustrate the potential differences in optical depth sensitivity between the passive and active

sensors. The second panel illustrates the COD for the four sensors, along with the multilayer mask derived from CC, with red380

indicating a multilayer and yellow indicating a single-layer. The COD shown on each product uses the passive sensors’ 1.6

µm channel. We chose this channel because it is common to all passive sensors. The third panel displays the CER for passive

sensors, as well as the sea ice mask used in the AP retrieval, with cyan indicating sea ice, red for snow, and violet for no snow

or ice detected. The bottom panel shows the cloud phase distribution for the clouds retrieved by various sensors, with red as

clear sky, blue as water phase, purple as mixed phase, orange as ice phase, brown as supercooled liquid, pink as undetermined385

(CC and MYD), and grey as undetermined after phase retrieval of MYD06.

The case study shows 61◦S to 70◦S and 120◦W to 135◦W. This example illustrates the highly variable nature of the cloud

field across the Southern Ocean. Our discussion focuses on four sub-sections: patchy, optically thin mid-level clouds over

optically thick boundary layer clouds (Figure 7a[i]); multilayer clouds (Figure 7a[ii]); thick frontal clouds (Figure 7a[iii]); and

thick upper-level clouds over thick low-level clouds (Figure 7a[iv]). In the first panel, the CTH ranges from 0 to 12 km and390

shows substantial differences between the CTH of passive and active sensors, with both underestimation and overestimation

by the passive sensors. Figure 7a[i] shows an optically thin patchy mid-level cloud over an optically thick boundary layer of

clouds, in a region defined as sea ice by the AP sea ice flag. The MODIS retrieval fails to detect the mid-level cloud and

underestimates the CTH. However, the AC detects the mid-level cloud and as it is optically thin over a lower-layered cloud,

it places the CTH between the two layers. In the case of AP retrieval, due to the presence of sea ice or a flaw in the retrieval395

logic, it overestimates the CTH and places the height near the troposphere layer, which is relatively low at this latitude. While

the COD of MYD, AC, and CC are similar, the COD of AP is significantly lower for a large section, possibly due to its

misclassification as ice. The CC COD values may be lower due to the presence of an optically thick boundary layer cloud and

attenuation. In the CER comparison for passive sensors, there is general agreement when it comes to single-layer cloud scenes

and greater differences in the presence of multilayer clouds.400

The second subsection (Figure 7a[ii]) shows a multilayer cloud structure with a cirrus cloud and boundary layer clouds. In

this region, the passive sensors underestimate the CTHs by 4 km to 6 km for MYD, 3 km to 5 km for AC, and approximately 5

to 7 km for AP, when compared to the CTHs retrieved by the active sensors. This clearly demonstrates that the passive sensors,

regardless of retrieval methods, generally in sensitive to the optically thin cirrus cloud.
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The next subsection (Figure 7a[iii]), an optically and geometrically thick layer of clouds shows the passive sensors MYD405

and AC overestimating the CTHs by 1 km to 2 km and AP underestimates the CTH by 1 to 3 km. This difference could be due

to the different Numerical weather prediction (NWP) reanalyses, used for temperature profiles, which can vary substantially

according to altitudes, particularly at high latitudes and difficulty in identifying the tropopause(Wu et al., 2012; Müller et al.,

2018).

When a thick upper-level cloud is on top of a thick low-level cloud (Figure 7a[iv]), both MYD and AC can accurately retreive410

the top layer CTHs. However, when the cloud becomes optically thin, the differences between the CTHs for MYD and AC get

bigger. The AP’s sensitivity to the cloud layers is low, leading it to miss the top layer and only detecting optically thick lower

layer clouds.

In the second panel (Figure 7b), the cloud optical depths for each retrieval are compared. The COD of CC (2BFL) exhibits

high variability when compared to the COD of passive sensors. The COD has large differences among the sensors. We can415

see that, where there is a multilayer structure (Figure 7a[ii]and [iv]), CC COD is substantially higher than the other sensors.

In single-layer areas, the COD of MYD and AC are more in line with the active sensor measurements. The AP COD varies

throughout the scene, with a significant difference from other passive and active sensor measurements. The second panel

displays the multilayer mask that CC developed. It identifies the areas with multilayer clouds quite well. The optical thickness

of the topmost layer cloud at 67.5◦S is around 0.01 to 0.1, and the convective cloud has an optical thickness ranging from 1 to420

10, and the multilayer mask successfully identifies it as a multilayer cloud.

The third panel (Figure 7c) shows the CER compared for the 1.6 µm channel retrievals for passive sensors and the sea ice

flag. The CER values of AC and AP range from 0–40 microns, and those of MODIS range from 0–60 microns. The CER values

from different instruments show little agreement, especially the AP CER, which frequently deviates from the norm. When there

are single liquid layer clouds, the sensors produce reasonable results in CER observations. When multilayer clouds are present425

or there is an optically thick ice cloud, the CER disagreement is largest in the sensors. MODIS shows the largest differences in

the presence of optically thick clouds or multilayer clouds. Additionally, the CER observations reveal missing data in the case

of AC that are not evident in other cloud properties. The panel displays the sea ice flag from AP, revealing the presence of sea

ice over half of the scene.

The cloud thermodynamic phase is shown in the fourth panel (Figure 7d). For CPH, each retrieval algorithm uses a slightly430

different phase classification scheme. All sensors share ice and water as common classes, with a clear sky for MYD, a super-

cooled liquid for AP, and a mixed phase for CC. The CC phase was retrieved from the cloud top. The agreement between the

sensors overall is poor, but in the case of a single-layer structure, most sensors except AP agree on liquid retrieval between

69.5◦S to 68.5◦S. The discrepancy of AP’s misclassification of phase here (69.5◦S to 68.5◦S), is likely due to AP identifying

CTH as a high cloud rather than a boundary layer cloud. AP classifies the majority of the clouds as ice clouds and supercooled435

liquid clouds, whereas AC classifies the clouds as ice or water clouds. MYD classifies the clouds as water, ice, or undeter-

mined, and the active sensor CC allocates the clouds as water, mixed, and ice. The differences indicate interdependence in

cloud property retrieval, such as CTH for AP. In the case of multilayer clouds, the phase of the cloud detected by the sensors is

taken as the phase of the top layer, and in the case of passive sensors, often thin cirrus ice clouds are missed.
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To summarise, we observe significant variations in the retrieved cloud properties in the presence of multilayer clouds, with440

passive sensors underestimating the retrieved cloud properties (CTH, COD) compared to active sensors. The dependency on

the optical depth of the topmost cloud layer, the penetrative property, and the sensitivity of passive sensors are seen in this case

study.

The case study demonstrates that cloud property retrievals differ based on cloud type, retrieval algorithm, and sensor sensi-

tivity. The case study indicates that single-layer boundary layer clouds have smaller biases, while high-level clouds have larger445

biases in cloud property retrievals. Multilayer clouds exhibit the greatest biases among all cloud types, as passive sensors are

generally less sensitive to high optically thin clouds.

4.4 L2 cloud mask

The cloud mask products from the passive sensors are evaluated against the CloudSat-CALIPSO product (Table 5). The true

positive rate (TPR) is similar for AVHRR CMSAF (AC 0.94) and AVHRR PATMOS (AP 0.95) and lesser for MODIS (MYD450

0.77). The false positive rate (FPR) vary considerably among the products, 0.22 for AC, 0.07 for MYD, and 0.51 for AP. The

Kuiper Skill scores are relatively similar, 0.71 for AC, 0.70 for MYD, except for AP, 0.42. The higher resolution of MODIS

and AVHRR CMSAF may contribute to their higher KSS compared to AVHRR PATMOS.

According to Karlsson et al. (2023a), when the global cloud masks of the CLARA A3 and CALIPSO (5 km cloud product)

were compared, for the years 2006–2015, the overall hit rate was 0.82 and the KSS score was 0.68. The hit rate for high455

latitudes in both hemispheres was 0.85, and the KSS score was 0.69 and for polar regions, the hit rate was 0.69, and the KSS

score was 0.49. The KSS score from our analysis comparing AC cloud mask and CC is 0.70, which is similar but the hit rate is

higher (0.94). These differences can be attributed to changes in the period, the study area considered, and the active sensor data

considered. Furthermore, differences in cloud masking algorithms and validation methods may contribute to the variations in

scores. The hit rate for MYD and CC comparison is the lowest (0.77); on the other hand, the FPR is also the lowest amongst460

the sensors (0.07). It was observed that the hit rate and KSS score was influenced by the presence of sea ice (Figure 9).

4.5 L2 cloud top height comparison

Figure 8 shows a 2D histogram plot of passive satellite CTH with active (CC) CTH for the year 2015. A summary of the

comparison of the average CTH with and without a COD limit > 0.5 is given in Table 6.

The average CTH of CC is higher without the COD limit, indicating that the high thin cloud is removed when this threshold465

is applied. In general the average height of passive sensors is higher than the CC with CTH threshold >0.5 and lower than the

CTH without threshold. Analysis of the full dataset (2015) reveals mixed agreement between passive and active sensors, with

AC (5.46 km) demonstrating better agreement than CC CTH without threshold (5.12 km), and AP (4.22 km) and MYD (4.12

km) demonstrating better agreement with CC CTH with COD > 0.5 (3.91 km). For both CC CTH (with and without COD >

0.5), single-layer clouds (3.41 km and 3.84 km), passive sensors exhibit good agreement.470

Multilayer cloud identification was applied using a mask derived from CC CTH. The results for the multilayer cloud are

unsurprisingly less accurate and inconsistent. The AC CTH (7.18 km) shows better agreement with the CC without the threshold
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(8.4 km), indicating that it is more sensitive to high thin clouds than MYD (5.42 km) and AP (5.32 km), which show better

agreement with the CC CTH COD > 0.5 threshold (4.81 km).

Figure 8 shows a 2D histogram comparison of passive satellite CTH with active (CC) CTH for 2015. The CC CTH plotted475

was CTH with a COD > 0.5. Each row shows the results for a single passive satellite: AC is the top row (Figure 8 a,b,c), MYD

is the second row (Figure 8 d,e,f) and AP is the bottom row (Figure 8 g,h,i), and each column shows the result, from left to

right: the full dataset (2015), single-layer clouds, and multilayer clouds.

A number of features become apparent in Figure 8 The MYD and AP plots display a horizontal band, signifying the passive

sensor’s underestimation of the CTH, which aligns with the earlier analysis. In general, the CTH of low clouds are overes-480

timated by the passive sensors. The passive sensors underestimate the CTH of high clouds in MYD and AP. An explanation

for the overestimation of low CTH is the effect of atmospheric temperature inversion, where the cloud brightness temperature

taken by the passive sensor from the NWP reanalyses profile might be for a lower height than the actual CTH (Figure 7a[i]).For

clouds that have underestimated the CTH, there are two possible reasons for this. Firstly, the clouds are thin and the retrieval

does not properly account for the extinction of the cloud and a contribution to the TOA radiance from the surface (Fu et al.,485

2017). Secondly, the passive sensor IR channels penetrate approximately an optical depth into the clouds, as seen clearly in

case study Figure 7a[ii].

Additionally, the differing performance of the passive data sets is in part due to different algorithm approaches. The AC CTH

has been derived by training a neural network with collocations of CALIOP cloud top heights. While the MYD retrievals uses

a physical model based on CO2 slicing and IR window approach (Menzel et al., 2015) for the retrieval of CTH. In AP, CTHs490

are retrieved using physical models, the ACHA algorithm and the CO2 slicing method (Menzel et al., 2008). As the results

of the CO2 slicing method were poor, we have considered only the ACHA method CTHs. The ACHA methods employs a

combination of IR channel observations and the split-window approach (Heidinger and Pavolonis, 2009), to retrieve the CTHs.

The analysis of L2 CTH properties has shown significant differences between products. There are differences not only

between retrievals using the same instrument (AP and AC), but also between retrieval algorithms and between different in-495

struments (MYD). The agreement between all sensors was reasonable for cloud top heights in the case of single-layer scenes.

However, scenes classified as multilayer exhibited a lower level of agreement. The general findings on CTH are in agreement

with previous studies. (Hollmann and Wetterdienst, 2020; Yang et al., 2021). Mitra et al. (2021) observed the maximum CTH

uncertainty for MODIS (L2) for a single-layer unbroken low cloud of 0.540 ± 0.690 km. In the MYD06 collection, CTH bias

with CALIOP is reduced to 0.197 km for low-level boundary water clouds (Baum et al., 2012).500

In our comparison of the L2 collocate data of active and passive sensors, the mean bias in each sensor for CTH varies with

MODIS (MYD06) 1.36 km, AVHRR CMSAF (CLARA A3) 1.07 km, and AVHRR PATMOS (V6) 1.21 km. When it comes to

multilayer classified pixels, the passive sensors underestimate the CTHs. Given that the total number of multilayer identified

scenes represents one-fourth of the total scene, the bias is significant. Overall, the AC neural network retrievals performed the

best, delivering higher sensitivity to thin clouds and performing significantly better for multilayer and high clouds.505
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4.6 L2 Cloud Effective Radius Comparison

In this section, we looked at the CER of the passive sensors as a function of CPH, to see how the values changed depending

on the thermodynamic phase and the presence of single or multilayer clouds. The passive sensors categorise thermodynamic

phases into various classifications according to their retrieval algorithms. The categories utilised by the sensors are presented

in Table 7. A comparison between the different sensors AC, MYD, and AP, is illustrated in Figure 9, over a year, and for SL,510

and ML cases. Table 8 shows the statistical comparison for water, ice, and supercooled liquid phases.

The AC CER with respect to CPH for the whole year shows similar values for all thermodynamic phases. It can be observed

that the liquid identified phase and supercooled liquid identified phase have a mean at around 14 µm for all cases, yearly, SL,

and ML. In this analysis CPH classification of water, fog, and supercooled liquid are considered liquid. Ice, cirrus, and overlap

are considered ice for the general CPH classification. When the general CPH classification is considered, it was found that515

for SL cases more liquid clouds were present than ML cases, and ice was more prevalent for ML cases. Another interesting

observation is the strong presence of supercooled liquid in AC phase distribution with a mean of 14.62 µm for full year cases.

For AC SL cases, supercooled liquid and liquid clouds are predominant, and for AC ML cases, its overlap and cirrus clouds

are more prevalent.

The MYD (Figure 9) CER shows that the majority of the pixels phase as liquid/water clouds with a mean of 15.59 µm. In520

the case of multilayer clouds the mean is 16.38 µm. CER classified as ice clouds have a mean of 34.72 µm for SL and a mean

of 26.54 µm for ML clouds. MYD has a phase classification specified as "undetermined liquid retrieval" (hereby ULQ), where

liquid cloud retrieval was attempted but failed to classify as liquid cloud. Previously, this was classified as a mixed class in

MYD collection 5 (Platnick et al., 2015). The ULQ has a mean of 29.32 µm. The presence of liquid clouds is more common

for SL cases than ML cases. In the case of ML clouds, more ice clouds are present in the CPH with a peak at 25 µm.525

AP has the majority of its CER classified as ice phase for full year, SL, and ML cases. In AP, the CER classified as super-

cooled liquid is present predominantly in the liquid phase and has a mean of 14.46 µm and has a higher frequency of occurrence

in SL cases, compared to water phase. The ice phase has two peaks in the SL cases and full-year cases, one at 15 µm and one

at 35 µm, and has a mean of 19.53 µm and 20.31 µm. The ML cases has a single peak with a mean of 19.23 µm. Another

interesting feature is the presence of supercooled liquid in all cases, with the mean approximately 15 µm.530

The results show that the CER distribution varies significantly between sensors for different thermodynamic phases. In the

case of ML clouds, the dominant phase is ice. The presence of supercooled liquid is significant in the SO for both ML and SL

clouds for both AC and AP retrievals, which is in line with previous findings (Huang et al., 2015; Bodas-Salcedo et al., 2016).

There is a need to identify the clouds either as a mixed-phase or supercooled liquid class in passive sensor classification. In the

case of AP CER, the ice phase clouds have bimodal distribution, which may indicates the misclassification of phase (Figure535

9). The presence of sea ice also contributes to the misidentification as seen in the Case Study(Figure 7d[iv]). In general, the

CER for the passive sensors agree when it is single-layer clouds and has large disagreement between sensors in the presence of

multilayer clouds. From our analysis, it is evident that multilayer clouds are a major factor in phase misidentification which is
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inline with Yost et al. (2023). Yost et al. (2023) indicated in their study that multilayer clouds are one of the major contributors

to phase misclassification.540

4.7 L2 cloud property comparison as a function of surface type

In this section, we investigate the distribution of cloud properties as a function of sea ice coverage. The sea ice flag used in

AVHRR PATMOS retrieval was applied to all the collocated pixels. The distributions of the cloud properties (CER, CTH, and

COD) were analysed as a function of sea ice coverage for latitudes > 60◦S, as shown in Figure 10. The narrow latitude range

was selected to reduce differences in microphysics caused by different meteorological regimes. The MODIS (MYD) property545

is shown in red, AVHRR CMSAF in black, and AP in yellow. Cloud properties such as COD, CER, and CTH are compared

for sea ice detected and non-sea ice detected, and the mean and median are given in Table 9. The mean COD for AC was 25.98

and 19.19, for MYD it was 23.30 and 20.46, and for AP it was 28.30 and 17.7 for sea ice and non-sea ice cases, respectively.

The mean optical depth of the retrieved pixels increased in the presence of sea ice for all sensors. The results disagree with the

findings from Frey et al. (2018) and Palm et al. (2010). They show that COD is generally higher over ocean than over sea ice.550

It is hypothesised that the high albedo of the sea ice causes a systematic positive bias in the retrieval algorithm. CER and CTH

also showed similar positive bias but the bias was much smaller than the differences observed for COD (Table 9; ≈1 µm for

CER and ≈ 0.3 km for CTH).

The seasonality of sea ice presence was also examined to understand the influence of sea ice on the sensor’s observations.

We observed that the disagreement between the retrievals is higher in MAM and lowest in DJF when there is no sea ice present.555

In the case of MYD, the COD is less than 50 for all seasons, and for AP, less than 80. For all seasons, the range for CER is

between 0-35 for AP, 5-65 for MYD, and 5-45 for AC. On the other hand, for CTH, the range varies according to the season,

with the presence of low clouds (< 2 km) high for MYD and AP in JJA and all sensors in SON and AC. In DJF and MAM, the

amount of mid-level clouds (3-6 km) was higher, while both MYD and AP had a higher concentration of low CTHs (< 2 km).

It can be concluded that in the case of CTH and CER, the seasonality is not an important factor, while for COD, the seasonality560

and presence of sea ice are important factors in the derivation of the product.

5 Summary and Conclusion

In this study we have compared and validated the cloud property retrievals from merged CloudSat-CALIOP (CC) and MODIS-

AQUA (MYD06), AVHRR CMSAF (CLARA A3), and AVHRR PATMOS (V6) over the SO for monthly (L3) and instanta-

neous (L2) data. The results showed significant differences in cloud top height, cloud fraction (cloud mask), optical depth,565

thermodynamic phase, and cloud effective radius.

For the Level 3 comparison, when compared to CALIOP CTHs for the top layer, we found that MODIS generally tends

to underestimate the CTHs and AVHRR CMSAF tends to overestimate the CTHs. The monthly observations of the CTHs

revealed significant biases and poor correlation within the dataset. The observed cloud fraction for passive sensors was higher

than for active sensors, especially towards the mid-latitudes (40◦S to 60◦S). In comparison to CALIOP CFC, the AVHRR570
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CMSAF CFC was > 20% and the MODIS CFC was > 10%. On the other hand, over the high latitudes (60◦S to 70◦), MODIS

CFC was < 10% compared to CALIOP CFC. We observed that over Antarctica, CALIOP CFC was > 10% of MODIS CFC

and > 20% of AVHRR CMSAF. When comparing the cloud fraction for liquid clouds with CALIOP, MODIS has an overall

lower cloud cover, while AVHRR CMSAF has a lower cloud cover over the land and a higher cloud cover over mid-latitudes.

During the seasonal analysis, we observed that austral summer (JFA) has lower biases and better correlation than other seasons,575

while winter has higher biases and poorer correlation for CTHs comparison. It can be concluded that over the Antarctic coast

CALIOP L3 cloud properties retrievals, have a positive bias with both MODIS and AVHRR CMSAF. However, over the

mid-latitude, AVHRR CMSAF overestimates the cloud properties when compared to CALIOP.

An extensive analysis of L2 passive sensor (AVHRR CMSAF, MODIS, and AVHRR PATMOS) observations against active

sensor (CLOUDSAT-CALIOP merged) observations, was carried out in order to identify the factors contributing to the bias in580

cloud property retrievals. The presence of multilayer, sea ice concentration, and cloud mask were some of the factors analysed.

In the case of CTH analysis, a mean absolute bias of 0.65 km (AVHRR CMSAF), 1.03 km (MODIS), and 1.31 km (AVHRR

PATMOS) was observed for single-layer cloud scenes cases. This mean bias increased to 1.86 km (AVHRR CMSAF), 3.22 km

(MODIS), and 3.34 km (AVHRR PATMOS) for multilayered cloud scenes. Hence, we can conclude that the passive sensor

MBE against the active sensor for multilayer cases is 3 to 5 times the corresponding MBE for single-layer cases and 2 times585

for the overall year. The study demonstrates that multilayer clouds contribute significantly to the biases in CTH retrieval. The

bias can also be attributed to the retrieval algorithm differences, COD of the layers, and sensitivity of sensors to the cloud.

The second major finding of this study ,the cloud mask comparison revealed that only around two-thirds of passive sensors

observations agree with active sensor observations and in the case of AVHRR PATMOS the agreement is lower. More than half

of the observations for AVHRR PATMOS (KSS=0.43) show disagreement, likely due to its different spatial resolution from590

other sensors. In the case of sea ice-classified pixels, the KSS rates are lower, indicating the influence of sea ice on the cloud

observation.

The cloud phase comparison would have been easier if there was a consistent phase definition between all the data sets. In the

comparison of CER, it was observed that the disagreement between the passive sensors was greater in presence of multilayer

clouds. In single-layer cases, the liquid water phase dominates for MODIS, while the supercooled liquid phase for AVHRR595

CMSAF. The AVHRR PATMOS shows more ice phase for single-layer clouds than other passive sensors, with two peaks in

the CER at 10 and 30 microns. The analysis of CER, COD, and CTH in relation to the sea ice mask revealed that the presence

of sea ice plays an important role in uncertainties in COD.

The comparison and validation conclude that all passive sensors showed cloud property differences when compared with

CloudSat-CALIOP and when compared with each other, both negative and positive. The AVHRR CMSAF performs well600

throughout the CTH retrievals, but in multilayer scenarios, the correlation is lower. Similarly, MODIS is generally good at

retrieving CTH, but in multilayer clouds, it has stronger biases when compared to AVHRR CMSAF. The AVHRR PATMOS

sensors exhibited the lowest correlation and the highest bias in both the overall CTH and the multilayer and single-layer cases.

The agreement between the cloud thermodynamics phase and the active sensor is reduced for AVHRR PATMOS. Although
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MODIS has more channels and hence more information content compared to other retrievals, it is not better than AVHRR605

CMSAF with neural network retrievals. The AVHRR PATMOS has the poorest retrieval among the passive sensors.

The bias is affected by the multilayer structure of the clouds, the sensitivity of the retrieval algorithm, problems with temper-

ature profile inversion, incorrect identification and classification of the thermodynamic phase, and the presence of supercooled

liquid. The agreement for single-layer cloud retrieval is higher than the agreement for multilayer classified cloud retrieval.

This suggests that we need to invest more effort into improving multilayer retrieval issues, especially over the SO where the610

cloud properties are very different from those in other areas. Since reanalysis and climate models utilise these passive sensor

retrievals.
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Figure 1 The flowchart of a) Collocation for MODIS/AVHRR Level 2 data and CloudSat-CALIOP b) Collocation for all

sensors.

Figure 2 The distribution of collocated Pixels for all 4 sensors. The collocation of MODIS and CloudSat-CALIOP

(MODIS_CC) is shown in red, AVHRR CMSAF and CloudSat-CALIOP (AVHRRCMSAF_CC) is shown in blue and AVHRR

PATMOS and CloudSat-CALIOP (AVHRRPATMOS_CC) is shown in green.
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Figure 3 7-year (2009-2016) seasonal data comparison of Cloud Top Heights (CTH), over the Southern Ocean, for Level

3 data retrieved from AVHRR CMSAF (CLARA A3), MODIS AQUA (CLDPROP_D3_MODIS_Aqua) and CALIOP

(CAL_LID_L3_GEWEX_Cloud). The left vertical panel shows the difference in CTHs for CALIOP and MODIS, the mid-

dle panel CALIOP and AVHRR CMSAF and the rightmost panel shows the SST from ERA-5 data for the same region.
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Figure 4 7-year (2009-2016) seasonal data comparison of Cloud Fraction (CFC), over the Southern Ocean, for Level

3 data retrieved from AVHRR CMSAF (CLARA A3), MODIS AQUA (CLDPROP_D3_MODIS_Aqua) and CALIOP

(CAL_LID_L3_GEWEX_Cloud). The left vertical panel shows the difference in CFCs for CALIOP and MODIS, the mid-

dle panel CALIOP and AVHRR CMSAF and the rightmost panel CALIOP CFC for the same region.
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Figure 5 7-year (2009-2016) seasonal data comparison of Liquid Phase Clouds Fraction (CFL), over the Southern Ocean, for

Level 3 data retrieved from AVHRR CMSAF (CLARA A3), MODIS AQUA (CLDPROP_D3_MODIS_Aqua) and CALIOP

(CAL_LID_L3_GEWEX_Cloud.) The left vertical panel shows the difference in CFLs for CALIOP and MODIS, the middle

panel CALIOP and AVHRR CMSAF and the rightmost panel shows CALIOP CFL for the same region.
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Figure 6 Swath for brightness temperature retrieved from MODIS (MYD) and merged CloudSat-CALIOP (CC) for Case study

on 10-01-2015 at 22:50 UTC.
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Figure 7 Vertical profiles for cloud properties Cloud Top Height (CTH; Top panel), Cloud Optical Depth (COD; Second Panel),

Cloud Effective Radius (CER) ; third panel) and Cloud Phase (CPH; Bottom Panel) retrieved from collocated data of AVHRR

CMSAF (AC), AVHRR PATMOS (AP), MODIS (MYD) and merged CloudSat-CALIOP (CC) for Case study on 10-01-2015

at 22:50 UTC.
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Figure 8 Collocated Level 2 MODIS (top), AVHRR CMSAF (middle), AVHRR PATMOS (bottom) and CLOUDSAT-CALIOP

merged data analysed for Cloud Top Height (CTH), over the Southern Ocean, for 2015 (left) shows the Joint 2D Histogram for

CTHs, the 2D histograms for multilayer (right) and single-layer (centre) masked collocated data.
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Figure 9 Cloud Effective Radius (CER) distribution according to the cloud phase for the collocated data for the year 2015,

over the Southern Ocean, for all passive sensors.
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Figure 10 Cloud Optical Depth (COD), Cloud Effective Radius (CER) and Cloud Top Height (CTH) as a function of Sea

ice Flag from AVHRR PATMOS for all passive sensors, over the Southern Ocean. MODIS (MYD) is shown in red, AVHRR

CMSAF (AC) is shown in black and AVHRR PATMOS (AP) is shown in yellow.
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CloudSat CALIOP CALIOP MODIS AVHRR CMSAF AVHRR PATMOS

Level 3 product - CALIOP GEWEX CLDPROP_M3_MODIS_Aqua CLARA-A ed.3.0 -

CTH - Cloud_Top_Altitude_Passive Cloud_Top_Height Cloud Top Height -

CFC - Cloud_Amount_Mean_Passive Cloud_Fraction Cloud Fraction -

CPHL - Water_Cloud_Amount_Mean_Passive Cloud_Retrieval_Fraction_Liquid Cloud Fraction for liquid clouds -

Level 2 product 2B-CLDCLASS-LIDAR (2BCL) 2B-FLXHR-LIDAR (2BFL) - MYD06_L2 CLARA-A ed.3.0 PATMOS-x versions 6.0

CTH CloudLayerTop (2BCL) - Cloud Top Height Cloud Top Height ACHA CTH

COD COD (2BFL) - 1.6µm COD 1.6µm COD 1.6µm COD DCOMP

CER - - 1.6µm CER 1.6µm CER 1.6µm CER

CPH CloudPhase (2BCL) - Cloud top phase Cloud top phase extended Cloud top phase

CMK Cloud Mask - Cloud Mask Cloud Mask Cloud Mask

Table 1. Passive and active sensors Data and variables used for the Analysis.

Mean Values of CTH

Seasons CALIOP (km) AVHRR CMSAF (km) MODIS (km)

2009-2016 5.37 5.21 4.25

Spring 5.29 5.19 4.31

Summer 4.97 4.90 3.92

Autumn 5.39 5.17 4.14

Winter 5.8 5.55 4.60

(a)

Sensor CALIOP vs AVHRR CMSAF (km) CALIOP vs MODIS (km) AVHRR CMSAF vs MODIS (km)

Season RMSE MAE MBE Correlation RMSE MAE MBE Correlation RMSE MAE MBE Correlation

2009-2016 2.35 1.89 0.46 0.36 2.60 2.07 1.12 0.32 0.98 0.85 0.66 0.68

Spring 2.28 1.83 0.39 0.36 2.48 1.97 0.98 0.32 0.91 0.78 0.59 0.67

Summer 2.24 1.77 0.36 0.34 2.43 1.90 1.05 0.36 0.92 0.80 0.68 0.70

Autumn 2.43 1.95 0.52 0.31 2.70 2.14 1.25 0.28 1.05 0.91 0.73 0.57

Winter 2.66 2.16 0.56 0.14 2.77 2.23 1.20 0.28 1.27 1.05 0.64 0.42

(b)

Table 2. a) Mean values of Cloud Top Height (CTH) over the Southern Ocean and b) Statistics for 7 years (2009-2016) monthly data

comparison of CTH for Level 3 data retrieved from AVHRR CMSAF (CLARA A3), MODIS AQUA (CLDPROP_D3_MODIS_Aqua) and

CALIOP (CAL_LID_L3_GEWEX_Cloud.)
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Mean Values of CFC

Seasons CALIOP AVHRR CMSAF MODIS

2009-2016 0.82 0.85 0.86

Spring 0.82 0.85 0.87

Summer 0.83 0.87 0.88

Autumn 0.83 0.86 0.87

Winter 0.81 0.83 0.82

(a)

Sensor CALIOP vs AVHRR CMSAF CALIOP vs MODIS AVHRR CMSAF vs MODIS

Seasons RMSE MAE MBE Correlation RMSE MAE MBE Correlation RMSE MAE MBE Correlation

2009-2016 0.17 0.12 -0.03 0.52 0.18 0.13 -0.04 0.48 0.07 0.05 -0.01 0.87

Spring 0.17 0.12 -0.03 0.56 0.17 0.12 -0.04 0.54 0.07 0.05 -0.01 0.85

Summer 0.17 0.12 -0.04 0.55 0.17 0.12 -0.05 0.58 0.06 0.04 -0.02 0.89

Autumn 0.17 0.12 -0.03 0.50 0.18 0.12 -0.04 0.48 0.06 0.05 -0.01 0.90

Winter 0.19 0.14 -0.02 0.40 0.19 0.14 -0.01 0.42 0.11 0.08 0.01 0.74

(b)

Table 3. a) Mean value of Cloud Fraction (CFC) over the Southern Ocean and b) Statistics for 7 years (2009-2016) monthly data comparison

of CFC for Level 3 data retrieved from AVHRR CMSAF (CLARA A3), MODIS AQUA (CLDPROP_D3_MODIS_Aqua) and CALIOP

(CAL_LID_L3_GEWEX_Cloud.)
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Mean Values of CFL

Seasons CALIOP AVHRR CMSAF MODIS

2009-2016 0.49 0.53 0.45

Spring 0.47 0.49 0.43

Summer 0.54 0.63 0.54

Autumn 0.49 0.53 0.47

Winter 0.43 0.45 0.36

(a)

Sensor CALIOP vs AVHRR CMSAF CALIOP vs MODIS AVHRR CMSAF vs MODIS

Season RMSE MAE MBE Correlation RMSE MAE MBE Correlation RMSE MAE MBE Correlation

2009-2016 0.23 0.19 -0.04 0.37 0.22 0.18 0.03 0.44 0.14 0.10 0.07 0.71

Spring 0.23 0.18 -0.02 0.39 0.22 0.18 0.04 0.46 0.12 0.09 0.07 0.76

Summer 0.24 0.19 -0.09 0.36 0.21 0.17 0.01 0.47 0.14 0.11 0.09 0.65

Autumn 0.24 0.19 -0.03 0.30 0.23 0.18 0.02 0.38 0.13 0.10 0.05 0.60

Winter 0.24 0.19 -0.02 0.21 0.24 0.19 0.07 0.32 0.17 0.13 0.09 0.41

(b)

Table 4. a) Mean Liquid Phase Clouds Fraction (CFL) values over the Southern Ocean and b) Statistics for 7 years (2009-2016) monthly

data comparison of CFL for Level 3 data retrieved from AVHRR CMSAF (CLARA A3), MODIS AQUA (CLDPROP_D3_MODIS_Aqua)

and CALIOP (CAL_LID_L3_GEWEX_Cloud.)

Sensors True Positive Rate (TPR)/Hit rate False Positive Rate (FPR) Kuiper Skill Score (KSS)

CloudSat-CALIOP vs AVHRR CMSAF 0.94 0.22 0.71

CloudSat-CALIOP vs MODIS 0.77 0.07 0.70

CloudSat-CALIOP vs AVHRR PATMOS 0.95 0.51 0.43

Table 5. Cloud mask performance for 2015 over the Southern Ocean comparison for Level 2 AVHRR CMSAF, AVHRR PATMOS and

MODIS against active sensor CloudSat-CALIOP (CC)

.
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Mean Values of CTHs

CloudSat_CALIOP (km) > 0.5 COD CloudSat_CALIOP (km) without COD limit AVHRR CMSAF MODIS AVHRR PATMOS (km)

2015 3.91 5.46 5.12 4.12 4.22

Single-layer cases 3.41 3.84 4.00 3.42 3.63

Multilayer Cases 4.81 8.40 7.18 5.42 5.32

(a)

Statistics CC vs AVHRR CMSAF CC vs MODIS CC vs AVHRR PATMOS

RMSE (km) MAE (km) MBE (km) Correlation RMSE (km) MAE (km) MBE (km) Correlation RMSE (km) MAE (km) MBE (km) Correlation

2015 2.85 1.76 -1.21 0.72 2.54 1.56 -0.21 0.69 2.55 1.67 -0.32 0.65

SL Cases 1.99 1.12 -0.59 0.83 2.01 1.18 -0.01 0.78 2.18 1.37 -0.21 0.72

ML cases 3.97 2.94 -2.37 0.50 3.29 2.23 -0.60 0.52 3.11 2.21 -0.51 0.48

(b)

Statistics CC vs AVHRR CMSAF CC vs MODIS CC vs AVHRR PATMOS

RMSE (km) MAE (km) MBE (km) Correlation RMSE (km) MAE (km) MBE (km) Correlation RMSE (km) MAE (km) MBE (km) Correlation

2015 2.00 1.08 0.33 0.86 2.90 1.80 1.33 0.75 3.05 2.03 1.23 0.69

SL cases 1.26 0.65 -0.16 0.93 1.68 1.03 0.42 0.88 2.03 1.31 0.21 0.80

ML Cases 2.89 1.86 1.22 0.64 4.31 3.22 2.99 0.53 4.34 3.34 3.08 0.44

(c)

Table 6. a) Mean Cloud top height (CTH) values for 2015 over the SO for Level 2 CTHs data MODIS (MYD), CloudSat-CALIOP (CC),

AVHRR CMSAF (AC) and AVHRR PATMOS (AP). Statistics of the comparison of CC CTH with the COD limit > 0.5 is shown in b) and c)

is for CC CTH without the COD limit.

Cloud Thermodynamic Phase Classifications

CLOUDSAT CALIPSO MODIS AVHRR CMSAF exteneded AVHRR PATMOS

Undetrmined Clear sky Clear sky Clear sky

Water Water Not used Water

Ice Ice Fog Supercooled liquid

Mixed Undetermined Water Mixed

Undetermined liquid retrieval Supercooled liquid Ice

Ice Undetermined

Overlap

Cirrus

Table 7. Cloud Thermodynamic Phase classification for Level 2 AVHRR CMSAF (AC), AVHRR PATMOS (AP), MODIS (MYD) and

CloudSat-CALIOP (CC).
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Cloud Effective Radius

Phase Sensors
Full year single-layer Multi Layer

Mean Median Mean Median Mean Median

Water

AC 14.75 13.37 14.01 13.45 14.19 12.66

MYD 15.59 15.00 15.21 15.00 16.38 16.00

AP 16.72 15.51 16.01 15.68 16.26 14.79

Ice

AC 15.54 14.19 14.82 14.80 14.50 13.06

MYD 30.90 30.00 30.68 35.00 26.54 25.00

AP 20.32 19.57 19.51 21.53 19.23 18.08

Supercooled Liquid

AC 14.68 13.34 13.98 13.60 14.24 12.86

MYD nan nan nan nan nan nan

AP 14.62 13.96 14.46 13.87 15.11 14.28

Table 8. Mean and Median Cloud Effective Radius (CER) comparison for 2015 over the Southern Ocean, for water, ice and supercooled

liquid phases from Level 2 AVHRR CMSAF (AC), AVHRR PATMOS (AP), MODIS (MYD) and CloudSat-CALIOP (CC).

COD CER CTH

Sea ice Non Seaice Sea ice Non Seaice Sea ice Non Seaice

Sensors Mean Median Mean median Mean Median Mean median Mean Median Mean median

MYD 23.30 13.0 20.46 13.0 20.82 16.0 19.45 15.00 4.15 3.3 3.87 2.75

ACM 25.98 11.46 19.19 10.35 14.25 12.66 13.01 11.32 4.91 4.17 4.27 3.56

AP 28.30 13.31 17.37 9.952 16.38 13.89 14.55 11.94 3.85 3.95 3.67 3.79

Table 9. Mean and Median values of Cloud Optical Depth (COD), Cloud Effective Radius (CER) and Cloud Top Height (CTH) over sea and

over sea ice for Level 2 AVHRR CMSAF, AVHRR PATMOS and MODIS pixels at latitudes (> 60◦S).
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