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Abstract

The Radio Occultation Modeling EXperiment (ROMEX) is an international collaboration
to test the impact of varying numbers of radio occultation (RO) profiles in operational
numerical weather prediction (NWP) models. An average of 35,000 RO profiles per day
for September-November 2022 from 13 different missions are being used in
experiments at major NWP centers. This paper evaluates properties of ROMEX data,
with emphasis on the three largest datasets: COSMIC-2 (Constellation Observing
System for Meteorology, lonosphere and Climate-2 or C2), Spire, and Yunyao.

The penetration depths, (percent of profiles reaching different levels above the surface)
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of most of the ROMEX datasets are similar, with more than 80% of all occultations
reaching 2 km or lower and more than 50% reaching 1 km or lower.

The relative uncertainties of the C2, Spire, and Yunyao bending angles and refractivities
are estimated using the three-cornered hat method. They are similar on the average in
the region of overlap (45°S-45°N). Larger uncertainties occur in the tropics compared to
higher latitudes below 20 km. Relatively small variations in longitude exist.

We investigate biases in the observations by comparing them to each other and to

models. C2 bending angles appear to be biased by about +0.15% compared to Spire

and other ROMEX data_between 10 and 30 km altitude. These apparent biases, most of

Deleted: The assimilation of ROMEX data caused small
degradations in biases in several NWP models.
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which are representativeness or sampling differences, are caused by the different orbits
of C2 and other ROMEX missions around the non-spherical Earth and the associated
varying radii of curvature.

1 Introduction
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Radio occultation (RO) observations have been shown to be among the top five
observation types contributing to the accuracy of numerical weather prediction (NWP)
forecasts with approximately 10,000 RO vertical profiles (atmospheric soundings) per
day globally distributed (Anthes et al. 2024, hereafter A2024). Model simulation studies
have shown a continued increase in positive impact of RO observations as the number
of profiles increases to more than 100,000 profiles per day (Harnisch et al. 2013; Privé
et al. 2022). In the near future, over 100,000 occultations per day may be available
through commercial sources, offering the potential for further increases in forecast
accuracy.

Until recently, when large numbers of commercial RO data became available, it has
been impossible to test the impact of increasing numbers of RO profiles per day using
real data beyond about 10,000 profiles/day. With the emergence of several private
companies in the U.S. and China in the past few years, it became possible to acquire
approximately 35,000 RO profiles per day for a three month period (September-October
2022) for testing in NWP models in the Radio Occultation Modeling EXperiment
(ROMEX). ROMEX is being carried out under the auspices of the WMO International
Radio Occultation Working Group (IROWG, https://irowg.org/). A2024 introduces
ROMEX and reviews previous studies of the impact of RO observations on NWP
forecast models. Shao et al. (2025) provide a summary of the IROWG tenth meeting
(IROWG10) in September 2024 in which many initial ROMEX results were presented.

The ROMEX data became available at the European Organisation for the Exploitation of
Meteorological Satellites (EUMETSAT) Radio Occultation Meteorology (ROM) Satellite
Application Facility (SAF) in February 2024, and since then many international NWP
centers have been testing the impact of these observations. This paper describes the
characteristics of the ROMEX data, including depth of penetration into the lower
troposphere, the standard deviation of random errors (uncertainties), and biases. We do
not present any NWP results. However, because initial experiments in some of the
NWP models using this unprecedented number of RO data showed a small degradation

of model biases, we examine the ROMEX observation biases in detail, (Deleted: especially closely

Table 1 in A2024 shows the average number of RO profiles per day from the 13
different missions. Of the total average number of 34,520 profiles per day, 78.4% are
contributed by three missions: COSMIC-2 (4,900), Spire (16,750), and Yunyao (5,400).
Therefore, in this paper we examine these three missions especially closely, because
they are the ones likely to have the most impact on models. Furthermore, they are quite
independent missions, representing one government mission (COSMIC-2) and two
commercial missions from different countries, Spire (Europe and the US) and Yunyao
(China). The satellites, orbits, instruments, and initial processing of these raw data are
all different and independent. For brevity, we call this combined dataset CSY. Of the

three datasets, C2 and Spire  are relatively well known and have been widely studied [Deleted: Spire and COSMIC-2 (C2)

(e.q. Schreiner et al. 2020; Bowler 2020), while Yunyao is a relatively new mission and
has been under evaluation only recently. Cheng Yan (Yunyao Aerospace Technology

Corp.) presented an introduction to the Yunyao mission and data at the_1st ROMEX (Deleted:

workshop held at EUMETSAT in Darmstadt, Germany 17-19 April 2024 (Cheng 2025).
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Preliminary results presented at the workshop indicated that the quality of Yunyao data
after quality control (QC) was similar to that of other missions with some exceptions that

were related to their suboptimal data processing, and have since been corrected (Xu et (Deleted:,

al. 2024; Cheng 2025). A second Chinese commercial RO mission, Tianmu, was just
getting started in 2022 and provided approximately 270 profiles per day for ROMEX.
Almost a year later, at the 2"¥ ROMEX workshop at EUMETSAT 25-27 February 2025,
both Yunyao and Tianmu presented results from greatly enhanced constellations, which
were providing at that time 30,000 profiles per day from Tianmu (Qi Tang, 2025) and
33,000 profiles per day from Yunyao (Cheng, 2025). All presentations from the 1st and
2nd ROMEX workshops are available at irowg.org/romex-events-meetings/.

1.1 Processing and analysis of ROMEX data

This section summarizes the methodology used to process the ROMEX data into
bending angles, refractivities, and ultimately other products such as temperature and

water vapor (not discussed here), The original (raw) data were downloaded_from the ( Deleted: and analyze the data

satellites and processed independently into excess phase data by each data provider. A
discussion of the fundamental RO observable excess phase and how it is used to derive
the bending angle and refractivity is presented in The Radio Occultation Processing
Package (ROPP) Pre-processor Module User Guide (https://rom-
saf.eumetsat.int/romsaf ropp ug pp.pdf).

Each provider used its own processing algorithms and QC. These are often proprietary
for the commercial data and are not available. Because of the varying QC applied by
each provider, it is important to compare the different datasets after applying additional
QC that is uniform for all missions.

The excess phase data that passed the providers’ QC were sent to EUMETSAT .in
January 2024, which then relayed them to two other processing centers, UCAR
(University Corporation for Atmospheric Research) and NOAA STAR (Center for
Satellite Applications and Research). EUMETSAT, UCAR, and STAR processed the
excess phase data into bending angles, refractivities, and other products, as described
generally by Kuo et al. (2004) and Steiner et al. (2020), using their own processing
algorithms and QC. Because of NOAA policy, STAR does not process or distribute the
Chinese data (Yunyao, Fengyun-3, and Tianmu).

Most of the NWP modeling centers have used the EUMETSAT-processed ROMEX

data, which became available at the EUMETSAT ROM SAF in March 2024, Further {Deleted: Satellite Application Facility (SAF) on Radio

information is available at https://irowg.org/ro-modeling-experiment-romex/. These data Occultation Meteorology (ROM)

were all processed from the excess phases to bending angles and refractivities by

EUMETSAT, except for C2, which were, processed by UCAR. Since the data were [Deleted: as

provided to EUMETSAT in early 2024, more has been learned about their quality and

processing and some of the ROMEX RO data have now been reprocessed and

improved in quality. For example, Yunyao has improved some of the details of its ( Deteted: Josep

processing, which was at an early stage in 2024. Recently (late 2024) a source of small ( Deleted: Environment Canada

biases in all ROMEX data was found by Aparicio (2024), He, showed that the sideways ( Deleted:
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sliding of the RO occultation plane_and tangent point can cause biases due to the
variation of Earth’s radius of curvature (radius of a sphere that best fits the Earth’s
surface curvature at a given location and orientation of the RO occultation plane and is
used in the RO bending angle, retrievals) and its subsequent effect on the height of the

observation, Other small changes have likely been made by other providers to improve

their RO data and products. However, in this paper we evaluate bending angles (BA)
and refractivities (N) in the level-2 BUFR products (bfrPrf) processed by UCAR from the

(Deleted: BA
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ROMEX excess phase data that were originally provided to EUMETSAT. Details of the

UCAR processing are described by Sokolovskiy (2021). Performing, structural

uncertainty analyses similar to Steiner et al. (2020), in limited comparisons we find that

the UCAR-processed data and the EUMETSAT-processed data are similar_in most
respects; examples are shown in the Supplement (S9). A detailed comparison of the
two datasets is being carried out by UCAR and EUMETSAT.

We estimate the lower tropospheric penetration depths, of the RO profiles, the standard

Deleted: the ROMEX bending angle (BA) and
refractivity (N) data that were originally provided to
EUMETSAT and then processed by UCAR into its
level-2 BUFR product (bfrPrf).
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deviation of random errors (uncertainties), and the biases. The penetration depth is

defined as the percentage of profiles in.a sample of RO observations reaching different

levels above the ground. The penetration depth, (lowest level reached) depends on the

cutoff criteria used in the processing, and so comparisons of the penetration rates of
different missions should be done with data from the same processing center.

Radio occultation observations (X) can be written as Truth (T) plus a bias (b) and
random error (€):

X=T+b+e )
The variance of the random errors is given by

Var (€) = Var(X-T-b) = <e2> @)
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| Deleted: The penetration rate is defined as the percentage of

successful occultations reaching different levels above the
surface as determined by the UCAR processing.
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where < > is the sample mean. The standard deviation (STD) of the error is the square
root of the variance.

The bias of a sample of observations is <X-T>. Truth is never known but, historically,

RO observations have been considered to be largely unbiased above the lower
troposphere because they are based on measurements of doppler shifts of the refracted
signals using precise atomic clocks, which enables traceability to Sl-traceable
measurements of time (Leroy et al. 2006). RO observations are therefore assimilated in

) “(Deleted: h

NWP models without bias corrections (Healy 2008; Cucurull et al. 2014,and have been
shown in many studies to act as “anchor” observations in the model forecasts (e.g.,
Aparicio and Laroche 2015), improving the impact of radiance measurements, which
must be bias corrected. However, several early forecast experiments reported at the
April 2024 ROMEX workshop showed small negative impacts on the biases of model
forecasts when ROMEX data were assimilated, even though most forecast skill metrics
showed positive impacts. Estimates of ROMEX biases with respect to other data sets
indicated possible biases of order +/-0.2%. Such small biases are not easily visible in
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commonly used verification charts of (O-B)/B (normalized observations minus model
background or a reference dataset), in which the relative biases and standard
deviations of differences are often plotted together on a scale of -20% to +20% _(e.q.
Schreiner et al. 2020; Ho et al. 2023). The impact of ROMEX data on several model
biases led to studies on possible sources of the model biases, including previously
undetected small biases in the RO observations, model biases, biases in the forward
model estimates of bending angle from the model data in the data assimilation process,
suboptimal interactions with the bias correction of radiances, and small systematic
errors in matching the heights of the model variables to the heights of the RO
observations_(1st and 2nd ROMEX workshops, Shao et al. 2025).

RO uncertainties and biases are smallest in the upper troposphere and lower to middle
stratosphere between approximately 8_and 35 km (Anthes et al. 2022) and the

(Deleted: detailed
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differences between RO missions and processing methods are also smallest in this
layer, which is sometimes colloquially called the RO core region, golden zone, or sweet
spot. Because of the small uncertainties and biases in this layer, RO observations are
weighted most heavily in data assimilation and have the most impact on model analyses
and forecasts in this layer (Ruston and Healy 2020). Therefore, in this study we
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primarily focus our attention on the 10-30 km layer.

Uncertainties and biases are estimated by comparing the ROMEX observations to other
datasets. In this paper we use analyses or short-range forecasts from ECMWF
(European Centre for Medium-range Forecasts) operational model, ERA5 (fifth
generation ECMWF reanalysis; Hersbach et al. 2020), and JRA-3Q (Japanese
Reanalysis for Three Quarters of a Century; Kasaka et al. 2024), and other RO data.
Bending angles from the model were calculated using a 1D-forward model

(Syndergaard et. al 2006; Gilpin et al. 2019). Perceived biases in the model BA may
arise from biases in the model data (e.g. temperature and water vapor) or systematic
errors in the forward model, such as errors in the coefficients of the refractivity equation.,

In comparing different datasets, it is important to minimize sampling differences by
collocating the data. When RO data are compared with other RO or radiosonde data,
collocation is usually done by comparing samples of pairs of the two datasets close to
each other in space and time, e.g., 300 km and 3 hours. The closer the collocation, the
more the sampling differences are reduced (Nielsen et al. 2022), but at the expense of
fewer pairs in the sample and greater noise in the statistics. For our analyses of
collocated datasets, the sample sizes far exceed the sample size of order 1000
suggested by Sjoberg et al. (2021) where statistical noise in 3CH estimates may be
considered negligible. A reduction of the sampling difference between nearby but not
perfectly collocated profiles may be achieved by double differencing using model data
(Tradowsky et al. 2017; Gilpin et al. 2018). When RO observations are compared with
model data, the model data may be interpolated to the actual time and location (tangent
point) of each RO observation at each level, accounting for the tangent point drift, which
may be 100 km or more. Use of a global model as the reference dataset enables many
more collocations because model data are available at all times and locations globally.
However, model data have different representations of the atmosphere (footprints),
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require forward models, and have their own biases. We also consider the global
geographic variation of biases and uncertainties by binning the RO and model data into
5° latitude-longitude bins and averaging over the three-month period of ROMEX.

1.2 Estimation of uncertainties

The uncertainties of the ROMEX observations are estimated by the three-cornered hat
(3CH) method, which was developed many years ago to estimate the uncertainties in
atomic clocks (Sjoberg et al. 2021). In the 3CH equations, the error-free truth (T) does
not appear. Sjoberg et al. (2021) discuss the concept of truth in the context of the 3CH
method, which is non-trivial as pointed out by O’Caroll et al. (2008). Most other studies
estimate the error variance of a dataset X by approximating truth by an independent
dataset Y (often a model background B) and the uncertainties are computed as the
standard deviation of the differences between X and Y. The 3CH method uses three
datasets (X, Y, and Z) and is slightly more accurate and has the advantage of providing
estimates of the error variances of the other two datasets simultaneously (Anthes and
Rieckh, 2018; Rieckh et al. 2021). It is equivalent to the Desroziers’ method (Desroziers
et al. 2005) under certain conditions (Semane et al. 2022; Todling et al. 2022), which is
used by many modeling centers. Both methods of estimating the uncertainties assume
independent datasets, i.e., negligible error covariances. Both methods also contain
representativeness differences if the footprints (spatial and temporal scales represented
by different observations) of the datasets differ (Sjoberg et al. 2021).

1.3 Estimation of biases

Biases are more difficult to estimate than uncertainties because the truth is unknown. In
addition, truth depends on the footprints of the observations. For example, truth for
radiosondes, which are essentially point measurements, is different from truth for RO,
which represents an average over a cigar-shaped volume of atmosphere approximately
250 km along the ray path and 1 km in diameter (Anthes et al. 2000). The biases of RO
BA and N are estimated by comparing them to other datasets such as model analyses
or reanalyses, radiosondes, or other RO observations, which are different proxies for
truth. These bias estimates are always approximate, because the comparison datasets
have their own biases; we do not assume either dataset is truth. Thus, theoretical
estimates of observation biases (e.g., Melbourne et al. 1994; Kursinski et al. 1997)
together with comparisons to multiple independent and trusted datasets are useful to
establish a likely range of observation biases.

As noted above, the biases of RO data in the upper troposphere and stratosphere are
generally assumed to be zero and are assimilated without bias corrections in NWP
models. Early studies estimated that the biases are very small. For example, John Eyre
in a 2008 workshop (Eyre 2008) estimated that systematic errors in temperature were
less than 0.2 K, noting that this value was to be demonstrated. For a temperature of 270
K, 0.2 Kis 0.07%. It has been difficult to demonstrate such a small bias in subsequent
studies, and even a bias of 0.1% is important in climate studies (Steiner et al. 2020; Ho
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et al. 2024). We take a close look at biases in the ROMEX data in later sections of this
paper.

2 Overall properties of ROMEX observations

In some of our results, we compare bending angle , bias and uncertainty profiles of the

ROMEX missions as a function of impact height, which is related to the geometric
height by the refractivity and local radius of curvature of the Earth (Sokolovskiy et al.
2010), , The influence of the occultation plane’s azimuth angle on these comparisons,
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discussed in Section 5, results in representativeness differences that are not differences “:

in the quality of the retrievals. These are representativeness differences and not
differences in the quality of the retrievals. The magnitude of these differences (less than
0.15%) is,much smaller than the 3CH uncertainty estimates, which are 1.5% or higher.
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However, they may have an impact on the comparison of bending angle biases, which
are of the same order of magnitude between 10 and 30 km,

‘{Deleted: in the 10-30 km range. These are discussed in

21 Geographic and local time coverage

The profile counts of the 13 different missions (sources) of ROMEX data are provided in
A2024. Figure 12 of A2024 shows the global coverage of all ROMEX data on one day,
as well as the local time coverage on this day. The geographic coverage is quite
uniform, but because many of the satellites are in similar polar orbits, the number of
profiles is maximum between 09:00-12:00 and 21:00-00:00 local times, with other local
times showing considerably fewer observations.

Fig. 1a shows the local time coverage of C2, Spire, and Yunyao, and the combined
dataset CSY for 1 September 2022. The local time coverage is concentrated between
09:00-12:00 and 21:00-00:00 for Spire, and around noon and midnight for Yunyao. C2
is restricted to tropical and subtropical Jatitudes but covers all local times fairly uniformly.
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due to reprocessing since the ROMEX data were
initially made available and the representativeness
differences caused by comparing RO missions on
impact height are estimated to be much smaller (less
than 0.15%) than the uncertainties estimated by the
3CH method, which are 1.5% or higher. However, they
likely have an impact on the comparison of biases,
which are much smaller in the 10-30 km range. These
are discussed in Section 6b.
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The combined local time coverage shows maximum coverage at about 10:00 and 22:00
and minimum coverage at about 06:00 and 18:00.

Fig. 1b shows how the non-uniform local time coverage for 1 September 2022 affects
the distribution of observations in six-hour UTC time windows, which is the typical data
assimilation cycling window in NWP models (e.g., NOAA’s Global Forecast System or
GFS). The colors represent the age of the observation received in each 6-h window.
The youngest observations have more impact than the oldest observations (McNally
2019). The maximum cluster of young observations sweeps westward during the day,
occurring over the Pacific and Atlantic Oceans around 00 and 12 UTC. Although the
CSY data (and the ROMEX total) provide well-distributed global coverage over a 24-h
period, the local time coverage is not uniform, with relative gaps occurring around 06:00
and 18:00. This uneven distribution will likely have some impact when high-impact
weather events (such as tropical cyclones) are developing at times of relatively sparse
coverage (gaps in local time), but is not expected to have a large impact on the three-

month statistics.
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The distribution of ROMEX data for one day over a high-impact regional weather event
(Hurricane lan, 2022) is shown in Fig. 1c. This figure indicates that the 35,000 ROMEX
profiles per day, have adequate coverage to resolve the large-scale structure of
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Jmportant weather phenomena such as tropical cyclones. Many studies have shown the

RO observations can make a major improvement in TC genesis and track forecasts

(Chen et al. 2022 and references therein).

Fig. 1d shows the total counts of CSY, Yunyao, Spire, and C2 in 5° latitude-longitude
bins over the 3-month period of ROMEX. The C2 counts are smallest (fewer than 100)
in the 40-45° NS_(40-45° north and 40-45° south) bins, which means that on some days
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there may be only a few C2 observations in a bin at these latitudes and sampling issues
may arise. The undulating minimum in counts of Spire near the Equator corresponds to
the ionospheric Equatorial anomaly (Caldeira et al. 2020) and was first pointed out by
Chris Barsoum (Aerospace Corporation, personal communication February 2025). This
minimum indicates a higher rejection rate of Spire observations in the Equatorial

anomaly. It does not appear in the C2 observation counts, probably related to the

different orbits, signal to noise ratio, and other aspects of the two missions.

The total number, of the C2, Spire, Yunyao, and CSY profiles, for 0.1° latitude bands_for

the entire ROMEX period is shown in Fig. 1e_from two different perspectives. The left
panel shows total number vs. cos(latitude) while the right panel shows the total number

density per 10,000 square km. The distributions of C2 (low-inclination orbits)
complement the distributions of Spire and Yunyao, which are in high-inclination orbits.

Spire

e
00 12 24
COSMIC-2

v
60°N [

60°S

00 12 24

vt
00

Fig. 1a: Local time coverage of Spire, Yunyao, COSMIC-2, and CSY (combined
COSMIC-2, Spire and Yunyao) for 1 September 2022. The x-axes are local time in
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hours. These are UCAR-processed data that have passed the CDAAC (COSMIC Data
Analysis and Archive Center) QC. Figure prepared by Valentina Petroni, UCAR
COSMIC Program.

180° 120°W 60°W 0° 60°E 120°E 180° 180° 120°W 60°W 0° 60°E 120°E 180°

Fig. 1b: Six-hourly distributions of CSY for one day (1 September 2022): 00-06 UTC
(top left), 06-12 UTC (top right), 12-18 UTC (lower left), and 18-24 UTC (lower right).
Colors indicate age of observation at the end of each six-hour window (red 0-2h, orange
2-4h, green 4-6 h). The youngest observations (red) have the most impact in the 6-h
data assimilation cycle. These are UCAR-processed data that have passed QC. Figure
prepared by Valentina Petroni.
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Fig. 1d: Counts of CSY (upper left), Yunyao (upper right), Spire (lower left), and
COSMIC-2 (lower right) in 5° latitude-longitude bins at 20 km. Color scale is given on
the right and varies between 10° (dark) and 103 (white).

60°
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Latitude

0 500 1000 lSPU 2000 250 50 100
Number of Profiles Profile count per 10000 km?

Fig. 1e: Number of profiles over the 3-month ROMEX period (x-axis) in 0.1° latitude bins
for C2 (red), Spire (blue), Yunyao (green), and combined CSY (black). The panel on the
left is count vs. cos (latitude). Panel on right is count per 10,000 square km vs. latitude.

2.2 Numbers and stability of CSY observations over ROMEX time period

Fig. 2 shows the daily BA profile counts after CDAAC QC but before the 3CH QC as
described in Section 2.3, 3CH uncertainties, and biases with respect to ERA5 at 20 km
for C2, Spire, Yunyao, and CSY over the ROMEX period. All three missions, but
especially Spire and Yunyao, show large fluctuations in counts from day to day.
However, the statistics (biases and uncertainties) are fairly constant and are similar for
the three missions. Biases are slightly positive for C2 and slightly negative for Spire and
Yunyao. Latitudinal sampling differences between C2 and the two polar-orbiting
missions Spire and Yunyao are significant in these comparisons of biases and
uncertainties.
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Fig. 2: Number of occultations per day (dotted lines) and error statistics (uncertainties in
solid and biases_with respect to ERAS in dot-dashed) of BA of C2 (red), Spire (blue),

(Deleted: with respect to ERA5

Yunyao (green), and CSY (orange) at 20 km. The CSY daily counts are not shown. The
uncertainties and biases are normalized by the sample mean of ERAS5.

2.3  Quality control and frequency distribution of CSY data

In addition to the QC applied by the providers on the original excess phase data and by
UCAR in the processing of these data to bending angles and refractivity, we provide a
final QC on the BA and N before evaluating the uncertainties and biases. We first check
on super refraction (SR) based on collocated model data and remove any RO data for
which the collocated model data indicate SR (vertical refractivity gradients exceeding -157
N units/km). This QC does not necessarily remove all RO observations with SR. We then
remove outliers based on departures of the individual observations from the collocated
ERAS5 data, analogous to the (O-B)/B QC applied by operational NWP centers in their
assimilation process. Our reasoning was that the highest and lowest BA were not
necessarily the lowest quality, but rather the observations farthest from a trusted
dataset were more likely to be of dubious quality. Our QC removes the highest and
lowest 0.1 percentile of the (O-ERAS5)/ERAS5 data. This QC step is applied to all three
CSY datasets, and results in approximately 0.4% of the observations removed. The
resulting distributions of the BA values and (O-ERAS5)/ERAS at several different levels
during the ROMEX period is shown in Fig. 3. The distributions of the BA observations
are far from normal, reflecting the non-normal frequency of common atmospheric
patterns at different levels, especially near the tropopause (20 km) where there are
three distinct maxima. However, the frequency distributions of the (O-ERA5)/ERA5 data
are nearly normal at all levels.
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2.4 Penetration depths

RO profiles penetrate to different levels above the surface, depending on the way the
data are processed (how the lower cutoff is determined and quality control) and
atmospheric conditions. The latter is especially important, as penetration depths are
much lower (closer to the surface) with cool, dry atmospheres, and thus there are large
variations with latitude. There is some evidence that higher signal-to-noise ratio (SNR)
enables slightly lower penetrations (Schreiner et al. 2020).

Fig. 4 shows the penetration depths for all missions and latitudes. Most missions show

more than 80% of all occultations reach 2 km or lower and more than 50% reach 1 km
or lower. The penetration depths are noticeably less for Metop-B and -C (two shades of
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green, overlapping on this figure), Tianmu (light yellow), and Yunyao (purple). The

penetration depths for these UCAR-processed Metop data are noticeably higher than
those for the EUMETSAT-processed data, which is likely an artifact of the UCAR
processing and is being investigated. The penetration rates for COSMIC-2 and Spire
are very similar, in spite of the higher SNR for COSMIC-2. These results confirm that
radio occultation is a useful method of obtaining global information on the planetary

boundary layer (Ao et al. 2012).
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Fig. 4: Fractional count of penetration depth for all ROMEX missions (all latitudes top
left and 45°NS top right) and COSMIC-2, Spire, and Yunyao (all latitudes bottom left
and 45°NS bottom right). Figure prepared by Hannah Veitel, UCAR COSMIC Program.

3 Overall bias and uncertainty statistics of ROMEX data
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In this section we present an overview of the bias and uncertainty statistics of all the
ROMEX data. Many additional figures showing statistics for the three largest ROMEX

datasets are presented in the Supplement. Fig. 5 shows the biases and standard
deviations of ROMEX differences from ECMWF analyses vs. mean sea level (MSL)

altitude, The ECMWEF data are interpolated to the time and place of the RO tangent

point, accounting for tangent point drift. We note that the ECMWF analyses contain an

impact of some, but not most, of the ROMEX data, because they assimilated the
operational RO data of this time period (approximately 7,000-7,500, profiles per day).

Despite quite different latitudinal sampling, the uncertainties and biases of the ROMEX
data are similar between about 8 and 35 km MSL height, where RO observations have
the most impact on NWP forecasts. The uncertainties vary most strongly above 40 km,
with Sentinel-6, Metop-B, and Metop-C having the smallest uncertainties because of
their more accurate clocks (Bonnedal et al. 2010, Padovan et al. 2024). Fengyun-3
shows higher uncertainties between 10_and 30 km than the other missions. Yunyao has

a peak in uncertainties between 10_and 15 km, which is associated with their initial non-

optimal processing as discussed earlier.
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ROMEX missions. All latitudes are included. Figure prepared by Hannah Veitel.

The biases of all ROMEX missions appear very close to zero on this scale of the x-axis
(Fig. 5), but a closer look shows a small negative bias of approximately -0.1% in most
ROMEX missions between 10 and 35 km (Fig. 6a). COSMIC-2, however, shows a small
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positive bias of approximately 0.1-0.15%. When the large number of ROMEX data are
assimilated in models, biases of this order of magnitude could reveal issues in the NWP
models that were not apparent when smaller numbers were assimilated. We examine
these small biases in greater detail in Sections 5b and 6.
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Fig. 6: (a) Mean differences of bending angles of all ROMEX missions from ECMWF
analyses from 10 to 50 km MSL altitude, all latitudes included. (b) CJose up of biases of

all C2, Spire, and Yunyao (all latitudes included). (c), Biases of C2, Spire, and Yunyao,

45°NS only. (d),Biases of C2, Spire, and Yunyao, 30°NS only. Figure prepared by

Hannah Veitel.

When all latitudes are considered together, the Spire and Yunyao biases are negative
compared to C2 by about 0.2% between 15 and 35 km (Fig. 6b). However, this
relatively large difference is primarily because all latitudes are being compared, and
there are significant latitudinal sampling differences. When the data are restricted to the
C2 latitudes of 45°NS only (Fig. 6¢), the differences in the three missions are reduced to
approximately 0.1%, as the biases of Spire and Yunyao are instead slightly positive af,
these latitudes. When the data are compared only between 30°NS (Fig. 6d), the C2 and
Spire biases are nearly identical and only about 0.05% larger than Yunyao. These
figures show the importance of comparing different RO missions using spatial sampling
as similar as possible.

4 Detailed evaluation of COSMIC-2, Spire, and Yunyao
4.1 Uncertainties

In this section we look at the 3CH uncertainties for the UCAR-processed C2, Spire, and
Yunyao data, as well as the combined dataset (CSY). The other two datasets (corners)
used in the 3CH method are short-range forecasts of ERA5 and JRA-3Q reanalyses,
and these model data are interpolated to the time and place of the RO observations,
accounting for tangent point drift. We use short-range (6-18 h) forecasts verifying at the
time of the analysis so that the models will not have assimilated the observations being
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analyzed and hence have minimum error correlations. We compare the statistics of the
data at all latitudes as well as the data confined to 45°NS, where all the C2 data occur.

Fig. 7 shows the normalized 3CH uncertainties of the CSY dataset (all latitudes). For
comparison, the simple but effective RO observation error model used by ECMWF
(Ruston and Healy 2022) is shown as a dashed line. Considering that it was developed
many years ago, the agreement with the CSY data_between 10 and 35 km is
remarkable.

The 3CH uncertainties of the RO data are at a minimum between about 10 and 35 km
impact height, averaging about 1.5% in this deep layer. They increase toward the
surface, reaching a maximum of about 12% at an impact height of 3 km (geometric
height about 1 km) and then decrease toward the surface to about 6%. Above 35 km
the uncertainties increase rapidly, exceeding 40% above 55 km. Qualitatively the
uncertainties from the 3CH method are similar to those of the standard deviations of the
differences of the ROMEX and ECMWF data as shown in Fig. 5. The ERA5
uncertainties are the smallest of the datasets, especially above 30 km. The JRA-3Q
uncertainties exceed the observations by a small amount in the lower troposphere, and
then are slightly greater than the ERA5 data from 5 to 60 km.
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Fig. 7: 3CH BA uncertainties of the CSY data. Also shown are the uncertainties of the
two other corners of the 3CH method, ERA5 (blue) and JRA-3Q (green). The orange
dashed curve, identified by ECMWE in the figure, is the ECMWF assumed RO
observation error model (Ruston and Healy 2020). The data counts are given in gray.

Fig. 8 shows the 3CH uncertainties of C2, Spire, and Yunyao separately, for all latitudes
(left) and 45°NS (right). The uncertainties of the 45°NS datasets are slightly larger

below 10 km and slightly smaller above 30 km compared to the all-latitude uncertainties.
Although Yunyao shows an anomalous increase between 10_and 15 km, the similarity of
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the uncertainties of these three independent RO datasets is remarkable and supports
the use of a common relative RO error model for all missions as done by ECMWF. The
anomalous feature in the Yunyao data between 10 and 15 km is related to Yunyao’s
transition from geometric to wave optics in their early processing and has peen resolved

in Yunyao’s current processing (Xu et al. 2025).
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Fig. 8: 3CH BA uncertainties for COSMIC-2 (red solid), Spire (red dash-dotted), and
Yunyao (red dashed), and the two corners of the 3CH method ERAS5 (blue) and JRA-3Q
(green). There are three estimates for the error variances of ERA5 and JRA-3Q, one for
each RO mission; the differences are small and not visible in this plot. The dataset for
all latitudes is shown in the left panel; the dataset for 45°NS is on the right. BERPRF
refers to the three RO missions. Above 30 km the Yunyao and C2 profiles are nearly
indistinguishable in the left panel and in the right panel Spire and C2 are nearly
indistinguishable, which illustrates the closeness of these three datasets at these levels.

Although the global 3CH relative uncertainties of the C2, Spire, and Yunyao BA
observations are similar, there are variations in different geographic regions. Fig. 9
shows the 3CH uncertainty estimates for the combined dataset at 3 km, 5 km, 10 km,
20 km, 30 km, and 50 km computed in 1° latitude-longitude bins. Enlarged maps for the
uncertainties of CSY and three datasets separately can be found in the Supplement. At
10 km and below the uncertainties are generally higher in the tropics and subtropics, but
there is no simple geographic variation with latitude and longitude that describes the
variations at all levels. An interesting regional feature is the maximum uncertainty over

the Weddell Sea at 20 and 30 km, which may be related to the ionospheric Weddell Sea
anomaly (Chang et al. 2015). The Weddell Sea anomaly is a recurrent feature of the
austral summer midlatitude ionosphere where electron densities are observed to
maximize during the local nighttime.
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global mean value at each level (denoted by white); blue represents below average
uncertainties and red represents above average uncertainties. The color code is
different for each level, and the range is an order of magnitude larger in the 50 km map
(Fig, 9f). The zonal mean uncertainties are shown in plots to the left of each figure and
the longitudinal means of the uncertainties are shown in plots at the bottom of each
panel. Larger versions of the panels are presented in the Supplement (S3).

4.2 Biases

The small negative impact of the ROMEX data on the biases of several NWP models
has caused intensive study of possible causes of these small biases, including the
possibility of small biases in the ROMEX data_(discussed in the two ROMEX workshops
https://irowg.org/romex-1/ and https://irowg.org/romex-2/). Indeed, it appears that most
ROMEX data may have a small negative bias of approximately -0.15% between 10_and
30 km. Fig. 6a shows this bias with respect to ECMWF analyses, while Bowler (2024),

- (Deleted: -

Syndergaard and Lauritsen (2024), and Ho et al. (2024) found similar negative biases.
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This section takes a close look at the biases of C2, Spire, and Yunyao, which appear to
be between +/-0.15% between 10 and 30 km (Fig. 6b).
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We estimate the biases of a sample of ROMEX data in two ways. The first way is to
collocate each member of an RO dataset with a nearby member of a reference dataset
(a model or another RO dataset) and compute the mean differences of the pairs, with
advantages and limitations discussed in Section 1.1. In the second way we first locate
each RO observation into a latitude-longitude grid (e.g. 5°x5°) at constant impact height
levels over a specified time interval (we use two days but the results are not sensitive to
the time interval). The location of the RO observation is where the tangent point of the
profile falls within the bin. We then compute the mean difference of each RO
observation in the grid cell from the average value of the reference data (e.g. another
RO dataset or a model) over the grid, denoted by <(RO-<Reference>)>. Finally, we
average over all grid boxes and the time period of the sample (3 months) and normalize
by the entire sample mean of the reference dataset, denoted by <<Reference>>. If the
observations are located randomly within each grid box, sampling differences should
cancel in the average, leaving only biases between the two RO and the Reference.
There is no weighting of the data with latitude; it is merely a mean difference of a
sample of RO observations compared to a reference dataset. This method has the
advantage of using all RO observations in the sample rather than only those that have a
nearby reference and also allows viewing geographical differences of the biases.
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compared to ERAS5 short-range forecasts. The biases of Spire and Yunyao (blue and
green profiles, respectively) are almost identical between 15 and 40 km, while the C2
biases (red profile) are slightly higher. Below about 4 km impact height, all three RO
missions show a large negative bias in BA. These negative BA biases are also visible
near the surface in all ROMEX missions (Fig. 5), as well as N (examples shown in
Supplement). Large negative biases in BA below 4 km impact height in low latitudes are
mainly related to wave propagation effects under strong horizontal and vertical N
gradients induced by moisture (Sokolovskiy et al. 2010; Gorbunov et al. 2015). This bias
propagates into N after the Abel inversion_(Kursinski, 1997). When the vertical N
gradient exceeds a critical value of -157 N-units per km, as it often does near the top of
the atmospheric boundary layer, superrefraction occurs and the Abel inversion results in
an additional negative N bias (Sokolovskiy 2003; Xie et al. 2006; Feng et al. 2020).
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Fig. 10 b,c: Biases of ROMEX CSY bending angles vs. short-range ERA5 forecasts
computed from 5°x5° latitude-longitude bin averages over all bins and days of ROMEX.
The left panel shows the biases from 0_to 60 km impact height. The right panel is an

enlarged plot from 10, to 40 km. Note the change in range of the x-axis. Above 30 km,

ERAS biases are likely, dominant (see text).

In Fig. 10a and 10b, the biases relative to ERA5 in the core region appear to be close to
zero, as in Fig. 5 (reference ECMWF analysis). However, in the enlarged version (Fig.
10c), a negative bias of about -0.1% is evident between 10 and 25 km, similar to the
negative bias of the entire ROMEX dataset (Fig. 6a). The positive biases beginning
between about 35 km and the negative biases above 50 km, are likely due mainly to
biases in ERA5, as indicated by the strong agreement of the three independent RO
datasets in Fig. 10a, The biases in model BA and N may arise from biases in the model
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temperatures at these levels or systematic errors in the forward models used to
compute the BA and N from the model data.,
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Fig. 11 shows Yunyao and C2 normalized BA biases relative to Spire between 10 and

40 km impact height. The close agreement of Yunyao and Spire between 15.and 40 km
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in Figs. 10a and 11, with average differences |ess than 0.1%, is remarkable given that
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the missions are independent commercial missions from two different countries. In
contrast, C2 has a positive bias of about 0.1% relative to Spire. The bulge between 15
and 20 km_in both the C2 and Yunyao profiles is likely related to the relatively large
horizontal sampling differences in the 5°x5° latitude-longitude bins_(Fig. 1e) in a layer
with large variations of atmospheric densities in the vicinity of the tropopause since this
bulge is not evident when C2 and Spire are very closely collocated (Fig. 13).
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Fig. 11: Yunyao and C2 apparent BA biases relative to Spire between 10 and 40 km
impact height. These are computed from 5°x5° latitude-longitude bin averages over all
bins and days of ROMEX. Shown are Yunyao biases for all latitudes and for 45°NS only
to more closely match C2.

The geographic distribution of the CSY BA biases relative to ERA5 at six levels is
shown in Fig. 12. Larger versions of these figures and the corresponding CSY N biases
are given in the Supplement. These are computed from 1° latitude-longitude bins.
Similar to the uncertainties (Fig. 9), the largest biases at 5 km, 10 km, and 20 km are
located in the tropics. Regions of large biases at 5 km occur over the western Atlantic
and South America, the western Pacific, Asia, and Indian Ocean, perhaps associated
with regions of strong moist convection. Bands of negative or near-zero biases exist off
the west coasts of South America and Africa at 5 km. At 30 km, biases are small. ERA5
biases may be of comparable or larger magnitude at all levels.
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Fig. 12: Global distribution of BA biases (%) relative to ERA5 short-range forecasts for
CSY (combined C2, Spire, Yunyao) at 3 km (upper left), 5 km (upper right), 10 km
(middle left), 20 km (middle right), 30 km (lower left), and 50 km lower right. Larger
versions of the panels_with some comments are presented in the Supplement (S1).

5 Positive biases in COSMIC-2 between 10 and 30 km

In addition to the results shown here, several other, independent studies have indicated
that C2 BA observations have a small positive bias between approximately 10 and 30
km compared to models and other RO data from polar-orbiting satellites. For example, a
EUMETSAT report evaluating Sentinel-6 data showed a C2 positive bias of ~0.2%
(EUMETSAT 2022, Fig. 33). Positive biases of C2 BA and N vs. ERA5 and other RO
missions in the lower stratosphere have also been reported by Ho et al. (2024, 2025).
The ROM SAF Matched Occultation page presents daily estimates of the biases of RO
satellites compared to other RO satellites, with a collocation criteria of 300 km and 3

hours (https://rom-saf.eumetsat.int/monitoring/matched.php ), This monitoring site '{Deleted: https://rom-

shows mean and standard deviation of differences between BA and N from different saf.eumetsat.int/monitoring/index.ohp )...
satellites. A comparison of C2 satellites with other satellites (e.g. Metop-B) shows a (Deleted: various combinations of

slight positive bias (about 0.1-0.2%) between about 10_and 30 km. Above 40 km and - ( Deleted: -
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below 8 km the mean differences are larger, exceeding several percent; these will not
be discussed further as they are in layers that currently have small impact in NWP
models. In this section we investigate the bias between 10 and 30 km in greater detail

For this discussion, we use Spire as an example of polar orbiting satellites — given its

large data volume within ROMEX — to explain the observed positive C2 biases relative

to other RO missions.
5.1 C2bending angle and refractivity biases relative to Spire

Fig. 13 illustrates the C2 biases in BA and N relative to Spire between 10 and 30 km

impact height. The C2 and Spire occultations are collocated within 100 km and 3 hours
of each other. C2 BA are approximately 0.15% larger than Spire BA. The N biases are
much smaller, averaging about 0.02%. Fig. 14 illustrates the geographic distribution of
these biases at 20 km impact height, computed from 5° latitude-longitude binned values

of C2 and Spire. Positive biases of C2 BA vs. Spire exist everywhere, but there are

pronounced maxima between 40-45°NS. The overall biases in N are noticeably smaller
everywhere, but there are alsg pronounced maxima between 40-45°NS. These maxima
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are caused in large part by sampling differences between C2 and Spire, mostly between

42.5° and 45° NS. Misleading values of biases can occur if the observations are not
randomly distributed and there is a variation of the observation values with latitude or
longitude. We looked at the counts and values of BA and N from C2 and Spire in 0.1°
latitude bands between 42.5°-45° NS and found that the values of BA and N were
similar in C2 and Spire, with both decreasing toward higher latitudes. However, the
counts for C2 were much less than the counts of Spire in this band. Thus there are

many more Spire observations with, low BA and N compared to C2, and the bin ( Deleted: of
averages of C2 are much larger than those of Spire.
The BA and N biases of C2 relative to Spire in Figs. 13 and 14 raise two questions: (1) (Deleted:

Why are C2 BA positively biased to Spire, and (2) why are the N biases smaller than the

BA biases, when the refractivities are computed from the BA? These questions are

discussed in the next section.
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Fig. 13: Biases of C2 BA (black) and N (blue) relative to Spire between 10 and 30 km
MSL altitude_for the ROMEX period. The C2 and Spire occultations are collocated within
100 km and 3 hours of each other. Biases are normalized by the sample mean of ERAS.
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Fig. 14: Mean differences in % of C2 and Spire BA (top) and N (bottom) at 20 km impact
height, computed in 5°x5° latitude-longitude bins and averaged, over all days of

ROMEX. The range of color scale is +/-0.7% in both figures.
5.2 Causes of C2 positive biases

The small positive BA biases of C2 relative to Spire and other ROMEX missions
between 10 and 30, km result from their different orbit_configurations around the non-

spherical Earth. Because Earth is a spheroid, the local radius of curvature Rc varies with

the latitude and azimuth angle of the RO occultation plane, except at the poles where it
is constant in all directions. Azimuth angles are defined relative to the N-S direction (0°
or +/-180° for occultation planes oriented N-S, and +/-90° for E-W). Therefore, for RO
satellites with different orbital inclinations, the average R differs, resulting in differences
in bending angles at a given impact height. This variation of Rc may be called the

anisotropy of Earth’s curvature_and it has two effects on the BA, the azimuth effect and

the sideways sliding effect. C2 is in a low-inclination orbit (24°), with all of its
observations located within +45° latitude and occultation planes predominantly oriented
in an east-west (E-W) direction_(Fig. 15a). In contrast, other ROMEX satellites (e.g.
Spire_and Yunyao) are in mostly high-inclination (polar) orbits, with globally distributed
observations and occultation planes generally aligned in a north-south (N-S) direction
(Fig._15b,c) These differences in RO observing geometry, when combined with Earth’s
oblateness, result in systematic differences in bending angles as functions of impact
height_and altitude, thus introducing challenges when comparing RO data from missions
with different orbital inclinations. However, the azimuth effect does not pose a problem
for RO data assimilation because typically the 1D forward model already accounts for
differences in azimuth angles through the variation in R¢ ensuring that the modeled BA
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5.2.1 Representativeness differences due to azimuth angles of the
occultation planes

The largest part of the C2 positive BA bias relative to Spire is explained by their different
occultation plane azimuth angles, which result in representativeness differences_(the
azimuth effect). . Occultation planes oriented E-W (as in most C2 occultations) have
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larger Rc and azimuth angles than those oriented N-S (as in most Spire occultations)

and the effect is largest at the Equator and zero at the poles (Fig. 16). Negative and
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positive values have the same effect, so only the absolute value of the azimuth angle is
shown in Fig. 16. The variations of azimuth angle affect BA, but not N, which explains
the overall smaller N biases in Figs.13 and 14. If two atmospheres have the same N(z)
but different R¢, a ray with the same impact height traveling through the atmosphere
with larger R¢ will accumulate a slightly larger bending angle, due to traversing a slightly
longer path_by a factor of R:'"? . Although this effect is small, it can still cause a
difference up to about 0.3% in the bending angles measured at the same impact height
at the equator between azimuth angles in the N-S and E-W directions (the % difference
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in the square root of the Rc associated with the two azimuth angles). However, because
the Abel inversion uses the bending angle as a function of jmpact parameter, which

inherently accounts for variations in R, it will recover the same N(z) from two different
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Fig. 16; Variation of Rc with latitude (x-axis) and azimuth angle of occultation plane (y- ( Deleted: 5 )

axis). Note that R. increases with latitude and the variation of R. is larger at low
latitudes compared to high latitudes.
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In general, direct comparisons of BA from different RO missions are not physically
meaningful unless the effect of azimuth angle is accounted for, typically through a
model-based double differencing (DD) correction, In a presentation to IROWG-7 in

September 2019, Bill Schreiner presented early results that showed a positive C2 bias

Deleted: The azimuth angle effect can be corrected
through...

of 0.1-0.2% relative to a combined dataset of MetOp and Kompsat-5 (Schreiner et al.
2019). This bias was reduced to nearly zero by DD using the ECMWF operational
model. In DD the mean difference between two RO datasets is corrected by a reference
model evaluated at each of the data sets (Tradowsky et al. 2017; Gilpin et al. 2019). For
example, the C2-Spire bias shown in Fig. 13 is corrected using ERA5 by

C2-Spire (DD) = [C2-ERA5(C2)] — [(Spire-ERA5(Spire)]
= C2-Spire — [ERA5(C2)-ERA5(Spire)]. @)

DD accounts for differences in the two data sets associated with other sampling
differences such as temporal and spatial location differences, as well as those due to
different azimuth angles_and Rc. Fig. 17, shows that DD using ERAS5 reduces the C2-
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Spire BA biases to an average of about 0.02% between 10 and 30 km_impact height.

C2 - Spire bending angle
0-100 km collocations
01 Sep 2022 — 30 Nov 2022

—— Before DD
—— After DD

30.0

27.54

25.0

Impact height [km]
= N N
~ ° N
w o w

-
w
o

12.54

0.0 T T T 1 T T T
-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 03 04
[%]

Fig. 17; C2-Spire BA before double differencing (black) and after double differencing

(red). C2 and Spire are collocated within 100 km and 3 hours, Biases are normalized by

the sample mean of ERAS.

5.2.2 RO retrieval biases related to the sideways sliding of the tangent
point,
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In RO data retrieval, a single reference sphere, defined by a fixed center and radius of
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curvature anchored at the occultation point, is typically used to approximate the Earth's

surface throughout the entire RO profile. However, as the tangent point drifts

horizontally, this reference sphere no longer accurately represents the local geometry of
the Earth's ellipsoidal surface. As a result_rays that travel at certain heights over the true,

surface, are mapped to different heights selative to the fixed reference sphere defined at
the occultation point, thus contributing to observed positive C2-Spire biases. This effect

is strongest in the tropics, where the difference between the radii of curvature along and
across the ray path is greatest (Fig. 18), and negligible at the poles, where two radii of

curvature are equal. This phenomenon was first explained in detail by Aparicio, (2024).
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Due to the different distributions of azimuth angles of the occultation planes, the effect

of sideways sliding of the tangent point, on average, results in positive biases in BA and

N observations for satellites in low-inclination orbits such as C2 and negative biases in
BA and N for satellites in high-inclination orbits such as Spire and the other ROMEX
satellites. This effect, which has been ignored by all processing centers until now, can
be corrected by adjusting the impact heights by a correction termed the sideways sliding

correction. This correction is simply the difference between local radius of curvature at
the occultation point (within the occultation plane) and the distance from the center of
sphericity to the reference ellipsoid at the estimated ray tangent point (which differs from
the occultation point).
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Fig. 18; Difference in radius of curvature (dR¢ in km) across minus along,ray path as a

function of latitude (x-axis) and occultation plane azimuth angles (y-axis).
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The magnitude of the correction varies with impact height depending on how the

nominal location or point of an occultation (termed occultation point by UCAR and
georeferencing by EUMETSAT) is defined (Weiss et al., 2025). UCAR defines the
occultation point as where the L1 excess phase exceeds 500 m, which is typically in the
lower troposphere. EUMETSAT defines it as_the location where the straight line
between the transmitter and receiver touches the ellipsoid (straight line tangent altitude
SLTA or height of straight line HSL equals 0), which is in the upper troposphere-lower
stratosphere (UTLS). The sideways sliding correction is smallest where the tangent
point of the occultation is close to the occultation point. Therefore, for UCAR-processed
data the correction is smallest in the troposphere, while for the EUMETSAT-processed
data the correction is smallest in the UTLS (Marquardt, 2024, personal communication).
When the correction is applied, the effect of different definitions of occultation point is
largely eliminated (Sokolovskiy 2025, personal communication).

'The effect of the sideways sliding correction to the C2 and Spire data processed by
UCAR and the resulting C2-Spire BA and B biases are,shown in Fig. 19, In confrast to

the azimuth effect, the sideways sliding affects both the BA and the N biases. The
reduction is smallest at 10 km because of the definition of the occultation point in the
UCAR data. In the 20 to 40 km layer the correction reduces the C2 positive biases by
up t0,0.05%.
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Fig. 19: Bias of C2 BA (black) and N (blue) relative to Spire for UCAR standard (solid)
and sideways sliding-corrected data (dashed). C2 and Spire data for this comparison
are collocated within 300 km and 3 hours. Biases are normalized by the sample mean
of ERAS.

The magnitude of the sideways sliding effect depends on the antenna off-boresight
angle. Small off-boresight angles (near zero) correspond to occultations with small

(Deleted: profiles
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sideways sliding; large off-boresight angles correspond to those with larger sideways
sliding. ,

6 Summary and Conclusions

The Radio Occultation Modeling EXperiment (ROMEX) is an international collaboration
to test the impact of varying numbers of radio occultation (RO) profiles in operational
numerical weather prediction (NWP) models. An average of 35,000 RO profiles per day
from 13 different RO missions from the United States, Europe, and China are being
used in NWP models at major international centers to study how different numbers of
RO profiles affect the analyses and forecasts. This paper evaluates the characteristics
of the ROMEX data_(bending angles and refractivities) processed by UCAR, with

emphasis on the three largest datasets, COSMIC-2, Spire, and Yunyao.

ROMEX uncertainties (random error statistics) are estimated by the three-cornered hat
(3CH) method, using short-term forecasts from the ERA5 and JRA-3Q reanalyses as
ancillary datasets. Biases are estimated by comparing the RO observations to models
(ERA5 and ECMWEF operational short-range forecasts) and to each other.

Overall, the statistical properties of the diverse ROMEX data after quality control are
similar and suitable for NWP and other applications. The average relative (normalized)
uncertainty variations in the vertical are similar, which supports the use of a common
error model in variational data assimilation for all data sets. The biases are generally
small (less than 0.15%) between 10 and 30 km, which supports the use of RO data in

NWP models as unbiased anchor observations. The average penetration depths (lowest
height above surface retrieved in the data) are similar for most of the datasets, with
more than 80% of the profiles reaching heights of 2 km or lower and 50% reaching 1 km
or lower.

We evaluate in detail COSMIC-2, Spire, and Yunyao, which together comprise 78% of
the ROMEX data. We compare the vertical and horizontal (global) variations of the bias
and uncertainty statistics of these three datasets. The 3CH uncertainties of the datasets
are similar. The biases with respect to each other and to models show small variations
in the layer between about 8 and 35 km of approximately +/- 0.15%, which is important
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may in part explain the maxima in BA and refractivity
biases at these latitudes seen in Fig. 14.
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for climate studies and may be important for NWP when large numbers of RO are
assimilated. This layer is often called the core region, golden zone, or sweet spot for
assimilation in NWP models because the uncertainties and biases are smallest in this
layer and are given the most weight in the data assimilation.
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In some comparisons, COSMIC-2 (C2) shows an apparent small positive bias of
approximately 0.15% compared to Spire and Yunyao when the data are collocated. This
apparent bias is shown to be mostly a representativeness difference rather than a true
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bias and is a result of their different orbits. C2 satellites are in low-inclination (equatorial)
orbits, and Spire and Yunyao (and the other ROMEX data) are mostly in high-inclination
(polar) orbits. These different orbits create two sources of apparent biases.

The first source of the apparent biases associated with the different orbits is different
azimuth angles on the average, which account for about 0.1% positive bias for C2. This

CDeleted: or viewing

azimuth effect is a representativeness difference and not related to an intrinsic bias in
the instrumentation or the processing. It can be reduced to near zero by double
differencing using a model.

The second source is the horizontal sliding of the RO tangent point, which leads to a

height difference between its position relative to the Earth's ellipsoid surface and the
reference sphere. This difference results in a positive bias of up ta 0.05% in the UCAR-

processed C2 bending angle (BA) and refractivity (N) observations in the stratosphere
compared to those of the polar orbiters. The sideways sliding effect can be easily

corrected in the processing of the RO data by applying a correction to the impact height. -

Future papers from the modeling centers will report on the impact of the ROMEX data
on NWP model forecasts.

Code and data availability. The ROMEX data_processed by EUMETSAT and UCAR are
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available free of charge through ROM SAF under the ROMEX terms and conditions.
Further information is available at https://irowg.org/ro-modeling-experiment-romex/ . The
ROMEX data processed by UCAR are also available from UCAR under the ROMEX
terms and conditions. ERAS data are available from the ECMWF data catalogue at
https://www.ecmwf.int/en/forecasts/datasets/browse-reanalysis-datasets. JRA-3Q data
are available from the Japan Meteorological Agency through the Data Integration and
Analysis System (DIAS) at https://doi.org/10.20783/DIAS.645. The source code for
these calculations and test datasets are available on request from the corresponding
author.
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