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Abstract. In steep alpine environments, successive glacial-interglacial cycles during the Quaternary led
to multiple transient geomorphological phases. In particular, post-glacial periods are key transition
phases experiencing rapid geomorphic changes, characterized by intense hillslope processes where ice
and permafrost have retreated. Mass wasting is the dominant post-glacial process driving sediment
production in steep mountain landscapes. However, its role in shaping topography, particularly in
comparison to glacial activity—known for its strong deformational impact—remains poorly
understood. By integrating numerical modeling with topographic data, we refine our understanding of
how mass wasting shapes an evolving landscape and influences sediment dynamics. In the Ecrins
massif (French western Alps), we select three catchments, with particular morphological signatures or
inheritance (i.e. from fluvial to glacial), to model their associated topographic evolution driven by
mass wasting. Using the landscape evolution model ‘HyLands’, we quantitatively assess their
individual response to landsliding by exploring the role of different internal or external factors
(bedrock cohesion and friction, return time of landslides). The model is calibrated with the output
landslide area-frequency scaling law and the massif-averaged denudation rate, inferred from literature.
We focus on the cumulative impact of landslides, over a single post-glacial period, on catchment slope
distribution, hypsometry, exported sediment volume and erosion rate. Compared to a fluvial
landscape, the inherited glacial topography shows a bimodal distribution of elevation for unstable
slopes, near the crests and along the U-shaped valley walls. The time evolution of this distribution is
characterized by a decrease in the number of unstable slopes as well as a lowering in maximum
catchment elevations induced by landsliding. Despite the stochastic nature of landslides, our modeling
results also show that landslide activity and induced erosion rates are greatest at the onset of the
glacial retreat and then progressively decay during the interglacial period. In contrast, fluvial
catchments show a more stable topography and fewer landslides resulting in lower erosion rates. This
study quantitatively explores the non-linear interactions between landslides and catchment topographic
evolution and documents the role of landslides in the erosion pulse during the Quaternary interglacial

periods.



41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
71
72
73
74
75
76

1.  Introduction
The Quaternary period is characterized by oscillations from glacial to interglacial cycles overprinting a
global climatic cooling trend over the Cenozoic era (Zachos et al., 2001). These successive climatic
transitions have been suggested to be associated with abrupt and transient geomorphologic and
topographic changes (Champagnac et al., 2014; Peizhen et al., 2001; Zhang et al., 2022). In high-
latitude regions and mountain ranges, glaciers are usually considered the main geomorphic and erosion
agents (Hallet et al., 1996; Herman et al., 2013, 2021; Herman and Champagnac, 2016; Métivier et al.,
1999). The topographic changes resulting from glacial erosion are spatially variable over a single or
multiple glacial-interglacial cycle (Seguinot and Delaney, 2021) of the Quaternary (Herman et al.,
2011; Pedersen and Egholm, 2013; Sternai et al., 2013; Tomkin and Braun, 2002). Glaciated
landscapes have in turn been widely studied to better understand past glacier dynamics and quantify
glacial erosion rates and associated topographic changes at the Earth’s surface (Ganti et al., 2016;
Koppes et al., 2015; Pedersen & Egholm, 2013; Peizhen et al., 2001; Solomina et al., 2015; Sternai et
al., 2013). Glacial and periglacial processes have strongly imprinted mountainous landforms, shaping
U-shaped valleys, but also cirques, arétes and hanging valleys, all characterized by marginal steep
slopes and rugged topography (e.g. Anderson et al., 2006; Penck, 1905; Prasicek et al., 2015). In turn,
glacial morphological features likely represent transient and mechanically unstable landforms under
interglacial conditions (Herman and Braun, 2008; Prasicek et al., 2015), dominated by hillslope and
fluvial processes. Understanding the interglacial evolution of formerly glaciated landscapes has
remained challenging since it involves complex non-linear geomorphic processes and interrelated
spatial/temporal scales. However, this understanding is a major need for assessing the ongoing

response of mountainous environments to current climate warming (e.g. Zhang et al., 2022).

Interglacial periods are associated with overall warming climatic conditions, leading to cryosphere
degradation (i.e. glacier retreat and permafrost recession), and in turn to a shift of the main
geomorphic and erosion processes. Under interglacial conditions, paraglacial (Ballantyne, 2002) and
periglacial (French, 2017) processes become more efficient and affect larger mountainous areas.
Hillslope processes, including landsliding, rockfall and soil creep, affect formerly glaciated mountain
slopes. Rivers transport remobilized and newly-produced sediments (Roussel et al., 2018) and can
locally re-incise glacial valleys (e.g., Leith et al., 2018; Valla et al., 2010). Over the Quaternary,
repetitive climatic oscillations between glacial and interglacial periods have caused frequent
mismatches between dominant geomorphological processes and the organization or shape of the
landscape on which they act. This has led to the hypothesis that these transient climatic/geomorphic
conditions over the Quaternary could have led to an increase in erosion and sediment flux (Koppes et
al., 2015; Koppes & Montgomery, 2009; Peizhen et al., 2001) and topographic relief (Champagnac et
al., 2014), rather than the supposed greater efficiency of glacial erosion itself (Koppes and
Montgomery, 2009).
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In the following work, we focus on the transient phase from glacial to interglacial conditions,
hereinafter referred to as the post-glacial period, i.e. when alpine glaciers retreated and left uncovered
landscapes dominated by non-glacial geomorphic processes. In this context, steep parts of mountain
hillslopes became more prone to mass wasting processes, favored by glacial debuttressing (Cossart et
al., 2008) and permafrost retreat (e.g. Cathala et al., 2024; Lebrouc et al., 2013). The rapid climate
change observed over the last decades has motivated research on the evolution of permafrost and its
impact on high-elevation rockwall dynamics (Gallach et al., 2020; Magnin et al., 2017; Ravanel et al.,
2017; Stoffel et al., 2024). In addition, gravitational instabilities, such as bedrock landslides or
rockfalls, are widespread in mountainous landscapes and appear as one of the most efficient processes
to shape them (Keefer, 1984). Hillslope activity transiently reshapes glacial morphological features
leading to a postglacial increase in both the frequency and intensity (related to the volume) of mass
wasting events (e.g. Korup, 2006; Zerathe et al., 2014). Landslides significantly contribute to
catchment-scale erosion by mobilizing large bedrock volumes, which greatly impact sediment fluxes
(Broeckx et al., 2020; Hovius et al., 1997; Zech et al., 2009). As a positive feedback loop, by
decreasing the local base level, fluvial sediment export and local incision of formerly glaciated valleys
can foster the hillslope response. The postglacial period is also associated with major changes in
hillslope-channel connectivity (Brardinoni and Hassan, 2007; Cavalli et al., 2019; Miller et al., 2022)
and in the drainage system (Comiti et al., 2019; Lane et al., 2017; Pitlick et al., 2021; Zhang et al.,
2022). As such, this period appears complex due to rapid morphological changes and multiple
geomorphic processes that all interact and drive major changes in both the hillslope domain and the
drainage network. However, while previously-cited studies have already explored the
geomorphological role of landslides during the last interglacial period, understanding which landscape
areas are more affected during the postglacial times and how this landslide activity is distributed
through both space and time remains mainly unanswered and not quantified. Therefore, quantifying
the spatio-temporal impact of landslides on evolving postglacial landscapes is needed to better
understand sediment production, transfer and potential storage along the source to sink pathway and

assess the overall topographic evolution in mountainous environments.

While the landsliding impact on mountain topography appears clear after a single triggering event,
such as a storm or an earthquake (Dahlquist et al., 2018; Meunier et al., 2008; Morriss et al., 2023;
Roering, 2012), their role in long-term shaping of mountain ranges is not straightforward. To
investigate the post-glacial period, landslide catalogues (Blondeau et al., 2021; Wood et al., 2015),
bedload records (Lane et al., 2017), remote-sensing and geophysical methods have intrinsic limitations
and integration times that are too short. Conversely, long-term mountain erosion estimates from
geochronological and thermochronological methods (Herman et al., 2013) or large-scale sediment
budgets (Kuhlemann et al., 2002) may have too long integration times to investigate interglacial

periods. These approaches also cannot be generally used to disentangle the impacts of individual
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processes like landsliding from other forms of erosion. Terrestrial cosmogenic nuclides (TCN) have
been commonly used to quantify catchment-wide erosion rates over 10 — 10° yr timescales (Brown et
al., 1995; Delunel et al., 2020; Mudd et al., 2016; Portenga and Bierman, 2011), covering glacial-
interglacial cycles. Although this approach appears meaningful to address the postglacial period (~10-
20 kyr), TCN-derived erosion rates are averaged in both space (catchment) and time. In turn, this
prevents exploring in detail the spatial distribution and temporal evolution of erosion during that
period, as well as discriminating the different active geomorphological processes. Moreover, the
cosmic ray attenuation depth (~60 cm), which sets the integration time of TCN (von Blanckenburg,
2005), can be significantly smaller than the depth of large landslides observed in formerly glaciated
catchments (Korup, 2006; Lavé et al., 2023; Niemi et al., 2005). Overall, this raises the question of the
potential limitations of TCN-derived erosion rates in constraining the time evolution of post-glacial

erosion in landscapes dominated by bedrock landsliding.

In this context, landscape evolution modelling (LEM) appears as a relevant approach to overcome the
limited amount of data/observations and the intertwined spatial and temporal scales involved (Tucker
and Hancock, 2010). Numerical modelling can combine complex surface processes, including tectonic
uplift, hillslope and river dynamics integrating all the sediment transfer cascade and hillslope-channel
connectivity, while allowing predictions of topographic evolution or sediment production rates cover
large spatial and temporal scales. Different categories of models can be considered to study mass
wasting processes (Campforts et al., 2022). Physically-based models produce realistic debris-flow (and
river) propagation and deposition but may not be adapted for large-scale landscape evolution
(Croissant et al., 2017; Davy et al., 2017; Dietrich et al., 1995; George and lverson, 2014; Hergarten
and Robl, 2015; Martin et al., 2023). Landscape evolution models (LEM) instead use reduced-
complexity geomorphic laws to simulate the evolution of topography over possibly long timescales
and large spatial scales (Carriere et al., 2020; Langston and Tucker, 2018; Liebl et al., 2021).
Therefore, numerical modelling offers multiple ways to simulate hillslope processes, and their

interactions, by highlighting diverse approaches, modeling complexity and spatio-temporal scales.

The aim of this study is to explore numerically, using a stochastic and reduced-complexity model, the
role of landslides in the postglacial morphological dynamics of mountainous landscapes. We use the
HyLands model (Campforts et al., 2020, 2022), which explicitly simulates bedrock landslides, to
predict associated mass redistribution and the resulting catchment-averaged erosion rates and
topographic evolution through multiple timescales. Thus, the HyLands model is a specific component
used to generate landslides. Fluvial erosion, periglacial processes or diffusion processes are not
modelled below. We discuss this point in detail in section 5.1.1. We investigate the topographic
impact of landslide activity on selected Alpine catchments, located in the Ecrins massif (France),
showcasing a gradient of glacial imprint and deglaciation timing. An open question is the role of

interglacial processes in erasing the inherited morphological signature of former glaciation, leading to

4
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an erosional ‘‘hot-moment”. More specifically, we aim to assess the timescales, rates and locations of
topographic changes associated with the transient shift from glacial to interglacial periods, with a
particular focus on the role of landsliding. Our main working hypothesis is that the different
morphological signatures observed for Alpine catchments are evidencing both landslide activity and
deglaciation timing. Alpine catchments do show a glacial topographic imprint, and here we test the
capacity of landslides to (at least partly) reshape this glacial topographic inheritance over the
postglacial period. The first objective of the study is to conduct a spatial analysis of simulated
landslides to assess their magnitudes and locations within the investigated catchments. Then, a
temporal analysis is performed to investigate the duration of the postglacial transient phase, in other
words, how long it may require to achieve an interglacial-state topography (i.e., referring to the end of

the transient phase), and erosion dynamics under landslide activity.

2. Study area

2.1 Selected catchments in the Ecrins massif
The Ecrins massif (south-east France, Fig. 1A) forms a high-elevation high-relief area of the

southwestern Alps, and today still hosts glaciers in its upper catchments. The present-day topography
was deeply impacted by glaciation (van der Beek and Bourbon, 2008), and several studies have
focused on constraining the timing and extent of the Last Glacial Maximum (LGM, ca. 20 ka) and
post-LGM glacier fluctuations (Delunel et al., 2010; Le Roy et al., 2017). In this context, we select
three small (6 — 15 km? area) catchments to cover the entire Vénéon valley, from the river source, at
the heart of the Ecrins massif, to the confluence with the Romanche river where tributary glaciers had
a lower morphological impact (Fig. 1B). The Pilatte catchment, the highest and most glaciated
catchment, peaks at ~3600 m above sea level (a.s.l.), and has a minimum elevation of 2000 m. Modern
glaciers represent ~14% of the total catchment area of approximately 15 km2. With a downstream
direction toward the north, its western and eastern parts are made of granitic and migmatic rocks
(gneiss), respectively (source: French Geological Survey BRGM, https://infoterre.orgm.fr/). The
Etages catchment, partially-glaciated at present-day (~12 %), displays similar characteristics with an
area of ~14 km2 and an elevation range from 3564 to 1600 m a.s.l. at the confluence with the VVénéon
river. The catchment is mainly underlain by granites with crestlines composed of gneiss in its south-
eastern part (Barféty et al., 1984; Delunel et al., 2014). Both catchments show steep hillslopes (up to
~2.2 m/m, i.e., 65°, Fig. 1C), located on the walls of the main U-shaped valley and along the highest
rockwalls, considered as nunataks (Delunel et al., 2010; Marx et al., 2017), and a low-relief central
valley bottom (Fig. 1D). The Etages catchment has been investigated by Delunel et al., 2014, with
detailed geomorphological mapping and the use of 1°Be concentrations in detrital material to trace the
potential geomorphic sources for river sediments. Finally, the Pisse catchment is completely

unglaciated today and is smaller than the two other catchments (~6 km? total area). Its highest
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elevation at ~3050 m occurs at its southern crest, while its lowest elevation of ~1250 m is at the
confluence with the adjacent Villard catchment. Its lithology is dominated by granites with some
Jurassic limestones along its southwestern crest. Slopes are mostly gentle in the upper part of the
catchment and get steeper downstream along the valley rockwalls. Despite different glacial imprints
and elevation, the slope distributions for the studied catchments are relatively similar (Fig. 1C), with a
modal slope around 35° (0.7 m/m) for all three catchments.

These catchments have experienced a gradual post-LGM deglaciation, following the progressive
glacier retreat along the Vénéon valley from downstream (Pisse catchment) to upstream (Pilatte
catchment). Following Delunel (2010), the Pisse catchment likely started its deglaciation around 15 ka
(based on deglaciation constraints upstream and downstream in the Romanche valley, e.g. Schwartz et
al., 2017), while the Etages catchment may have been deglaciated between 13 and 7 ka (Fig.1B). The
glacier retreat in the Pilatte catchment has probably started slightly after the Etages catchment and can
be considered at the end of the post-LGM deglaciation. As a consequence, the observed delay in
glacier retreat between the three catchments (Fig. 1A) has likely been associated with a time-

transgressive activation of periglacial processes like landslides, resulting in different topographic

configurations today.
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Figure 1: Geomorphological context of the study area. A) Location of the Ecrins massif (red dot) in France. B) Google
satellite image of the Ecrins massif (background) with the three studied catchments and their characteristics: Pilatte
(green label), Etages (yellow label) and Pisse (blue label). Blue thin line indicates the contour of the LGM ice extent
(Delunel, 2010). Red stars report the estimated deglaciation timing (exposure of glacially-polished bedrocks and
erratics; Delunel, 2010). C) Probability density function of topographic slope for the three studied catchments (25-m
resolution DEM from the French National Geographic Institute IGN). Similar distributions are observed, with a main
slope mode around 0.7 m/m. D) Modern elevation and slope maps for the three studied catchments.
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2.2 Catchment hillslope profiles
To visualize the hillslope morphologies in our studied catchments, we made topographic transects

(Fig.2) perpendicular to the trunk stream in each catchment. Classical glacial topographic features,
including typical U-shape valleys (Fig. 3), are well documented, easily observable and have been
suggested to result from the bimodal distribution of glacial erosion with elevation (Anderson et al.,
2006; Bernard et al., 2025; Egholm et al., 2009; Herman et al., 2011; Steer et al., 2012). The observed
bimodal hypsometry of glacial landscapes (Brocklehurst and Whipple, 2006) defines the boundaries
between the valley overdeepening, driven by fast-moving ice with intense erosion by abrasion and
quarrying, and areas with slower-moving ice exerting less erosive power (Coutterand, 2010; Leith et
al., 2014). Alternatively, this bimodal hypsometry may be attributed to different patterns of cold-
climate erosion around the ELA (Equilibrium Line Altitude) (Liebl et al., 2021). In both
interpretations, the hillslope shoulder — a slope inflection between steep upper and steep lower
hillslopes (Fig. 2 — conceptual figure), - is shaped during glacial periods (Louis, 1952; Valla, 2021).
This topographic shouldering would result in a bimodal distribution of catchment elevations with steep
slopes associated to both the glacier valley flanks (low elevations) and to the nunataks-crestlines area
(i.e. periglacial regions at high elevations) (Coutterand, 2010; Liebl et al., 2021).

Our two upper catchments (Pilatte and Etages catchments) show a clear U-shaped valley on each
transect, even in the upstream part of the catchment. A slope inflection is also visible along most of the
transects, which we interpret as evidence of shouldering (Fig. 3). For most of the transects, the
increase in slope upslope of the shouldering corresponds to the glacial trimline (Penck, 1905). It
corresponds to the highest zone of the glacier extent and usually the limit between prevailing glacier
erosion processes and periglacial processes, whose locations match with the upper limits of the glacier
cirque (Rootes and Clark, 2020) (Fig. 2). Conversely, the topographic transects for the unglaciated
catchment (Pisse) tend to reveal a V-shaped valley, especially in the lower part of the catchment. The
upper profile, however, is closer to those of the glacial and intermediate catchments, showing a clear
inheritance from previous glaciations.

In the following, we will name the three studied catchments according to their glacial morphology
imprint, i.e ‘glacial’, ‘intermediate glacial-fluvial’ and ‘fluvial’ for the Pilatte, Etages and Pisse

catchments, respectively.
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Figure 2: Swath topographic profiles for the three different catchments (Lehmann and Robert, 2024) (DEM, resolution:
50 cm, ESPG2154, from the French National Geographic Institute, Cusicanqui, 2024): (A) Glaciated catchment
(Pilatte), (B) intermediate glacial-fluvial catchment (Etages), and (C) fluvial catchment (Pisse). Profiles are aligned
based on their lowest area. The grey dashed line illustrates the 2700 m elevation, a threshold elevation around which
the predicted landslides activity is lower (Figs. 6 & 7).
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3. Modeling framework
Hylands is a reduced-complexity and stochastic landslide model (Campforts et al., 2020, 2022). It
simulates both the erosion associated with deep-seated landslides and the induced sediment transport
and deposition resulting from landslide runout. Hylands is part of the Landlab open-source framework
(Barnhart et al., 2020; Hobley et al., 2017), which offers tools to combine multiple geomorphic laws
on 2D regular grids. In the following, we use the 25-m resolution DEMs from the IGN (BD ALTI,
French National Geographic Institute, https://www.ign.fr/), as initial model topographies for the three
studied catchments. The catchment boundaries were obtained from the geo-processing tools available
at the “Eau France” service website: https://reseau.eaufrance.fr/geotraitements/viewer/bassin-versant.

We first here present the model and then our strategy for model calibration.

Fluvial Iandscape Landstﬁj area Glacial Iandscape

Nunatak L
Trimline zone

\ Aouldering
Previous

Valley glacier

Valley
~— \L U-shaped
V-shaped space - ﬂanl?s
flanks

Figure 3: Conceptual sketches of theoretical fluvial (A) and glacial (B) landscapes. A) Typical landscape dominated by
fluvial erosion processes with V-shaped valley and homogeneous hillslopes slightly above the internal angle of friction
(p = 35° in this example). B) Landscape dominated by glacial erosion processes. The main morphological
characteristics such as U-shaped valley, periglacial nunatak zone, shouldering and the trimline zone (yellow circle) are
shown (modified from Louis, 1952; Coutterand, 2010). The light-red color indicates potential landscape areas affected
by landslide activity where different failure planes, associated to particular times, are illustrated (dashed black line
and tt, tn, tm)..

3.1 The HyLands model

3.1.1 Landslide triggering

In HyLands, the landslide source model combines a spatial probability P, and a temporal probability P;
to compute a landslide failure probability Py = P * P,. The spatial probability is computed
following a modified Culmann criterion (Campforts et al., 2020; Culmann, 1875), which is a Mohr-

Coulomb criterion applied to a finite slope analysis:

_ Hs . _4c sin 8 cos @

P, =—=, with H. = 5 1_cosB—g @
where Hs (m) is the local hillslope height calculated between two adjacent cells of the grid and H. is
the maximum stable hillslope height (m), which depends on the cohesion C (kg.m*.s?), p the rock

density set to 2700 kg.m, g = 9.81 m.s? the gravitational acceleration, B the local topographic angle,

9
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and ¢ the angle of internal friction (Eg. 1). Both C and ¢ are parameters that need to be calibrated in
our modelling approach.

However, HyLands is not a deterministic model as it combines this spatial probability of failure to a
temporal probability. Indeed, P: controls the temporal occurrence of landslides and follows a Poisson
law (Campforts et al., 2022):

—dt/
Pp=1— e 'us, (2)

where dt = 10 yr is the simulation time step which remains constant during the model runs. tis (yr) is
the return time of landslides triggering events. In turn, if any slope change occurs, the probability of
failure Prgire OF @ given cell is constant with time and is updated at very model iteration. The
random nature of landslides is introduced using a grid of cells with a random number r between 0 and
1. Landslides will occur if r > Ppqi,¢ at a particular cell (Campforts, Shobe et al, 2020). Generating a
different grid of r value, by setting the seed parameter differently, will necessarily induce a different

pattern of landsliding.

3.1.2 Landslide erosion and deposition
When a landslide event is triggered, a failure plane initiates at the triggering point, generating an
erosion scar. Following the Culmann criterion, the dip angle of this plan 8 is the bisector of the local

topography angle B, and the angle of internal friction of the material ¢

_ fro
o="1 ©)

The failure plane is propagated upstream of the critical node if the elevation of the neighboring cells
exceeds the rupture surface. In this case, all the DEM cells above this surface are considered as
unstable and mobilized by landsliding. Because our primary goal is to study landslide erosion without
any potential feedback of deposited sediments, all sediments are instantaneously evacuated in this
setup. It also means that in our set-up no topographic change can occur below the triggering points of

simulated landslide sources.

3.2 Strategy for model calibration

Our objective is to use a calibrated and physically sound landscape evolution model, based on
HyLands, to predict landslide activity during postglacial conditions in our study area. Note that in
these simulations, we only consider the role of landslides in landscape evolution and erosion
dynamics, without modeling fluvial erosion nor tectonic activity (e.g., uplift rate). We also assume that
gravitationally triggered landslides as simulated in HyLands represent the combination of mass

wasting events in alpine topography including rockfalls, debris flows, and shallow to deep-seated

10
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landslides, capturing the diverse range of slope failure processes. Our model calibration is performed
on the Etages catchment following two steps:

1) Calibrating ¢ and C, which control the spatial probability of landslide occurrence, by comparing the
modelled landslides area-frequency distribution (3.3.2) and size-volume scaling relationship (3.3.3),
with those taken from natural landslide datasets elsewhere (Fig. 4; Delgado et al., 2022; Guzzetti et al.,
2002).

2) Calibrating the landslide return time t.s, which sets the temporal probability of landslide occurrence,
by comparing modelled catchment-averaged erosion rates and observed erosion rates data derived
from quartz °Be concentrations in stream sediments (3.3.4, Fig. 5), ranging between 0.27 and 1.1
mm/yr in the Ecrins massif (Delunel et al., 2010). For the Vénéon valley and the studied catchments
(i.e. Etages catchment), we can reduce this range to 0.7 to 1.1 mm/yr for our model calibration (Fig.
5). Assuming that a rock sample records quartz °Be accumulation over the time period corresponding
to removal of the upper 60 cm of rock (Delunel et al., 2010; von Blanckenburg, 2005), these °Be-
derived erosion rates record apparent integration times of around 500 to 2500 yr. We thus select a

simulation time of 1500 yr for the model calibration phase.

Some combinations of parameters (g, C, #.s) lead to too few landslides, preventing a statistical analysis
of their resulting size distribution. To overcome this issue, we generate a large amount of landslide
events and selected a similar number of landslides per simulation. To do this, we need to compile
multiple simulations with similar parameters but different stochastic occurrence (different seeds) and
reduce the return time (from t.s = 1x10° yr to tis = 100 yr). Because tis controls the occurrence of
landslides without impacting their geometry, a small value of t s induces simulation outputs with large
landslide datasets. This is particularly true given that the potential for landsliding remains significant
throughout the simulation. The first approach is used for all the parameter calibration (Figs. 4A-C, 5),
while the second approach was only used in the landslide size-frequency calibration (Fig. 4A) because
the modified return time value can induce changes in landslide volumes and occurrences, and thus in

output catchment-averaged erosion rates (Fig. 5).

3.3 Model calibration

3.3.1 Calibration of the angle of internal friction: landslide area-frequency distribution

Because we lack detailed compilation of alpine mass-wasting events, HyLands will be calibrated
against global compilations of landslide data. More specifically, we aim at constraining the cohesion
and angle of internal friction parameters. Although not specific to our field site, this general
calibration will allow us to assess the impact of gravity driven erosion in high alpine terrain and

therefore proved sufficient for this study. For our calibration runs, we run HyLands from existing
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topography of the three catchments and set model parameters not involved in the calibration equal to
those as reported in Table S1.

Field inventories of landslides and rockfalls show a well-known shape for the frequency distribution of
landslide area, highlighting several characteristics of a power-law relationship (Delgado et al., 2022;
Guzzetti et al., 2002; Jeandet et al., 2019; Malamud et al., 2004; Stark and Hovius, 2001; Tanyas et al.,
2019; Tebbens, 2020): (1) the rollover value, matching the highest frequency of the landslide-area
distribution, (2) the power-law scaling exponent, o, defined from the slope of the linear regression
measured for large landslides events, and (3) the cutoff value, related to the divergence of the
distribution from a power-law scaling. Except for a few parameter combinations (in the range of tested
parameters of friction and cohesion), the simulated landslide size-frequency distributions we obtained
did not display any clear rollover. This lack of rollover is probably due to the coarse resolution of the
grid (25 m) which makes it impossible to visualize small landslides. Therefore, we do not use this
criterion for our model calibration approach. The power-law scaling exponent is a key parameter as it
describes the frequency of intermediate to large landslides, which convey most of the eroded volume.
This exponent also varies significantly with the internal angle of friction (Fig. 4B). As no power-law
exponent value exists for the French Alps landslide-rockfall inventories, we use as a reference the
mean value omean = -2.3 suggested by Van Den Eeckhaut et al. (2007) from a global landslide
compilation. Tanyas et al. (2018, 2019) also carried out a landslide compilation and analysis of
landslide size-frequency distributions, proposing a slightly larger power-law exponent (Oimean = -2.5).
However, this inventory only considers earthquake-induced landslides. In addition, power-law
exponents tend to be smaller for igneous or metamorphic rock (such as present in our study area)
(Bennett et al., 2012), so we retain the value of -2.3 for our model calibration. In our calibration phase,
we set the cutoff area at 3 10* m2 based on the shape of the linear regression fit and the good value of
the Pearson correlation coefficient (Fig. 4A). Our cutoff value seems to be smaller but overall

consistent with previously reported values (Tanyas et al., 2018; 2019).

The simulated landslide size-frequency distribution (Fig. 4A), in a log-log plot, illustrates the decrease
in landslide number when increasing landslide size. From all simulated landslides (5. 10* in total; see
Section 3.2), we randomly select 20 000 landslides to construct the landslide size-frequency
distribution. This method ensures a homogeneous number of events between different combinations of
input parameters (Fig. 4B). Therefore, we compare the simulated power-law scaling exponent a,
resulting from different combinations of cohesion (C) and internal friction angle (¢), with the expected
power-law exponent of -2.3. The power-law regression is computed using a log-log linear fit. The
output matrix (Fig. 4B) shows a gradient for the power-law exponent a with increasing ¢ values. In
our simulations, a varies strongly, between -1.7 and -3.1, when changing the internal angle of friction
(31-39°, Fig. 4B). This range is consistent with global compilations of power-law exponents for
landslide-area scaling (Tanyas et al., 2018, 2019; Van Den Eeckhaut et al., 2007). We also observe
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little variability in o with cohesion (C). Therefore, we fix the internal angle of friction at ¢ = 35°
which leads to simulated values of a close to -2.3. As the cohesion parameter seems to not influence
the power-law exponent of the landslides size-frequency distribution, we calibrate this parameter using
an alternative strategy (see section 3.3.3).
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Figure 4: Calibration approach for the internal angle of friction and the cohesion in the HyLands model. Calibration
outcomes result from multiple simulations, with similar input parameters, to get a larger dataset of landslides (see text
for discussion). A) Landslide size distribution, with a linear fit (dashed black line) on the power-law tail of the
distribution. The cutoff value (i.e., minimum size where the linear fit starts) is set to 3 10* m2. B) Calibration matrix
between the internal angle of friction (¢) and the cohesion (C). The angle of friction is calibrated based on the
minimum difference between the power-law exponent of the simulated size distribution and the reference value (-2.3;
van den Eeckhaut et al., 2007). Blue colors indicate output power-law exponents smaller than the reference value (-
2.3, white colors) and red colors indicate predicted power-law exponents higher than the reference value.

As a verification of our model calibration, we also simulate the area-volume relationship for simulated
landslide distributions (Fig. S1). The relevant cloud of landslides events (n = 426) shows a power-law
scaling similar to those observed elsewhere with an intercept value of 0.84 and an exponent value y =

1.49 (Fig. S1) (Larsen et al, 2010; Wood et al, 2015).

3.3.3 Calibration of landslide return time and cohesion: °Be-derived erosion rate

To calibrate the cohesion and the landslide return time parameters, we compare simulated and °Be-
derived catchment-averaged erosion rates (3.2, Fig. 5). Both model parameters impact nonlinearly the
output erosion rate, and increasing tis or C leads to decrease the resulting erosion rates (Fig. 5).
Several combinations of parameters predict a catchment-averaged erosion rated within the expected
range (0.7 — 1.1 mm/yr; grey band). In the following, we use an intermediate parameter combination,
C =60 kPa and t.s = 150 kyr, as the different possible model parameterizations (Fig. 5) lead to roughly
similar spatial and temporal patterns in landslide activity.

We also ran simulations for two end-member parameter combinations: a minimum combination (C =

20 kPa and t. s = 50 kyr) and a maximum combination (C = 100 kPa and t.s = 250 kyr). Results show a
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strong variability in landslides frequency and associated erosion rates but a similar spatial landslide
distribution (Fig S2).
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Figure 5: Calibration of the landslide return time and cohesion parameters based on the simulated catchment-
averaged landslide erosion rate. Considering the calibrated angle of internal friction (35°, Fig. 4B), each dot
represents a particular combination of landslide return time and cohesion (color code indicating the cohesion value).
The selected combination is identified with a star (*). The simulated erosion rate is an averaged catchment-scale
erosion rate over a compilation of 20 different simulations (1500 yr duration). The grey band illustrates the range of
observed erosion rates from the literature (0.7-1.1 mm/yr; Delunel et al., 2010).

4.  Results
4.1 Spatial distribution of landslide activity

Using the calibrated model, we investigate the impact of landslide activity on catchment topographic
changes over 100 kyr time scales representing glacial-interglacial cycles). Over this timescale, the
calibrated landscape evolution model generates different spatial patterns of landslide erosion across
the three studied catchments (Fig. 6). In each catchment, landslide erosion is distributed
heterogeneously, ranging from areas experiencing an intense landslide activity and significant

topographic changes to overall unaffected areas. For the glacial catchment (Pilatte), significant
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topographic changes, up to 500 m, occur along its northeast ridges. Elsewhere, predicted landslides
lead to smaller topographic changes of up to around 100 m (Fig. 6A). The intermediate glacial-fluvial
catchment (Etages) shows erosion patches along its crests and summit walls. In some areas,
cumulative erosion reaches 350 m, while smaller cumulative landslide erosion are observed on low-
elevation hillslopes, just above the valley bottom (Fig. 6B). For the fluvial catchment (Pisse), landslide
erosion is mainly focused on the downstream parts of the catchment where the valley narrows and
slopes become steeper. Cumulative landslide erosion reaches up to 250 m, but the upper part of the
catchment shows limited landslide activity (Fig. 6C). The final distributions of slope across the three
catchments clearly highlight the locus of landslide activity. Indeed, landsliding results in
homogenizing slopes slightly above the internal angle of friction ( 0.7, represented by white color in
Fig. 6).
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Figure 6: Simulation results of cumulative landslide erosion and final slope distribution for the studied different
catchments (A - Pilatte, B - Etages, C - Pisse). Left panels display landslide erosion patterns with cumulative landslide
erosion (red color) over 100-kyr simulation duration on the modern hillshade DEM. The catchment-averaged mean
erosion rate is indicated (ERm) Right panels show the final slope distributions where the landslide activity results in
more homogenous slope patterns around the input internal angle of friction (0.7 m/m, white colors).
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4.2 Spatial location of landsliding

For each catchment, we investigate the simulated evolution of both the hypsometry and slope
distributions (Fig. 7A,D,E). As expected from the modern slope distribution (Fig. 1C), the initial
catchment topographies (i.e., at 0 kyr) show a similar modal slope around 0.6 m/m. This modal slope
is reached at different elevations for the different catchments: 2800, 2600 and 2600 m a.s.l. for the
glacial, intermediate glacial-fluvial and fluvial catchment, respectively (Fig. 7A,D,G).

The initial model topographies of the glacial (Pilatte) and intermediate glacial-fluvial (Etages)
catchments show a bimodal distribution of the elevations for steep slopes (Fig. 7A,D et 8) (Fig. S3).
The steepest slopes of the glacial (Pilatte) catchment range up to 4.5 m/m (i.e between ~63 and 77°)
and are mostly restricted to the highest elevations (3000- 4000 m) (Fig. 7A). A second peak of steep
slopes, with lower magnitudes (up to 2.5 m/m i.e ~ 68°), is found around 2400 m. The intermediate
glacial-fluvial (Etages) catchment also shows an initial topography with two similar ‘peaks’ of steep
slopes frequency (Fig. 8C). We observe maximum slopes around 3 m/m (~70°) between 2700 and the
catchment crestline (~3500 m), and in a narrower elevation range from around 2000 to 2400 m (Fig.
7D). In contrast, the fluvial (Pisse) catchment differs in having a relatively homogeneous distribution
of slopes with elevation (Fig. 7G; Fig.S4). Throughout the simulations, catchment slopes exceeding
the friction angle at 0.7 m/m are affected by landslides, especially in the glacial catchment where
significant changes can be noticed already after only 10 kyr simulation (Fig. 7B,E). Overall, after 100
kyr simulation, landslide activity has erased most of the steep slopes (almost three times less steep
slopes, for high elevations, at the end of the simulation, Fig. 8C), i.e. above ~1.5 m/m, reducing
significantly in turn the bimodal distribution of elevation for the steepest slopes (Figs. 7C,F and 8C).
The maximum catchment elevation has decreased for the glacial and intermediate glacial-fluvial
catchments, while it remains approximately constant for the fluvial catchment after 100 kyr of
simulation.

During the simulations, we also observe a progressive increase in slope frequency slightly below 1
m/m (i.e., 45°), concentrated around 2600 — 3200 m, 2400 — 3000 m and 1900 — 2600 m for the
glacial, intermediate glacial-fluvial and fluvial catchments, respectively (Figs. 7C,F,I & 8B). This new
slope distribution evidences the shift from the initial steep slopes to final intermediate slopes that are

closer to the input internal friction angle.
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486 Figure 7: 2D histograms of the catchment slope distributions (color scale) with elevation. The temporal evolution of
487 catchment slopes and elevations during simulations is monitored at three different time steps: 0, 10, and 100 kyr (left,
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slope distribution, and (C-D) elevation distribution with slope threshold values (above or below 1m/m). The colors
illustrate the initial topography (red), an intermediate stage (20 kyr — light blue) and the final topography (100 kyr —
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4.3 Temporal distribution of landslides

We now investigate the relationship between topographic changes and landslide activity (Fig. 9). Here,
we identify each landslide by its time of occurrence and its triggering location, corresponding to its
lowest elevation (Fig. 9). First, our results highlight the bimodal elevation distribution of the simulated
landslides, roughly above 2800 m and below 2400 m, which appears persistent with time for the
glacial and intermediate glacial-fluvial catchments (Fig. 9A,B). These two catchments also show an
intense landslide activity for the first 20 kyr of simulation, with an apparent progressive decay with
time. Large landslides occur throughout the 100 kyr of simulation time, illustrating the stochastic
nature of landslide occurrence in HyLands. These model predictions are supported by the cumulative
distribution of landslides volume through simulation time (Fig. 10A-C). For the glacial and
intermediate glacial-fluvial catchments, more than half of the total landslide volume is predicted
before 20 kyr. However, the cumulative number of landslides increases with time for these
catchments. This discrepancy between the total landslide volume and the number of landslides
illustrates the preferential occurrence of large landslides within the first 20 kyr. This interpretation is
supported by the change in the probability density function of the landslide volumes after 20 kyr
simulation time (Fig S5). We do not observe this pattern for the fluvial catchment (Fig S5 C, F),

although the largest landslides are still predicted during the first 20 kyr of simulation time.
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Another interesting result is the inverse relationship between the predicted landslide volume and the
number of landslides at different catchment elevations: at low elevations (<2700 m), landslides are
less frequent but large landslides are overrepresented; whereas at high elevations (>2700 m),
landslides are more frequent but large landslides are underrepresented. This assessment is particularly
true for the glacial (Pilatte) and intermediate glacial-fluvial (Etage) catchments (Fig. 10A-B). For
instance, the glacial catchment (Fig. 10A) displays twice as many landslide occurrences at high
elevations (>2700 m), with only a slightly larger eroded volume above than below 2700 m elevation.

Observations are significantly different for the fluvial catchment as the landslides are rather
homogeneously distributed in the catchment (Fig. 9C). However, the high occurrences of landslides in
the first 20 kyr are still noticeable (Fig. 10C) and large landslides tend to occur preferentially at low

elevation (<2200 m).
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Figure 9: Triggering point elevation of each predicted landslide over the total simulation time (100 kyr) and their
associated volume (red gradient colors). The landslide distributions with elevation (right panels for distributions)
appear bimodal for the glacial and intermediate catchments (A - B) with two main elevation ranges around 2100 and
3000 m and no clear altitudinal distribution of predicted landslides for the fluvial catchment (C). The shaded band in
between these two elevations highlights this altitudinal interval with fewer predicted landslides in the Etages
catchment ,and serves as a reference for the other two catchments.
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Figure 10: Cumulative distribution of the predicted landslide volumes over the total simulation time (100 kyr) for the
glacial (Pilatte - A), intermediate glacial/fluvial (Etages - B) and fluvial (Pisse — C) catchments. The orange lines are
the total cumulative landslide volumes, while the blue lines display the predicted cumulative volumes for landslides
located above (light blue) and below (dark blue) an elevation threshold of 2700 m. The yellow vertical dashed lines
indicate the simulation time when 50% of the total landslide volume is reached. Insets show the cumulative number of
landslides generated during the simulation time for the two defined elevation classes.

4.4 Temporal evolution of landslide erosion rate

The term ‘erosion rate’ describes here only the predicted erosion induced by landslides and averaged
over the catchment area. For each studied catchment, we compute the evolution of the catchment-
averaged erosion rates using a 2-kyr time window, providing different statistics: mean, median, 25%
and 75" percentiles of catchment-averaged erosion rates (Fig. 11). This temporal window emphasizes
the general long-term trend of the predicted erosion rate by smoothing its high-frequency variations
related to the stochasticity of landslide occurrence (Fig. S6). For all three catchments, the catchment-
averaged erosion rates vary roughly between 10 and 10"t m/yr when at least one landslide is triggered
during the time window. The predicted mean erosion rate is always significantly higher than the
median erosion rate (almost 10 times at the beginning of the simulation and around 100 times after
100 kyr of simulation time), but the same progressive decreasing trend is observed for both two
statistical measures. In addition, the 25" percentile rapidly becomes null, highlighting that the

catchment-averaged erosion rate is driven by large but infrequent landslides.

The glacial (Pilatte) catchment (Fig. 11A) shows a high mean erosion rate, above 1 mm/yr, with a
rapidly decreasing trend during the first 10 kyr. Then, the mean erosion rate decreases more slowly
until 60 kyr and becomes roughly constant at 0.1-0.2 mm/yr over the last 40 kyr of simulation. A
similar trend is observed for the intermediate glacial-fluvial catchment (Etages, Fig. 11B), but the
initial erosion rate is ~1 mm/yr and lower than for the glacial (Pilatte) catchment. In contrast, the
fluvial (Pisse) catchment (Fig. 11C) shows a progressive decrease in the mean erosion rate, from ~0.6
to 0.06 mm/yr after 60 kyr of simulation, with no observed peak in erosion rate at the beginning of the
simulation. The median value for the fluvial catchment reaches rapidly zero within the first 20 kyr of
simulation, illustrating the lower frequency of landslide occurrence compared to the glacial and

intermediate glacial-fluvial catchments. Overall and for all studied catchments, predicted landslide
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erosion rates decrease by about an order of magnitude over 100 kyr, illustrating the progressive

erasing of steep slopes associated to glacial morphological features.
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Figure 11: Temporal evolution of the catchment-averaged landslide erosion rate for the three studied catchments: A)
Glacial (Pilatte), B) Intermediate glacial-fluvial (Etage), and C) Fluvial (Pisse). Black dots illustrate the non-zero
landslide erosion rates for each time step of one individual simulation, while red and orange lines depict respectively
the mean and median (with 25" and 75™ percentiles as dashed orange lines) erosion rates compiled from 20 individual
simulations (with a smoothing temporal window of 2 kyr). For all catchments, the simulated landslide erosion rates
decrease over time, especially during the first 20 kyr of simulation time, with different temporal trends depending on

the catchment.

5. Discussion

5.1 Modeling approach

Our landscape evolution model using HyLands has been designed to explore the impact of landslide
activity in reshaping alpine landscapes during postglacial periods. Our numerical simulations succeed

in reproducing a pulse of landslides activity during the postglacial period and its complex (non-
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homogeneous) impact on catchment hypsometry and slopes. However, this reduced-complexity model
represents a simplified version of real hillslope dynamics, with limitations regarding its ability to
predict in details all the richness of natural landforms, especially under the constraint of long
simulation time (Tucker and Hancock, 2010). Therefore, we made several modeling choices (see
Sections 3.2 and 3.3) to minimize potential feedback loops and interaction between erosion processes,
which may have impacted our results as discussed below.

5.1.1 Missing processes: rock uplift, fluvial erosion and sediment transport

As mentioned earlier, the model does not account for the impact of uplift, which can be considered as
a limitation. Given the present-day rock uplift rate in the western European Alps, around 1 mm/yr
(Nocquet et al., 2016; Sternai et al., 2019), the total uplift over the simulation period (100 kyr) would
be around 100 m. This theoretical uplift value is of the same order of magnitude than the average
decrease in elevation caused by landslide erosion in the intermediate glacial-fluvial (Etages) and
fluvial (Pisse) catchments (Figs. 6-7). In the glacial (Pilatte) catchment, the mean erosion is around 26
m, with maximum cumulated erosion of ~500 m. Therefore, integrating rock uplift in the model, from
either geodynamics, tectonic activity or glacial isostatic rebound (Sternai et al., 2019), could
counterbalance the overall decrease in catchment elevation observed in our results. Indeed, post-
glacial rebound can occur at km scale, promoting local rock uplift and potentially considered to be a
significant factor in triggering landslides in some regions (Cossart, 2013). In addition, rock uplift has
also been proposed as modulating the post-glacial geomorphic response and landscape transition from
glacial to fluvial states (Prasicek et al., 2015), by allowing faster relief turnover times. In addition to
uplift, tectonic activity could be associated with seismicity, another well-known triggering factor for
landslides (Keefer, 1984; McColl, 2012). However, despite these limitations, we believe that our
modeling approach stays appropriate to assess the hillslope stability over 100-kyr timescales, which is
largely dependent on climatically-shaped alpine topography and bedrock mechanical strength. The
impact of local earthquakes would mostly result in changing the timing of landslide activity, not the
total volume of landslides.

The catchment-averaged erosion rate of 1 mm/yr, derived from published cosmogenic nuclide data
(Delunel et al., 2010) and used for the return time calibration, is integrating a large fluvial network
with multiple erosion processes (fluvial, hillslope, landslide) at the scale of the Ecrins massif.
Considering effective sediment connectivity in the catchment (in our study area, main fluvial valleys
are sediment bypass areas without significant incision but potential transient storage) and only
landsliding to derive our catchment erosion rate, 1 mm/yr is likely to be an end member minimum
value for our simulations. Therefore, we ran a supplementary simulation with a lower cohesion value
(20 kPa) while keeping the same return time (150 kyr), leading overall to a higher erosion rate (about

2-3 mm/yr, Fig. 5). The simulation results show a globally higher frequency of landslides, but with
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similar patterns in landslide occurrence, topographic changes and temporal trend in erosion rate
(Fig.S7).

Finally, we did not include fluvial erosion and sediment export in our simulations. Ignoring sediment
transport over either the postglacial period or a long timescale (100 kyr), which in reality should
include multiple glacial-interglacial oscillations, is a strong model limitation for alpine erosion
dynamics (Schlunegger and Hinderer, 2003). Indeed, sediment transfer dynamics over the Quaternary
period are associated with glacial dynamics (Antoniazza and Lane, 2021), coupling between hillslopes
and channels (Hovius et al., 2000), local fluvial incision (Leith et al., 2018; Valla et al., 2010) and
potential transient sediment storage (Buechi et al., 2018). Rivers are also considered as the main agent
of sediment transport during interglacial period ( Koppes & Montgomery, 2009; Pitlick et al., 2021).
Fluvial incision also leads to a lowering of the base level, which in turn creates more steep slopes at
the hillslope toe. These changes combine to renew the landslide potential of these transient landforms.
However, in this study we modeled a single interglacial period and provided a focus solely on
hillslopes dynamics (i.e., no fluvial dynamics); both arguments result in a lower influence of the

sediment dynamics for our results.

5.1.2 Model parameterization
Our modeling strategy and parameterization have inherent limitations, such as our initial input DEM

(modern alpine topography) with a low resolution (25 m). Such resolution allows long simulation
periods in a reasonable simulation time with the capability to still capture first-order erosion processes
and topographic changes (Campforts et al., 2022). However, this relatively low resolution may hinder
the presence of small-scale topographic roughness that could influence both landslide occurrence and
magnitude. In addition, we ran our model simulations over 100 kyr, which is longer than any
interglacial period during the Quaternary. This particularly long duration enables to constrain the
timescale required for the decay of landslide activity, until reaching a state of hillslope stability at the
catchment scale. The model duration of 100 kyr is not a realistic timescale for a post-glacial phase.
However, it is an interesting and necessary duration which enables 1) to assess clear temporal trends
of erosion rates, smoothing out landslide variability, and 2) to quantify the duration required to

reshape the glacially-inherited topographic imprints and to reach stable catchment hillslopes.

Moreover, we consider the present-day topography of the studied catchments to start the post-glacial
simulations and to perform our model calibration. Yet, these landscapes have likely been already
subject to post-glacial hillslopes processes and landsliding since glacier retreat, limiting the number of
hillslope instabilities in the modern topographies. In turn, this means that the simulated rates of
erosion at the beginning of the simulations are likely minimum values for representing post-glacial
conditions. However, extrapolating further is difficult since deglaciation is asynchronous both

between and within the studied catchments: the U-shaped valley floors and walls, at rather lower
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elevations, are the first areas to have experienced landsliding, while higher-elevation areas such as
ridges and cirques can be protected from instability for longer thanks to active permafrost and only

recent glacier retreat.

Another strong assumption is to ignore sediment deposition on the resulting simulated topography.
Landslides are among the most efficient processes for producing sediments (Keefer, 1984) in
mountainous areas, which can then be available for transport from hillslopes to the drainage network.
The sediment connectivity (Cavalli et al., 2019), especially for bedload sediment, from hillslopes to
channels is a key indicator to quantify sediment yields and morphological changes along the source-to-
sink profile (Comiti et al., 2019; Hooke, 2003; Lane et al., 2017; Micheletti et al., 2015). Thus, we
explore the potential feedbacks of sediment deposition on landslide activity by testing the Hylands
model with a complete storage of landslide-produced sediment in the catchment. In that case, coarse
sediments are spread over the hillslopes, i.e. downstream of the landslide source, following a non-
linear and non-local deposition law (Carretier et al., 2016). This deposition term depends on the
transport distance which is driven by the critical slope, settled here equal to the tangent of the angle of
internal friction (¢) (Campforts et al., 2022; Carretier et al., 2016). This new setup is the opposite of
our main analysis (Ff =1, Section 3.2), where we assumed a perfect sediment connectivity within the
catchment, leading to instantaneous sediment export (Fig.S8-S9). However, the spatio-temporal
landslide activity remains roughly similar to our previous simulations. Note that we have not
computed the denudation rate without exported fine sediment because it would not be possible to
compare it with the measured value.

Finally, our model parameterization assumes spatially uniform model parameters both within and
between the three catchments. We used a single set of calibrated cohesion and internal angle of
friction values (Figs. 3-4), without differentiation based on lithology, vegetation cover, elevation or
glacial cover. This assumption may limit the model capacity in capturing the complex terrain
roughness of modern alpine topographies, which may be a factor in increasing rock resistance to
landsliding in natural environments. For example, in our catchment, the effect of the tree cover at low
elevations is not included in the model. Thus, the expected reduction in landslide occurrence due to
root reinforcement or changes in soil moisture (Mufioz et al., 2016) is not simulated. In addition, the
role of high-elevation permafrost, its spatial variability and temporal evolution, on landslide activity

(Magnin et al., 2017), is not captured by our simulations.

5.2 Spatio-temporal landslide activity over the Quaternary period

The long-term glacial inheritance on alpine landforms (e.g., Penck, 1905; Anderson et al., 2006;
Sternai et al., 2013; Seguinot and Delaney, 2021) and the relative contribution of glacial and fluvial
erosion to the Quaternary relief are still debated, highlighting especially the impact of fluvial and
hillslopes processes during interglacial period of the Late-Pleistocene glaciations (Koppes &
Montgomery, 2009; Leith et al., 2014, 2018; Montgomery & Korup, 2011).
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In this context, our numerical results bring some insights into the role of these hillslope processes in

the transition from glacial to fluvial morphologies.

5.2.1 Spatial landslide distribution and glacial imprint
The present-day catchment morphologies (Fig. 2) leave no doubt about the significant role of glacial

processes in shaping the investigated landscapes in the Ecrins massif (Fig. 1). Our initial question
about the role of landslide activity and their potential capacity to reshape this glacial topographic

inheritance over the last post-glacial period can be discussed in light of the simulation outputs.

First, the spatial landslide activity pattern (Fig. 9) reveals that the parts of each catchment with the
most obvious glacial morphologies are more subject to mass wasting processes. The steep slopes
generated by glacial erosion, along the U-shaped valley walls and at high elevation (crestlines and
nunataks), produce a bimodal distribution of landslides with elevation, while the shouldering (Fig. 3),
i.e., the gentler slope interval at mid-slope, is much less affected by landslides. Therefore, our
simulation results suggest that the transition from U-shaped to V-shaped valleys, as evidenced by the
glacial (Pilatte) and fluvial (Pisse) catchments (Fig. 3), highlights the reshaping of the inherited glacial
landscape through hillslope processes. However, the bimodal distribution of landslides with elevation
is still noticeable after 100 kyr of simulation time (i.e., roughly ten times longer than the post-glacial
period). Moreover, the number of modeled landslides and their spatial clustering is still significant for
the glacial and intermediate glacial-fluvial catchments compared to the landslide pattern in the fluvial
catchment (Pisse), which shows a more uniform distribution of landslides on hillslopes (Fig. 9). Thus,
if the landslide activity and its spatial distribution can be considered as indicators of the hillslopes
transition, our modeling results suggest that the glacial and intermediate glacial-fluvial catchments
have not yet completed their post-glacial transition after 100-kyr simulation.

Second, the landslide volume distributions also illustrate a specific dynamic of mass wasting events in
formerly glaciated catchments. For the upper catchments (glacial and intermediate glacial-fluvial), our
modeling results suggest that modeled landslides are more frequent at higher elevations, near the
crestlines, than at lower elevation near the valley bottoms (Fig. 10). As we are working with a real
initial topography (present day), influenced by permafrost, this result is consistent with the recent
deglaciation of the upper catchments. Indeed, nunataks and crestlines in this interior part of the massif
may still benefit from the stabilizing role of permafrost and have not been impacted by landslides yet.
Thus, the higher elevations of the catchment (i.e., above the trimline) still display steep and sharp
slopes. Under a warming climate and the degradation of permafrost, these high-elevation and steep
hillslopes will potentially be more and more prone to periglacial erosion processes (as is already the
case for the intermediate glacial-fluvial catchment). In parallel, our simulations predict large landslides
at the lower elevations (Figs. 9 & 10), corresponding to the U-shaped valley wall.. These results are

consistent with the effect of debuttressing where glacial unloading induces stress variations and steep,
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unprotected rock walls become targets for landslides (Hylands process), following glacial recession
(e.g., Cossart et al., 2008). This is also supported by the temporal clustering of the large landslides in
the first 20 kyr. Yet, the occurrence of large landslides, due to their stochastic nature, remains
occasional afterwards, which is consistent with other studies (Ivy-Ochs et al., 2017; Schwartz et al.,
2017; Zerathe et al., 2014).

Therefore, the persistence of landslide activity in the glacial and intermediate catchments, even after
long simulation times, highlights that hillslope processes such as landslides, in response to glacial
topographic inheritance, may not be the only factor explaining the fluvial morphology observed in our

downstream catchment (Pisse).

5.2.2 Temporal landslide activity and transient topography

We show that the three catchments have a distinct modeled erosion dynamics explained by
diachronous landslide activity following different glacial retreat times (Fig. 1). Following the previous
spatial analysis (5.2.1), the observed temporal decrease in landslide occurrence and in predicted
erosion rates over the first ~20 kyr (Fig. 11) reflects a decline in the proportion of unstable slopes
during the immediate post-glacial period. The faster erosion modeled at the beginning of the
simulation for the glacial and intermediate glacial-fluvial catchments (Fig. 11), compared to the fluvial
catchment, highlights the role of landsliding during the transition from glacial to interglacial
conditions. This initial and gradual pulse of erosion in the first 20 kyr of the simulation, which differs
between the studied catchments, reflects the distinct topographic states with respect to landslide
susceptibility. The glacial catchment (Pilatte) has not experienced intense periglacial processes, such
as landslides, for as long, resulting in this high erosion rate following debutressing of unstable glacial
hillslopes (Cossart et al., 2008). The slowing down of erosion rates in the two upper catchments
(glacial and intermediate glacial-fluvial) is also illustrating this long-term transitional stage, in which
hillslope processes may continue to control sediment production, but at a slower pace. With few
landslides occurring at the end of our simulations, and associated to a low erosion rate, the fluvial
(Pisse) catchment could be considered at the end of its transient phase and close to “post-glacial
topographic steady-state” dominated by hillslope processes (i.e., no to few landslides).

The modelled pulse of erosion for the postglacial phase implies that the Late Pleistocene period,
marked by the transition from glacial to hillslope processes, has reactivated alpine landforms by
reshaping new steep and unstable hillslopes along the U-shaped valley walls or in the cirque areas.
These particular morphologies (Fig. 2), resulting from glacial inheritance, sustain the potential for
landslide erosion. However, our model results also show that simulated landsliding over 100 kyr
(duration exceeding the typical interglacial period) is not sufficient for erasing steep glacial
morphologies. Indeed, the simulated landslide activity - the bimodal landslide distribution (Fig. 9) -
and the associated erosion rate are still significant at the end of our 100-kyr simulations, meaning that

the hillslope system alone requires longer timescales than the typical Milankovitch cycle to reach a
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"interglacial-state™ topography (i.e. where glacial imprint has been erased, no longer inducing
hillslope instabilities). A longer simulation of 1 million years shows that the modeled erosion rate
reaches a plateau in the first 100 kyr but then gradually decreases until 400 kyr (Fig. S9). This is the
characteristic time required to obtain stable hillslopes in the absence of external forcing. Note that
after a characteristic time, maybe more than 100 kyr, the final topography would result in a simple
threshold slope model, close to the critical slope. However, compared to a simple slope threshold
model, the stochastic aspect of our model enables to describe both individual landslide distribution and

their timing during a post-glacial period.

First, results from this long term simulation can be compared to fluvial processes, which also have
long timescales for reaching steady-state topographic conditions (Whipple, 2001). Since hillslope
processes are also largely contributing to sediment production in alpine settings, the topographic
response time to landsliding may play a role in the sediment transfer cascade which in turn would
influence fluvial dynamics and erosion rates. Second, this relatively long activity of the hillslope
system during the interglacial period — calibrated from cosmogenic-nuclide derived erosion rates
(section 3.3.3) - is also consistent with the absence of uplift and fluvial incision in our modeling
approach. Including these model components in our simulations may decrease the duration of post-
glacial landsliding activity for the studied catchments, with rock uplift promoting faster response of
the hillslope-fluvial system as observed for natural settings (Prasicek et al., 2015).

Given the long persistence of landsliding from our simulations (>100 kyr), the observed differences in
landslide activity between the glacial/intermediate and fluvial catchments cannot be fully explained by
the time lag in glacier retreat and the duration of the interglacial period (~10 kyr, Fig. 1). We thus
propose that the glacial imprint may have been less intense in the fluvial (Pisse) catchment than in the
glacial and intermediate glacial-fluvial catchments (Pilatte and Etages), which could be explained by
the more external position of the catchment in the massif and its overall lower elevations. This is
consistent with the non-uniform impact of glacial processes on mountainous landforms (Herman et al.,
2011; Sternai et al., 2013; van der Beek & Bourbon, 2008), resulting from different ice
extent/thickness and erosion efficiency over glacial cycles (Pedersen and Egholm, 2013; Seguinot and
Delaney, 2021).

5.3 Landsliding and topographic mountain evolution

5.3.1 The glacial/ interglacial transition: a hot moment for alpine erosion
Glacial erosion also does not appear to be spatially uniform throughout the glacial period (Seguinot

and Delaney, 2021), and field studies have shown increased glacial erosion during the deglaciation
period (Koppes and Montgomery, 2009). Therefore, key erosion moments of glacial dynamics occur at
the end of the glacial period. Following this period, our model results suggest an additional pulse of

rapid erosion, associated to landsliding within the first 10 kyr after deglaciation. Therefore, the glacial-
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interglacial transition seems to concentrate the most rapid rates of erosion and in turn, may contribute

strongly to landscape changes and topographic relief evolution in alpine settings.

However, our simulations were carried out on the current topography, which is already the results of 2
million years of successive glacial-interglacial cycles. Thus, the hot-moment of erosion that we
observe in the post-glacial period occurs in U-shaped valleys that are already well marked. As
landslide potential is maintained by steep slopes, this shape of mature glacial valley may increase
landslide activity compared with early Quaternary times. Overall, this reinforces the already-
demonstrated key role of hillslopes processes in shaping long-term mountain topography (Burbank et
al., 1996; Korup et al., 2007; Larsen and Montgomery, 2012).

5.3.2 Toward a “landslide buzzsaw” ?
The final landslide patterns from our simulations show interesting similarity with the morphological

changes associated with the glacial buzzsaw (Fig. 6). Previous studies have highlighted the impact of
glacial erosion on mountain elevations and relief, referred as the ‘glacial buzzsaw’ (Egholm et al.,
2009; Herman et al., 2013, 2021; Mitchell and Montgomery, 2006; Thomson et al., 2010; Tomkin and
Braun, 2002). This theoretical concept, based on the observed correlation between the position of the
Equilibrium Line Altitude (ELA) and the mean and maximum height of mountains (Egholm et al.,
2009), suggests that glaciers may have a strong control on mountain relief. In fact, by shaping cirques,
glaciers create steep slopes at high elevations (Brozovi¢ et al., 1997), increasing erosion above the
ELA. Although the ‘‘glacial buzzsaw’’ might be more complex in specific mountain ranges (Banerjee
and Wani, 2018; Scherler, 2014), a concentration of surface area is usually observed around the ELA
elevation (Egholm et al., 2009, 2017; Liebl et al., 2021; Pedersen et al., 2010; Prasicek et al., 2020;
Steer et al., 2012).

For the three studied catchments, most of the landslide scars occur close to the catchment boundaries,
i.e. along steep rock walls or along sharp ridge crests of the catchments and we observe a decrease in
the maximum catchment elevation such as the glacial buzzsaw. However, we observe a concentration
of hillslopes (around the angle of friction) over a larger elevation range (Fig. 7) around the
shouldering than the glacial buzzsaw would be. Thus, by simulating the strong impact of landslides on
slopes above the shouldering, we can question the role of hillslope erosion and similarly imagine a
“landslides buzzsaw” during interglacial periods. Such a “landslide buzzsaw” would be more based on
mechanisms presented in Mitchell and Montgomery (2006), with a perhaps more complex dependence
on climate and lithology. However, by incorporating additional processes for glacial erosion, such as
subglacial hydrology, the arguments underlying the glacial buzzsaw concept may also be debated
regarding catchment topographic evolution (Herman et al, 2011) and become more complex. This

concept of “landslide buzzsaw” may not be sustainable over long time periods since landslide activity
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will limit the occurrence of steep hillslopes. However, over Quaternary glacial cycles, successive
glaciations and associated glacial/paraglacial erosion may sustain steep hillslopes at high elevations,
further promoting the “landslide buzzsaw” during subsequent interglacial periods as proposed for
instance for the European Alps (Delunel et al., 2020; Norton et al., 2010). This coupling between
glacial and hillslope processes would be reinforced by the topographic impact of landsliding, affecting
steep hillslopes at high elevations and producing lower slopes and lower-relief areas at or above the
ELA (Fig. 6). This landscape conditioning would favor glacier development and erosion during the
next glacial period, maintaining or enhancing the potential for glacial buzzsaw (Pedersen and Egholm,
2013).

6. Conclusions
The successive glacial-interglacial transitions during the Quaternary period have promoted landscape

disequilibrium between the inherited topography and the dominant geomorphological processes. The
HyLands model was used to study how post-glacial landslides shape alpine landscapes. We focused on

landslide rates, locations, and the influence of interglacial processes on long-term landscape evolution.

We modeled the topographic evolution of three distinct catchments located in the Ecrins massif
(French Alps, Fig.1), that we identified as glacial, intermediate glacial-fluvial and fluvial catchments
based on their morphological characteristics (Fig. 2). For these three catchments, the highest and
steepest slopes are the first topographic areas impacted by landslides (Fig. 6). Topographic changes
are particularly pronounced in the glacial and intermediate catchments, where we observed a bimodal
distribution of landslides corresponding to the bimodal distribution of steep slopes generated by
glacial erosion. In this case, the high and steep slopes are most rapidly modified, inducing a decrease
in slopes to values that are slightly greater than the internal angle of friction (Fig. 7, 8&9). This control
of hillslope processes on the maximum mountain elevations and the topographic reshaping at
particular elevations leads us to propose similarities between the ‘glacial buzzsaw’ concept and

postglacial landslide activity.

The results also highlight a high frequency of landslides during the first 20 kyr of our simulations (Fig.
9&10), which is associated with higher erosion rates. Landslide activity and magnitude, and the
resulting erosion rates, at the beginning of each simulation follow the morphological gradient (from
glacial to fluvial) observed in our three catchments (Fig.11). Therefore, glacial topographic inheritance
induces an intense period of post-glacial landslide activity, leading in turn possibly to regular ‘hot-

moments® of landscape dynamics over the Quaternary.

Our study also concludes that hillslope processes, such as landslides, alone cannot drive the transient

shift from glacial to fluvial morphology during interglacial periods. The magnitude of glacial erosion
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and the duration of glaciation may have been lower in downstream areas (i.e. in this study, within the

fluvial catchment) may have led to a faster transition from glacial landscape to a fluvial one.

Finally, this study provides a basic model for understanding landslide dynamics and their impact on
alpine landscape evolution. Additional components could be incorporated to enhance the model, such
as fluvial processes, permafrost degradation or non-uniform rock properties to better capture the
complex interactions occurring in mountain environments. In a future work, we intend to model the
interactions between hillslope processes and glacial processes over multiple glacial-interglacial cycles
to better estimate their relative contributions.
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