

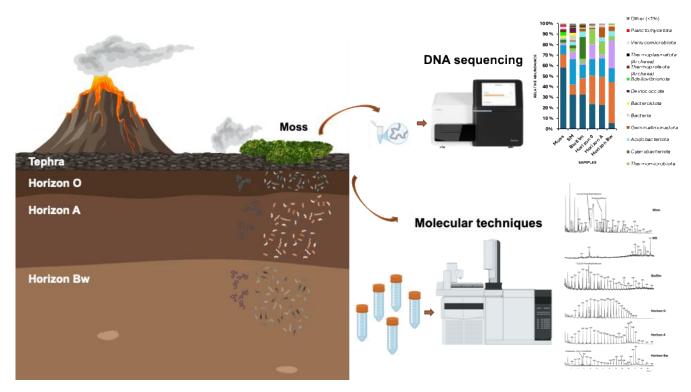
15

Fresh tephra deposits from the Tajogaite Volcano boost thermophile proliferation and soil organic matter recovery

Sara Gutiérrez-Patricio¹, Alba Gómez-Arias¹, Pedro Nolasco-Jiménez¹, Jorge Mataix-Solera², Javier Martínez-Martínez³, Bruno Martínez-Haya⁴, Juana Vegas³, Nicasio T. Jiménez-Morillo¹, Ana Z. Miller^{1,5}

- ¹ Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Avda. Reina Mercedes 10, 41012, Seville, Spain
- ² Grupo de Edafología y Tecnologías del Medio Ambiente GETECMA. Departamento de Agroquímica y Medio Ambiente, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain.
- 10 ³ Instituto Geológico y Minero de España (IGME-CSIC), Rios Rosas 23, 28003 Madrid, Spain.
 - ⁴ BIO-MS group, Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013, Seville, Spain.
 - ⁵ Hercules Laboratory, University of Évora, Palacio do Vimioso, 7000-809, Évora, Portugal.

Correspondence to: Nicasio T. Jimenez-Morillo (ntjm@irnas.csic.es) / Ana Z. Miller (anamiller@irnas.csic.es)


Abstract. Tephra fallout deposition during volcanic eruptions overlays existing soils, profoundly altering their physical, chemical, and biological properties. This study investigates the impact of the newly deposited tephra blanket from the 2021 Tajogaite eruption (La Palma Island) on the molecular composition of soil organic matter and microbial diversity across different soil horizons. A combination of 16S and 18S rRNA gene sequencing, pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), and elemental and isotope ratio mass spectrometry (EA/IRMS) was employed. Our results demonstrate that tephra deposits significantly modify the organic matter composition of the underlying soils, promoting microbial activity linked to the degradation and transformation of organic carbon and nitrogen compounds. The soil horizon directly beneath the tephra layer (horizon O) displayed a higher abundance of labile organic compounds and a reduced presence of recalcitrant compounds compared to the deeper horizons (A and Bw). This pattern is strongly associated with the

predominance of thermophilic bacteria, which contribute actively to the breakdown of complex organic materials such as lignin and hydrocarbons, and drive key biogeochemical processes including nitrogen and carbon cycling. The continuous geothermal influence of nearby fumaroles further supports the persistence and ecological success of thermophilic communities in these volcanic soils. These findings underscore the critical role of volcanic activity not only in reshaping soil structure but also in enhancing soil fertility and resilience through microbial-mediated processes. Understanding these dynamics is essential for soil management and ecosystem recovery strategies in volcanic regions, providing new insights into the long-term effects of tephra deposition on soil health and the carbon cycle.

Graphical abstract

© Author(s) 2025. CC BY 4.0 License.

1. Introduction

The Tajogaite volcanic eruption, which began in September 2021 on La Palma Island (Canary Islands, Spain), was an extraordinary geological event that significantly transformed the local environment (Birnbaum et al., 2023; Troll et al., 2024). Over 85 days, the eruption released over 200 million cubic meters of lava and pyroclasts, burying over 1,200 hectares of land and displacing 7000 residents. The voluminous ashfall, with a complex tephra blanket reaching up to 2.5 m thick, profoundly impacted the ecosystem of La Palma and posed substantial challenges for local agriculture, infrastructure, and human health (Craig et al., 2016; Bonadonna et al., 2022, 2023; Birnbaum et al., 2023; Sánchez-España et al., 2023; Biass et al., 2024). According to these authors, the grain size of the tephra blanket varied during the eruption from lapilli >6 cm to very fine ash (<2 mm) that spread to La Gomera, El Hierro, Tenerife and Gran Canaria islands during the more explosive phases. Ashfall significantly impacted agricultural productivity (Sánchez-España et al., 2023; Taddeucci et al., 2023). The loss of fertile topsoil and the alteration of soil properties created long-term challenges for agricultural recovery and land use (Ustiatik et al., 2023). Volcanic tephra is a fine-grained unconsolidated deposit, highly reactive material that can considerably modify soil structure, chemistry, and biology (Nanzyo et al., 1993; Arnalds, 2013; Wygel et al., 2019). When deposited on existing soil layers, tephra can create a new surface horizon that introduces novel mineral substrates and interacts with soil organic matter (SOM), triggering complex chemical and biological transformations (Hayakawa et al., 2020; Wijesinghe et al., 2020; Peng et al., 2021). These changes can influence soil fertility, stability, and overall health by modifying nutrient availability, pH, and soil aggregation (Peng et al., 2021; De la Rosa et al., 2023). Additionally, the ash can act as a catalyst for the formation of new organic-mineral complexes, altering SOM decomposition pathways and the long-term sequestration of carbon and other essential nutrients (Nierop and Buurman, 2007; Hernández et al., 2012; Iwasaki et al., 2021). Understanding these processes is crucial, particularly in volcanic regions where soil resilience is key to ecosystem recovery. Soil health is intrinsically linked to the composition and stability of SOM (Arias, 2005), which consists of a diverse array of plant-derived, microbial, and fungal compounds (González-Pérez et al., 2004). Fresh tephra deposition in regions affected by volcanic activity can significantly alter the soil capacity to retain nutrients and support plant and microbial communities, ultimately influencing the trajectory of ecosystem recovery (Hernández et al., 2012; Yokobe et al., 2020; Muñoz et al., 2021).

Preprint. Discussion started: 15 May 2025

© Author(s) 2025. CC BY 4.0 License.

EGUsphere Preprint repository

Furthermore, the interactions between volcanic ashfall and SOM can lead to the formation of polycyclic aromatic hydrocarbons

(PAHs) and other condensed compounds (Nanzyo et al., 1993; Tomašek et al., 2021).

The effects of volcanic ash extend beyond physical and chemical changes; they also shape the microbial communities in soils

(Zeglin et al., 2016; Yokobe et al., 2020; Chen et al., 2021). Microorganisms are highly sensitive to changes in soil properties,

and ash deposition can create new niches that favour specific microbial taxa adapted to the altered conditions (Chen et al.,

2021). This alteration in microbial diversity can have profound implications for soil function, influencing processes such as

SOM decomposition, biogeochemical cycle of carbon and nitrogen, nutrient cycling, and the production of secondary

metabolites (Campos et al., 2020; Gutierrez-Patricio et al., 2024).

This work aimed to investigate the impact of the Tajogaite volcanic eruption on the molecular and microbial diversity of an

existing soil profile that has been covered by tephra deposits. Using advanced molecular and microbiological techniques,

including pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), stable isotope analysis, and 16S and 18S rRNA

gene-sequencing, soil profiles under recent ash deposition were analysed to unravel how volcanic ash alters SOM quality and

microbial community structure. The findings provide key insights into the mechanisms driving soil transformation following

volcanic events and highlight the critical role of SOM and microbial dynamics in soil resilience and ecosystem recovery.

2 Material and Methods

75

2.1 Study site and sampling

The soil profile studied is located in the Las Manchas area of La Palma Island, within the region most affected by the 2021

Tajogaite volcanic eruption. La Palma Island, part of the Canary Islands archipelago and located approximately 400 km west

of the African coast, has a total area of 708 km² and is one of the youngest in the archipelago, formed during the last 1.8 million

years (Hoernle et al., 2009). La Palma Island shows the most complete record of the evolution of an oceanic volcanic island,

starting from the Pliocene submarine basal complex, the metamorphism originated by magmatic intrusion, the building of a

Quaternary volcanic edifice, and giant landslides and intense erosion that defines the final morphology of Caldera de

Taburiente. Volcanism displaced to a N-S elongated polygenetic Cumbre Nueva volcanic ridge that has developed over the

© Author(s) 2025. CC BY 4.0 License.

EGUsphere Preprint repository

last c. 125 ka (Carracedo et al., 2001; Sánchez-España et al., 2023) being the most active area of this island (Longpre & Felpeto,

2021).

100

105

The 2021 Tajogaite volcanic eruption, which began on September 19 and lasted for 85 days, emitted over 200 million cubic

meters of lava and pyroclastic materials, creating extensive lava flows that covered approximately 1,200 hectares and extended

into the Atlantic Ocean, forming two new lava deltas (Ferrer et al., 2023). The pyroclastic materials deposited during this

eruption ranged in size from fine ash to large lapilli and created a stark contrast with the pre-existing landscape (Bonadonna

et al., 2022; Ferrer et al., 2023). The eruption also introduced a tephra blanket, up to 3 m thick in areas close to the volcanic

cone, that overlies the native soils (Bonadonna et al., 2023).

The study site is located in the Las Manchas area (Los Llanos de Aridane municipality), situated on the western slopes of the

Cumbre Nueva Ridge (Fig. 1A). Before the eruption, the soils in this area were classified as Typic Ustivitrands (Soil Survey

Staff, 2022). These soils typically exhibit a sandy loam texture, low bulk density, and a high degree of aggregation, particularly

in the surface horizons, which are enriched with organic matter (see Table S1).

Following the eruption, the pre-existing soils in the study area were buried under a 20 cm thick layer of tephra and ash. Two

years after the event, mosses colonized the tephra deposit surface, and biofilms developed at the soil-tephra interface (Fig.

1B). Sampling included the collection of moss growing on the fresh tephra, the tephra layer directly beneath the moss cover

(moss substrate, MS), a dark green biofilm on horizon O, and three soil horizons O (0-2 cm), A (2-10 cm) and Bw (10-20

cm) (Fig. 1B). This volcanic ash-derived soil profile was located near steam-emitting fumaroles, in a sector with a high

temperature anomaly in the soil. These fumaroles vent water vapour as the main component and other chemical species, such

as SO₂, H₂S, HCl, and CO gases up to 20.7, 17.7, >30.0 and 19.5 ppm, respectively, at temperatures higher than the ambient

(Campeny et al., 2023; Martínez-Martínez et al., 2023).

This site provides a unique opportunity to study the interactions between fresh tephra deposits and the underlying soil,

particularly their effects on soil structure, organic matter composition, and microbial communities.

All samples were collected using sterile tools, such as spatulas or individually wrapped disposable scoops, to avoid

contamination, and all samples were immediately placed into sterile Whirl-Pak bags. The samples were kept on ice during

110

transportation to the laboratory for subsequent analysis. Subsamples of each material were used for DNA-based analysis, carbon and nitrogen elemental and isotope analysis, and molecular composition.

The environmental conditions of the sampling area were monitored by installing a temperature and relative humidity sensor (HOBO MX2301A, ONSET ®, Fig. S1A and B) near the fumarole vent to assess the temperature of the water vapour emissions from the fumarole. This sensor took measurements every hour for one year.

Figure 1: A) Location of the soil profile under tephra blanket in *Las Manchas* (La Palma, Spain), and B) sampling area of the volcanic ash-derived soil profile comprising moss, moss substrate (MS), biofilm located in the horizon O, and three horizons (O, A and Bw).

2.2 Carbon and nitrogen elemental and isotope analysis

The compositional analysis of organic carbon and nitrogen in both pyroclastic materials and soil samples was carried out using a Flash 2000 HT Elemental Micro-analyzer connected to a Thermal Conductivity Detector (EA/TCD; Thermo Scientific in Bremen, Germany). Samples, ranging in weight from 5 to 10 milligrams, were processed in duplicate (*n* = 2) following a decarbonization treatment as outlined by Jiménez-Morillo et al., (2016, 2020a). The calibration of carbon and nitrogen content employed certified standards such as acetanilide, nicotinamide, and aspartic acid, provided by Thermo Scientific, Bremen,

Preprint. Discussion started: 15 May 2025

© Author(s) 2025. CC BY 4.0 License.

EGUspherePreprint repository

125 Germany. The carbon and nitrogen isotope ratios (13C/12C and 15N/14N) were determined using an Elemental Analyzer

connected to a Thermo Fisher Delta V Advantage Isotope Ratio Mass Spectrometer (EA/IRMS), following the method

described by (Jiménez-Morillo et al., 2020b). These procedures were conducted at the Stable Isotope Laboratory - MOSS at

IRNAS-CSIC (Spain). Isotope values are expressed in delta (δ) notation in parts per thousand (δ) relative to certified standards

set by the International Atomic Energy Agency (IAEA), with a standard deviation for bulk δ^{13} C of \pm 0.05 ‰ and δ^{15} N of \pm 0.1

 ∞ . Duplicate analyses were performed for samples and standards (n = 2).

2.3 Analytical pyrolysis (Py-GC/MS)

The analytical pyrolysis (Py-GC/MS) technique was composed of i) a double-shot pyrolyzer, model 3030D (Frontier

Laboratories, Japan), set at 500 °C; ii) an Agilent 6890N gas chromatograph, and iii) an Agilent 5973 MSD (mass selective

detector) mass spectrometer, operating at an electron impact energy of 70 eV. The chromatographic separation involved an

HP-5MS UI capillary column (30 m length, 0.25 mm internal diameter, 0.25 µm film thickness) with a helium flow rate of 1

mL min⁻¹. The sample injection was conducted in splitless mode at 250 °C, and the temperature program was adopted from

protocols described by Jiménez-Morillo et al., (2020a). Ion fragments ranging from 50 to 550 m/z were recorded, and

compound identification was conducted by comparison with virtual spectral libraries, such as the NIST20 and Wiley7. The

molecular compounds released by Py-GC/MS were categorized into the eight biogenic families proposed by Jiménez-Morillo

et al (2016a): unspecific aromatic compounds (ARO), polysaccharides (POL), peptides (PEP), lignin (LIG), lipids (LIP),

nitrogen-containing compounds (N-comp), polycyclic aromatic hydrocarbons (PAHs), and steranes (STR). Chromatographic

peak area >0.2% of the total chromatographic area was not taken into account. For a detailed study of homologous series of n-

alkanes and n-alken-2-ones, single ion monitoring of specific fragments - specifically ions with m/z 57 and m/z 59, respectively

was adopted.

140

145

2.4 DNA extraction and sequencing

Genomic DNA was extracted from 250 mg of each of the five samples using the DNeasy PowerSoil Pro Kit (Qiagen, Germany)

following the manufacturer's instructions. The DNA was quantified using a Qubit 4.0 fluorometer (Invitrogen).

155

The extracted DNA was analyzed through next-generation sequencing (NGS), targeting the V3-V4 hypervariable region of the 16S rRNA gene for prokaryotes. Amplicons were sequenced using the Illumina MiSeq platform to generate 250bp paired-end raw reads, performed by Novogene Sequencing Services (China).

Raw amplicon sequence data were processed using QIIME 2 version 2024.5 (Bolyen et al., 2019). The table of Amplicon Sequence Variants (ASVs) was generated using DADA2, following its instructions (Callahan et al., 2016). Taxonomic classification was assigned using the SILVA reference database, version 138 (Quast et al., 2013). Alpha diversity analysis was calculated in QIIME2 version 2024.5 (Bolyen et al., 2019) to quantify the microbial diversity within each sample.

The raw reads were deposited in the NCBI Sequence Read Archive (SRA) database under accession number PRJNA1192049.

3 Results and discussion

3.1 Elemental and isotope composition of carbon and nitrogen

Table 1: Isotope and elemental composition of nitrogen (N) and carbon (C) of moss, moss substrate (MS), biofilm and three soil horizons (O, A and Bw). Significant (p < 0.05) differences between samples are indicated by different letters ("one-way ANOVA"; means compared to the Tukey test, p = 0.05).

Sample	δ ¹⁵ N (‰, V-Air)	δ ¹³ C (‰, VPDB)	N (%)	C (%)
MS*	5.0±2.9bc	-24.3±1.6ab	3.17 ± 0.80 ab	28.71±4.53bc
Biofilm	1.9±0.9c	-28.4±3.5ab	4.37±1.86a	$38.59 \pm 16.65 ab$
Horizon O	7.9±0.5b	-29.2±1.6b	$4.99 \pm 0.78a$	55.27±8.09a
Horizon A	6.0 ± 0.4 bc	-24.8±1.3ab	1.60±0.51b	17.60±3.39bc
Horizon Bw	16.6±3.1a	-23.5±0.4a	0.95 ± 0.87 b	8.65±4.48c

*MS = moss substrate

170

180

185

190

Table 1 depicts the average values and standard deviations of the elemental and isotope composition of carbon (C) and nitrogen (N) in moss, moss substrate (MS), biofilm, and three soil horizons (Horizon O, A, and Bw). Horizon O samples exhibited the highest average of C and N content (55.3 ± 8.1 and 5.0 ± 0.8 , respectively), which may be associated with a noticeable root layer (Fig. 1). The biofilm also shows notable C and N content (38.59% and 4.37%, respectively) and is located in Horizon O. These values are typical of biofilms, and its ratio C/N close to 9 (8.83 on average) indicates that the biofilm was found in a healthy state. Previous studies have shown that biofilms with C/N ratio close to 9 have higher concentrations of carbohydrates

and proteins in the biofilm and a significant upregulation of the Quorum Sensing genes (Ramos et al., 2023). In contrast, the C and N values in the horizons A $(17.6 \pm 3.39 \text{ and } 1.6 \pm 0.51, \text{ respectively})$ and Bw $(8.65 \pm 4.48 \text{ and } 0.95 \pm$ 0.87, respectively) were consistent with those reported in different soil types, the concentration of both elements in horizon A is three-fold of those found in B (Girona-García et al., 2018; Jiménez-Morillo et al., 2020a). These findings align with previous studies indicating a decline in C and N content with increasing soil depth. For moss and moss substrate (MS), the higher C content in MS compared to moss could be attributed to the presence of numerous small moss roots, which form a threedimensional network that aggregates and stabilizes lapilli grains. Additionally, the presence of root exudates, rich in C and N compounds, may contribute to this remarkable concentration of organic compounds. This is the first indication of soil regeneration after the volcanic eruption of Tajogaite, which reveals the importance of moss in this process. Previous studies about the colonization of soils affected by volcanic activity highlight the abundance of photosynthetic organisms, including moss, as pioneer colonizers (Smith, 1984; Ingimundardóttir et al., 2014; Vilmundardóttir et al., 2018; Dragone et al., 2023). Regarding the C isotope composition, all samples exhibited δ^{13} C values within the typical range for C₃ plants (between -25 % and -35 % (Katsumi et al., 2015; Ghezzi and Jimenez-Morillo et al., 2024). However, significant differences were observed among the samples. Moss, Horizon O, and biofilm displayed the most negative δ^{13} C values (-28.5 ‰ ± 0.1, -28.4 ‰ ± 3.5, and -29.2 ‰ ± 1.6, respectively), which reflected the presence of fresh organic matter (Jiménez-Morillo et al., 2020b). In contrast, samples from the A and Bw soil horizons and the moss substrate (MS) were enriched in ¹³C (Table 1). This trend has also been observed by Girona-García et al., (2018) in soil profiles under pine and beech forests, where deeper horizons exhibited higher δ^{13} C values. Such 13 C-enrichment in soil samples is often associated with more humified organic matter (Jiménez-Morillo et

al., 2020b). For the MS (δ^{13} C = -24.3 ‰ \pm 1.6), the observed 13 C-enrichment may be attributed to i) the heavier isotope

195

200

signature of root exudates compared to other organic compounds commonly found in soil samples (Girona-García et al., 2018), and ii) microbial activity linked to diverse families of microorganisms (Jiménez-Morillo et al., 2020b; Miller et al., 2022; San-Emeterio et al., 2023). In addition, Horizons A and Bw have similar δ^{13} C values (-24.8 ± 1.3 and -23.5 ± 0.4, respectively) to the MS, which is mainly composed of tephra. This could be indicative of the volcanic origins of the paleo soil (Horizons A and B) (Carracedo et al., 2022) and the importance of lapilli, among other volcanic materials from previous eruptions, in the carbon cycle during the soil formation (Matus et al., 2014 and references therein).

A key finding is the strong negative correlation observed between δ^{13} C values and C content across the different soil horizons and the biofilm (Fig. 2). This trend is particularly pronounced in the soil horizon samples ($R^2 = 0.9991$; solid line). However, when the biofilm sample is included, the correlation weakens slightly ($R^2 = 0.9572$; dashed line).

Figure 2: Plot of average (n=3) δ^{13} C vs %C of moss (red triangle), moss substrate (MS, red square), biofilms (black dashed circle) and soil horizons O, A and Bw (open black circles) with linear regression of horizons (solid line) and including biofilms (dashed line).

This negative correlation between δ^{13} C and C content has been previously described in soils worldwide. In all cases, this trend has been attributed to either the decomposition of organic matter, the fractionation by microbial activity or the shift of a

Preprint. Discussion started: 15 May 2025

© Author(s) 2025. CC BY 4.0 License.

210

215

220

225

230

EGUspherePreprint repository

predominant contribution from plants to microorganisms in the residual organic matter as it progresses through the soil

horizons (Ågren et al., 1996; Volk et al., 2018; Ehleringer et al., 2000; Krüger et al., 2024). The microbial activity may process

fresh organic matter, leaving behind evolved (humified) material with a heavier isotope. This alteration may also reduce the C

content due to microbial respiration. A similar pattern has been observed in the isotope composition of highly humified

(evolved) organic matter associated with very fine sand particles in shallow soil layer (Jiménez-Morillo et al., 2020a), which

may confirm the influence of microorganisms in the humification process of fresh organic matter. However, the moss and the

tephra collected under the moss (MS) did not correlate with the soil. This is probably because the samples were collected

shortly after the volcanic eruption that accumulated the tephra over the previous soil (Horizon O). Therefore, the C cycle of

this interface was still in an early stage of the andisol formation process, preventing the observation of statistical correlations

between the soil samples and the tephra.

Regarding the nitrogen isotope composition ($\delta^{15}N$), the moss sample exhibited the lowest $\delta^{15}N$ value (Table 1), a typical

characteristic for mosses (Zechmeister et al., 2008). In contrast, the other samples displayed positive $\delta^{15}N$ values (Table 1).

For the MS sample, the 15 N-enrichment and their statistical similarity with δ^{15} N values observed in the soil and biofilm samples

suggest that it could be derived from the activity of certain microorganisms, such as cyanobacteria, that utilize nitrogen-derived

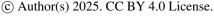
compounds excreted by the moss roots (Carrell et al., 2022). In addition, the deepest soil sample (Horizon Bw) showed the

highest δ^{15} N enrichment, which could be associated with denitrification processes (Girona-García et al., 2018). While

humification is well known to cause ¹⁵N-enrichment, particularly in forest soils (Szpak, 2014), ¹⁵N-depletion can occur during

the uptake of inorganic N by vegetation (Högberg, 1997). Therefore, the observed trend can be best explained by the alteration

of biomass by heterotrophic organisms, which produce ¹⁵N-depleted compounds while progressively enriching the remaining


biomass with ¹⁵N over time (Billings and Richter, 2006; Makarov, 2009; Szpak, 2014; Girona-García et al., 2018).

3.2 Molecular composition of organic fraction

The use of analytical pyrolysis (Py-GC/MS) has revealed remarkable molecular differences between soil, tephra, biofilm, and

moss samples (Fig. 3). The moss sample is rich in organic compounds, particularly lipids (31.56%) and polysaccharides

(29.75%), aligning with findings from previous studies (Klavina et al., 2015; Petkova et al., 2023). Among the lipid compounds

235

240

245

250

255

identified were essential oils, such as α-Terpinene and Phytol, n-alkanes (e.g., heptadecane, heneicosane; Klegin et al., 2023)

and n-alkanoic acids (e.g., 9,12,15-Octadecatrienoic acid, 13-Eicosenoic acid, 22-Tricosenoic acid; Yucel, 2021; Klegin et al.,

2023). Polysaccharides in bryophytes play an important role in the chemical evolution of vegetation and assist as structural

components, which are also assumed to contribute to bryophyte stress tolerance (Klavina et al., 2015). In this study, the

identified polysaccharides were primarily furans (e.g., 2(5H)-Furanone, 5-methyl-, 2-Furancarboxylic acid, methyl ester, 3-

Furaldehyde) and levoglucosan (β -D-Glucopyranose, 1,6-anpah). However, due to dehydration and molecular restructuring

during pyrolysis, complete identification of polysaccharides is not feasible (González-Pérez et al., 2016). The molecular

analysis also revealed a significant presence of non-specific aromatic compounds (13.60%) and peptide compounds (11.69%).

Among the aromatic compounds, phenol derivatives such as Phenol, 2-methyl-, Phenol, 2,3-dimethyl-, 1,2-Benzenediol, and

Phenol, 2,3,5-trimethyl were prominent. These phenolic compounds are considered critical in early plant evolution, particularly

in moss growth and cuticle permeability, which were key for adaptation to terrestrial environments (Renault et al., 2017). Such

phenolic compounds are precursors to lignin, synthesized by the phenylpropanoid pathway, which strengthens cell walls, aids

in water transport, and supports upright growth (Fraser and Chapple, 2011). Peptide-derived compounds were also found, with

their primary function being the defence of mosses against environmental stressors such as drought and high temperatures

(Ren et al., 2024). Additionally, these peptides provide resistance against microbial pathogens (Valeeva et al., 2022). Plants

produce a range of bioactive metabolites, peptides, and small molecules that contribute to defence mechanisms and microbial

resistance (Valeeva et al., 2022). In addition, peptide compounds are crucial regulators of ecosystem function because they

may provide as direct supplies of nutrients for soil microorganisms and plants (Wang et al., 2023).

Only a few organic compounds were identified in the MS samples, mainly high molecular weight alkyl lipids (n-alkanes) and

sterols, being the second the dominant group (65%). Key sterols detected include Stigmastan-3,5-dien, Campesterol, and γ-

Sitosterol, also found in the moss samples (Table S2). The presence of Campesterol and γ-Sitosterol may indicate an input of

organic matter from the moss via rhizoid exudates. Sterols are crucial for various plant physiological processes, not only

supporting cell membrane structure and fluidity but also acting as hormone precursors and playing a role in responses to biotic

and abiotic stress (Valitova et al., 2016; Cabianca et al., 2021). In addition, the presence of high molecular weight alkyl

compounds, originating from epicuticular waxes, supports the hypothesis that there is a direct input of organic material from

© Author(s) 2025. CC BY 4.0 License.

260

265

270

275

280

the moss to the substrate (tephra). The δ^{13} C value observed in this sample does not align with the molecular composition identified by Py-GC/MS, as the detected compounds usually exhibit a markedly negative isotope signature (Park and Epstein, 1961; San-Emeterio et al., 2023). However, the observed 13 C-enrichment in this sample against the moss could be attributed

to low-molecular-weight polysaccharide-derived compounds undetected by this analytical technique.

The biofilm sample collected from Horizon O consists mainly of lipids (40.54%), non-specific aromatic compounds (38.36%), polysaccharides in the form of furans (13.08%), and peptides (8.02%). This molecular composition aligns perfectly with the main molecular composition found in biofilm samples analyzed in different volcanic regions (Miller et al., 2020; Ghezzi and Jiménez-Morillo et al., 2024; Palma et al., 2024). The lipid composition is mainly dominated by *n*-alkane/alkene pairs with different proportions, which will be discussed in the section 3.3.1.

The Horizon O sample is dominated by lipid compounds (42.43%), mainly alkyl compounds (n-alkane/alkene pairs and nalkanoic acids), followed by aromatic moieties (17.80%) and polysaccharides (12.57%). In addition, this is the only sample with a relatively high concentration of methoxyphenols, i.e., lignin-derived compounds (12.18%). The abundance of alkyl compounds suggests the existence of different organic fractions from distinct origins: i) organic matter from pre-eruption vegetation, also indicated by the δ^{13} C of the Horizon O sample (-29.2 ± 1.6) typical of C₃ plants, ii) the degradation of lipid membranes from microorganisms induced by the deposition of tephra during the Tajogaite volcanic eruption, and iii) highly evolved organic matter from post-eruption microbial activity in the soil (Jiménez-Morillo et al., 2017; Bull et al., 2000; Jiménez-Morillo et al., 2016b; Leal and Jimenez-Morillo et al., 2023). In contrast, the presence of lignin- and polysaccharidederived compounds probably indicates the recent input of herbaceous/shrubby plant material (Fig. 1). It could also stem from root exudates of vegetation present before the ash deposition, supported by the high concentration of roots in the Horizon O (Fig. 1). Lignin compounds, particularly from the guaiacol and syringol groups, confirm a contribution of tree-derived organic matter (San-Emeterio et al., 2023). However, the greater abundance of guaiacol over syringol suggests ongoing microbial degradation activity, as syringol is more easily degraded by microorganisms (San-Emeterio et al., 2023). Additionally, condensed compounds (PAHs) were found in the shallow horizon. This could be generated by: i) ancient fires with particles trapped in the soil layers (Jiménez-Morillo et al., 2016b), ii) high-temperature vapour emissions, from volcanic fracture, leading to defunctionalization and condensation of polar aromatic compounds (Capaccioni et al., 1995) or, iii) microbial

© Author(s) 2025. CC BY 4.0 License.

285

290

295

300

EGUsphere Preprint repository

activity. Several pathways have been described for hydrocarbon synthesis by microorganisms (Ladygyna et al., 2006 and

references therein). Some of these biogenic PAHs have been detected in forest soil (Kraus et al., 2005) with high degradation

of lignin, in peatlands and wetlands (Wakeham et al., 2016), where organic matter accumulates and transforms slowly, and in

lake and marine sediments (Love et al., 2021), where microbial activity and anoxic conditions promote the polymerization of

aromatic compounds.

The two deepest Horizons (A and Bw) of the soil profile share a similar molecular composition, dominated by non-specific

aromatic compounds, lipid compounds (mainly n-alkane/alkene pairs), polysaccharides and peptides, with a complete absence

of lignin molecules. This pattern has been observed in forest soils across the Iberian Peninsula (Aznar et al., 2016; Jiménez-

Morillo et al., 2016a; De la Rosa et al., 2019), indicating the presence of microbial-derived compounds and linked to high

microbial activity (Jiménez-Morillo et al., 2018). The abundance of non-specific aromatic compounds may also result from

fungal degradation of plant lignins (Kellner et al., 2014). However, important differences include a higher proportion of

condensed compounds (PAH = 15.17%) in the upper Horizon, while the deeper horizon has more sterane compounds (10.76%).

In the Horizon A, highly condensed PAHs, such as phenanthrene and pyrene suggest the presence of pyrogenic material,

usually associated to organic matter combustion (González-Pérez et al., 2014; Miller et al., 2020, 2022). In contrast, the deeper

Horizon only contains branched naphthalene compounds, possibly due to lower-intensity fires or microbial degradation of

condensed compounds by thermophiles (Musat et al., 2009; Mohapatra and Phale, 2021). In the sterane family, the deeper

Horizon (Bw) contains Stigmastan-3,5,22-triene, Ergosta-4,6,22-trien-3-ol, and Friedelan-3-one. These plant- and fungi-

synthesized compounds are well-preserved in deeper layers due to their stability (Kristan and Rižner, 2012), with clear

accumulation in the lower horizons, while they are almost absent in the Horizon O and the biofilm (Fig. 3).

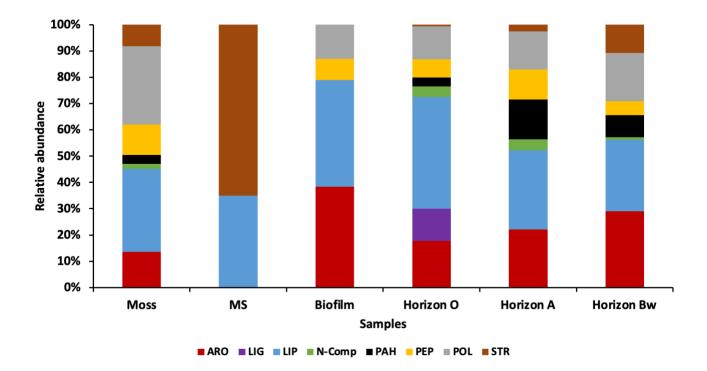


Figure 3: Relative abundance (%) of the main organic families identified by Py/GC/MS from moss, moss substrate (MS), biofilm, and soil horizons (O, A, Bw) samples. The main organic families are: unspecific aromatic compounds (ARO), polysaccharides (POL), peptides (PEP), lignin (LIG), lipids (LIP), nitrogen-containing compounds (N-comp), polycyclic aromatic hydrocarbons (PAHs), and steranes (STR).

3.3. Lipid analysis by Py-GC/MS

3.3.1. *n*-Alkanes

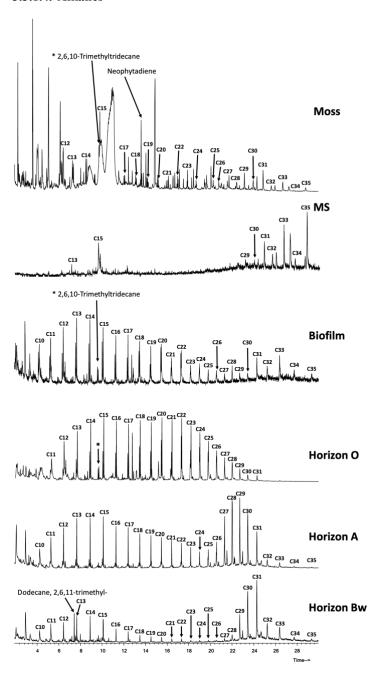


Figure 4: *n*-alkane (m/z 57) distribution obtained by direct pyrolysis (Py-GC/MS) of moss, moss substrate (MS), biofilms and soil horizons (O, A and Bw) samples.

© Author(s) 2025. CC BY 4.0 License.

315

320

325

330

335

EGUsphere Preprint repository

The *n*-alkane series were identified using m/z 57 in the selected-ion-monitoring (SIM) chromatogram (Fig. 4). Chain lengths

ranged from C₁₀ to C₃₅, reflecting various organic matter sources (Jiménez-Morillo et al., 2017). In the moss sample, a bimodal

distribution was observed with peaks at n-pentadecane (C15) and n-hentriacontane (C31), with odd-chain n-alkanes

predominating, especially in longer chains (C_{25}). This suggests *n*-alkanes from moss epicuticular waxes, with a peak at *n*-

hentriacontane (Schwark et al., 2002). The presence of low-molecular-weight (LMW) n-alkanes (<C₂₀) may point to associated

microorganisms, as LMW *n*-alkanes typically originate from microbial cell walls (Jiménez-Morillo et al., 2017, 2022).

In the MS sample, the dominance of odd-chain high-molecular-weight (HMW) n-alkanes supported direct organic matter input

from moss. However, the abundance of n-tritriacontane (C₃₃) and n-pentatriacontane (C₃₅) n-alkanes may also indicate C4

vegetation (Vogts et al., 2009; Feakins et al., 2016) or the adaptation of pre-eruption vegetation to water stress caused by

volcanic ash.

In Horizon O, a bimodal n-alkane distribution with peaks at C₁₅ and n-docosane (C₂₂) suggested the presence of organic matter

from soil microorganisms or the degradation of plant biomass by microorganisms over time (Jiménez-Morillo et al., 2016b,

2017). The gradual decline in HMW *n*-alkanes and the absence of a clear odd-over-even pattern indicates microbial degradation

processing of organic matter (De Blas et al., 2013; Jiménez-Morillo et al., 2022; Leal and Jimenéz-Morillo et al., 2023). The

higher root density in this layer could also contribute to the observed *n*-alkane pattern.

The biofilm sample was dominated by LMW n-alkanes, confirming its microbial origin (Jiménez-Morillo et al., 2017). The

presence of branched alkanes like neophytadiene, 2,6,10-trimethyltridecane, and 2,6,11-trimethyldodecane further supports a

microbial contribution (Palma et al., 2024).

In deeper horizons (A and Bw), there is a clearer differentiation between LMW and HMW n-alkanes, indicating two carbon

pools from microorganisms (LMW n-alkanes) and plant vegetation biomass (HMW n-alkanes). The microbial fraction may

stem from lipidic membranes (Miller et al., 2016) or microbial degradation of plant biomass, such as alkyl compounds from

lignocellulose breakdown (Rabbi et al., 2014; Jiménez-Morillo et al., 2022; Miller et al., 2022). The nonspecific aromatic

compounds previously discussed also suggest the lignin breakdown process. However, the most significant differences among

horizons are seen in HMW n-alkanes. The Horizon A peaks at n-nonacosane (C29), indicating tree or shrub vegetation, while

the Horizon Bw peaks at n-hentriacontane (C_{31}), suggesting herbaceous vegetation (Bull et al., 2000). Therefore, results indicate a change in vegetation probably due to the alteration of the environmental conditions.

3.3.2. *n*-Alkane-2-ones

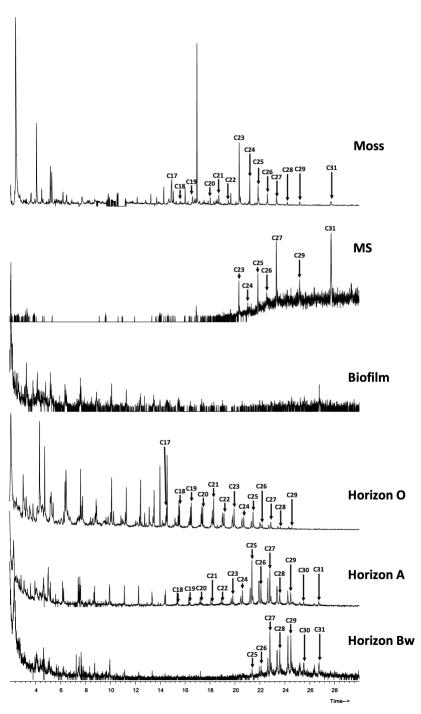


Figure 5: *n*-alkan-2-one (m/z 59) distribution was obtained by direct pyrolysis (Py-GC/MS) of moss, moss substrate (MS), biofilms and soil horizons (O, A and Bw) samples.

© Author(s) 2025. CC BY 4.0 License.

350

355

360

365

345 The pyrolyzed samples from La Palma, except for the biofilm sample, revealed a series of n-alkane-2-ones (m/z 59 ion

chromatograms) ranging from C₁₇ to C₃₁, with a general odd-over-even chain-length predominance (Fig. 5). However, each

sample showed distinct patterns. In the moss sample, the maximum was at n-alkane-2-one C_{23} , without a clear parity pattern,

though the odd-over-even trend was evident in LMW n-alkane-2-ones. This suggests a mixture of lipids from both the moss

and its associated microbiome, as also seen in the *n*-alkanes (Fig. 4).

The MS sample showed a *n*-alkane-2-ones distribution similar to that observed for *n*-alkanes (Fig. 4), being dominated by C₂₇

and C₃₁ molecules, which supports the idea of a direct contribution of organic matter from the moss.

The soil horizons showed differences in the *n*-alkane-2-one distribution (Fig. 5). In Horizon O, the maximum was at *n*-alkane-

2-one C₂₁, while in horizons A and Bw, the maxima were at C₂₅ and C₂₇, respectively. The Horizon O had a range of n-alkane-

2-ones from C₁₇ to C₂₉, suggesting more degraded organic matter, possibly due to fine ash deposition affecting organic matter

or microorganisms. In Horizon A, the *n*-alkane-2-one distribution resembled typical soils, with two carbon pools: i) LMW *n*-

alkane-2-ones from microbial activity, and ii) HMW ones from plant-derived organic matter (Jaffé et al., 1996; Kumar et al.,

2020). This aligns with the *n*-alkane distribution (Fig. 4) and overall molecular analysis (Fig. 3). In contrast, the Horizon Bw

contained only HMW n-alkane-2-ones (>C25), considered biomarkers of vegetation (Kumar et al., 2020; Palma et al., 2024).

This aligns with the isotope carbon signature observed in the soil (Table 1 and Fig. 2) that indicates the influence of microbial

processes at the top layer (Horizon O) and a gradual shift to plant-influenced processes towards the bottom (Horizon Bw). The

absence of LMW n-alkane-2-ones in Horizon Bw could be due to concentrations below detection limits, as this horizon had

low TOC (Fig. 1). Environmental factors such as moisture and nutrient availability may affect n-alkane-2-one formation by

altering the degradation of n-alkanes and n-alkanoic acids (Lehtonen and Ketola, 1990; Zhang et al., 2004). Zhang et al. (2004)

identified potential sources of n-alkane-2-ones, including: (i) epicuticular waxes from plants; (ii) microbial oxidation of n-

alkanes; (iii) β -oxidation and decarboxylation of *n*-alkanoic acids; and (iv) microbial cracking of HMW *n*-alkane-2-ones into

LMW ones. The predominance of LMW n-alkane-2-ones in Horizon O further supports an active microbial contribution to

organic matter transformation.

380

385

370 3.4 Bacterial community composition

A total of 198.129 ASVs (amplicon sequence variants) were analysed from 16S rRNA gene sequencing. The richness and evenness of microbial communities were estimated using Chao1, Shannon and Simpson indices (Table 2). The biofilm was the most biodiverse sample, with the highest species richness, and Shannon and Simpson indices of 7.860 and 0.989, respectively, followed by horizons Bw and A and moss. In contrast, Horizon O showed a lower diversity, with Shannon and Simpson indices of 4.166 and 0.689, respectively. According to the Chao1 richness estimator, Horizon O and the biofilm showed the highest predicted microbial richness, indicating that most of the species present in these samples were successfully detected, with minimal undetected diversity. It is noteworthy that the microbial community in the tephra collected beneath the moss (MS) reached a substantial diversity and richness within just two years following the deposition of the Tajogaite volcanic tephra.

Table 2: Alfa diversity 16S of moss, moss substrate (MS), biofilms and soil horizons samples.

Sample	Shannon	Simpson	chao1	Observed
Moss	6.359	0.973	426.143	426
MS	5.522	0.950	255.500	254
Biofilm	7.860	0.989	832.783	832
Horizon O	4.166	0.689	833.948	829
Horizon A	6.531	0.972	510.315	473
Horizon Bw	7.321	0.972	814.125	812

Most of the sequences identified belong to the Bacteria kingdom; however, Archaea, was also found, primarily in the moss, biofilm and MS samples, comprising 2.63%, 2.48% and 1.31%, respectively (Fig. 6A). They have been reported as early colonizers in samples from the volcanic island *Hunga Tonga Hunga Ha'apai*, in the Kingdom of Tonga (Fujimura et al., 2016; Dragone et al., 2023). Archaea are known for their ability to inhabit extreme environments and play critical roles in biogeochemical cycles (Offre et al., 2013; Martínez-Espinosa, 2020). The main archaeal class detected in these samples was *Nitrososphaeria*, belonging to the phylum *Nitrososphaerota*, which plays a key role in the nitrogen cycle by transforming ammonia into nitrite, thereby contributing to the nitrogen availability in the soil. This process indirectly supports plant nutrition

400

390 (Leininger et al., 2006; Lehtovirta-Morley et al., 2024) and influences the distribution of N concentration described in the biofilm and MS samples. The presence of N in these samples infers that the identified genus *Nitrososphaeria* is oxidizing the ammonium to nitrite, which requires the presence of oxygen. This might explain the presence of this archaea only in the moss, MS and biofilm samples, which are in contact with the atmosphere.

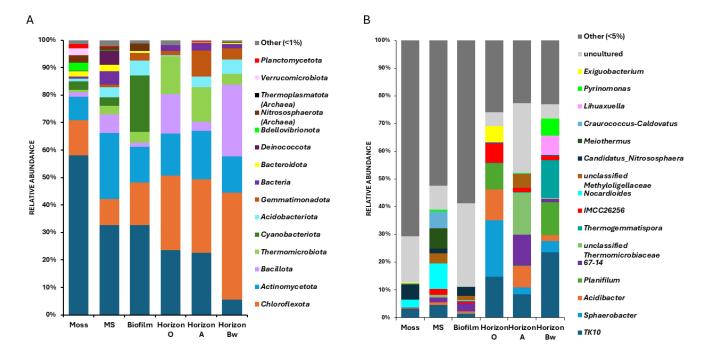


Figure 6: Relative abundances of microbial phyla (A) and genera (B) across different samples collected from moss, moss substrate (MS), biofilm, and soil horizons (O, A and Bw) samples.

The bacterial phylum *Pseudomonadota* was found in all samples, with relative abundances decreasing with depth, ranging from 58.1% (moss) to 5.6% (horizon Bw). Members of this phylum included *Acidibacter*, the *Craurococcus-Caldovatus* bacteria group, and the *Methyloligellaceae* family (Fig. 6B). The acidophilic, ferric iron-reducing, heterotrophic bacterium *Acidibacter*, previously isolated from the Guadiana pit lake, currently has only one described species (Falagán and Johnson, 2014). This bacterium was found in all three horizons, although its abundance decreased with depth, indicating its adaptation to metabolize fresh organic matter, which is more abundant in the Horizon O. The *Caldovatus* genus, a thermophilic bacterium, was found in the MS sample (6.29%). This genus includes only two described species, *C. aquaticus* and *C. sediminis* (Habib

Preprint. Discussion started: 15 May 2025

© Author(s) 2025. CC BY 4.0 License.

EGUsphere Preprint repository

405 et al., 2017; Hu et al., 2022). The Methyloligellaceae family is characterised by its ability to use methane as a carbon and

energy source, playing a key role in the carbon cycle (Bryukhanov et al., 2024), dominating the Horizon A, MS and biofilm

samples.

Other bacterial genera identified greater than 1% of relative abundance were Aureimonas, Bosea, Hyphomonas, Legionella,

Methylorubrum and Nordella in the moss sample; Candidatus Halysiosphaera, Limnobacter, and Chthonobacter in the MS;

Dongia in the biofilm; and Bauldia in both the biofilm and Horizon A, and Brevundimonas in both the moss and MS samples.

Notably, the genus Bosea, detected in the moss sample, is known for its ability to obtain energy through the oxidation of

reduced sulfur compounds, a process highly relevant in volcanic environments where sulfur-rich fumaroles, such as those

produced during the Tajogaite eruption, have been documented (Martínez-Martínez et al., 2023). Furthermore, this metabolic

activity relies on the availability of organic carbon, which was confirmed in all samples through EA/IRMS and Py-GC/MS

analyses, highlighting the active coupling between volcanic sulfur emissions and early microbial colonization of the tephra

substrate.

415

420

The phylum Chloroflexota was also present in all samples and was particularly abundant in the O, A and Bw horizons, with

relative abundances of 27.23%, 26.77% and 38.92%, respectively. The most abundant members of this phylum were TK10,

S085 and KD4-96, present in all samples along with the thermophilic bacteria *Thermogemmatispora* and *Litorilinea*, found

predominantly in horizon Bw and the biofilm, respectively. Species of *Thermogenmatispora* are involved in carbon monoxide

oxidation in geothermal environments (King and King, 2014). The Candidatus Chloroploca, found in the moss, is capable of

using sulfide oxidation as an electron donor (Gorlenko et al., 2014).

The Actinomycetota was the most abundant phylum in the MS sample, with the following genera being particularly prominent:

Nocardioides (9.33%), IMCC26256 (2.02%), 67-14 (1.64%), Conexibacter (1.23%) and Gaiella (1.01%). In the biofilm, the

Micronomospora, Actinophytocola, and 67-14 genera were the most abundant, with a relative abundance of 4.16%, 1.81%,

and 2.94%, respectively. In the soil horizons, thermophilic bacteria such as *Thermasporomyces* and *Thermopolyspora* (Horizon

O) and *Thermoleophilum* (dominant in the Horizon Bw) were prevalent. Species of the *Thermopolyspora* genus are capable of

degrading lignocellulosic compounds (Yang et al., 2022), which aligns with the detection of lignin exclusively in the Horizon

O sample by Py-GC/MS. In contrast, members of the genus *Thermoleophilum* can grow exclusively on C₁₂–C₁₉ *n*-alkanes,

Preprint. Discussion started: 15 May 2025

© Author(s) 2025. CC BY 4.0 License.

435

440

450

EGUsphere Preprint repository

430 cyclohexane, cycloheptane, C₁₂–C₁₈ alcohols and C₁₃–C₁₉ ketones (Yakimov et al., 2003), all of which were identified in the

soil samples through Py-GC/MS (Table S2).

The Bacillota was a dominant phylum in Horizons Bw (26.29%) and O (14.28%), as well as in the MS sample (6.90%). The

most abundant genera within this phylum in the soil horizon samples were Brockia, Thermaerobacter, Thermobacillus, and

Lihuaxuella (dominant in the Horizon Bw). The Limnochorda was found primarily in all three horizons, while Planifilum,

dominant in Horizons O and Bw, plays a key role in the degradation of organic matter and harbors potential antibiotic-

resistance genes (Tseng et al., 2024). This genus was also found in the basaltic subsurface of young volcanic islands in Iceland

(Bergsten et al., 2022). Non-thermophilic genera of the Bacillota phylum, such as Exiguobacterium and Bacillus, were also

identified in all three sample types.

The *Thermomicrobiota* phylum was present in all samples, particularly in horizons O (13.63%) and A (12.53%), mainly

represented by the Sphaerobacter genus, which was found in the three soil horizons, with particularly high dominance in

Horizon O (20.51%). This bacterium was originally isolated from thermophilically treated sludge, and proteogenomic analysis

indicated that it contains numerous aromatic degradation pathways, such as those involved in lignin degradation (D'haeseleer

et al., 2013), suggesting its role in the breakdown of complex organic matter. Notably, lignin was detected in the Horizon O

sample (Fig. 3), while aromatic compounds have been detected in all samples (Fig. 3).

The hyperthermophilic family *Thermomicrobiaceae* was also found, predominantly in horizon A (15.11%), represented by the

67-14 bacterium.

The Cyanobacteriota phylum was mainly found in the biofilm (20.64%), MS (3.07%), and moss (3.04%) samples. Members

of this phylum play a crucial role as nitrogen fixers and contribute significantly to the primary production of organic

compounds (Rippin et al., 2018), as represented by genera such as Arthronema and Nodosilinea. This is consistent with the

detection of nitrogen in the biofilm, MS, and moss samples, and supported by isotope ratios that predicted the presence of

photosynthetic microorganisms. Arthronema is a filamentous cyanobacterium highly adaptive, typical of extreme desert

environments, where it contributes to the nutritional chain and soil formation. Additionally, it exhibits antitumor and

antioxidant properties and produces phycobiliproteins (Iliev and Andreeva, 2006; Chaneva et al., 2007; Gardeva et al., 2014;

Preprint. Discussion started: 15 May 2025

© Author(s) 2025. CC BY 4.0 License.

455

460

465

470

EGUsphere Preprint repository

Petrova et al., 2020). Markers of proteins (peptides) were detected by Py-GC/MS in all samples, except MS. Although this

technique cannot identify specific proteins, the presence of phycobiliproteins cannot be ruled out.

Other phyla identified in these samples included Acidobacteriota, mainly found in the biofilm, MS and the A and Bw horizons;

Gemmatimonadota, predominantly present in the biofilm and soil horizon samples; and Deinococcota and Bacteroidota,

primarily in the MS sample, represented by Meiothermus and Persicitalea. The Deinococcota phylum is known as one of the

most extremophilic phyla of bacteria, due to its resistance to extreme stressors such as oxidation, radiation, desiccation, and

high temperature (Vilhelmsson et al., 2023).

In general, the sampling area exhibited a significant presence of thermophilic bacteria, particularly in Horizons O and Bw, and

in the biofilm. This abundance is likely related to the proximity of steam-emitting fumaroles near the sampling site. These

thermophilic microorganisms, which thrive at elevated temperatures, are highly adapted to the geothermal conditions generated

by the fumaroles. Thermophilic genera such as Thermasporomyces, Thermopolyspora, Thermobacillus, Planifium and

Pyrinomonas, were observed in the soil horizons. Notably, the only described species of the genus Pyrinomonas, Pyrinomonas

methylaliphatogenes, was originally isolated from geothermally heated soils associated with fumaroles (Crowe et al., 2014).

Members of these genera are recognized for their ability to degrade complex organic materials, such as lignocellulose (Yang

et al., 2022), detected in these soil samples, and for their active role in the degradation of organic matter (Tseng et al., 2024).

This enzymatic capability is particularly beneficial in volcanic soils, where organic matter turnover is critical for early soil

development and nutrient cycling. The dominance of *Thermoleophilum* in the Horizon Bw highlights its ecological role in

metabolizing hydrocarbons, such as PAHs, present in all the soil samples analysed. The hyperthermophilic family

Thermomicrobiaceae, predominantly found in Horizon A, and the genus Sphaerobacter, highly abundant in the Horizon O, as

well as the thermophilic bacteria *Thermogemmatispora* and *Litorilinea*, predominantly in the deeper soil horizons and the

biofilm, further underline the influence of geothermal activity on microbial composition.

The presence of thermophiles across all collected samples, along with their co-occurrence with non-thermophilic genera,

suggests an ecological adaptation of the microbial community to thermal disturbances associated with volcanic activity and

fumarolic emissions. Furthermore, the relatively lower abundance of thermophiles in horizon A compared to horizons O and

Bw suggests that thermal events occurred more frequently or with great intensity during the formation of horizons O and Bw.

Preprint. Discussion started: 15 May 2025

© Author(s) 2025. CC BY 4.0 License.

480

485

490

495

500

EGUsphere Preprint repository

The adaptation of thermophiles to high temperatures enables them to dominate during periods of elevated temperatures (e.g.,

in the presence of fumaroles), while mesophilic counterparts persist and thrive in cooler periods. Temperature and humidity

were continuously monitored at the sampling site using a HOBO sensor over one year. During this period, temperatures

generally fluctuated between 20°C and 30°C, with the highest temperature (51.33°C) recorded on August 12 and the lowest

(13.76°C) recorded on February 24 (Fig. S1B). The highest temperatures always coincided with the periods of lowest recorded

humidity.

4 Conclusions

This study demonstrates that the moss colonizing the upper layer of the tephra deposits releases organic compounds that serve

as carbon sources for microorganisms, facilitating rapid microbial colonization of the inert volcanic substrate within two years

after the Tajogaite eruption. This eruption produced a complex tephra blanket exceeding 50 cm in thickness, composed of

lapilli and fine ash, which accumulated over the pre-existing soil (Horizon O).

Our analyses reveal that Horizon O exhibits a distinctive hydrocarbon signature, indicative of both high-temperature thermal

processes and active microbial transformation of organic matter. In contrast, the deeper soil layers (Horizons A and Bw) display

alkane patterns characteristic of plant-derived organic matter inputs. Furthermore, δ^{13} C isotopic data strongly suggest intense

microbial processing of organic carbon in Horizon O, reinforcing the hypothesis that microbial activity significantly

contributes to the formation of hydrocarbons in this horizon.

Importantly, microbial sequencing revealed the presence of taxa capable of hydrocarbon metabolism, including the family

Methyloligellaceae, supporting the hypothesis that some of the detected polycyclic aromatic hydrocarbons (PAHs) could be

of biogenic origin.

In addition, our results indicate that the deposition of fresh tephra materials from the Tajogaite Volcano has the potential to

alter soil organic matter (SOM) dynamics, favouring the accumulation of labile organic compounds and reducing the

abundance of recalcitrant components such as lignin, which are typically more resistant to degradation.

The dominance of thermophilic bacteria, particularly in Horizons O and Bw, highlights their key ecological role in the

breakdown of recalcitrant organic matter, the facilitation of nitrogen and carbon cycling, and the stabilization of the evolving

Preprint. Discussion started: 15 May 2025

© Author(s) 2025. CC BY 4.0 License.

505

510

515

525

soil structure. Their metabolic versatility, including the ability to degrade lignin-derived compounds and synthesize

hydrocarbons, positions thermophiles as critical drivers in the early formation of andisols and the recovery of soils disturbed

by volcanic activity.

Finally, the persistent presence of thermophilic microorganisms across the studied profile reflects the influence of volcanic

and fumarolic activity in shaping the microbial community structure in the post-eruptive landscape of the Tajogaite Volcano.

Given the recurrent volcanic activity on La Palma Island, particularly along the Cumbre Vieja Volcanic Ridge, thermophilic

communities are likely an enduring and essential component of soil ecosystem dynamics in this region.

Author contributions

The manuscript was written through the contributions of all authors. All authors have approved the final version of the

manuscript. S.G-P: data curation, formal analysis, methodology, visualization, writing-original draft. A.G.A.: data curation,

formal analysis, methodology, writing-original draft. P.N-J.: methodology, validation, writing-original draft. J.M.-S.:

methodology, validation, writing-review and editing. J.M-M.: methodology, validation, writing-review and editing. B.M-H.:

methodology, writing-review and editing. J.V.: methodology, validation, writing-review and editing. N.T.J.-M.: data curation,

formal analysis, methodology, visualization, validation, writing-original draft, writing-review and editing. A.Z.M.: data

curation, formal analysis, methodology, validation, visualization, supervision, funding acquisition, writing-original draft,

520 writing-review and editing.

Competing interests

The authors declare that they have no conflict of interest.

Acknowledgements

This work received support from the Spanish Ministry of Science, Innovation and Universities (MICIU) under the research

project HIRES-SOM (ref. TED2021-130683B-C21/C22) funded by MCIN/AEI/10.13039/501100011033 and the European

Union "NextGenerationEU"/PRTR. The research project MICROLAVA (ref. PROYEXCEL 00185) funded by Junta de

Andalucia is also acknowledged. N.T. Jiménez-Morillo acknowledges the "Ramón y Cajal" contract (ref. RYC2021-031253-

I) funded by MCIN/AEI/10.13039/501100011033 and the European Union "NextGenerationEU"/PRTR. A. Gómez-Arias acknowledges the "Juan de la Cierva" contract (ref. JDC2022-049199-I). The authors are grateful to José Heriberto López, forest officer at the Caldera de Taburiente National Park (La Palma, Spain) for providing logistical support during the sampling campaign.

535 References

540

Ågren, G. I., Bosatta, E., and Balesdent, J.: Isotope discrimination during decomposition of organic matter: A theoretical analysis, Soil Sci. Soc. Am. J., 60, 1121–1126, https://doi.org/10.2136/sssaj1996.03615995006000040023x, 1996.

Allaguvatova, R. Z., Nikulin, A. Y., Nikulin, V. Y., Bagmet, V. B., and Gaysina, L. A.: Study of biodiversity of algae and cyanobacteria of Mutnovsky and Gorely volcanoes soils (Kamchatka Peninsula) using a polyphasic approach, Diversity, 14, 375, https://doi.org/10.3390/d14050375, 2022.

- Arias, M. E., González-Pérez, J. A., González-Vila, F. J., and Ball, A. S.,: Soil health—a new challenge for microbiologists and chemists, Int. Microbiol, 8, 13–21, 2005.
- Arnalds, O.: The influence of volcanic tephra (ash) on ecosystems, in: Advances in Agronomy, by Sparks, D. L., Academic Press 121, 331–380, https://doi.org/10.1016/B978-0-12-407685-3.00006-2, 2013.
- Aznar, J. M., González-Pérez, J. A., Badía, D., and Martí, C.: At what depth are the properties of a gypseous forest topsoil affected by burning? Land. Degrad. Dev., 27, 1344–1353, https://doi.org/10.1002/ldr.2258, 2016.
 - Bergsten, P., Vannier, P., Frion, J., Mougeolle, A., and Marteinsson, V. Þ.: Culturable bacterial diversity from the basaltic subsurface of the young volcanic island of Surtsey, Iceland, Microorganisms, 10, 1177, https://doi.org/10.3390/microorganisms10061177, 2022.
- Biass, S., Reyes-Hardy, M. P., Gregg, C., Di Maio, L.S., Dominguez, L., Frischknecht, C., Bonadonna, C., and Perez, N.: The spatiotemporal evolution of compound impacts from lava flow and tephra fallout on buildings: lessons from the 2021 Tajogaite eruption (La Palma, Spain). B. Volcanol., 86, 10, https://doi.org/10.1007/s00445-023-01700-w, 2024.
 - Billings, S. A. and Richter, D. D.: Changes in stable isotopic signatures of soil nitrogen and carbon during 40 years of forest development, Oecologia, 148, 325–333, https://doi.org/10.1007/s00442-006-0366-7, 2006.
- Birnbaum, J., Lev, E., Hernandez, P. A., Barrancos, J., Padilla, G. D., Asensio-Ramos, M., Calvo, D., Rodríguez, F., Pérez, N.
 M., D'Auria, L., and Calvari, S.: Temporal variability of explosive activity at Tajogaite volcano, Cumbre Vieja (Canary

- Islands), 2021 eruption from ground-based infrared photography and videography, Front. Earth Sci., 11, https://doi.org/10.3389/feart.2023.1193436, 2023.
- de Blas, E., Almendros, G., and Sanz, J.: Molecular characterization of lipid fractions from extremely water-repellent pine and eucalyptus forest soils, Geoderma, 206, 75–84, https://doi.org/10.1016/j.geoderma.2013.04.027, 2013.
 - Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., Cope, E. K., Da Silva, R., Diener, C., Dorrestein, P. C., Douglas, G. M., Durall, D. M., Duvallet, C., Edwardson, C. F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J. M., Gibbons, S. M., Gibson, D. L., Gonzalez,
- A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G. A., Janssen, S., Jarmusch, A. K., Jiang, L., Kaehler, B. D., Kang, K. Bin, Keefe, C. R., Keim, P., Kelley, S. T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M. G. I., Lee, J., Ley, R., Liu, Y. X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B. D., McDonald, D., McIver, L. J., Melnik, A. V., Metcalf, J. L., Morgan, S. C., Morton, J. T., Naimey, A. T., Navas-Molina, J. A., Nothias, L. F., Orchanian, S. B., Pearson, T., Peoples, S. L., Petras, D., Preuss, M. L., Pruesse, E., Rasmussen, L. B., Rivers, A., Robeson,
- M. S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S. J., Spear, J. R., Swafford, A. D., Thompson, L. R., Torres, P. J., Trinh, P., Tripathi, A., Turnbaugh, P. J., Ul-Hasan, S., van der Hooft, J. J. J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., et al.: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2, Nat. Biotechnol. 37, 852–857, https://doi.org/10.1038/S41587-019-0209-9, 2019.
- Bonadonna, C., Pistolesi, M., Biass, S., Voloschina, M., Romero, J., Coppola, D., Folch, A., D'Auria, L., Marrin-Lorenzo, A.,
 Dominguez, L., Pastore, C., Reyes Hardy, M. P., and Rodriguez, F.: Physical characterization of long-lasting hybrid eruptions:
 The 2021 tajogaite eruption of cumbre vieja (La Palma, Canary Islands). J. Geophys. Res-Solid Ea. 127, 11,
 https://doi.org/10.1029/2022JB025302, 2022.
- Bonadonna, C., Pistolesi M., Dominguez L., Freret-Lorgeril, V., Rossi, E., Fries, A., Biass, S., Voloschina, M., Lemus, J., Romero, J. E., Zanon V., Pastore C., Reyes Hardy M-P., Di Maio LS., Gabellini P., Martin-Lorenzo A., Rodriguez F., and Perez, N. M.: Tephra sedimentation and grainsize associated with pulsatory activity: the 2021 Tajogaite eruption of Cumbre Vieja (La Palma, Canary Islands, Spain). Front. Earth Sci. 11:1166073, https://doi.org/10.3389/feart.2023.1166073, 2023.
 - Bryukhanov, A. L., Sevastyanov, V. S., Kravchishina, M. D., Voropaev, S. A., Dushenko, N. V., Kurakov, A. V., and Fedulova, V. Y.: Composition of methane cycle microbial communities in the upper layers of bottom sediments of the Kara sea, Geochem. Int., 62, 609–617, https://doi.org/10.1134/S0016702924700277, 2024.
- Bull, I. D., Nott, C. J., Van Bergen, P. F., Poulton, P. R., and Evershed, R. P.: Organic geochemical studies of soils from the Rothamsted classical experiments VI. The occurrence and source of organic acids in an experimental grassland soil, Soil Biol. Biochem., 32, 1367–1376, 2000.

- Cabianca, A., Müller, L., Pawlowski, K., and Dahlin, P.: Changes in the plant β-sitosterol/stigmasterol ratio caused by the plant parasitic nematode meloidogyne incognita, Plants, 10, 1–15, https://doi.org/10.3390/plants10020292, 2021.
- 590 Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P.: DADA2: High-resolution sample inference from Illumina amplicon data, Nat. Methods, 13, 581–583, https://doi.org/10.1038/nmeth.3869, 2016.
 - Campeny, M., Menéndez, I., Ibáñez-Insa, J., Rivera-Martínez, J., Yepes, J., Álvarez-Pousa, S., Méndez-Ramos, J., and Mangas, J.: The ephemeral fumarolic mineralization of the 2021 Tajogaite volcanic eruption (La Palma, Canary Islands, Spain). Sci. Rep., 13, 6336, https://doi.org/10.1038/s41598-023-33387-6, 2023.
- 595 Capaccioni, B., Martini, M., and Mangani, F.: Light hydrocarbons in hydrothermal and magmatic fumaroles: hints of catalytic and thermal reactions, B. Volcanol., 56, 593-600, 1995.
 - Carracedo, J.C., Badiola, E.R., Guillou, H., de la Nuez, J., and Pérez-Torrado, F.J.: Geology and volcanology of la Palma and El Hierro. Estud. Geol., 57, 175-273, 2001.
- Carracedo, J. C., Troll, V. R., Day, J. M. D., Geiger, H., Aulinas, M., Soler, V., Deegan, F. M., Perez-Torrado, F. J., Gisbert, G., Gazel, E., Rodriguez-Gonzalez, A., and Albert, H.: The 2021 eruption of the Cumbre Vieja volcanic ridge on La Palma, Canary Islands, Geology Today, 38, 94–107, https://doi.org/10.1111/gto.12388, 2022.
- Carrell, A. A., Veličković, D., Lawrence, T. J., Bowen, B. P., Louie, K. B., Carper, D. L., Chu, R. K., Mitchell, H. D., Orr, G., Markillie, L. M., Jawdy, S. S., Grimwood, J., Shaw, A. J., Schmutz, J., Northen, T. R., Anderton, C. R., Pelletier, D. A., and Weston, D. J.: Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism, ISME J., 16, 1074–1085, https://doi.org/10.1038/s41396-021-01136-0, 2022.
 - Chaneva, G., Furnadzhieva, S., Minkova, K., and Lukavsky, J.: Effect of light and temperature on the cyanobacterium *Arthronema africanum* A prospective phycobiliprotein-producing strain, J. Appl. Phycol., 19, 537–544, https://doi.org/10.1007/s10811-007-9167-6, 2007.
- Chen, J., Zheng, Y., Guo, Y., Li, F., Xu, D., Chao, L., Qu, H., Wang, B., Ma, X., Wang, S., and Bao, Y.: Differences in microbial communities from Quaternary volcanic soils at different stages of development: Evidence from Late Pleistocene and Holocene volcanoes, Catena (Amst), 201, https://doi.org/10.1016/j.catena.2021.105211, 2021.
 - Craig, H., Wilson, T., Stewart, C., Outes, V., Villarosa, G., and Baxter, P.: Impacts to agriculture and critical infrastructure in Argentina after ashfall from the 2011 eruption of the Cordón Caulle volcanic complex: An assessment of published damage and function thresholds, J. Appl. Volcanol., 5, 7, https://doi.org/10.1186/s13617-016-0046-1, 2016.
- 615 Crowe, M. A., Power, J. F., Morgan, X. C., Dunfield, P. F., Lagutin, K., Rijpstra, W. I. C., Rijpstra, I. C., Sinninghe Damste, J. S., Houghton, K. M., Ryan, J. L. J., and Stott, M. B.: *Pyrinomonas methylaliphatogenes* gen. nov., sp. nov., a novel group 4

- thermophilic member of the phylum Acidobacteria from geothermal soils, Int. J. Syst. Evol. Micr., 64, 220–227, https://doi.org/10.1099/ijs.0.055079-0, 2014.
- Das, S. K.: *Bosea*, in: Bergey's Manual of Systematics of Archaea and Bacteria, edited by Whitman, W. B., Wiley, J., and Sons, Ltd., Hoboken, N.J., USA, 1–4, https://doi.org/10.1002/9781118960608.gbm00801, 2015.
 - De la Rosa, J. M., Jiménez-Morillo, N. T., González-Pérez, J. A., Almendros, G., Vieira, D., Knicker, H. E., and Keizer, J.: Mulching-induced preservation of soil organic matter quality in a burnt eucalypt plantation in central Portugal, J. Environ. Manage., 231, 1135–1144, https://doi.org/10.1016/j.jenvman.2018.10.114, 2019.
- De la Rosa, J. M., Pérez-Dalí, S. M., Campos, P., Sánchez-Martín, Á., González-Pérez, J. A., and Miller, A. Z.: Suitability of volcanic ash, rice husk ash, green compost and biochar as amendments for a Mediterranean alkaline soil, Agronomy, 13, 4, https://doi.org/10.3390/agronomy13041097, 2023.
 - Dhabalia Ashok, A., De Vries, S., Darienko, T., Irisarri, I., and De Vries, J.: Evolutionary assembly of the plant terrestrialization toolkit from protein domains, P. Roy. Soc. B-Biol. Sci., 291, https://doi.org/10.1098/rspb.2024.0985, 2024.
- D'haeseleer, P., Gladden, J. M., Allgaier, M., Chain, P. S. G., Tringe, S. G., Malfatti, S. A., Aldrich, J. T., Nicora, C. D., Robinson, E. W., Paša-Tolić, L., Hugenholtz, P., Simmons, B. A., and Singer, S. W.: Proteogenomic analysis of a thermophilic bacterial consortium adapted to deconstruct switchgrass, PLOS One, 8, https://doi.org/10.1371/journal.pone.0068465, 2013.
 - Dragone, N. B., Whittaker, K., Lord, O. M., Burke, E. A., Dufel, H., Hite, E., Miller, F., Page, G., and Slayback, D.: The early microbial colonizers of a short-lived volcanic island in the Kingdom of Tonga, mBio, 14, 1, https://doi.org/10.1128/mbio.03313-22, 2023.
- Ehleringer, J. R., Buchmann, N., and Flanagan, L. B.: Carbon isotope ratios in belowground carbon cycle processes, Ecol. Appl., 10, 412-422, https://doi.org/10.2307/2641103, 2000.
 - Falagán, C. and Johnson, D. B.: *Acidibacter ferrireducens* gen. nov., sp. nov.: an acidophilic ferric iron-reducing gammaproteobacterium. Extremophiles, 18, 1067–1073, https://doi.org/10.1007/s00792-014-0684-3, 2014.
- Feakins, S. J, Peters, T., Wu, M. S., Shenkin, A., Salinas, N., Girardin, C. A. J., Bentley, L. P., Blonder, B., Enquist, B. J., Martin, R.E., Asner, G. P., and Malhi, Y.: Production of leaf wax n-alkanes across a tropical forest elevation transect. Org. Geochem., 100, 89-100, https://doi.org/10.1016/j.orggeochem.2016.07.004, 2016.
 - Ferrer, N., Marrero-Rodríguez, N., Sanromualdo-Collado, A., Vegas, J., and García-Romero, L.: Early morphodynamics of the sudden formation of beaches during the 2021 volcanic eruption of La Palma, Geomorphology, 436, https://doi.org/10.1016/j.geomorph.2023.108779, 2023.
- 645 Fraser, C. M. and Chapple, C.: The phenylpropanoid pathway in *Arabidopsis*, Arabidopsis Book, 9, e0152, https://doi.org/10.1199/tab.0152, 2011.

- Fujimura, R., Kim, S. W., Sato, Y., Oshima, K., Hattori, M., Kamijo, T., and Ohta, H.: Unique pioneer microbial communities exposed to volcanic sulfur dioxide, Sci. Rep., 6, 19687, https://doi.org/10.1038/srep19687, 2016.
- García-Carmona, M., García-Orenes, F., Arcenegui, V., and Mataix-Solera, J.: The recovery of mediterranean soils after post-650 fire management: The role of biocrusts and soil microbial communities, Span. J. Soil Sci., 13, https://doi.org/10.3389/sjss.2023.11388, 2023.
 - Gardeva, E. G., Toshkova, R. A., Yossifova, L. S., Minkova, K., Ivanova, N. Y., and Gigova, L. G.: Antitumor activity of C-phycocyanin from *Arthronema africanum* (Cyanophyceae), Braz. Arch. Biol. Techn., 57, 675–684, https://doi.org/10.1590/S1516-89132014005000018, 2014.
- 655 Ghezzi, D., Jiménez-Morillo, N. T., Foschi, L., Donini, E., Chiarini, V., De Waele, J., Miller, A. Z., and Cappelletti, M.: The microbiota characterizing huge carbonatic moonmilk structures and its correlation with preserved organic matter, Environ. Microbiome, 19, 25, https://doi.org/10.1186/s40793-024-00562-9, 2024.
- Girona-García, A., Badía-Villas, D., Jiménez-Morillo, N. T., de la Rosa, J. M., and González-Pérez, J. A.: Soil C and N isotope composition after a centennial Scots pine afforestation in podzols of native European beech forests in NE-Spain, Catena (Amst), 165, 434–441, https://doi.org/10.1016/j.catena.2018.02.023, 2018.
 - González-Pérez, J. A., González-Vila, F. J., Almendros, G., and Knicker, H.: The effect of fire on soil organic matter A review, Environ. Int., 30, 855-870, https://doi.org/10.1016/j.envint.2004.02.003, 2004.
- González-Pérez, J. A., Almendros, G., De La Rosa, J. M., and González-Vila, F. J.: Appraisal of polycyclic aromatic hydrocarbons (PAHs) in environmental matrices by analytical pyrolysis (Py-GC/MS), J. Anal. Appl. Pyrol., 109,1-8, https://doi.org/10.1016/j.jaap.2014.07.005, 2014.
 - González-Pérez, J. A., Jiménez-Morillo, N. T., de la Rosa, J. M., Almendros, G., and González-Vila, F. J.: Compound-specific stable carbon isotopic signature of carbohydrate pyrolysis products from C3 and C4 plants, J. Sci. Food. Agric., 96, 948–953, https://doi.org/10.1002/jsfa.7169, 2016.
- Gorlenko, V. M., Bryantseva, I. A., Kalashnikov, A. M., Gaisin, V. A., Sukhacheva, M. V., Gruzdev, D. S., and Kuznetsov,
 B. B.: *Candidatus 'Chloroploca asiatica'* gen. nov., sp. nov., a new mesophilic filamentous anoxygenic phototrophic bacterium, Microbiology (Russian Federation), 83, 838–848, https://doi.org/10.1134/S0026261714060083, 2014.
 - Guarro, J., Abdullah, S. K., Al-Bader, S. M., Figueras, M. J., and Gené, J.: The genus *Melanocarpus*, Mycol. Res., 100, 75–78, https://doi.org/10.1016/S0953-7562(96)80103-1, 1996.
- Gutierrez-Patricio, S., Osman, J. R., Luis Gonzalez-Pimentel, J., Jurado, V., Laiz, L., Laínez Concepción, A., Saiz-Jimenez,
 C., and Miller, A. Z.: Microbiological exploration of the Cueva del Viento lava tube system in Tenerife, Canary Islands, Env.
 Microbiol. Rep., 16, e13245, https://doi.org/10.1111/1758-2229.13245, 2024.

- Habib, N., Khan, I. U., Hussain, F., Zhou, E. M., Xiao, M., Ahmed, I., Zhi, X. Y., and Li, W. J.: *Caldovatus sediminis* gen. nov., sp. nov., a moderately thermophilic bacterium isolated from a hot spring, Int. J. Syst. Evol. Microbiol., 67, 4716–4721, https://doi.org/10.1099/ijsem.0.002363, 2017.
- Hadland, N., Hamilton, C. W., and Duhamel, S.: Young volcanic terrains are windows into early microbial colonization, Commun. Earth Environ, 5, 114, https://doi.org/10.1038/s43247-024-01280-3, 2024.
 - Hernández, Z., Almendros, G., Carral, P., Álvarez, A., Knicker, H., and Pérez-Trujillo, J. P.: Influence of non-crystalline minerals in the total amount, resilience and molecular composition of the organic matter in volcanic ash soils (Tenerife Island, Spain), Eur. J. Soil Sci., 63, 603–615, https://doi.org/10.1111/j.1365-2389.2012.01497.x, 2012.
- 685 Hoernle, K. A. J., Carracedo, J. C., Canary Islands, geology. University of California Press, 2009.
 - Högberg, P.: Tansley review no. 95 natural abundance in soil-plant systems, New Phytol., 137, 179-203, https://doi.org/10.1046/j.1469-8137.1997.00808.x, 1997.
- Hu, C. J., Xian, W. D., Lv, Y. Q., Peng, C. X., Shan, R. X., Cheng, Z. C., Lv, Q., Tian, Y., Jiao, J. Y., Tan, S., and Li, W. J.: *Caldovatus aquaticus* sp. nov., a moderately thermophilic bacterium isolated from hot spring microbial mat. Int. J. Syst. 690 Evol. Microbiol., 72, 5627, https://doi.org/10.1099/ijsem.0.005627, 2022.
 - Iliev, I. P. G. D. and Andreeva, R.: Membrane metabolites of *Arthronema africanum* strains from extreme habitats, Gen. Appli. Plant. Physiology, 2006, 117-123, 2006.
 - Ingimundardóttir, G. V., Weibull, H., and Cronberg, N.: Bryophyte colonization history of the virgin volcanic Island Surtsey, Iceland, Biogeosciences, 11, 4415–4427, https://doi.org/10.5194/bg-11-4415-2014, 2014.
- Iwasaki, S., Endo, Y., Hatano, R., and Toma, Y.: Factors impacting soil organic carbon pool in different types of Andosols in Toya, Hokkaido, Japan, Soil Sci. Plant. Nutr., 67, 594–605, https://doi.org/10.1080/00380768.2021.1959836, 2021.
 - Jaffé, R., Elismé, T., and Cabrera, A. C.: Organic geochemistry of seasonally flooded rain forest soils: molecular composition and early diagenesis of lipid components, Org. Geochem., 25, 9–17, 1996.
- Jiménez-Morillo, N. T., de la Rosa, J. M., Waggoner, D., Almendros, G., González-Vila, F. J., and González-Pérez, J. A.: Fire effects in the molecular structure of soil organic matter fractions under *Quercus suber* cover, Catena, 145, 266–273, https://doi.org/10.1016/j.catena.2016.06.022, 2016a.
 - Jiménez-Morillo, N. T., González-Pérez, J. A., Jordán, A., Zavala, L. M., de la Rosa, J. M., Jiménez-González, M. A., and González-Vila, F. J.: Organic matter fractions controlling soil water repellency in sandy soils from the Doñana national park (Southwestern Spain), Land. Degrad. Dev., 27, 1413–1423, https://doi.org/10.1002/ldr.2314, 2016b.

0, 2014.

- Jiménez-Morillo, N. T., Spangenberg, J. E., Miller, A. Z., Jordán, A., Zavala, L. M., González-Vila, F. J., and González-Pérez, J. A.: Wildfire effects on lipid composition and hydrophobicity of bulk soil and soil size fractions under Quercus suber cover (SW-Spain), Environ. Res, 159, 394–405, https://doi.org/10.1016/j.envres.2017.08.022, 2017.
- Jiménez-Morillo, N. T., González-Pérez, J. A., Almendros, G., De la Rosa, J. M., Waggoner, D. C., Jordán, A., Zavala, L. M., González-Vila, F. J., and Hatcher, P. G.: Ultra-high resolution mass spectrometry of physical speciation patterns of organic matter in fire-affected soils, J. Environ. Manage., 225, 139–147, https://doi.org/10.1016/j.jenvman.2018.07.069, 2018.
 - Jiménez-Morillo, N. T., Almendros, G., De la Rosa, J. M., Jordán, A., Zavala, L. M., Granged, A. J. P., and González-Pérez, J. A.: Effect of a wildfire and of post-fire restoration actions in the organic matter structure in soil fractions, Sci. Total Environ., 728, 138715, https://doi.org/10.1016/j.scitotenv.2020.138715, 2020a.
- Jiménez-Morillo, N. T., Almendros, G., González-Vila, F. J., Jordán, A., Zavala, L. M., de la Rosa, J. M., and González-Pérez,
 J. A.: Fire effects on C and H isotopic composition in plant biomass and soil: Bulk and particle size fractions, Sci. Total Environ., 749, 141417, https://doi.org/10.1016/j.scitotenv.2020.141417, 2020b.
 - Jiménez-Morillo, N. T., Almendros, G., Miller, A. Z., Hatcher, P. G., and González-Pérez, J. A.: Hydrophobicity of soils affected by fires: An assessment using molecular markers from ultra-high resolution mass spectrometry, Sci. Total Environ., 817, 152957, https://doi.org/10.1016/j.scitotenv.2022.152957, 2022.
- 720 Katsumi, N., Yonebayashi, K., Fujitake, N., and Okazaki, M.: Relationship between stable carbon and nitrogen isotope ratios of humic acids extracted from Andisols and non-Andisols, Catena (Amst), 127, 214–221, https://doi.org/10.1016/j.catena.2015.01.005, 2015.
- Kellner, H., Luis, P., Pecyna, M. J., Barbi, F., Kapturska, D., Kruger, D., Zak, D. R., Marmeisse, R., Vandenbol, M., and Hofrichter, M.: Widespread occurrence of expressed fungal secretory peroxidases in forest soils, PLOS One, 9, e95557, https://doi.org/10.1371/journal.pone.0095557, 2014.
- King, C. E. and King, G. M.: Description of *Thermogemmatispora carboxidivorans* sp. nov., a carbon-monoxideoxidizing member of the class Ktedonobacteria isolated from a geothermally heated biofilm, and analysis of carbon monoxide oxidation by members of the class Ktedonobacteria, Int. J. Syst. Evol. Microbiol., 64, 1244–1251, https://doi.org/10.1099/ijs.0.059675-
- Klavina, L., Springe, G., Nikolajeva, V., Martsinkevich, I., Nakurte, I., Dzabijeva, D., and Steinberga, I.: Molecules chemical composition analysis, antimicrobial activity and cytotoxicity screening of moss extracts (Moss Phytochemistry), Molecules, 20, 17221–17243, https://doi.org/10.3390/molecules200917221, 2015.
 - Klegin, C., Ethur, E. M., Bordin, J., and Baia Figueiredo, P. L.: Chemical composition of essential oil from mosses from the brazilian atlantic forest, Chem. Biodivers., 20, e202300286, https://doi.org/10.1002/cbdv.202300286, 2023.

- Krauss, M., Wilcke, W., Martius, C., Bandeira, A. G., Garcia, M. V. B., Amelung, W.: Atmospheric versus biological sources of polycyclic aromatic hydrocarbons (PAHs) in a tropical rain forest environment. Environ. Pollut., 135, 143-154, https://doi.org/10.1016/j.envpol.2004.09.012. 2005.
 - Kristan, K. and Rižner, T. L.: Steroid-transforming enzymes in fungi, J. Steroid. Biochem. Mol. Biol., 129, 79-91, https://doi.org/10.1016/j.jsbmb.2011.08.012, 2012.
- Krüger, N., Finn, D. R., and Don, A.: Soil depth gradients of organic carbon-13 A review on drivers and processes, Plant Soil, 495, 113-136, https://doi.org/10.1007/s11104-023-06328-5, 2024.
 - Kumar, M., Boski, T., González-Vila, F. J., Jiménez-Morillo, N. T., and González-Pérez, J. A.: Characteristics of organic matter sources from Guadiana Estuary salt marsh sediments (SW Iberian Peninsula), Cont. Shelf Res., 197, 104076, https://doi.org/10.1016/j.csr.2020.104076, 2020.
- Ladygina, N., Dedyukhina, E. G., and Vainshtein, M. B.: A review on microbial synthesis of hydrocarbons. Process Biochem., 41, 1001–1014. https://doi.org/10.1016/j.procbio.2005.12.007, 2006.
 - Leal, O. dos A., Jiménez-Morillo, N. T., González-Pérez, J. A., Knicker, H., de Souza Costa, F., Jiménez-Morillo, P. N., de Carvalho Júnior, J. A., dos Santos, J. C., and Pinheiro Dick, D.: Soil organic matter molecular composition shifts driven by forest regrowth or pasture after slash-and-burn of amazon forest, Int. J. Environ. Res. Public Health, 20, 3485, https://doi.org/10.3390/ijerph20043485, 2023.
 - Lehtonen, K. and Ketola, M.: Occurrence of long-chain acyclic methyl ketones in *Sphagnum* and *Carex* peats of various degress of humification, Org. Geochem., 15, 275–280, https://doi.org/10.1016/0146-6380(90)90005-K, 1990.
 - Lehtovirta-Morley, L. E., Ge, C., Ross, J., Yao, H., Hazard, C., Gubry-Rangin, C., Prosser, J. I., and Nicol, G. W.: *Nitrosotalea devaniterrae* gen. nov., sp. nov. and *Nitrosotalea sinensis* sp. nov., two acidophilic ammonia oxidising archaea isolated from acidic soil, and proposal of the new order Nitrosotaleales ord. nov. within the class Nitrososphaeria of the phylum Nitrososphaerota, Int. J. Syst. Evol. Microbiol., 74, https://doi.org/10.1099/ijsem.0.006387, 2024.
 - Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G. W., Prosser, J. I., Schuster, S. C., and Schleper, and C.: Archaea predominate among ammonia-oxidizing prokaryotes in soils, Nature, 442, 806-809, https://doi.org/10.1038/nature04983, 2006.
- Longpré, M.-A., Felpeto, A.: Historical volcanism in the Canary Islands; part 1: A review of precursory and eruptive activity, eruption parameter estimates, and implications for hazard assessment, J. Volcanol. Geoth. Res., 419, 107363, https://doi.org/10.1016/j.jvolgeores.2021.107363, 2021.

- Love, C. R., Arrington, E. C., Gosselin, K. M., Reddy, C. M., Van Mooy, B. A. S., Nelson, R. K., and Valentine, D. L.: Microbial production and consumption of hydrocarbons in the global ocean. Nat. Microbiol. 6, 489–498, https://doi.org/10.1038/s41564-020-00859-8, 2021.
 - Nanzyo, M., Dahlgren, R. and Shoji, S.: Chemical characteristics of volcanic ash soils. In: Shoji, S., Nanzyo, M. and Dahlgren, R., edited by Volcanic Ash Soils—Genesis, Properties and Utilization, Developments in Soil Science, Elsevier, Amsterdam, 145-188, http://dx.doi.org/10.1016/S0166-2481(08)70267-8, 1993.
- Makarov, M. I.: The nitrogen isotopic composition in soils and plants: Its use in environmental studies (A Review), Soil Chemistry, 42, 1335-1347, https://doi.org/10.1134/S1064229309120035, 2009.
 - Martínez-Espinosa, R. M.: Microorganisms and their metabolic capabilities in the context of the biogeochemical nitrogen cycle at extreme environments, Int. J. Mol. Sci., 21, 4228, https://doi.org/10.3390/ijms21124228, 2020.
- Martínez-Martínez, J., Mediato, J. F., Mata, M. P., Ordóñez, B., del Moral, B., Bellido, E., Pérez-López, R., Rodríguez-Pascua, M. A., Vegas, J., Lozano Otero, G., Mateos, R. M., Sánchez, N., and Galindo, I.: Early fumarolic minerals from the Tajogaite volcanic eruption (La Palma, 2021), J. Volcanol. Geotherm. Res., 435, 107771, https://doi.org/10.1016/j.jvolgeores.2023.107771, 2023.
 - Matus, F., Rumpel, C., Neculman, R., Panichini, M., and Mora, M. L.: Soil carbon storage and stabilisation in andic soils: A review, Catena, 120, 102-110, https://doi.org/10.1016/j.catena.2014.04.008, 2014.
- Miller, A. Z., De la Rosa, J. M., Jiménez-Morillo, N. T., Pereira, M. F. C., González-Pérez, J. A., Calaforra, J. M., Saiz-780 Jimenez, C.: (2016). Analytical pyrolysis and light stable isotope analyses reveal environmental changes in coralloid speleothems from Easter Island (Chile). J. Chromatogr. A. 1461, 144–152, https://doi.org/10.1016/j.chroma.2016.07.038, 2016.
- Miller, A. Z., De la Rosa, J. M., Jiménez-Morillo, N. T., Pereira, M. F. C., Gonzalez-Perez, J. A., Knicker, H., and Saiz-Jimenez, C.: Impact of wildfires on subsurface volcanic environments: New insights into speleothem chemistry, Science of the Total Environment, 698, https://doi.org/10.1016/j.scitotenv.2019.134321, 2020.
 - Miller, A. Z., Jiménez-Morillo, N. T., Coutinho, M. L., Gazquez, F., Palma, V., Sauro, F., Pereira, M. F. C., Rull, F., Toulkeridis, T., Caldeira, A. T., Forti, P., and Calaforra, J. M.: Organic geochemistry and mineralogy suggest anthropogenic impact in speleothem chemistry from volcanic show caves of the Galapagos, iScience, 25, 104556, https://doi.org/10.1016/j.isci.2022.104556, 2022.
- Mohapatra, B. and Phale, P. S.: Microbial degradation of naphthalene and substituted naphthalenes: Metabolic diversity and genomic insight for bioremediation, Front. Bioeng. Biotechnol., 9, https://doi.org/10.3389/fbioe.2021.602445, 2021.

- Muneer, M. A., Huang, X., Hou, W., Zhang, Y., Cai, Y., Munir, M. Z., Wu, L., and Zheng, C.: Response of fungal diversity, community composition, and functions to nutrients management in red soil, J. Fungi, 7, 554, https://doi.org/10.3390/jof7070554, 2021.
- Muñoz, G., Orlando, J., and Zuñiga-Feest, A.: Plants colonizing volcanic deposits: root adaptations and effects on rhizosphere microorganisms, Plant Soil, 461, 265-279, https://doi.org/10.1007/s11104-020-04783-y, 2021.
 - Musat, F., Galushko, A., Jacob, J., Widdel, F., Kube, M., Reinhardt, R., Wilkes, H., Schink, B., and Rabus, R.: Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria, Environ. Microbiol., 11, 209–219, https://doi.org/10.1111/j.1462-2920.2008.01756.x, 2009.
- Nierop, K. G. J. and Buurman, P.: Thermally assisted hydrolysis and methylation of organic matter in two allophanic volcanic ash soils from the Azores Islands, in: Soils of Volcanic Regions in Europe, edited by: Arnalds, O., óskarsson, H., Bartolini, F., Buurman, P., Stoops, G., García-Rodeja, E. Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-48711-1_30, 2007.
- Offre, P., Spang, A., and Schleper, C.: Archaea in biogeochemical cycles, Annu. Rev. Microbiol., 67, 437–457, https://doi.org/10.1146/annurev-micro-092412-155614, 2013.
 - Palma, V., De la Rosa, J. M., Onac, B. P., Sauro, F., Martínez-Frías, J., Caldeira, A. T., González-Pérez, J. A., Jiménez-Morillo, N. T., and Miller, A. Z.: Decoding organic compounds in lava tube sulfates to understand potential biomarkers in the Martian subsurface, Commun. Earth Environ., 5, 530, https://doi.org/10.1038/s43247-024-01673-4, 2024.
- Peng, X., Tamura, K., Asano, M., Takano, A., Kawagoe, M., and Kamijo, T.: Changes in soil physical and chemical properties during vegetation succession on miyake-jima island, Forests, 12, 1435, https://doi.org/10.3390/f12111435, 2021.
 - Petkova, Z., Teneva, O., Antova, G., Angelova-Romova, M., Gecheva, G., and Dimitrova-Dyulgerova, I.: Chemical composition, lipid-soluble bioactive compounds and potential health benefits of the moss *Hypnum cupressiforme* Hedw, Plants, 12, 4190, https://doi.org/10.3390/plants12244190, 2023.
- Petrova, D. H., Yocheva, L., and Petrova, M.: Antimicrobial and antioxidant activities of microalgal extracts, Oxid. Commun., 815 43, 103–116, https://doi.org/10.13140/RG.2.2.20509.84963, 2020.
 - Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F. O.: The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools, Nucleic Acids Res., 41, D590-D596, https://doi.org/10.1093/nar/gks1219, 2013.
- Rabbi, S. M. F., Wilson, B. R., Lockwood, P. V., Daniel, H., and Young, I. M.: Soil organic carbon mineralization rates in aggregates under contrasting land uses, Geoderma, 216, 10–18, https://doi.org/10.1016/j.geoderma.2013.10.023, 2014.

- Ramos, P., Honda, R., Hoek, E. M. V., and Mahendra, S.: Carbon/nitrogen ratios determine biofilm formation and characteristics in model microbial cultures, Chemosphere, 313, https://doi.org/10.1016/j.chemosphere.2022.137628, 2023.
- Ren, G., Zhang, Y., Chen, Z., Xue, X., and Fan, H.: Research progress of small plant peptides on the regulation of plant growth, development, and abiotic stress, Int. J. Mol. Sci., 25, 4114, https://doi.org/10.3390/ijms25074114, 2024.
- Renault, H., Alber, A., Horst, N. A., Lopes, A. B., Fich, E. A., Kriegshauser, L., Wiedemann, G., Ullmann, P., Herrgott, L., Erhardt, M., Pineau, E., Ehlting, J., Schmitt, M., Rose, J. K. C., Reski, R., and Werck-Reichhart, D.: A phenol-enriched cuticle is ancestral to lignin evolution in land plants, Nat. Commun., 8, 14713, https://doi.org/10.1038/ncomms14713, 2017.
 - Rippin, M., Borchhardt, N., Williams, L., Colesie, C., Jung, P., Büdel, B., Karsten, U., and Becker, B.: Genus richness of microalgae and Cyanobacteria in biological soil crusts from Svalbard and Livingston Island: morphological versus molecular approaches, Polar Biol., 41, 909–923, https://doi.org/10.1007/s00300-018-2252-2, 2018.
 - Roderic Park, S. E.: Metabolic fractionation of C13 and C12 in plants, Plant Physiol., 36, 133, 1961.
 - San-Emeterio, L. M., Zavala, L. M., Jiménez-Morillo, N. T., Pérez-Ramos, I. M., and González-Pérez, J. A.: Effects of climate change on soil organic matter C and H isotope composition in a Mediterranean Savannah (Dehesa): An assessment using Py-CSIA, Environ. Sci. Technol., 57, 13851–13862, https://doi.org/10.1021/acs.est.3c01816, 2023.
- Sánchez-España, J., Mata, M. P., Vegas, J., Lozano, G., Mediato, J., Martínez Martínez, J., Galindo, I., Sánchez, N., del Moral, B., Ordóñez, B., de Vergara, A., Nieto, A., Andrés, M., Vázquez, I., Bellido, E., and Castillo-Carrión, M.: Leaching tests reveal fast aluminum fluoride release from ashfall accumulated in La Palma (Canary Islands, Spain) after the 2021 Tajogaite eruption. J. Volcanol. Geoth. Res., 444, 107959, https://doi.org/10.1016/j.jvolgeores.2023.107959, 2023.
- Schwark, L., Zink, K., and Lechterbeck, J.: Reconstruction of postglacial to early Holocene vegetation history in terrestrial Central Europe via cuticular lipid biomarkers and pollen records from lake sediments, Geology, 30, 463–466, https://doi.org/10.1130/0091-7613(2002)030<0463:ROPTEH>2.0.CO;2, 2002.
 - La Scola, B., Barrassi, L., and Raoult, D.: A novel alpha-Proteobacterium, *Nordella oligomobilis* gen. nov., sp. nov., isolated by using amoebal co-cultures, Res. Microbiol., 155, 47–51, https://doi.org/10.1016/j.resmic.2003.09.012, 2004.
- Smith, R. J. L.: Colonization by bryophytes following recent volcanic activity on an Antarctic island, J. Hattori Bot. Lab., 56, 53–63, 1984.
 - Survey Staff, S.: Keys to Soil Taxonomy, 13th ed., edited by: USDA Natural Resources Conservation Service, 2022.
 - Szpak, P.: Complexities of nitrogen isotope biogeochemistry in plant-soil systems: Implications for the study of ancient agricultural and animal management practices, Front. Plant Sci., 5, https://doi.org/10.3389/fpls.2014.00288, 2014.

- Taddeucci, J., Scarlato, P., Andronico, D., Ricci, T., Civico, R., Del Bello, E., Spina, L., D'Auria, L., Asensio-Ramos, M.,
 Calvo, D., Padrón, E., Hernández, P. A., and Pérez, N. M.: The explosive activity of the 2021 Tajogaite Eruption (La Palma,
 Canary Islands, Spain), Geochem., Geophys., Geosyst., 24, https://doi.org/10.1029/2023GC010946, 2023.
 - Tomašek, I., Damby, D. E., Andronico, D., Baxter, P. J., Boonen, I., Claeys, P., Denison, M. S., Horwell, C. J., Kervyn, M., Kueppers, U., Romanias, M. N., and Elskens, M.: Assessing the biological reactivity of organic compounds on volcanic ash: implications for human health hazard, Bull. Volcanol., 83, https://doi.org/10.1007/s00445-021-01453-4, 2021.
- Troll, V. R., Aulinas, M., Carracedo, J. C., Geiger, H., Perez-Torrado, F. J., V. Soler, Deegan, F. M., Bloszies, C., Weis, F., Albert, H., Gisbert, G., Day, J. M. D., Rodríguez-Gonzalez, A., Gazel, E., and Dayton, K.: The 2021 La Palma eruption: social dilemmas resulting from life close to an active volcano. Geol. Today, 40, 96-111, https://doi.org/10.1111/gto.12472, 2024.
- Tseng, H. C., Matsutani, M., Fujimoto, N., and Ohnishi, A.: Draft genome sequence and morphological data of *Planifilum fimeticola* PLACP1, a thermophilic chloramphenicol-resistant bacterium isolated from thermophilic sludge, Data Brief, 54, https://doi.org/10.1016/j.dib.2024.110447, 2024.
 - Ustiatik, R., Ariska, A. P., Hakim, Q. L., Wicaksono, K. S., and Utami, S. R.: Volcanic deposits thickness and distance from mt Semeru crater strongly affected phosphate solubilizing bacteria population and soil organic carbon, J. Ecol. Eng., 24, 360–368, https://doi.org/10.12911/22998993/170860, 2023.
- Valeeva, L. R., Dague, A. L., Hall, M. H., Tikhonova, A. E., Sharipova, M. R., Valentovic, M. A., Bogomolnaya, L. M., and Shakirov, E. V.: Antimicrobial activities of secondary metabolites from model mosses, Antibiotics, 11, 1004, https://doi.org/10.3390/antibiotics11081004, 2022.
 - Valitova, J. N., Sulkarnayeva, A. G., and Minibayeva, F. V.: Plant sterols: Diversity, biosynthesis, and physiological functions, Biochemistry (Moscow), 81, 819-834, https://doi.org/10.1134/S0006297916080046, 2016.
- Vilhelmsson, O., Sigurbjornsdottir, M. A., Thorsteinsdottir, G. V., Cascone, M., Corso, D., Tonietti, L., Migliaccio, F., Nappi,
 N., Ricciardelli, A., Selci, M., Montemagno, F., Barosa, B., Bastoni, D., Bastianoni, A., Cordone, A., and Giovannelli, D.:
 Diversity of thermophilic prokaryotes, in: Thermophilic anaerobes. Grand Challenges in Biology and Biotechnology, edited
 by: Scully S.M., 21–90, https://doi.org/10.1007/978-3-031-41720-7
 2, 2023.
- Vilmundardóttir, O. K., Sigurmundsson, F. S., Møller Pedersen, G. B., Belart, J. M. C., Kizel, F., Falco, N., Benediktsson, J. A., and Gísladóttir, G.: Of mosses and men: Plant succession, soil development and soil carbon accretion in the sub-Arctic volcanic landscape of Hekla, Iceland, Prog. Phys. Geogr., 42, 765–791, https://doi.org/10.1177/0309133318798754, 2018.
 - Vogts, A., Moossen, H., Rommerskirchen, F., and Rullkötter, J.: Distribution patterns and stable carbon isotopic composition of alkanes and alkan-1-ols from plant waxes of African rain forest and savanna C3 species. Org. Geochem., 40, 1037-1054, https://doi.org/10.1016/j.orggeochem.2009.07.011, 2009.

- Volk, M., Bassin, S., Lehmann, M. F., Johnson, M. G., and Andersen, C. P.: 13C isotopic signature and C concentration of soil density fractions illustrate reduced C allocation to subalpine grassland soil under high atmospheric N deposition, Soil Biol. Biochem., 125, 178–184, https://doi.org/10.1016/j.soilbio.2018.07.014, 2018.
 - Wang, H., Wang, J., Xiao, M., Ge, T., Gunina, A., and Jones, D. L.: The fate of amino acid and peptide as affected by soil depth and fertilization regime in subtropical paddies, Sci. Total Environ., 889, https://doi.org/10.1016/j.scitotenv.2023.164245, 2023.
- Wakeham, S. G., Canuel, E. A. Biogenic polycyclic aromatic hydrocarbons in sediments of the San Joaquin River in California (USA), and current paradigms on their formation. Environ. Sci. Pollut. Res. 23, 10426–10442, https://doi.org/10.1007/s11356-015-5402-x, 2016.
- Wijesinghe, J. N., Koarashi, J., Atarashi-Andoh, M., Saito-Kokubu, Y., Yamaguchi, N., Sase, T., Hosono, M., Inoue, Y., Mori, Y., and Hiradate, S.: Formation and mobility of soil organic carbon in a buried humic horizon of a volcanic ash soil, Geoderma, 374, https://doi.org/10.1016/j.geoderma.2020.114417, 2020.
 - Wygel, C. M., Peters, S. C., McDermott, J. M., and Sahagian, D. L.: Bubbles and Dust: Experimental results of dissolution rates of metal salts and glasses from volcanic ash deposits in terms of surface area, chemistry, and human health impacts, Geohealth, 3, 338–355, https://doi.org/10.1029/2018GH000181, 2019.
- Yakimov, M. M., Lünsdorf, H., and Golyshin, P. N.: *Thermoleophilum album* and *Thermoleophilum minutum* are culturable representations of group 2 of the Rubrobacteridae (Actinobacteria), In.t J. Syst. Evol. Microbiol., 53, 377–380, https://doi.org/10.1099/ijs.0.02425-0, 2003.
 - Yang, Y. R., Guo, Y. X., Wang, Q. Y., Hu, B. Y., Tian, S. Y., Yang, Q. Z., Cheng, Z. A., Chen, Q. J., and Zhang, G. Q.: Impacts of composting duration on physicochemical properties and microbial communities during short-term composting for the substrate for oyster mushrooms, Sci. Total Environ., 847, https://doi.org/10.1016/j.scitotenv.2022.157673, 2022.
- 900 Yokobe, T., Hyodo, F., and Tokuchi, N.: Volcanic deposits affect soil nitrogen dynamics and fungal–bacterial dominance in temperate forests, Soil Biol. Biochem., 150, https://doi.org/10.1016/j.soilbio.2020.108011, 2020.
 - Yucel, T. B.: Chemical composition and antimicrobial and antioxidant activities of essential oils of *Polytrichum commune* (Hedw.) and *Antitrichia curtipendula* (Hedw.) Brid. grown in Turkey, Int. J. Secondary Metabolite, 8, 272, https://doi.org/10.21448/ijsm.945405, 2021.
- Zechmeister, H. G., Richter, A., Smidt, S., Hohenwallner, D., Roder, I., Maringer, S., and Wanek, W.: Total nitrogen content and δ 15 N signatures in moss tissue: indicative value for nitrogen deposition patterns and source allocation on a nationwide scale, Environ. Sci. Technol., 42, 8661–8667, https://doi.org/10.1021/es801865d, 2008.

Zeglin, L. H., Wang, B., Waythomas, C., Rainey, F., and Talbot, S. L.: Organic matter quantity and source affects microbial community structure and function following volcanic eruption on Kasatochi Island, Alaska, Environ. Microbiol., 18, 146–158, https://doi.org/10.1111/1462-2920.12924, 2016.

Zhang, J., Cai, L., Yuan, D., and Chen, M.: Distribution and sources of polynuclear aromatic hydrocarbons in Mangrove surficial sediments of Deep Bay, China, Mar Pollut. Bull., 49, 479–486, https://doi.org/10.1016/j.marpolbul.2004.02.030, 2004.