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Highlights
A highly adaptable inversion framework is adapted to different groundwater pollution
scenarios.
Synergetic identification of source information, hydraulic conductivity and boundary
condition in PSC.

The artificial hummingbird algorithm is applied to solve the optimized model.
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Abstract

Effectively remediating groundwater contamination relies on the precise determination
of'its sources. In recent years, a growing research focus has been placed on concurrently
estimating hydrogeological characteristics and locating pollutant origins. However, the
identification of precise synergistic identification of point and areal contamination
sources of groundwater and combined hydrogeological parameters has not been
effectively solved. This study developed an inversion framework that integrates
machine learning surrogates with the artificial hummingbird algorithm (AHA). The
surrogate models approximating the simulation system were constructed using both
backpropagation neural networks (BPNN) and Kriging techniques. The AHA was then
employed to solve the optimized model, and its performance was benchmarked against
particle swarm optimization (PSO) and the sparrow search algorithm (SSA). The
applicability of this inversion framework was assessed by application to point sources
of contamination (PSC) and areal source contamination (ASC). The robustness of the
framework was verified through application to scenarios with different noise levels.
The results showed that surrogate model constructed by the BPNN method provided
estimates that were closer to those of the simulation model in comparison to the kriging
method, coefficient of determination (R?) is 0.9994 and mean relative error (MARE) is
3.70% in PSC, and R? is 0.9989 and MARE is 4.48% in ASC. The performance of the
AHA exceeded those of the PSO and the SSA. In PSC, MARE of the identification
result is 1.58%; In ASC, MARE of the identification result is 2.03%, with the AHA able

to rapidly and accurately identify the global optimum and improve the inversion
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efficiency. The proposed inversion framework was demonstrated to apply to both
groundwater PSC and ASC problems with strong robustness, providing a reliable basis
for groundwater pollution remediation and management.

Keywords: Groundwater contamination identification; Synergistic identification; Point

and areal sources contamination; Surrogate model; Artificial hummingbird algorithm
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1 Introduction

Groundwater pollution adversely affects human production and life (Wang et al., 2022;
Liu et al., 2024). The remediation of groundwater contamination is important for
ensuring human health and socioeconomic development. However, groundwater
contamination is difficult to detect and treat due to its hidden nature, thereby
complicating the assessment of groundwater pollution risk and contamination liability
(Li et al., 2021). Remediation requires the identification of sources of groundwater
contamination (location, number, release history, etc.) and hydrogeological conditions
(Maliva et al., 2015; Daranond et al., 2020; Pan et al., 2022b; Medici et al., 2024).
However, directly obtaining this information can pose a challenge, with a proven
method being the identification of groundwater contamination by inversion of limited
observational data.

Inversion of groundwater aquifer hydrogeologic parameters and pollution source
information is a widely studied topic. In past studies on groundwater contamination
identification (GCI), many researchers have focused on the separate identification of
hydrogeological parameters or pollution source information. For example, Singh and
Datta (2007) utilized backpropagation-based artificial neural network techniques
specifically for the identification of groundwater pollution sources. Similarly, Mahar
and Datta (2000) employed a nonlinear optimization model to identify the location,
duration, and magnitude of the contamination source. Liu et al. (2022) inverted
hydrogeological parameters through a simulation-optimization approach, while Wang

et al. (2024a) combined three different inversion algorithms and a kriging surrogate



79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

model to invert hydraulic conductivity. While simplifying the problem, these methods
allow researchers to focus on specific aspects. However, although the individual
identification method can be effective in some cases, it often overlooks the
interconnectivity between hydrogeological parameters and pollution sources.

Currently, the simultaneous identification of hydrogeological parameters and
pollution source information is gaining increasing attention in research. Researchers
have employed various advanced technologies to achieve this goal. Wang et al. (2021)
utilized a parallelized heuristic algorithm to concurrently determine both aquifer
characteristics and the groundwater pollution sources. Pan et al. (2021) integrated a
Bayesian-regularized deep neural network surrogate to jointly infer pollution source
details and hydraulic conductivity. Hou et al. (2021) integrated homotopy-based inverse
optimization theory with a multi-kernel extreme learning machine to finish the co-
identification of contamination sources and aquifer parameters. Luo et al. (2023)
leveraged machine learning techniques to establish an inverse relationship between
model outputs and inputs, enabling fast and simultaneous retrieval of pollution source
attributes and hydrogeological properties. Although these methods have advanced the
field, improving recognition accuracy remains a major challenge in the simultaneous
identification process.

The simulation-optimization method has been widely applied in GCI research
because of its robust mathematical foundation (Mirghani et al., 2009) and its ability to
identify multiple variables simultaneously. To enhance both identification accuracy and

efficiency using simulation-optimization, two key approaches are employed: one is to
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optimize the model solution method for better performance, and the other is to construct
a surrogate model with high approximation accuracy. Optimizing the model solution
method is essential. Since heuristic optimization algorithms are more capable of
identifying global optima, many have been applied to GCI. Mirghani et al. (2012)
implemented a genetic algorithm within optimization to identify sources of
contamination. Jiang et al. (2013) combined a harmony search algorithm with a
contamination transport simulation model to characterize contamination sources.
Additional methods, such as simulated annealing (Rao, 2006; Yeh et al., 2007; Jha and
Datta, 2013) and sparrow search algorithms (SSA) (Pan et al., 2022b), have also been
applied to GCI. However, increasing dimensionality and complexity in GCI problems
make it difficult for many optimization algorithms to efficiently search for global
optima. Constructing high-accuracy surrogate models is another crucial strategy.
Surrogate models can significantly reduce computation time and improve inversion
efficiency. Among these models, the widely used kriging (Chugh et al., 2018; Zhang et
al., 2019; Jiang et al., 2020) and backpropagation neural network (BPNN) (Sargolzaei
et al., 2012; Zhang et al., 2021; Wang et al., 2024b) methods offer high flexibility and
strong nonlinear fitting capabilities. Despite these advances, previous studies have
overly focused on point source contamination (PSC) or areal source contamination
(ASC) scenarios in isolation. However, the identification of precise synergistic
identification of PSC and ASC of groundwater and combined hydrogeological
parameters has not been effectively solved.

Based on the above problems, this paper proposes an inversion framework
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integrating a machine learning surrogate model with the artificial hummingbird
algorithm (AHA) using the simulation-optimization method (Fig. 1). Both BPNN and
kriging were utilized to develop surrogate models for the simulation model. AHA was
introduced to solve the optimization model, with its solution results compared against
those of PSO and SSA. The applicability of this inversion framework was evaluated
through its application to both PSC and ASC scenarios. The objectives of this study
were: (1) Develop a flexible groundwater pollution inversion scheme that can reliably
invert parameters under various groundwater pollution scenarios; (2) Adopt an
integrated parameter identification strategy to achieve the simultaneous identification
of multiple variables, including pollutant release characteristics and hydrogeological
parameters; (3) Design an optimization-based surrogate modeling method combining
meta-heuristic search algorithms with neural network surrogate models to efficiently
explore the solution space and reduce the risk of getting stuck in local optima during
inversion calculations; (4) Evaluate the performance of the proposed scheme under
various noise intensities and pollution patterns to validate its robustness and application
potential in groundwater pollution inversion problems.

The main innovations are as follows: (1) This study constructed an adaptive inversion
framework that maintains high robustness in both PSC and ASC. (2) In PSC case,
synergistic identification of source information, hydraulic conductivity, and boundary
conditions. (3) Apply the AHA optimization model to solve the inverse problem of
groundwater pollution to obtain the global optimal solution of the inverse problem and

further improve the inversion accuracy. The good compatibility between AHA and the



145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

BPNN surrogate model ensures the robustness and stability of the inversion process.
2. Methodology

2.1. Simulation model

In this study, the numerical groundwater simulation framework comprised both a flow
component and a solute transport module. The fundamental two-dimensional (2D)

partial differential equation governing groundwater flow is formulated as follows:

0 oH
Z (K. (H=-2)Z0)+W =
& Ki(H-2=7) H

! ]

@(X,y)eSi,jel,ZtZO (1)
ot
where Kj; is hydraulic conductivity, W is the volumetric flux per unit volume, y is the

specific yield, H is the water level elevation, z is the elevation of the aquifer floor, and

S is the boundary of the spatial domain.

oC 0 oC, 0 R
= =-— (D, —=2)-—(uC)+— 2
X o Qi) o O o)
K.
ui:_”a_H 3)
n, ox

where C denotes the contaminant concentration in groundwater, ¢ is the temporal
variable, u; indicates the average flow velocity, R accounts for source and sink
contributions, D;; refers to the hydrodynamic dispersion tensor, and n. represents the
effective porosity of the medium. We used the MODFLOW-2005 (Harbaugh., 2005)
and MT3DMS (Zheng et al., 2012) numerical models to obtain numerical solutions for
groundwater flow and solute transport equations. (Asher et al., 2015).

2.2. Kriging method

Kriging was employed to develop the underlying framework of the approach by

capturing both the correlation and stochastic variability of variables within a confined
10
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spatial domain, thereby enabling the estimation of optimal regional values. The
association between input and output variables is described through a regression-based
expression as shown below (Zhao et al., 2022a):

V00 = 31004709 @
where ¥(x) 1is the estimated value of pollutant concentration y(x), fi(x)(i =
1,--+, k) is the basis function of the known regression model, and z(x) is the random
part.

The following equations were satisfied:

E(z(x))=0

D(z(x))=0" 5

cov| 2(x), 2(x;) | = *R(x,, X;
where R(x;,x;) is the correlation function between the sampled point x; and x;.

(l = 1121'";m;j = 1:2:'“:m)

The Gaussian model is commonly used:

R(XX;) :exp[—kznj;&k‘xki — X% ‘2] (6)

where 6, is a coefficient to be determined, which can be obtained by calculation.
2.3. The BPNN method

A typical back-propagation neural network (BPNN) is composed of three
fundamental components (Fig. 2): (1) an input layer, (2) the hidden layers, and (3) an
output layer. The computation process proceeds in two main phases: forward
propagation and backward propagation (Chen et al., 2010; Zhang et al., 2018).

1) During forward propagation, data are introduced into the network via the input

11
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layer, and subsequently processed through successive layers to yield the final output.

BPNNs frequently employ a nonlinear sigmoid activation function:

f(x)= —~ (7
l+e
The calculation of the forward transmission output layer is:
1
;=2 wo+b o =f(,)=—F (8)
i=1 l+e!

where O; represents the output of neuron 7, O; is the output of neuron j, b is the bias
term, and W is the weight of the connection between neuron i and neuron ;.

2) Backward propagation involves the random assignment of the weight of the first
positive feedback process within the output layer. The adjustment of the parameters of
the entire network is required. Network adjustment is performed by minimizing the
discrepancy between the predicted output and the target category in the output layer.
Specifically, for the output layer:

Ej :Oj(l_oj)(Tj_Oj) )
where E; represents the error value at the jth node and 7; denotes the corresponding
output. The hidden layer's output is determined by summing the weighted contributions
from the errors of the lower nodes:

E,=0,1-0,)> EW, (10)
where E is the error gradient for the subsequent node k and Wjis the weight connecting
node j to t node k. Following error calculation, the weight is adjusted according to the

error gradient:
AWij :nEjOi .
Wij' =W, + AW,

where 7 is the learning rate. In Case 1, the BPNN architecture was configured as 19-30-
12
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45, and in Case 2 as 15-20-50. The number of neurons in each layer was empirically
optimized using grid search combined with cross-validation to minimize the root mean
square error (RMSE) and effectively prevent overfitting. The sigmoid function was
employed as the activation function, and the network was trained using the Bayesian
Regularization algorithm. The maximum number of training iterations was set to 1000,
and the learning rate was set to 0.01.

2.4 Artificial Hummingbird Algorithm (AHA)

The AHA consists of three main elements: food sources, hummingbirds, and the visit
table. Hummingbirds typically assess food sources based on factors such as nectar
quality, individual flower nectar content, and replenishment rates. For simplicity, it can
be assumed that all food sources share the same flower type and number.
Hummingbirds within a population can exchange information, be assigned to specific
food sources, track nectar replenishment rates, and record the duration each food source
remains unvisited. The visit table records the time since a hummingbird last visited a
food source, and is used to assign visit levels; hummingbirds can harvest more nectar
by first accessing food sources with higher access levels, following which food sources
with the highest nectar replenishment rate are chosen (Zhao et al., 2022b). The AHA is

algorithmically described below.

(1) Initialization

Firstly, » hummingbirds are randomly placed on » food sources:

X, =Low+r-(Up—-Low) i=1...,n (12)

13
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The access table for the food source is then initialized:

0 it i=j . .
VT, . = oL a=1l...nj=1...,n (13)
Dol i=j

where Low and Up are the lower and upper boundaries for a d-dimensional problem
respectively, 7 represents a random vector of [0,1], and x; is the position of the ith food
source. Fori = j, VT;; = null indicates the sourcing of food from a specific source.
Fori # j, VT;; = 0 indicates that the ith hummingbird has just visited the jth food

source in the current iteration.
(2) Guided foraging

Hummingbirds identify food sources in two steps: (1) identifying the food source
with the highest access level; (2) selecting the food source with the highest nectar
replenishment rate. After identifying the target food source, the hummingbird can fly to
the target source to feed. During foraging, direction switching vectors used to control
the availability of one or more directions in the D-dimensional space are introduced to
model three flight skills: omnidirectional, diagonal, and axial flight. These flight

models can be extended to the d-D space, and the mathematical model of axial flight is:

Do _ 1 if i=randi([1,d]) P21 d (14)
0 else
Diagonal flight is defined as:
1if 1=P()), el K]
DO ={ P =randperm(k),k [2,[r,-(d -2)]+1] i=1,...,d (15)

0 else

14
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Omnidirectional flight is defined as:
DY =1 i=1...,d (16)

where randi([1,d]) is a randomly generated integer from 1 to d, randperm(k)
creates a random permutation of integers from 1 to &, and 7 is a random number in the

range of O to 1.

Hummingbirds can access and obtain target food sources through these flight abilities.
New food sources identified during the search are recorded along with previously
identified food sources. The guided foraging behavior and candidate food sources can

be represented as:
Vi (t +1) = Xitar (t) +a-D- (Xi (t) ~ X tar (t)) (17)
a~N(,2) (18)

where x;¢q,-(t) 1is the location of the food source that the ith hummingbird plans to
visit, x;(t) represents the location of the ith food source at time ¢, and a is a leading

factor obeying a normal distribution.

The location of the ith food source is updated as:

x@®  fOa) < v (t+1)

(19)
Vt+D)  F®)> f D)

&G+D={

where f(*) represents the function fitness value. The formula for updating the location
can contribute to the preferential selection of food sources with a high nectar supply

rate.

15
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(3) Territorial foraging

Since the quality of food sources within a foraging area may vary, hummingbirds
actively search within that area. The regional foraging strategies and candidate food

sources of hummingbirds can be represented as:

V.(t+1) =x(t)+b-D-x(t) (20)

b~ N(0,2) 1)

where b is a territorial factor obeying a normal distribution. Eq. (20) allows different

hummingbirds to use their specific flight skills to identify new food sources near the

target source.

(4) Migration foraging

Migration coefficients are defined in the AHA algorithm to prevent the generation of
local optimums. The exceedance of the number of iterations of the set migration
coefficient results in the hummingbird located in the worst food source repeating a
search for a new food source across the entire search range and the subsequent updating

of the visit table.

Xpar (T +1) = Low+r - (Up — Low) (22)

where x,,,, is the food source with the worst nectar supply rate. The migration

coefficient relative to population size can be defined as.

M =2n (23)

16
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3. Case studies

The present study designed a groundwater PSC case study and an ASC case study to
verify the applicability of the proposed GCI framework. Since the present study
established two hypothetical examples, a set of variables to be identified and
background variables for input into the groundwater contamination simulation model
were established for each example for forward computation. The pollutant
concentrations monitored at wells were used as observed data. The robustness of the
inversion framework was verified by adding random noise to the observed data,
expressed as:

a, =a(l+1-rand), | =0.5%,1% and 2% (24)
where a represents the observation data, a indicates observation data with added
noise, / is the max disturbance range, and rand is a random number between —1 and 1.
3.1 Case study 1: groundwater PSC
The study area is 2,500 m and 1,400 m from east to west and north to south, respectively,
with topography decreasing from west to east and groundwater flow from northwest to
southeast. The study area contains a heterogeneous isotropic aquifer, and the present
study focused on a layer of diving aquifer with a thickness of 10 m (Table 1). The
aquifer comprises unconsolidated sediments, primarily well-sorted coarse sand and
gravel. Groundwater flow was represented as 2D steady flow, and the study area was
divided into three areas according to differences in hydraulic conductivities. Since the
northern and southern parts of the study area are very weakly permeable formations,
they were generalized in the present study as no-flow boundaries. Rivers formed the

17
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boundaries of the western and eastern parts, and were generalized as specific head
boundaries (Fig. 3).

In this case study, the variables to be identified fell into three main categories: (1)
head values at the specific head boundaries. including H; and H>; (2) hydraulic
conductivities for each part of the study area, including K1, K> and K3; (3) the intensities
of the release of pollutants from the two sources during the release periods: S = SaTv; a
=1,2;and b=1, 2, 3,4, 5 (Table S1). S.T; represents the intensity of pollution source
a during the bth stress period; this case study had a study period of 10 years (Table 1,
Fig. 4), with both sources only releasing pollutants in the first five years (Table S2).
Five wells were established to monitor the concentrations of groundwater contaminants
once a year. The study area was spatially discretized into 50 m x 50 m grids (Table 1).
3.2 Case study 2: groundwater ASC
The present study selected the hypothetical case study used by Pan et al. (2022a) as a
case study. The site has an area of 5 km?, with a length of 2.5 km and width of 2 km
from east to west and south to north, respectively. Groundwater flows from northwest
to southeast. The study area was conceptualized as a heterogeneous isotropic aquifer
and the current study focused on a diving aquifer, in which flow was represented as 2D
steady flow. The study area’s aquifers were categorized into four zones based on
hydraulic conductivity, labeled K to K4. The western and eastern river boundaries were
modeled as specified head boundaries, while the northern and southern regions,
characterized by low permeability granite, were treated as no-flow boundaries (Fig. 5,
Table 2). The aquifer comprises unconsolidated sediments, primarily well-sorted coarse

18
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sand and gravel.

Within this case study, the variables to be identified fell into two categories: (1)
hydraulic conductivities of each part of the study area, including K; to Ks; (2) the
intensities of pollutants released by three areal sources of contamination: S = Sa7v; a =
1,2,3;and b=1, 2, 3,4, 5 (Table S3). S.Tv indicates the intensity of pollution source a
during the bth stress period. A total of nine monitoring wells were established to monitor
the concentrations of groundwater contaminants once a year (Fig. 6). The study area
was spatially discretized as 20 m x 20 m grids (Table 2).

4. Model construction

4.1 Establishment of surrogate models

The present study established two case studies: the PSC and the ASC. The variables to
be identified for the PSC case study included three categories with 15 dimensions,
whereas those to be identified for the ASC case study included two categories with 19
dimensions. The present study used the Latin hypercube method to sample within the
feasible domain of the variables to be identified. This sampling process was
implemented in MATLAB. Sample groups for the PSC and ASC case studies totaled
390 and 490, respectively, and the input sample dataset was generated by random
combination.

The parameters obtained from the above sampling were input into the groundwater
simulation model. The simulation model was then run to obtain the pollutant
concentrations at the 390 and 490 monitoring groups in the PSC and ASC case studies,
respectively. These simulated pollutant concentrations were used as the output sample

19
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dataset, and the output sample dataset was combined with the input sample dataset to
form the input-output sample dataset. The kriging and BPNN methods were used to
establish the surrogate models of the simulation model. The first 350 and 440 groups
of the PSC and ASC case input-output sample datasets, respectively, were used as
training samples in each case study to construct surrogate models, while the remaining
40 and 50 groups were used as test samples to evaluate the accuracy of the surrogate
models.

The present study applied the coefficient of determination (R?), the mean absolute
relative error (MARE), and the root mean square error (RMSE) to assess the accuracy
of'the fit of the estimations of the surrogate models to the output of the simulation model.

1) R%: The closer R? to 1, the more accurate the surrogate model is.

> (- )
RO=1-2 (25)
Z (yi - Vi)2

2) MARE: The average deviation between the outputs of the surrogate model and the

outputs of the simulation model.

n

Yi—Yi
i=1

Vi

MARE = (26)

3) RMSE: The value of the RMSE is inversely proportional to the fitting accuracy

of the surrogate model.

27)

where Y, is the average true value, n is the number of samples, ¥; is the output of

the surrogate model, y; is the true value of the variable to be identified.
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4.2 Establishment of the optimization models

This study employed the CGI through the S-O method, which consists of two main
components: a groundwater contaminant transport simulation model and an
optimization model aimed at minimizing the least squares error between the simulated
and true values. To reduce the computational burden caused by repeated simulation
calls, a surrogate model was used in place of the simulation model. While the same
objective function was applied in both case studies, there were minor variations in the
decision variables and constraints. The decision variables chosen for case study 1
included the boundary head values, the hydraulic conductivities of the site, and the
release history of the contaminant source; those for case study 2 included the hydraulic
conductivities of the site and the release history of the contaminant source. The
constraint conditions were influenced by the decision variables. The optimization was

expressed as:

z=minZn:(Cm—C3m)2
m=1

C=1f(H,K,s)
Casel:ist{C <C<C,

S <s<s,
C=1(K,s)
Case2:st1C, <C<C,

S <S<s,

(28)

where z is the objective function, C,, is the monitored pollutant concentration in the
mth monitoring well, C,, is the simulated pollutant concentration in the mth
monitoring well, C is the pollutant concentration, H is the head value at the boundary,

s is the pollution source intensity, k represents the hydraulic conductivities of the site,
21
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C, and Cy are the upper and lower bound values of pollutant concentration,
respectively, and s; and s, are the upper and lower bound values of pollution source
intensity, respectively.

The AHA was used to identify the optimal combination of parameters according to
the objective function through multiple iterative calculations, with this parameter set
adopted as the result of inversion. The numbers of hummingbird populations and
iterations were set to 500 and 1,000, respectively.

5. Results

5.1 Surrogate models

The surrogate model for case study 1 using the kriging method achieved an R? 0f 0.9942,
MARE of 13.43%, and RMSE of 11.8262 (Table 3), while the BPNN method produced
values of 0.9994, 3.70%, and 3.6526, respectively (Table 3). Similarly, for case study
2, the kriging method yielded an R? 0 0.9837, MARE 0f 9.98%, and RMSE of 37.7547,
whereas the BPNN method provided corresponding values of 0.9989, 3.70%, and
3.6526 (Table 3). The BPNN method demonstrated superior goodness-of-fit statistics
compared to the kriging method in both case studies. While the simulation model
required 50 hours for 1,000 iterations, the BPNN surrogate model completed the same
number of iterations in 67 seconds, significantly reducing the computation time.

5.2 Optimization algorithms

The BPNN surrogate model was embedded into the optimization model to optimize the
parameter combination according to the objective function. This study employed AHA
within the optimization process and compared its performance against SSA and PSO
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under the same population size and number of iterations. In the optimization of case
study 1, PSO failed to converge after reaching the maximum number of iterations, while
AHA and SSA converged after 120 and 350 iterations, respectively (Fig. 7a). For case
study 2, both PSO and SSA failed to converge within the maximum number of iterations,
whereas AHA converged after 150 iterations (Fig. 7b).

Given the results from case study 1, where both AHA and SSA converged, the
subsequent analysis focused on these two algorithms. AHA achieved an optimal search
value closer to the true value and reached the global optimum, while SSA settled at a
local optimum (Fig. 8). These results demonstrate that AHA not only converged faster
than SSA but also identified the global optimum, thereby improving the accuracy and
efficiency of GCI.

5.3 Inversion results and robustness assessment

The BPNN-AHA inversion framework developed in this study was applied to identify
groundwater PSC and ASC and obtain inversion values. To verify the framework’s
robustness and reliability, random noise levels of 0.5%, 1%, and 2% were added to the
observed data. The average relative errors under each noise level were recorded (Table
4, Table 5). The highest inversion accuracy was achieved in the noise-free case for both
case study 1 and case study 2, with average relative errors of 1.58% and 2.03%,
respectively (Table S4). At a 0.5% noise level, the average relative errors for case study
1 and case study 2 were 1.71% and 2.3%. At 1% noise, they were 2.03% and 2.33%,
while at 2% noise, they increased to 2.55% and 3.52%, respectively. Although noise
impacted the inversion accuracy, the framework maintained high performance, with the
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average relative errors for both case studies remaining below 5% (Fig. 9). These results
confirm the strong robustness and stability of the proposed inversion framework.
There are significant differences in sensitivity to noise among different parameter
categories. Hydraulic conductivity: These parameters showed low sensitivity to noise,
with relative errors remaining below 3% in all scenarios for both PSC and ASC cases.
Their errors increased gradually with noise but remained stable, indicating strong
robustness. Boundary head values (PSC case only): These parameters also exhibited
excellent noise resistance, with relative errors consistently below 1% even at 2% noise
level. Source release intensities: This group showed the highest sensitivity to noise. At
a 2% noise level, some source parameters (e.g., S171 in PSC, S173, S174, S3T2, $373, 375
in ASC) had relative errors exceeding 6%—10%, reflecting their higher inversion
uncertainty under noisy conditions.
6 Discussion
6.1 Analysis of surrogate models
The results of this study show that the proposed BPNN-AHA framework achieves high
accuracy, strong robustness, and efficient convergence in GCI tasks, performing
consistently well in both PSC and ASC scenarios, even under varying noise levels. In
the PSC and ASC cases analyzed here, the R? values reached 0.9994 and 0.9989, and
the MARE values were 3.70% and 4.48%, respectively, demonstrating the model’s
excellent capability to approximate the input—output relationships of the simulation
model. The BPNN surrogate model, with its simple structure, high flexibility, and broad
adaptability, effectively balances accuracy and generalizability—characteristics that are
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essential for practical inversion applications. Compared to other surrogate modeling
approaches reported in recent GCI research—such as long short-term memory neural
networks (Li et al., 2021), light gradient boosting machines (Pan et al., 2023), and deep
residual networks (Xu et al.,, 2024b)—the proposed framework leverages the
adaptability of BPNN together with the global search and adaptive convergence
mechanisms of the artificial hummingbird algorithm to deliver consistently accurate
and stable inversion results. In this paper, the ASC is drawn from Pan et al. (2022a),
which had been widely validated in other studies. For example, Li et al. (2023) used the
same case to validate an inversion method, applying a multilayer perceptron model to
the simulation, achieving the R? of 0.9999 and the MARE of 2.85%. Similarly, Xu et
al. (2024a) employed automatic machine learning methods for surrogate model
construction, achieving the R? of 0.9754 and the MARE of 4.154%. Compared to the
surrogate models developed by these researchers, the BPNN model constructed in this
study also demonstrates excellent approximation accuracy, further validating the
advantages of the proposed method. In summary, the proposed BPNN surrogate model
has practical advantages in tasks related to GCI, thereby enhancing its applicability.
Due to its relatively simple architecture and low computational requirements, the
BPNN model can be trained and updated efficiently even under limited computational
resources. Additionally, the model demonstrates strong generalization capabilities in
both PSC and ASC scenarios, indicating that it is not specific to a particular case. This
adaptability is crucial for practical groundwater inversion problems, as data availability
and system complexity often vary significantly across different locations. These
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characteristics highlight the comprehensive advantages of the BPNN model in terms of
accuracy, efficiency, and flexibility, making it a reliable and practical choice for
surrogate modeling in groundwater simulation.

6.2 Analysis of optimization algorithms

This paper compares the AHA with PSO and SSA under the same preconditions and
finds that AHA offers clear advantages in both convergence speed and global
optimization capability. Based on these results, AHA was chosen to solve the
optimization model, and its adaptability was further verified in two different cases. In
the field of optimization algorithms, the "no free lunch principle" (Zhao et al., 2022b)
emphasizes that no single algorithm performs well across all optimization problems.
When addressing real-world problems, it is essential to understand the nature of the
problem thoroughly before selecting the appropriate optimization algorithm. This
principle encourages researchers to develop new and more effective algorithms from
different perspectives, providing more options for optimization problem researchers.
This insight also applies to groundwater pollution traceability. Given the diverse nature
of pollution traceability problems, it is challenging for any single optimization
algorithm to be universally applicable. As research deepens, these problems tend to
become more high-dimensional and nonlinear, necessitating the exploration of
algorithms with stronger global optimization capabilities and higher search efficiency.
Additionally, it is important to consider alternative uses of optimization methods. One
promising approach involves using optimization techniques to improve machine
learning models by identifying optimal parameters (hyperparameters) during training,
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which can significantly enhance model accuracy (Jia et al., 2024).
6.3 Inversion analysis
Previous studies related to GCI employed a variety of methods to conduct either single
or simultaneous inversion characterization of pollution sources and to identify
hydrogeological parameters of the model. Li et al. (2022) identified the number,
location, and release history of pollution sources, while Li et al. (2008) focused on
determining the hydraulic conductivities of a study site. Bai et al. (2022) utilized
inversion techniques to simultaneously characterize pollution sources and identify the
hydraulic conductivities within their simulation models. While some studies have
applied inversion to the boundary conditions of the simulation model (Jiao et al., 2019),
fewer studies have simultaneously characterized pollution sources and identified both
hydrogeological parameters and boundary conditions of the model. Source information,
model hydrogeological parameters, and boundary conditions are all critical components
of groundwater contamination simulation models. Inaccuracies in any of these
components can affect the overall results of inversion, making it essential to identify all
components simultaneously. Therefore, in the PSC case of this study, the release history
of the pollutant source, the hydraulic conductivity of the model, and the specific head
boundary values were simultaneously identified. This simultaneous identification of
multiple key parameters enhances the reliability and effectiveness of decision support
systems.

In addition to the methods applied in this study, data assimilation methods are also
widely used in the field of groundwater pollution inversion. They can combine
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observational data with numerical models to improve state estimation and parameter
inversion (Zafarmomen et al., 2024). Many researchers have successfully applied data
assimilation methods to the iterative optimization of pollutant transport states and
related parameters, significantly improving inversion accuracy and reducing prediction
uncertainty. For example, Pan et al. (2022a) proposed a refined particle filter with a
deep learning method surrogate as an inverse framework for groundwater pollution
source estimation. This framework was evaluated under different levels of
observational error through estimation tasks for point source pollution cases and non-
point source pollution cases. Wang et al. (2023) utilized an improved particle filter
method for groundwater pollution source identification. Zhang et al. (2024) used an
iterative local updating ensemble smoother method to simultaneously identify pollution
source information and hydraulic conductivity fields. However, both the method
proposed in this study and data assimilation methods have their own advantages and
disadvantages. The method proposed in this study possesses strong fine-grained search
capabilities but its performance is highly dependent on the selection of initial points.
Data assimilation methods can integrate multi-source data, significantly improving the
spatio-temporal consistency of inversion results; however, their fine-grained search
capabilities are somewhat limited. Future research could explore combining the real-
time updating capabilities of data assimilation with the adaptability and optimization
efficiency of the framework proposed in this study to further enhance the adaptability
and performance of groundwater pollution inversion.

One of the main methodological motivations of this study is the integration of the
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BPNN surrogate model with the AHA for GCI. This choice is grounded both in the
inherent characteristics of GCI problems and in the complementary mechanisms of the
two methods. GCI is a typical high-dimensional, nonlinear, and ill-posed inverse
problem. The mapping from observed contaminant concentrations to source
characteristics and hydrogeological parameters is often multimodal and nonconvex. In
such cases, surrogate models such as BPNN can provide a fast and flexible
approximation to computationally demanding groundwater simulations, but their use
inevitably introduces approximation errors into the inversion objective function. These
errors may create local irregularities in the objective function landscape, which can
mislead optimizers and cause premature convergence—particularly when the
optimization algorithm lacks a mechanism to balance exploration and exploitation
adaptively. AHA offers notable advantages in addressing these issues. Its bio-inspired
mode-switching strategy alternates dynamically between diversified search and focused
search. In the early stages of optimization, the broad and varied exploration capability
helps to survey the global search space and reduces the risk of becoming trapped in
spurious local optima caused by surrogate-induced noise. As the search proceeds, the
algorithm adaptively shifts toward more intensive exploitation, concentrating
computational effort on promising regions and thereby accelerating convergence. This
dynamic adjustment is particularly important in GCI problems, where the optimal
parameter region is often narrow and embedded within a complex and noisy search
space. In addition, AHA’s adaptive update mechanism adjusts search trajectories in
response to population feedback, effectively mitigating the influence of local
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fluctuations in the surrogate-predicted objective function on the optimization process.
This robustness to noisy or irregular fitness landscapes complements the BPNN’s
ability to generalize across diverse contamination scenarios. It is worth emphasizing
that this integration is not a simple “algorithm replacement,” but a targeted design
choice based on the structural characteristics of the problem: BPNN provides broad
adaptability to varying hydrogeological conditions, while AHA contributes resilience
and fine-tuning capability when the optimization landscape is distorted by surrogate
approximation errors. This synergy allows the proposed framework to maintain both
high accuracy and strong robustness under different contamination scenarios and noise
levels. More importantly, the underlying design principle—matching the characteristics
of the surrogate model with the search dynamics of the optimization algorithm—has
broader applicability to other environmental inversion problems.

6.4 Limitations

The overall inversion framework in this paper combines BPNN and AHA and is
validated under different noise scenarios to account for the effect of noise in the
observed data. The results indicate that the inversion framework demonstrates high
robustness. However, a limitation of this paper is that noise is not addressed, and its
presence can contaminate the observed data, further impacting the accuracy of GCI.
Noise elimination methods could be applied to the observed data in future studies.
Another major limitation is the generalization of the actual aquifer system.
Groundwater systems are often complex, necessitating model simplifications through
assumptions (e.g., homogeneity, isotropy) that may not reflect the actual geological
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conditions, thereby affecting model accuracy. To address actual problems, the
hydrogeological conditions of the study area should be thoroughly investigated,
ensuring the model closely represents the actual situation, reducing error, improving
model accuracy, and ultimately enhancing inversion accuracy. In terms of
computational time and efficiency, by integrating the agent model, we can avoid
repeatedly calling the numerical simulation model during the optimization process,
thereby significantly improving computational efficiency. In our current
implementation, thousands of optimization iterations can be completed in just a few
minutes. However, as the complexity of the inversion problem increases, the number of
required samples and the training time for the surrogate model will also increase
significantly. Additionally, the current BPNN surrogate model is relatively lightweight,
while deeper networks or ensemble-based surrogate models may require more
computational resources. To address these issues, potential future solutions include
parallel computing, adaptive sampling, and hybrid surrogate strategies that balance
accuracy and efficiency.

7 Conclusions

In this study, a BPNN-AHA inversion framework was developed to accurately and
synergistically identify groundwater point and areal sources of contamination and
combined hydrogeologic parameters. Among them, the BPNN surrogate model can
well replace the simulation model, and the AHA had good global optimization
capability and excellent solution accuracy. The robustness of the proposed methodology
was verified by applying the inversion framework to scenarios with different noise
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levels. The conclusions of the present study are listed below:

(1) The construction of a surrogate model to the simulation model satisfied the fitting
accuracy requirement while also significantly reducing the computational time. The
current study established BPNN and kriging surrogate models, with a comparison of
the outputs of the models illustrating that the former obtained a higher fitting accuracy,
with R? values of 0.9994 and 0.9989 for case 1 and case 2, respectively. Therefore, it
can be applied to the inversion framework.

(2) The present study applied AHA within the model optimization, with the results
compared to those of PSO and SSA optimization. Compared to PSO and SSA, AHA
rapidly reached convergence and identified the global optimum, the MAPE values for
the inversion results of case 1 and case 2 were 1.58% and 2.03%, respectively.

(3) The proposed inversion framework can realize the synergistic identification of PSC
and ASC combined with hydrogeological parameters, which can ensure high
identification accuracy, and the inversion framework has strong robustness under
different noise levels. While individual identification simplifies the problem but may
ignore correlations between parameters, synergistic identification improves the
accuracy and consistency of identification by synchronizing the estimation of pollution
sources and hydrogeological parameters. However, noise and parameter estimation
uncertainties may still affect the reliability of the inversion results. Therefore,
uncertainty analysis needs to be further considered in subsequent studies. Overall, the
BPNN-AHA inversion framework has excellent inversion performance and strong
practicability, which can provide a reliable basis for groundwater pollution remediation
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and management. For researchers working in groundwater contamination source
identification, this study underscores that method selection should not be guided solely
by algorithmic novelty, but should be informed by the inherent complexity of the
problem and the compatibility between the research question and the chosen approach.
In groundwater contamination inversion, selecting a highly compatible method can
substantially improve efficiency, while leveraging and organically integrating the
strengths of different methods can greatly enhance robustness. This concept is equally
applicable to a broader range of complex environmental inversion problems, offering

valuable insights and practical potential.
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Figure captions

Figure 1: General process used in the present study to construct the machine learning
surrogate model-artificial hummingbird algorithm framework.

Figure 2: Structure of a back-propagation neural network (BPNN).

Figure 3: Schematic diagram of case study 1.

Figure 4: Distributions of concentrations of groundwater pollutants over different
periods: (a)—(j) represent 1-10 years.

Figure 5: Schematic diagram of case study 2.

Figure 6: Distributions of concentrations of groundwater pollutants over different
periods: (a) 1 year; (b) 2 years; (c) 3 years; (d) 4 years; (e) 5 years.

Figure 7: Convergence curves of the sparrow search algorithm (SSA), particle swarm
optimization (PSO), and artificial hummingbird algorithm (AHA) applied to case study.
(a) case study 1; (b) case study 2.

Figure 8: Comparison between the true values and optimal values for the sparrow
search algorithm (SSA) and artificial hummingbird algorithm (AHA).

Figure 9: Comparison of relative errors for case studies 1 and 2 under different noise

levels.
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845  Figure 1. General process used in the present study to construct the machine learning

846  surrogate model-artificial hummingbird algorithm framework.
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848  Figure 2. Structure of a back-propagation neural network (BPNN).
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870

871

Table 1 Fundamental values and ranges of aquifer parameters.

Parameter

Value or range

Hydraulic conductivity of zone 1, K; (m/d)
Hydraulic conductivity of zone 2, K> (m/d)
Hydraulic conductivity of zone 3, K3 (m/d)
Specific yield of zone 1, 111

Specific yield of zone 2, u»

Specific yield of zone 3, us

Longitudinal dispersity of zone 1 (m)
Longitudinal dispersity of zone 2 (m)
Longitudinal dispersity of zone 3 (m)

Grid spacing in X and Y direction (m)
Recharge rate (m/d)

Initial concentration (mg/L)

Length of the stress period (y)

Aquifer thickness(m)

Groundwater level at the western boundary, A (m)

Groundwater level at the eastern boundary, H>(m)

(50,70)
(35,55)
(40,60)
0.27
0.22
0.25
40

30

35

50
0.00042
50

10

10
(18,20)
(15,17)
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872 Table 2 Fundamental values and ranges of aquifer parameters and pollution

873 sources.
Parameter Value or range
Specific yield 0.24
Transverse dispersity (m) 9.8
Longitudinal dispersity (m) 40
Aquifer thickness(m) 40
Grid spacing in x-direction(m) 20
Grid spacing in y-direction(m) 20
Number of stress periods 5
Hydraulic conductivity(m/d) (30,50)

Fluxes of contamination source during
. (0,52)
stress period(g/d)

874
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875 Table 3 A comparison of the accuracies of the assessed surrogate models.

Case Surrogate model R MARE RMSE
Casel Kriging 0.9942 13.43% 11.8262
ase
BPNN 0.9994 3.70% 3.6526
Krigi 0.9837 9.98¢ 37.7547
Case2 Emg o
BPNN 0.9989 4.48% 9.8488
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879

Table 4 A comparison of inversion values under different noise levels for case

study 1.

Unknown True Inversion values under different noise levels

variables  value 0 0.5% 1% 2% Relative error

K 60.37 5891 5946 61.16 61.15 2.42% 1.50% 131% 1.29%
K> 4284 4212 4173 41.72 42,18 1.67% 2.58% 2.61% 1.54%
K 50.17 49.28 4852 48.58 50.01 1.78% 3.29% 3.17% 0.31%
H 19.09 19.10 19.04 19.06 19.27 0.06% 0.24% 0.18% 0.96%
H, 16.11 16.05 1597 16.01 1627 0.40% 0.87% 0.64% 0.97%
S1Th 3425 34.65 34.82 3537 3650 1.16% 1.66% 3.26% 6.57%
NVE 57.07 5720 5735 57.66 5879 0.24% 049% 1.04% 3.01%
NVE 5.80 548 559 564 556 549% 3.63% 2.78% 4.19%
STy 31.76 31.80 31.84 3199 3271 0.15% 0.25% 0.74% 3.00%
S\ Ts 18.14 18.21 1824 1831 18.63 0.39% 0.55% 0.96% 2.73%
ST 82.07 8145 81.67 8248 84.62 0.76% 0.50% 0.49% 3.10%
ST 22.18 21.02  20.99 21.10 21.86 522% 537% 4.87% 1.44%
ST 7435 75.69 7595 7644 77.69 180% 2.15% 2.81% 4.49%
STy 492 486 485 474 484 137% 1.48% 3.76% 1.78%
NV 1584 1595 16.00 16.12 1629 0.73% 1.06% 1.81% 2.86%
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880

881

882

Table 5 A comparison of inversion values under different noise levels for case

study 2.

Unknow True Inversion values under different noise levels

3ariables value 0 0.5% 1% 2% Relative error

K 4593 4494 4544 4507 46.01 2.15% 1.07% 1.87% 0.17%
K> 46.54 46.68 4728 46.83 47.92 029% 1.59% 0.62% 2.97%
K; 32.11  32.08 31.91 32.05 31.73 0.08% 0.62% 0.20% 1.19%
K4 4423 4456 4379 4435 4295 0.75% 098% 0.26% 2.89%
SiTh 38.05 3748 37.59 37.85 38.14 148% 122% 0.51% 0.23%
NVE 32.24  32.84 3255 33.10 3242 1.84% 0.95% 2.65% 0.55%
NVE 2496 26.75 2646 26.89 2648 7.18% 6.01% 7.74% 6.09%
S$17T4 5.17 489 485 493 477 544% 633% 4.79% 7.82%
NVE 2542 2648 2629 26.69 2642 4.18% 3.43% 5.03% 3.94%
ST 31.15  31.17 3121 3138 3148 0.08% 0.19% 0.74% 1.07%
ST 39.94  40.17 40.12 40.65 40.58 0.57% 043% 1.76% 1.59%
ST 51.5 51.77 51.74 52.00 52.00 0.53% 0.47% 097% 0.97%
STy 4947 4891 48.81 49.51 4936 1.13% 1.33% 0.09% 0.21%
NV 31.53  33.54 3330 3341 33.03 6.38% 5.61% 597% 4.75%
ST 2749 27.61 28.03 28.01 28.75 043% 1.96% 1.90% 4.59%
NYES 2693 2733 2788 27.68 28.80 1.47% 3.52% 2.76% 6.95%
ST 5.95 597 6.14 6.11 638 027% 3.15% 2.66% 7.13%
83Ty 30.5 30.97 31.18 31.16 31.70 1.54% 2.21% 2.16% 3.92%
NYE 23.7 23.05 2432 24.06 26.06 2.77% 2.59% 1.49% 9.95%
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