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scenarios. 26 
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condition in PSC. 28 

The artificial hummingbird algorithm is applied to solve the optimized model.29 
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Abstract 30 

Effectively remediating groundwater contamination relies on the precise determination 31 

of its sources. In recent years, a growing research focus has been placed on concurrently 32 

estimating hydrogeological characteristics and locating pollutant origins. However, the 33 

identification of precise synergistic identification of point and areal contamination 34 

sources of groundwater and combined hydrogeological parameters has not been 35 

effectively solved. This study developed an inversion framework that integrates 36 

machine learning surrogates with the artificial hummingbird algorithm (AHA). The 37 

surrogate models approximating the simulation system were constructed using both 38 

backpropagation neural networks (BPNN) and Kriging techniques. The AHA was then 39 

employed to solve the optimized model, and its performance was benchmarked against 40 

particle swarm optimization (PSO) and the sparrow search algorithm (SSA). The 41 

applicability of this inversion framework was assessed by application to point sources 42 

of contamination (PSC) and areal source contamination (ASC). The robustness of the 43 

framework was verified through application to scenarios with different noise levels. 44 

The results showed that surrogate model constructed by the BPNN method provided 45 

estimates that were closer to those of the simulation model in comparison to the kriging 46 

method, coefficient of determination (R2) is 0.9994 and mean relative error (MARE) is 47 

3.70% in PSC, and R2 is 0.9989 and MARE is 4.48% in ASC. The performance of the 48 

AHA exceeded those of the PSO and the SSA. In PSC, MARE of the identification 49 

result is 1.58%; In ASC, MARE of the identification result is 2.03%, with the AHA able 50 

to rapidly and accurately identify the global optimum and improve the inversion 51 
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efficiency. The proposed inversion framework was demonstrated to apply to both 52 

groundwater PSC and ASC problems with strong robustness, providing a reliable basis 53 

for groundwater pollution remediation and management. 54 

Keywords: Groundwater contamination identification; Synergistic identification; Point 55 

and areal sources contamination; Surrogate model; Artificial hummingbird algorithm  56 
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1 Introduction 57 

Groundwater pollution adversely affects human production and life (Wang et al., 2022; 58 

Liu et al., 2024). The remediation of groundwater contamination is important for 59 

ensuring human health and socioeconomic development. However, groundwater 60 

contamination is difficult to detect and treat due to its hidden nature, thereby 61 

complicating the assessment of groundwater pollution risk and contamination liability 62 

(Li et al., 2021). Remediation requires the identification of sources of groundwater 63 

contamination (location, number, release history, etc.) and hydrogeological conditions 64 

(Maliva et al., 2015; Daranond et al., 2020; Pan et al., 2022b; Medici et al., 2024). 65 

However, directly obtaining this information can pose a challenge, with a proven 66 

method being the identification of groundwater contamination by inversion of limited 67 

observational data. 68 

Inversion of groundwater aquifer hydrogeologic parameters and pollution source 69 

information is a widely studied topic. In past studies on groundwater contamination 70 

identification (GCI), many researchers have focused on the separate identification of 71 

hydrogeological parameters or pollution source information. For example, Singh and 72 

Datta (2007) utilized backpropagation-based artificial neural network techniques 73 

specifically for the identification of groundwater pollution sources. Similarly, Mahar 74 

and Datta (2000) employed a nonlinear optimization model to identify the location, 75 

duration, and magnitude of the contamination source. Liu et al. (2022) inverted 76 

hydrogeological parameters through a simulation-optimization approach, while Wang 77 

et al. (2024a) combined three different inversion algorithms and a kriging surrogate 78 
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model to invert hydraulic conductivity. While simplifying the problem, these methods 79 

allow researchers to focus on specific aspects. However, although the individual 80 

identification method can be effective in some cases, it often overlooks the 81 

interconnectivity between hydrogeological parameters and pollution sources. 82 

Currently, the simultaneous identification of hydrogeological parameters and 83 

pollution source information is gaining increasing attention in research. Researchers 84 

have employed various advanced technologies to achieve this goal. Wang et al. (2021) 85 

utilized a parallelized heuristic algorithm to concurrently determine both aquifer 86 

characteristics and the groundwater pollution sources. Pan et al. (2021) integrated a 87 

Bayesian-regularized deep neural network surrogate to jointly infer pollution source 88 

details and hydraulic conductivity. Hou et al. (2021) integrated homotopy-based inverse 89 

optimization theory with a multi-kernel extreme learning machine to finish the co-90 

identification of contamination sources and aquifer parameters. Luo et al. (2023) 91 

leveraged machine learning techniques to establish an inverse relationship between 92 

model outputs and inputs, enabling fast and simultaneous retrieval of pollution source 93 

attributes and hydrogeological properties. Although these methods have advanced the 94 

field, improving recognition accuracy remains a major challenge in the simultaneous 95 

identification process. 96 

The simulation-optimization method has been widely applied in GCI research 97 

because of its robust mathematical foundation (Mirghani et al., 2009) and its ability to 98 

identify multiple variables simultaneously. To enhance both identification accuracy and 99 

efficiency using simulation-optimization, two key approaches are employed: one is to 100 
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optimize the model solution method for better performance, and the other is to construct 101 

a surrogate model with high approximation accuracy. Optimizing the model solution 102 

method is essential. Since heuristic optimization algorithms are more capable of 103 

identifying global optima, many have been applied to GCI. Mirghani et al. (2012) 104 

implemented a genetic algorithm within optimization to identify sources of 105 

contamination. Jiang et al. (2013) combined a harmony search algorithm with a 106 

contamination transport simulation model to characterize contamination sources. 107 

Additional methods, such as simulated annealing (Rao, 2006; Yeh et al., 2007; Jha and 108 

Datta, 2013) and sparrow search algorithms (SSA) (Pan et al., 2022b), have also been 109 

applied to GCI. However, increasing dimensionality and complexity in GCI problems 110 

make it difficult for many optimization algorithms to efficiently search for global 111 

optima. Constructing high-accuracy surrogate models is another crucial strategy. 112 

Surrogate models can significantly reduce computation time and improve inversion 113 

efficiency. Among these models, the widely used kriging (Chugh et al., 2018; Zhang et 114 

al., 2019; Jiang et al., 2020) and backpropagation neural network (BPNN) (Sargolzaei 115 

et al., 2012; Zhang et al., 2021; Wang et al., 2024b) methods offer high flexibility and 116 

strong nonlinear fitting capabilities. Despite these advances, previous studies have 117 

overly focused on point source contamination (PSC) or areal source contamination 118 

(ASC) scenarios in isolation. However, the identification of precise synergistic 119 

identification of PSC and ASC of groundwater and combined hydrogeological 120 

parameters has not been effectively solved. 121 

Based on the above problems, this paper proposes an inversion framework 122 
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integrating a machine learning surrogate model with the artificial hummingbird 123 

algorithm (AHA) using the simulation-optimization method (Fig. 1). Both BPNN and 124 

kriging were utilized to develop surrogate models for the simulation model. AHA was 125 

introduced to solve the optimization model, with its solution results compared against 126 

those of PSO and SSA. The applicability of this inversion framework was evaluated 127 

through its application to both PSC and ASC scenarios. The objectives of this study 128 

were: (1) Develop a flexible groundwater pollution inversion scheme that can reliably 129 

invert parameters under various groundwater pollution scenarios; (2) Adopt an 130 

integrated parameter identification strategy to achieve the simultaneous identification 131 

of multiple variables, including pollutant release characteristics and hydrogeological 132 

parameters; (3) Design an optimization-based surrogate modeling method combining 133 

meta-heuristic search algorithms with neural network surrogate models to efficiently 134 

explore the solution space and reduce the risk of getting stuck in local optima during 135 

inversion calculations; (4) Evaluate the performance of the proposed scheme under 136 

various noise intensities and pollution patterns to validate its robustness and application 137 

potential in groundwater pollution inversion problems. 138 

The main innovations are as follows: (1) This study constructed an adaptive inversion 139 

framework that maintains high robustness in both PSC and ASC. (2) In PSC case, 140 

synergistic identification of source information, hydraulic conductivity, and boundary 141 

conditions. (3) Apply the AHA optimization model to solve the inverse problem of 142 

groundwater pollution to obtain the global optimal solution of the inverse problem and 143 

further improve the inversion accuracy. The good compatibility between AHA and the 144 
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BPNN surrogate model ensures the robustness and stability of the inversion process. 145 

2. Methodology 146 

2.1. Simulation model 147 

In this study, the numerical groundwater simulation framework comprised both a flow 148 

component and a solute transport module. The fundamental two-dimensional (2D) 149 

partial differential equation governing groundwater flow is formulated as follows: 150 

( ( ) )  ( , )  , 1,2 0ij

i j

H H
K H z W x y S i j t

x x t


  
− + =   
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    (1) 151 

where Kij is hydraulic conductivity, W is the volumetric flux per unit volume, μ is the 152 

specific yield, H is the water level elevation, z is the elevation of the aquifer floor, and 153 

S is the boundary of the spatial domain.  154 

( ) ( )ij i

i j i e

C C R
D u C

t x x x n

   
= − +

   
       (2) 155 

ij

i

e i

K H
u

n x


=


         (3) 156 

where C denotes the contaminant concentration in groundwater, t is the temporal 157 

variable, ui indicates the average flow velocity, R accounts for source and sink 158 

contributions, Dij refers to the hydrodynamic dispersion tensor, and ne represents the 159 

effective porosity of the medium. We used the MODFLOW-2005 (Harbaugh., 2005) 160 

and MT3DMS (Zheng et al., 2012) numerical models to obtain numerical solutions for 161 

groundwater flow and solute transport equations. (Asher et al., 2015). 162 

2.2. Kriging method 163 

Kriging was employed to develop the underlying framework of the approach by 164 

capturing both the correlation and stochastic variability of variables within a confined 165 



11 

 

spatial domain, thereby enabling the estimation of optimal regional values. The 166 

association between input and output variables is described through a regression-based 167 

expression as shown below (Zhao et al., 2022a): 168 

1

1

( ) ( ) ( )
k

i i

i

y x f x z x
=

= +        (4) 169 

where 𝑦̂(𝑥)  is the estimated value of pollutant concentration 𝑦(𝑥) , 𝑓𝑖(𝑥)(𝑖 =170 

1, ⋯ , 𝑘) is the basis function of the known regression model, and 𝑧(𝑥) is the random 171 

part. 172 

The following equations were satisfied: 173 
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where 𝑅(𝑥𝑖, 𝑥𝑗)  is the correlation function between the sampled point 𝑥𝑖  and 𝑥𝑗 . 175 

(𝑖 = 1,2, ⋯ , 𝑚; 𝑗 = 1,2, ⋯ , 𝑚) 176 

The Gaussian model is commonly used: 177 
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where 𝜃𝑘 is a coefficient to be determined, which can be obtained by calculation. 179 

2.3. The BPNN method 180 

A typical back-propagation neural network (BPNN) is composed of three 181 

fundamental components (Fig. 2): (1) an input layer, (2) the hidden layers, and (3) an 182 

output layer. The computation process proceeds in two main phases: forward 183 

propagation and backward propagation (Chen et al., 2010; Zhang et al., 2018). 184 

1) During forward propagation, data are introduced into the network via the input 185 
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layer, and subsequently processed through successive layers to yield the final output. 186 

BPNNs frequently employ a nonlinear sigmoid activation function: 187 

1
( )

1 x
f x

e−
=

+
   (7) 188 

The calculation of the forward transmission output layer is: 189 
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where Oi represents the output of neuron i, Oj is the output of neuron j, b is the bias 191 

term, and Wij is the weight of the connection between neuron i and neuron j. 192 

2) Backward propagation involves the random assignment of the weight of the first 193 

positive feedback process within the output layer. The adjustment of the parameters of 194 

the entire network is required. Network adjustment is performed by minimizing the 195 

discrepancy between the predicted output and the target category in the output layer. 196 

Specifically, for the output layer: 197 

(1 )( )j j j j jE O O T O= − −    (9) 198 

where Ej represents the error value at the jth node and Tj denotes the corresponding 199 

output. The hidden layer's output is determined by summing the weighted contributions 200 

from the errors of the lower nodes: 201 

(1 )j j j k jkk
E O O E W= −     (10) 202 

where Ek is the error gradient for the subsequent node k and Wjk is the weight connecting 203 

node j to t node k. Following error calculation, the weight is adjusted according to the 204 

error gradient: 205 
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 (11） 206 

where η is the learning rate. In Case 1, the BPNN architecture was configured as 19-30-207 
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45, and in Case 2 as 15-20-50. The number of neurons in each layer was empirically 208 

optimized using grid search combined with cross-validation to minimize the root mean 209 

square error (RMSE) and effectively prevent overfitting. The sigmoid function was 210 

employed as the activation function, and the network was trained using the Bayesian 211 

Regularization algorithm. The maximum number of training iterations was set to 1000, 212 

and the learning rate was set to 0.01. 213 

2.4 Artificial Hummingbird Algorithm (AHA) 214 

The AHA consists of three main elements: food sources, hummingbirds, and the visit 215 

table. Hummingbirds typically assess food sources based on factors such as nectar 216 

quality, individual flower nectar content, and replenishment rates. For simplicity, it can 217 

be assumed that all food sources share the same flower type and number. 218 

Hummingbirds within a population can exchange information, be assigned to specific 219 

food sources, track nectar replenishment rates, and record the duration each food source 220 

remains unvisited. The visit table records the time since a hummingbird last visited a 221 

food source, and is used to assign visit levels; hummingbirds can harvest more nectar 222 

by first accessing food sources with higher access levels, following which food sources 223 

with the highest nectar replenishment rate are chosen (Zhao et al., 2022b). The AHA is 224 

algorithmically described below. 225 

(1) Initialization 226 

Firstly, n hummingbirds are randomly placed on n food sources: 227 

( ) 1, ,ix Low r Up Low i n= +  − =      (12) 228 
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The access table for the food source is then initialized: 229 

,

0          
  1, , ;  1, ,

null      
i j

if i j
VT i n j n

i j
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= = =

=
   (13) 230 

where Low and Up are the lower and upper boundaries for a d-dimensional problem 231 

respectively, r represents a random vector of [0,1], and xi is the position of the ith food 232 

source. For 𝑖 = 𝑗, 𝑉𝑇𝑖,𝑗 = 𝑛𝑢𝑙𝑙 indicates the sourcing of food from a specific source. 233 

For 𝑖 ≠ 𝑗, 𝑉𝑇𝑖,𝑗 = 0 indicates that the ith hummingbird has just visited the jth food 234 

source in the current iteration. 235 

(2) Guided foraging 236 

Hummingbirds identify food sources in two steps: (1) identifying the food source 237 

with the highest access level; (2) selecting the food source with the highest nectar 238 

replenishment rate. After identifying the target food source, the hummingbird can fly to 239 

the target source to feed. During foraging, direction switching vectors used to control 240 

the availability of one or more directions in the D-dimensional space are introduced to 241 

model three flight skills: omnidirectional, diagonal, and axial flight. These flight 242 

models can be extended to the d-D space, and the mathematical model of axial flight is: 243 

( )
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Diagonal flight is defined as: 245 
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Omnidirectional flight is defined as: 247 

 
( ) 1     1, ,iD i d= =  (16) 248 

where 𝑟𝑎𝑛𝑑𝑖([1, 𝑑])  is a randomly generated integer from 1 to d, 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(𝑘) 249 

creates a random permutation of integers from 1 to k, and r1 is a random number in the 250 

range of 0 to 1. 251 

Hummingbirds can access and obtain target food sources through these flight abilities. 252 

New food sources identified during the search are recorded along with previously 253 

identified food sources. The guided foraging behavior and candidate food sources can 254 

be represented as: 255 

, ,( 1) ( ) ( ( ) ( ))i i tar i i tarv t x t a D x t x t+ = +   −      (17) 256 

~ (0,1)a N          (18) 257 

where 𝑥𝑖,𝑡𝑎𝑟(𝑡) is the location of the food source that the ith hummingbird plans to 258 

visit, 𝑥𝑖(𝑡) represents the location of the ith food source at time t, and a is a leading 259 

factor obeying a normal distribution.  260 

The location of the ith food source is updated as: 261 

( )      ( ( )) ( ( 1))
( 1)

( 1)       ( ( )) ( ( 1)) 

i i i

i

i i i

x t f x t f v t
x t

v t f x t f v t

 +
+ = 

+  +
   (19) 262 

where 𝑓(∙) represents the function fitness value. The formula for updating the location 263 

can contribute to the preferential selection of food sources with a high nectar supply 264 

rate. 265 
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(3) Territorial foraging 266 

Since the quality of food sources within a foraging area may vary, hummingbirds 267 

actively search within that area. The regional foraging strategies and candidate food 268 

sources of hummingbirds can be represented as: 269 

( 1) ( ) ( )i i iv t x t b D x t+ = +         (20) 270 

~ (0,1)b N         (21) 271 

where b is a territorial factor obeying a normal distribution. Eq. (20) allows different 272 

hummingbirds to use their specific flight skills to identify new food sources near the 273 

target source.  274 

(4) Migration foraging 275 

Migration coefficients are defined in the AHA algorithm to prevent the generation of 276 

local optimums. The exceedance of the number of iterations of the set migration 277 

coefficient results in the hummingbird located in the worst food source repeating a 278 

search for a new food source across the entire search range and the subsequent updating 279 

of the visit table. 280 

( 1) ( )warx t Low r Up Low+ = +  −      (22) 281 

where 𝑥𝑤𝑜𝑟  is the food source with the worst nectar supply rate. The migration 282 

coefficient relative to population size can be defined as. 283 

2M n=          (23) 284 
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3. Case studies 285 

The present study designed a groundwater PSC case study and an ASC case study to 286 

verify the applicability of the proposed GCI framework. Since the present study 287 

established two hypothetical examples, a set of variables to be identified and 288 

background variables for input into the groundwater contamination simulation model 289 

were established for each example for forward computation. The pollutant 290 

concentrations monitored at wells were used as observed data. The robustness of the 291 

inversion framework was verified by adding random noise to the observed data, 292 

expressed as: 293 

1 (1 rand),  0.5%,1% and 2%l l = +  =     (24) 294 

where 𝛼  represents the observation data, 𝛼 1 indicates observation data with added 295 

noise, l is the max disturbance range, and rand is a random number between −1 and 1. 296 

3.1 Case study 1: groundwater PSC 297 

The study area is 2,500 m and 1,400 m from east to west and north to south, respectively, 298 

with topography decreasing from west to east and groundwater flow from northwest to 299 

southeast. The study area contains a heterogeneous isotropic aquifer, and the present 300 

study focused on a layer of diving aquifer with a thickness of 10 m (Table 1). The 301 

aquifer comprises unconsolidated sediments, primarily well-sorted coarse sand and 302 

gravel. Groundwater flow was represented as 2D steady flow, and the study area was 303 

divided into three areas according to differences in hydraulic conductivities. Since the 304 

northern and southern parts of the study area are very weakly permeable formations, 305 

they were generalized in the present study as no-flow boundaries. Rivers formed the 306 
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boundaries of the western and eastern parts, and were generalized as specific head 307 

boundaries (Fig. 3). 308 

In this case study, the variables to be identified fell into three main categories: (1) 309 

head values at the specific head boundaries. including H1 and H2; (2) hydraulic 310 

conductivities for each part of the study area, including K1, K2, and K3; (3) the intensities 311 

of the release of pollutants from the two sources during the release periods: S = SaTb; a 312 

= 1, 2; and b = 1, 2, 3, 4, 5 (Table S1). SaTb represents the intensity of pollution source 313 

a during the bth stress period; this case study had a study period of 10 years (Table 1, 314 

Fig. 4), with both sources only releasing pollutants in the first five years (Table S2). 315 

Five wells were established to monitor the concentrations of groundwater contaminants 316 

once a year. The study area was spatially discretized into 50 m × 50 m grids (Table 1).  317 

3.2 Case study 2: groundwater ASC 318 

The present study selected the hypothetical case study used by Pan et al. (2022a) as a 319 

case study. The site has an area of 5 km2, with a length of 2.5 km and width of 2 km 320 

from east to west and south to north, respectively. Groundwater flows from northwest 321 

to southeast. The study area was conceptualized as a heterogeneous isotropic aquifer 322 

and the current study focused on a diving aquifer, in which flow was represented as 2D 323 

steady flow. The study area’s aquifers were categorized into four zones based on 324 

hydraulic conductivity, labeled K1 to K4. The western and eastern river boundaries were 325 

modeled as specified head boundaries, while the northern and southern regions, 326 

characterized by low permeability granite, were treated as no-flow boundaries (Fig. 5, 327 

Table 2). The aquifer comprises unconsolidated sediments, primarily well-sorted coarse 328 
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sand and gravel. 329 

Within this case study, the variables to be identified fell into two categories: (1) 330 

hydraulic conductivities of each part of the study area, including K1 to K4; (2) the 331 

intensities of pollutants released by three areal sources of contamination: S = SaTb; a = 332 

1, 2, 3; and b = 1, 2, 3, 4, 5 (Table S3). SaTb indicates the intensity of pollution source a 333 

during the bth stress period. A total of nine monitoring wells were established to monitor 334 

the concentrations of groundwater contaminants once a year (Fig. 6). The study area 335 

was spatially discretized as 20 m × 20 m grids (Table 2). 336 

4. Model construction 337 

4.1 Establishment of surrogate models 338 

The present study established two case studies: the PSC and the ASC. The variables to 339 

be identified for the PSC case study included three categories with 15 dimensions, 340 

whereas those to be identified for the ASC case study included two categories with 19 341 

dimensions. The present study used the Latin hypercube method to sample within the 342 

feasible domain of the variables to be identified. This sampling process was 343 

implemented in MATLAB. Sample groups for the PSC and ASC case studies totaled 344 

390 and 490, respectively, and the input sample dataset was generated by random 345 

combination. 346 

The parameters obtained from the above sampling were input into the groundwater 347 

simulation model. The simulation model was then run to obtain the pollutant 348 

concentrations at the 390 and 490 monitoring groups in the PSC and ASC case studies, 349 

respectively. These simulated pollutant concentrations were used as the output sample 350 
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dataset, and the output sample dataset was combined with the input sample dataset to 351 

form the input-output sample dataset. The kriging and BPNN methods were used to 352 

establish the surrogate models of the simulation model. The first 350 and 440 groups 353 

of the PSC and ASC case input-output sample datasets, respectively, were used as 354 

training samples in each case study to construct surrogate models, while the remaining 355 

40 and 50 groups were used as test samples to evaluate the accuracy of the surrogate 356 

models. 357 

The present study applied the coefficient of determination (R2), the mean absolute 358 

relative error (MARE), and the root mean square error (RMSE) to assess the accuracy 359 

of the fit of the estimations of the surrogate models to the output of the simulation model. 360 

1) R2: The closer R2 to 1, the more accurate the surrogate model is. 361 
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2) MARE: The average deviation between the outputs of the surrogate model and the 363 

outputs of the simulation model. 364 
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3）RMSE: The value of the RMSE is inversely proportional to the fitting accuracy 366 

of the surrogate model. 367 
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       (27) 368 

where iy  is the average true value, n is the number of samples, ˆ
iy  is the output of 369 

the surrogate model, yi is the true value of the variable to be identified. 370 
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4.2 Establishment of the optimization models 371 

This study employed the CGI through the S-O method, which consists of two main 372 

components: a groundwater contaminant transport simulation model and an 373 

optimization model aimed at minimizing the least squares error between the simulated 374 

and true values. To reduce the computational burden caused by repeated simulation 375 

calls, a surrogate model was used in place of the simulation model. While the same 376 

objective function was applied in both case studies, there were minor variations in the 377 

decision variables and constraints. The decision variables chosen for case study 1 378 

included the boundary head values, the hydraulic conductivities of the site, and the 379 

release history of the contaminant source; those for case study 2 included the hydraulic 380 

conductivities of the site and the release history of the contaminant source. The 381 

constraint conditions were influenced by the decision variables. The optimization was 382 

expressed as: 383 
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      (28) 384 

where 𝑧 is the objective function, 𝐶𝑚 is the monitored pollutant concentration in the 385 

mth monitoring well, 𝐶̂𝑚  is the simulated pollutant concentration in the mth 386 

monitoring well, 𝐶 is the pollutant concentration, 𝐻 is the head value at the boundary, 387 

𝑠 is the pollution source intensity, 𝑘 represents the hydraulic conductivities of the site, 388 
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𝐶𝐿  and 𝐶𝑈  are the upper and lower bound values of pollutant concentration, 389 

respectively, and 𝑠𝑙 and 𝑠𝑢 are the upper and lower bound values of pollution source 390 

intensity, respectively. 391 

The AHA was used to identify the optimal combination of parameters according to 392 

the objective function through multiple iterative calculations, with this parameter set 393 

adopted as the result of inversion. The numbers of hummingbird populations and 394 

iterations were set to 500 and 1,000, respectively. 395 

5. Results 396 

5.1 Surrogate models 397 

The surrogate model for case study 1 using the kriging method achieved an R² of 0.9942, 398 

MARE of 13.43%, and RMSE of 11.8262 (Table 3), while the BPNN method produced 399 

values of 0.9994, 3.70%, and 3.6526, respectively (Table 3). Similarly, for case study 400 

2, the kriging method yielded an R² of 0.9837, MARE of 9.98%, and RMSE of 37.7547, 401 

whereas the BPNN method provided corresponding values of 0.9989, 3.70%, and 402 

3.6526 (Table 3). The BPNN method demonstrated superior goodness-of-fit statistics 403 

compared to the kriging method in both case studies. While the simulation model 404 

required 50 hours for 1,000 iterations, the BPNN surrogate model completed the same 405 

number of iterations in 67 seconds, significantly reducing the computation time. 406 

5.2 Optimization algorithms 407 

The BPNN surrogate model was embedded into the optimization model to optimize the 408 

parameter combination according to the objective function. This study employed AHA 409 

within the optimization process and compared its performance against SSA and PSO 410 
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under the same population size and number of iterations. In the optimization of case 411 

study 1, PSO failed to converge after reaching the maximum number of iterations, while 412 

AHA and SSA converged after 120 and 350 iterations, respectively (Fig. 7a). For case 413 

study 2, both PSO and SSA failed to converge within the maximum number of iterations, 414 

whereas AHA converged after 150 iterations (Fig. 7b). 415 

Given the results from case study 1, where both AHA and SSA converged, the 416 

subsequent analysis focused on these two algorithms. AHA achieved an optimal search 417 

value closer to the true value and reached the global optimum, while SSA settled at a 418 

local optimum (Fig. 8). These results demonstrate that AHA not only converged faster 419 

than SSA but also identified the global optimum, thereby improving the accuracy and 420 

efficiency of GCI. 421 

5.3 Inversion results and robustness assessment 422 

The BPNN-AHA inversion framework developed in this study was applied to identify 423 

groundwater PSC and ASC and obtain inversion values. To verify the framework’s 424 

robustness and reliability, random noise levels of 0.5%, 1%, and 2% were added to the 425 

observed data. The average relative errors under each noise level were recorded (Table 426 

4, Table 5). The highest inversion accuracy was achieved in the noise-free case for both 427 

case study 1 and case study 2, with average relative errors of 1.58% and 2.03%, 428 

respectively (Table S4). At a 0.5% noise level, the average relative errors for case study 429 

1 and case study 2 were 1.71% and 2.3%. At 1% noise, they were 2.03% and 2.33%, 430 

while at 2% noise, they increased to 2.55% and 3.52%, respectively. Although noise 431 

impacted the inversion accuracy, the framework maintained high performance, with the 432 
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average relative errors for both case studies remaining below 5% (Fig. 9). These results 433 

confirm the strong robustness and stability of the proposed inversion framework. 434 

There are significant differences in sensitivity to noise among different parameter 435 

categories. Hydraulic conductivity: These parameters showed low sensitivity to noise, 436 

with relative errors remaining below 3% in all scenarios for both PSC and ASC cases. 437 

Their errors increased gradually with noise but remained stable, indicating strong 438 

robustness. Boundary head values (PSC case only): These parameters also exhibited 439 

excellent noise resistance, with relative errors consistently below 1% even at 2% noise 440 

level. Source release intensities: This group showed the highest sensitivity to noise. At 441 

a 2% noise level, some source parameters (e.g., S1T1 in PSC, S1T3, S1T4, S3T2, S3T3, S3T5 442 

in ASC) had relative errors exceeding 6%–10%, reflecting their higher inversion 443 

uncertainty under noisy conditions. 444 

6 Discussion 445 

6.1 Analysis of surrogate models 446 

The results of this study show that the proposed BPNN–AHA framework achieves high 447 

accuracy, strong robustness, and efficient convergence in GCI tasks, performing 448 

consistently well in both PSC and ASC scenarios, even under varying noise levels. In 449 

the PSC and ASC cases analyzed here, the R² values reached 0.9994 and 0.9989, and 450 

the MARE values were 3.70% and 4.48%, respectively, demonstrating the model’s 451 

excellent capability to approximate the input–output relationships of the simulation 452 

model. The BPNN surrogate model, with its simple structure, high flexibility, and broad 453 

adaptability, effectively balances accuracy and generalizability—characteristics that are 454 
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essential for practical inversion applications. Compared to other surrogate modeling 455 

approaches reported in recent GCI research—such as long short‐term memory neural 456 

networks (Li et al., 2021), light gradient boosting machines (Pan et al., 2023), and deep 457 

residual networks (Xu et al., 2024b)—the proposed framework leverages the 458 

adaptability of BPNN together with the global search and adaptive convergence 459 

mechanisms of the artificial hummingbird algorithm to deliver consistently accurate 460 

and stable inversion results. In this paper, the ASC is drawn from Pan et al. (2022a), 461 

which had been widely validated in other studies. For example, Li et al. (2023) used the 462 

same case to validate an inversion method, applying a multilayer perceptron model to 463 

the simulation, achieving the R² of 0.9999 and the MARE of 2.85%. Similarly, Xu et 464 

al. (2024a) employed automatic machine learning methods for surrogate model 465 

construction, achieving the R² of 0.9754 and the MARE of 4.154%. Compared to the 466 

surrogate models developed by these researchers, the BPNN model constructed in this 467 

study also demonstrates excellent approximation accuracy, further validating the 468 

advantages of the proposed method. In summary, the proposed BPNN surrogate model 469 

has practical advantages in tasks related to GCI, thereby enhancing its applicability. 470 

Due to its relatively simple architecture and low computational requirements, the 471 

BPNN model can be trained and updated efficiently even under limited computational 472 

resources. Additionally, the model demonstrates strong generalization capabilities in 473 

both PSC and ASC scenarios, indicating that it is not specific to a particular case. This 474 

adaptability is crucial for practical groundwater inversion problems, as data availability 475 

and system complexity often vary significantly across different locations. These 476 
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characteristics highlight the comprehensive advantages of the BPNN model in terms of 477 

accuracy, efficiency, and flexibility, making it a reliable and practical choice for 478 

surrogate modeling in groundwater simulation. 479 

6.2 Analysis of optimization algorithms 480 

This paper compares the AHA with PSO and SSA under the same preconditions and 481 

finds that AHA offers clear advantages in both convergence speed and global 482 

optimization capability. Based on these results, AHA was chosen to solve the 483 

optimization model, and its adaptability was further verified in two different cases. In 484 

the field of optimization algorithms, the "no free lunch principle" (Zhao et al., 2022b) 485 

emphasizes that no single algorithm performs well across all optimization problems. 486 

When addressing real-world problems, it is essential to understand the nature of the 487 

problem thoroughly before selecting the appropriate optimization algorithm. This 488 

principle encourages researchers to develop new and more effective algorithms from 489 

different perspectives, providing more options for optimization problem researchers. 490 

This insight also applies to groundwater pollution traceability. Given the diverse nature 491 

of pollution traceability problems, it is challenging for any single optimization 492 

algorithm to be universally applicable. As research deepens, these problems tend to 493 

become more high-dimensional and nonlinear, necessitating the exploration of 494 

algorithms with stronger global optimization capabilities and higher search efficiency. 495 

Additionally, it is important to consider alternative uses of optimization methods. One 496 

promising approach involves using optimization techniques to improve machine 497 

learning models by identifying optimal parameters (hyperparameters) during training, 498 
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which can significantly enhance model accuracy (Jia et al., 2024). 499 

6.3 Inversion analysis 500 

Previous studies related to GCI employed a variety of methods to conduct either single 501 

or simultaneous inversion characterization of pollution sources and to identify 502 

hydrogeological parameters of the model. Li et al. (2022) identified the number, 503 

location, and release history of pollution sources, while Li et al. (2008) focused on 504 

determining the hydraulic conductivities of a study site. Bai et al. (2022) utilized 505 

inversion techniques to simultaneously characterize pollution sources and identify the 506 

hydraulic conductivities within their simulation models. While some studies have 507 

applied inversion to the boundary conditions of the simulation model (Jiao et al., 2019), 508 

fewer studies have simultaneously characterized pollution sources and identified both 509 

hydrogeological parameters and boundary conditions of the model. Source information, 510 

model hydrogeological parameters, and boundary conditions are all critical components 511 

of groundwater contamination simulation models. Inaccuracies in any of these 512 

components can affect the overall results of inversion, making it essential to identify all 513 

components simultaneously. Therefore, in the PSC case of this study, the release history 514 

of the pollutant source, the hydraulic conductivity of the model, and the specific head 515 

boundary values were simultaneously identified. This simultaneous identification of 516 

multiple key parameters enhances the reliability and effectiveness of decision support 517 

systems. 518 

In addition to the methods applied in this study, data assimilation methods are also 519 

widely used in the field of groundwater pollution inversion. They can combine 520 
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observational data with numerical models to improve state estimation and parameter 521 

inversion (Zafarmomen et al., 2024). Many researchers have successfully applied data 522 

assimilation methods to the iterative optimization of pollutant transport states and 523 

related parameters, significantly improving inversion accuracy and reducing prediction 524 

uncertainty. For example, Pan et al. (2022a) proposed a refined particle filter with a 525 

deep learning method surrogate as an inverse framework for groundwater pollution 526 

source estimation. This framework was evaluated under different levels of 527 

observational error through estimation tasks for point source pollution cases and non-528 

point source pollution cases. Wang et al. (2023) utilized an improved particle filter 529 

method for groundwater pollution source identification. Zhang et al. (2024) used an 530 

iterative local updating ensemble smoother method to simultaneously identify pollution 531 

source information and hydraulic conductivity fields. However, both the method 532 

proposed in this study and data assimilation methods have their own advantages and 533 

disadvantages. The method proposed in this study possesses strong fine-grained search 534 

capabilities but its performance is highly dependent on the selection of initial points. 535 

Data assimilation methods can integrate multi-source data, significantly improving the 536 

spatio-temporal consistency of inversion results; however, their fine-grained search 537 

capabilities are somewhat limited. Future research could explore combining the real-538 

time updating capabilities of data assimilation with the adaptability and optimization 539 

efficiency of the framework proposed in this study to further enhance the adaptability 540 

and performance of groundwater pollution inversion. 541 

One of the main methodological motivations of this study is the integration of the 542 
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BPNN surrogate model with the AHA for GCI. This choice is grounded both in the 543 

inherent characteristics of GCI problems and in the complementary mechanisms of the 544 

two methods. GCI is a typical high-dimensional, nonlinear, and ill-posed inverse 545 

problem. The mapping from observed contaminant concentrations to source 546 

characteristics and hydrogeological parameters is often multimodal and nonconvex. In 547 

such cases, surrogate models such as BPNN can provide a fast and flexible 548 

approximation to computationally demanding groundwater simulations, but their use 549 

inevitably introduces approximation errors into the inversion objective function. These 550 

errors may create local irregularities in the objective function landscape, which can 551 

mislead optimizers and cause premature convergence—particularly when the 552 

optimization algorithm lacks a mechanism to balance exploration and exploitation 553 

adaptively. AHA offers notable advantages in addressing these issues. Its bio-inspired 554 

mode-switching strategy alternates dynamically between diversified search and focused 555 

search. In the early stages of optimization, the broad and varied exploration capability 556 

helps to survey the global search space and reduces the risk of becoming trapped in 557 

spurious local optima caused by surrogate-induced noise. As the search proceeds, the 558 

algorithm adaptively shifts toward more intensive exploitation, concentrating 559 

computational effort on promising regions and thereby accelerating convergence. This 560 

dynamic adjustment is particularly important in GCI problems, where the optimal 561 

parameter region is often narrow and embedded within a complex and noisy search 562 

space. In addition, AHA’s adaptive update mechanism adjusts search trajectories in 563 

response to population feedback, effectively mitigating the influence of local 564 
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fluctuations in the surrogate-predicted objective function on the optimization process. 565 

This robustness to noisy or irregular fitness landscapes complements the BPNN’s 566 

ability to generalize across diverse contamination scenarios. It is worth emphasizing 567 

that this integration is not a simple “algorithm replacement,” but a targeted design 568 

choice based on the structural characteristics of the problem: BPNN provides broad 569 

adaptability to varying hydrogeological conditions, while AHA contributes resilience 570 

and fine-tuning capability when the optimization landscape is distorted by surrogate 571 

approximation errors. This synergy allows the proposed framework to maintain both 572 

high accuracy and strong robustness under different contamination scenarios and noise 573 

levels. More importantly, the underlying design principle—matching the characteristics 574 

of the surrogate model with the search dynamics of the optimization algorithm—has 575 

broader applicability to other environmental inversion problems. 576 

6.4 Limitations 577 

The overall inversion framework in this paper combines BPNN and AHA and is 578 

validated under different noise scenarios to account for the effect of noise in the 579 

observed data. The results indicate that the inversion framework demonstrates high 580 

robustness. However, a limitation of this paper is that noise is not addressed, and its 581 

presence can contaminate the observed data, further impacting the accuracy of GCI. 582 

Noise elimination methods could be applied to the observed data in future studies. 583 

Another major limitation is the generalization of the actual aquifer system. 584 

Groundwater systems are often complex, necessitating model simplifications through 585 

assumptions (e.g., homogeneity, isotropy) that may not reflect the actual geological 586 
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conditions, thereby affecting model accuracy. To address actual problems, the 587 

hydrogeological conditions of the study area should be thoroughly investigated, 588 

ensuring the model closely represents the actual situation, reducing error, improving 589 

model accuracy, and ultimately enhancing inversion accuracy. In terms of 590 

computational time and efficiency, by integrating the agent model, we can avoid 591 

repeatedly calling the numerical simulation model during the optimization process, 592 

thereby significantly improving computational efficiency. In our current 593 

implementation, thousands of optimization iterations can be completed in just a few 594 

minutes. However, as the complexity of the inversion problem increases, the number of 595 

required samples and the training time for the surrogate model will also increase 596 

significantly. Additionally, the current BPNN surrogate model is relatively lightweight, 597 

while deeper networks or ensemble-based surrogate models may require more 598 

computational resources. To address these issues, potential future solutions include 599 

parallel computing, adaptive sampling, and hybrid surrogate strategies that balance 600 

accuracy and efficiency. 601 

7 Conclusions 602 

In this study, a BPNN-AHA inversion framework was developed to accurately and 603 

synergistically identify groundwater point and areal sources of contamination and 604 

combined hydrogeologic parameters. Among them, the BPNN surrogate model can 605 

well replace the simulation model, and the AHA had good global optimization 606 

capability and excellent solution accuracy. The robustness of the proposed methodology 607 

was verified by applying the inversion framework to scenarios with different noise 608 
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levels. The conclusions of the present study are listed below: 609 

(1) The construction of a surrogate model to the simulation model satisfied the fitting 610 

accuracy requirement while also significantly reducing the computational time. The 611 

current study established BPNN and kriging surrogate models, with a comparison of 612 

the outputs of the models illustrating that the former obtained a higher fitting accuracy, 613 

with R² values of 0.9994 and 0.9989 for case 1 and case 2, respectively. Therefore, it 614 

can be applied to the inversion framework. 615 

(2) The present study applied AHA within the model optimization, with the results 616 

compared to those of PSO and SSA optimization. Compared to PSO and SSA, AHA 617 

rapidly reached convergence and identified the global optimum, the MAPE values for 618 

the inversion results of case 1 and case 2 were 1.58% and 2.03%, respectively. 619 

(3) The proposed inversion framework can realize the synergistic identification of PSC 620 

and ASC combined with hydrogeological parameters, which can ensure high 621 

identification accuracy, and the inversion framework has strong robustness under 622 

different noise levels. While individual identification simplifies the problem but may 623 

ignore correlations between parameters, synergistic identification improves the 624 

accuracy and consistency of identification by synchronizing the estimation of pollution 625 

sources and hydrogeological parameters. However, noise and parameter estimation 626 

uncertainties may still affect the reliability of the inversion results. Therefore, 627 

uncertainty analysis needs to be further considered in subsequent studies. Overall, the 628 

BPNN-AHA inversion framework has excellent inversion performance and strong 629 

practicability, which can provide a reliable basis for groundwater pollution remediation 630 
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and management. For researchers working in groundwater contamination source 631 

identification, this study underscores that method selection should not be guided solely 632 

by algorithmic novelty, but should be informed by the inherent complexity of the 633 

problem and the compatibility between the research question and the chosen approach. 634 

In groundwater contamination inversion, selecting a highly compatible method can 635 

substantially improve efficiency, while leveraging and organically integrating the 636 

strengths of different methods can greatly enhance robustness. This concept is equally 637 

applicable to a broader range of complex environmental inversion problems, offering 638 

valuable insights and practical potential.  639 
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Figure captions 824 

Figure 1: General process used in the present study to construct the machine learning 825 

surrogate model-artificial hummingbird algorithm framework. 826 

Figure 2: Structure of a back-propagation neural network (BPNN). 827 

Figure 3: Schematic diagram of case study 1. 828 

Figure 4: Distributions of concentrations of groundwater pollutants over different 829 

periods: (a)–(j) represent 1–10 years. 830 

Figure 5: Schematic diagram of case study 2. 831 

Figure 6: Distributions of concentrations of groundwater pollutants over different 832 

periods: (a) 1 year; (b) 2 years; (c) 3 years; (d) 4 years; (e) 5 years. 833 

Figure 7: Convergence curves of the sparrow search algorithm (SSA), particle swarm 834 

optimization (PSO), and artificial hummingbird algorithm (AHA) applied to case study. 835 

(a) case study 1; (b) case study 2. 836 

Figure 8: Comparison between the true values and optimal values for the sparrow 837 

search algorithm (SSA) and artificial hummingbird algorithm (AHA). 838 

Figure 9: Comparison of relative errors for case studies 1 and 2 under different noise 839 

levels. 840 
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Figure 4. Distributions of concentrations of groundwater pollutants over different 852 

periods: (a)–(j) represent 1–10 years.853 
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Figure 5. Schematic diagram of case study 2. 855 
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Figure 6. Distributions of concentrations of groundwater pollutants over different 857 

periods: (a) 1 year; (b) 2 years; (c) 3 years; (d) 4 years; (e) 5 years. 858 
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optimization (PSO), and artificial hummingbird algorithm (AHA) applied to case study. 861 
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Figure 8. Comparison between the true values and optimal values for the sparrow 865 

search algorithm (SSA) and artificial hummingbird algorithm (AHA). 866 
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Figure 9. Comparison of relative errors for case studies 1 and 2 under different noise 868 

levels. 869 



53 

 

Table 1 Fundamental values and ranges of aquifer parameters. 870 

Parameter Value or range 

Hydraulic conductivity of zone 1, K1 (m/d) (50,70) 

Hydraulic conductivity of zone 2, K2 (m/d) (35,55) 

Hydraulic conductivity of zone 3, K3 (m/d) (40,60) 

Specific yield of zone 1, μ1 0.27 

Specific yield of zone 2, μ2 0.22 

Specific yield of zone 3, μ3 0.25 

Longitudinal dispersity of zone 1 (m) 40 

Longitudinal dispersity of zone 2 (m) 30 

Longitudinal dispersity of zone 3 (m) 35 

Grid spacing in X and Y direction (m） 50 

Recharge rate (m/d) 0.00042 

Initial concentration (mg/L) 50 

Length of the stress period (y) 10 

Aquifer thickness(m) 10 

Groundwater level at the western boundary, H1 (m) (18,20) 

Groundwater level at the eastern boundary, H2(m) (15,17) 
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Table 2 Fundamental values and ranges of aquifer parameters and pollution 872 

sources. 873 

Parameter Value or range 

Specific yield 0.24 

Transverse dispersity (m) 9.8 

Longitudinal dispersity (m) 40 

Aquifer thickness(m) 40 

Grid spacing in x-direction(m） 20 

Grid spacing in y-direction(m） 20 

Number of stress periods 5 

Hydraulic conductivity(m/d) (30,50) 

Fluxes of contamination source during 

stress period(g/d) 
(0,52) 
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Table 3 A comparison of the accuracies of the assessed surrogate models. 875 

Case Surrogate model R2 MARE RMSE 

Case1 
Kriging 0.9942 13.43% 11.8262 

BPNN 0.9994 3.70% 3.6526 

Case2 
Kriging 0.9837 9.98% 37.7547 

BPNN 0.9989 4.48% 9.8488 
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Table 4 A comparison of inversion values under different noise levels for case 877 

study 1. 878 

Unknown 

variables 

True 

value 

Inversion values under different noise levels 

0 0.5% 1% 2% Relative error 

K1 60.37  58.91  59.46  61.16  61.15  2.42% 1.50% 1.31% 1.29% 

K2  42.84  42.12  41.73  41.72  42.18  1.67% 2.58% 2.61% 1.54% 

K3 50.17  49.28  48.52  48.58  50.01  1.78% 3.29% 3.17% 0.31% 

H1 19.09  19.10  19.04  19.06  19.27  0.06% 0.24% 0.18% 0.96% 

H2 16.11  16.05  15.97  16.01  16.27  0.40% 0.87% 0.64% 0.97% 

S1T1  34.25  34.65  34.82  35.37  36.50  1.16% 1.66% 3.26% 6.57% 

S1T2 57.07  57.20  57.35  57.66  58.79  0.24% 0.49% 1.04% 3.01% 

S1T3 5.80  5.48  5.59  5.64  5.56  5.49% 3.63% 2.78% 4.19% 

S1T4 31.76  31.80  31.84  31.99  32.71  0.15% 0.25% 0.74% 3.00% 

S1T5 18.14  18.21  18.24  18.31  18.63  0.39% 0.55% 0.96% 2.73% 

S2T1  82.07  81.45  81.67  82.48  84.62  0.76% 0.50% 0.49% 3.10% 

S2T2 22.18  21.02  20.99  21.10  21.86  5.22% 5.37% 4.87% 1.44% 

S2T3  74.35  75.69  75.95  76.44  77.69  1.80% 2.15% 2.81% 4.49% 

S2T4 4.92  4.86  4.85  4.74  4.84  1.37% 1.48% 3.76% 1.78% 

S2T5  15.84  15.95  16.00  16.12  16.29  0.73% 1.06% 1.81% 2.86% 
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Table 5 A comparison of inversion values under different noise levels for case 880 

study 2. 881 

Unknow

n 

variables 

True 

value 

Inversion values under different noise levels 

0 0.5% 1% 2% Relative error 

K1 45.93 44.94  45.44  45.07  46.01  2.15% 1.07% 1.87% 0.17% 

K2  46.54 46.68  47.28  46.83  47.92  0.29% 1.59% 0.62% 2.97% 

K3 32.11 32.08  31.91  32.05  31.73  0.08% 0.62% 0.20% 1.19% 

K4 44.23 44.56  43.79  44.35  42.95  0.75% 0.98% 0.26% 2.89% 

S1T1  38.05 37.48  37.59  37.85  38.14  1.48% 1.22% 0.51% 0.23% 

S1T2 32.24 32.84  32.55  33.10  32.42  1.84% 0.95% 2.65% 0.55% 

S1T3 24.96 26.75  26.46  26.89  26.48  7.18% 6.01% 7.74% 6.09% 

S1T4 5.17 4.89  4.85  4.93  4.77  5.44% 6.33% 4.79% 7.82% 

S1T5 25.42 26.48  26.29  26.69  26.42  4.18% 3.43% 5.03% 3.94% 

S2T1  31.15 31.17  31.21  31.38  31.48  0.08% 0.19% 0.74% 1.07% 

S2T2 39.94 40.17  40.12  40.65  40.58  0.57% 0.43% 1.76% 1.59% 

S2T3  51.5 51.77  51.74  52.00  52.00  0.53% 0.47% 0.97% 0.97% 

S2T4 49.47 48.91  48.81  49.51  49.36  1.13% 1.33% 0.09% 0.21% 

S2T5  31.53 33.54  33.30  33.41  33.03  6.38% 5.61% 5.97% 4.75% 

S3T1 27.49 27.61  28.03  28.01  28.75  0.43% 1.96% 1.90% 4.59% 

S3T2 26.93 27.33  27.88  27.68  28.80  1.47% 3.52% 2.76% 6.95% 

S3T3  5.95 5.97  6.14  6.11  6.38  0.27% 3.15% 2.66% 7.13% 

S3T4 30.5 30.97  31.18  31.16  31.70  1.54% 2.21% 2.16% 3.92% 

S3T5  23.7 23.05  24.32  24.06  26.06  2.77% 2.59% 1.49% 9.95% 
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