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Highlights 24 

A highly adaptable inversion framework is adapted to different groundwater pollution 25 

scenarios. 26 

Synergetic identification of source information, hydraulic conductivity and boundary 27 

condition in PSC. 28 

The artificial hummingbird algorithm is applied to solve the optimized model.29 
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Abstract 30 

Effectively remediating groundwater contamination relies on the precise determination 31 

of its sources. In recent years, a growing research focus has been placed on concurrently 32 

estimating hydrogeological characteristics and locating pollutant origins. However, the 33 

identification of precise synergistic identification of point and areal contamination 34 

sources of groundwater and combined hydrogeological parameters has not been 35 

effectively solved. This study developed an inversion framework that integrates 36 

machine learning surrogates with the artificial hummingbird algorithm (AHA). The 37 

surrogate models approximating the simulation system were constructed using both 38 

backpropagation neural networks (BPNN) and Kriging techniques. The AHA was then 39 

employed to solve the optimized model, and its performance was benchmarked against 40 

particle swarm optimization (PSO) and the sparrow search algorithm (SSA). The 41 

applicability of this inversion framework was assessed by application to point sources 42 

of contamination (PSC) and areal source contamination (ASC). The robustness of the 43 

framework was verified through application to scenarios with different noise levels. 44 

The results showed that surrogate model constructed by the BPNN method provided 45 

estimates that were closer to those of the simulation model in comparison to the kriging 46 

method, coefficient of determination (R2) is 0.9994 and mean relative error (MARE) is 47 

3.70% in PSC, and R2 is 0.9989 and MARE is 4.48% in ASC. The performance of the 48 

AHA exceeded those of the PSO and the SSA. In PSC, MARE of the identification 49 

result is 1.58%; In ASC, MARE of the identification result is 2.03%, with the AHA able 50 

to rapidly and accurately identify the global optimum and improve the inversion 51 
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efficiency. The proposed inversion framework was demonstrated to apply to both 52 

groundwater PSC and ASC problems with strong robustness, providing a reliable basis 53 

for groundwater pollution remediation and management. 54 

Keywords: Groundwater contamination identification; Synergistic identification; Point 55 

and areal sources contamination; Surrogate model; Artificial hummingbird algorithm  56 
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1 Introduction 57 

Groundwater pollution adversely affects human production and life (Wang et al., 2022; 58 

Liu et al., 2024). The remediation of groundwater contamination is important for 59 

ensuring human health and socioeconomic development. However, groundwater 60 

contamination is difficult to detect and treat due to its hidden nature, thereby 61 

complicating the assessment of groundwater pollution risk and contamination liability 62 

(Li et al., 2021). Remediation requires the identification of sources of groundwater 63 

contamination (location, number, release history, etc.) and hydrogeological conditions 64 

(Maliva et al., 2015; Daranond et al., 2020; Pan et al., 2022b; Medici et al., 2024). 65 

However, directly obtaining this information can pose a challenge, with a proven 66 

method being the identification of groundwater contamination by inversion of limited 67 

observational data. 68 

Inversion of groundwater aquifer hydrogeologic parameters and pollution source 69 

information is a widely studied topic. In past studies on groundwater contamination 70 

identification (GCI), many researchers have focused on the separate identification of 71 

hydrogeological parameters or pollution source information. For example, Singh and 72 

Datta (2007) utilized backpropagation-based artificial neural network techniques 73 

specifically for the identification of groundwater pollution sources. Similarly, Mahar 74 

and Datta (2000) employed a nonlinear optimization model to identify the location, 75 

duration, and magnitude of the contamination source. Liu et al. (2022) inverted 76 

hydrogeological parameters through a simulation-optimization approach, while Wang 77 

et al. (2024a) combined three different inversion algorithms and a kriging surrogate 78 
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model to invert hydraulic conductivity. While simplifying the problem, these methods 79 

allow researchers to focus on specific aspects. However, although the individual 80 

identification method can be effective in some cases, it often overlooks the 81 

interconnectivity between hydrogeological parameters and pollution sources. 82 

Currently, the simultaneous identification of hydrogeological parameters and 83 

pollution source information is gaining increasing attention in research. Researchers 84 

have employed various advanced technologies to achieve this goal. Wang et al. (2021) 85 

utilized a parallelized heuristic algorithm to concurrently determine both aquifer 86 

characteristics and the groundwater pollution sources. Pan et al. (2021) integrated a 87 

Bayesian-regularized deep neural network surrogate to jointly infer pollution source 88 

details and hydraulic conductivity. Hou et al. (2021) integrated homotopy-based inverse 89 

optimization theory with a multi-kernel extreme learning machine to finish the co-90 

identification of contamination sources and aquifer parameters. Luo et al. (2023) 91 

leveraged machine learning techniques to establish an inverse relationship between 92 

model outputs and inputs, enabling fast and simultaneous retrieval of pollution source 93 

attributes and hydrogeological properties. Although these methods have advanced the 94 

field, improving recognition accuracy remains a major challenge in the simultaneous 95 

identification process. 96 

The simulation-optimization method has been widely applied in GCI research 97 

because of its robust mathematical foundation (Mirghani et al., 2009) and its ability to 98 

identify multiple variables simultaneously. To enhance both identification accuracy and 99 

efficiency using simulation-optimization, two key approaches are employed: one is to 100 



8 

 

optimize the model solution method for better performance, and the other is to construct 101 

a surrogate model with high approximation accuracy. Optimizing the model solution 102 

method is essential. Since heuristic optimization algorithms are more capable of 103 

identifying global optima, many have been applied to GCI. Mirghani et al. (2012) 104 

implemented a genetic algorithm within optimization to identify sources of 105 

contamination. Jiang et al. (2013) combined a harmony search algorithm with a 106 

contamination transport simulation model to characterize contamination sources. 107 

Additional methods, such as simulated annealing (Rao, 2006; Yeh et al., 2007; Jha and 108 

Datta, 2013) and sparrow search algorithms (SSA) (Pan et al., 2022b), have also been 109 

applied to GCI. However, increasing dimensionality and complexity in GCI problems 110 

make it difficult for many optimization algorithms to efficiently search for global 111 

optima. Constructing high-accuracy surrogate models is another crucial strategy. 112 

Surrogate models can significantly reduce computation time and improve inversion 113 

efficiency. Among these models, the widely used kriging (Chugh et al., 2018; Zhang et 114 

al., 2019; Jiang et al., 2020) and backpropagation neural network (BPNN) (Sargolzaei 115 

et al., 2012; Zhang et al., 2021; Wang et al., 2024b) methods offer high flexibility and 116 

strong nonlinear fitting capabilities. Despite these advances, previous studies have 117 

overly focused on point source contamination (PSC) or areal source contamination 118 

(ASC) scenarios in isolation. However, the identification of precise synergistic 119 

identification of PSC and ASC of groundwater and combined hydrogeological 120 

parameters has not been effectively solved. 121 

Based on the above problems, this paper proposes an inversion framework 122 
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integrating a machine learning surrogate model with the artificial hummingbird 123 

algorithm (AHA) using the simulation-optimization method (Fig. 1). Both BPNN and 124 

kriging were utilized to develop surrogate models for the simulation model. AHA was 125 

introduced to solve the optimization model, with its solution results compared against 126 

those of PSO and SSA. The applicability of this inversion framework was evaluated 127 

through its application to both PSC and ASC scenarios. The objectives of this study 128 

were: (1) Develop a flexible groundwater pollution inversion scheme that can reliably 129 

invert parameters under various groundwater pollution scenarios; (2) Adopt an 130 

integrated parameter identification strategy to achieve the simultaneous identification 131 

of multiple variables, including pollutant release characteristics and hydrogeological 132 

parameters; (3) Design an optimization-based surrogate modeling method combining 133 

meta-heuristic search algorithms with neural network surrogate models to efficiently 134 

explore the solution space and reduce the risk of getting stuck in local optima during 135 

inversion calculations; (4) Evaluate the performance of the proposed scheme under 136 

various noise intensities and pollution patterns to validate its robustness and application 137 

potential in groundwater pollution inversion problems. 138 

The main innovations are as follows: (1) This study constructed an adaptive inversion 139 

framework that maintains high robustness in both PSC and ASC. (2) In PSC cases, the 140 

three types of parameters to be identified—source information, hydraulic conductivity, 141 

and boundary conditions—were identified synergistically. (3) Apply the AHA 142 

optimization model to solve the inverse problem of groundwater pollution to obtain the 143 

global optimal solution of the inverse problem and further improve the inversion 144 
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accuracy. The good compatibility between AHA and the BPNN surrogate model 145 

ensures the robustness and stability of the inversion process. 146 

2. Methodology 147 

2.1. Simulation model 148 

In this study, the numerical groundwater simulation framework comprised both a flow 149 

component and a solute transport module. The fundamental two-dimensional (2D) 150 

partial differential equation governing groundwater flow is formulated as follows: 151 

( ( ) )  ( , )  , 1,2 0ij

i j

H H
K H z W x y S i j t

x x t


  
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where Kij is hydraulic conductivity, W is the volumetric flux per unit volume, μ is the 153 

specific yield, H is the water level elevation, z is the elevation of the aquifer floor, and 154 

S is the boundary of the spatial domain.  155 
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where C denotes the contaminant concentration in groundwater, t is the temporal 158 

variable, ui indicates the average flow velocity, R accounts for source and sink 159 

contributions, Dij refers to the hydrodynamic dispersion tensor, and ne represents the 160 

effective porosity of the medium. We used the MODFLOW-2005 and MT3DMS 161 

numerical models to obtain numerical solutions for groundwater flow and solute 162 

transport equations. (Asher et al., 2015). 163 

2.2. Kriging method 164 

Kriging was employed to develop the underlying framework of the approach by 165 
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capturing both the correlation and stochastic variability of variables within a confined 166 

spatial domain, thereby enabling the estimation of optimal regional values. The 167 

association between input and output variables is described through a regression-based 168 

expression as shown below (Zhao et al., 2022a): 169 

1

1

( ) ( ) ( )
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i i

i

y x f x z x
=

= +        (4) 170 

where 𝑦̂(𝑥)  is the estimated value of pollutant concentration 𝑦(𝑥) , 𝑓𝑖(𝑥)(𝑖 =171 

1, ⋯ , 𝑘) is the basis function of the known regression model, and 𝑧(𝑥) is the random 172 

part. 173 

The following equations were satisfied: 174 
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where 𝑅(𝑥𝑖, 𝑥𝑗)  is the correlation function between the sampled point 𝑥𝑖  and 𝑥𝑗 . 176 

(𝑖 = 1,2, ⋯ , 𝑚; 𝑗 = 1,2, ⋯ , 𝑚) 177 

The Gaussian model is commonly used: 178 
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where 𝜃𝑘 is a coefficient to be determined, which can be obtained by calculation. 180 

2.3. The BPNN method 181 

A typical back-propagation neural network (BPNN) is composed of three 182 

fundamental components (Fig. 2): (1) an input layer, (2) the hidden layers, and (3) an 183 

output layer. The computation process proceeds in two main phases: forward 184 

propagation and backward propagation (Chen et al., 2010; Zhang et al., 2018). 185 
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1) During forward propagation, data are introduced into the network via the input 186 

layer, and subsequently processed through successive layers to yield the final output. 187 

BPNNs frequently employ a nonlinear sigmoid activation function: 188 

1
( )

1 x
f x

e−
=

+
   (7) 189 

The calculation of the forward transmission output layer is: 190 

1

j ij i

i

I w o b
=

= +     1
( )

1 j
j j I

o f I
e

= =
+
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where Oi represents the output of neuron i, Oj is the output of neuron j, b is the bias 192 

term, and Wij is the weight of the connection between neuron i and neuron j. 193 

2) Backward propagation involves the random assignment of the weight of the first 194 

positive feedback process within the output layer. The adjustment of the parameters of 195 

the entire network is required. Network adjustment is performed by minimizing the 196 

discrepancy between the predicted output and the target category in the output layer. 197 

Specifically, for the output layer: 198 

(1 )( )j j j j jE O O T O= − −    (9) 199 

where Ej represents the error value at the jth node and Tj denotes the corresponding 200 

output. The hidden layer's output is determined by summing the weighted contributions 201 

from the errors of the lower nodes: 202 

(1 )j j j k jkk
E O O E W= −     (10) 203 

where Ek is the error gradient for the subsequent node k and Wjk is the weight connecting 204 

node j to t node k. Following error calculation, the weight is adjusted according to the 205 

error gradient: 206 
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where η is the learning rate. In Case 1, the BPNN architecture was configured as 19-30-208 

45, and in Case 2 as 15-20-50. The number of neurons in each layer was empirically 209 

optimized using grid search combined with cross-validation to minimize the root mean 210 

square error (RMSE) and effectively prevent overfitting. The sigmoid function was 211 

employed as the activation function, and the network was trained using the Bayesian 212 

Regularization algorithm. The maximum number of training iterations was set to 1000, 213 

and the learning rate was set to 0.01. 214 

2.4 Artificial Hummingbird Algorithm (AHA) 215 

The AHA consists of three main elements: food sources, hummingbirds, and the visit 216 

table. Hummingbirds typically assess food sources based on factors such as nectar 217 

quality, individual flower nectar content, and replenishment rates. For simplicity, it can 218 

be assumed that all food sources share the same flower type and number. 219 

Hummingbirds within a population can exchange information, be assigned to specific 220 

food sources, track nectar replenishment rates, and record the duration each food source 221 

remains unvisited. The visit table records the time since a hummingbird last visited a 222 

food source, and is used to assign visit levels; hummingbirds can harvest more nectar 223 

by first accessing food sources with higher access levels, following which food sources 224 

with the highest nectar replenishment rate are chosen (Zhao et al., 2022b). The AHA is 225 

algorithmically described below. 226 

(1) Initialization 227 
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Firstly, n hummingbirds are randomly placed on n food sources: 228 

( ) 1, ,ix Low r Up Low i n= +  − =      (12) 229 

The access table for the food source is then initialized: 230 

,

0          
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null      
i j
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i j
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= = =

=
   (13) 231 

where Low and Up are the lower and upper boundaries for a d-dimensional problem 232 

respectively, r represents a random vector of [0,1], and xi is the position of the ith food 233 

source. For 𝑖 = 𝑗, 𝑉𝑇𝑖,𝑗 = 𝑛𝑢𝑙𝑙 indicates the sourcing of food from a specific source. 234 

For 𝑖 ≠ 𝑗, 𝑉𝑇𝑖,𝑗 = 0 indicates that the ith hummingbird has just visited the jth food 235 

source in the current iteration. 236 

(2) Guided foraging 237 

Hummingbirds identify food sources in two steps: (1) identifying the food source 238 

with the highest access level; (2) selecting the food source with the highest nectar 239 

replenishment rate. After identifying the target food source, the hummingbird can fly to 240 

the target source to feed. During foraging, direction switching vectors used to control 241 

the availability of one or more directions in the D-dimensional space are introduced to 242 

model three flight skills: omnidirectional, diagonal, and axial flight. These flight 243 

models can be extended to the d-D space, and the mathematical model of axial flight is: 244 

( )
1          ([1, ])

  1, ,
0       

i
if i randi d

D i d
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=
= =
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    (14) 245 

Diagonal flight is defined as: 246 
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Omnidirectional flight is defined as: 248 

 
( ) 1     1, ,iD i d= =  (16) 249 

where 𝑟𝑎𝑛𝑑𝑖([1, 𝑑])  is a randomly generated integer from 1 to d, 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(𝑘) 250 

creates a random permutation of integers from 1 to k, and r1 is a random number in the 251 

range of 0 to 1. 252 

Hummingbirds can access and obtain target food sources through these flight abilities. 253 

New food sources identified during the search are recorded along with previously 254 

identified food sources. The guided foraging behavior and candidate food sources can 255 

be represented as: 256 

, ,( 1) ( ) ( ( ) ( ))i i tar i i tarv t x t a D x t x t+ = +   −      (17) 257 

~ (0,1)a N          (18) 258 

where 𝑥𝑖,𝑡𝑎𝑟(𝑡) is the location of the food source that the ith hummingbird plans to 259 

visit, 𝑥𝑖(𝑡) represents the location of the ith food source at time t, and a is a leading 260 

factor obeying a normal distribution.  261 

The location of the ith food source is updated as: 262 

( )      ( ( )) ( ( 1))
( 1)

( 1)       ( ( )) ( ( 1)) 

i i i

i

i i i

x t f x t f v t
x t

v t f x t f v t

 +
+ = 

+  +
   (19) 263 

where 𝑓(∙) represents the function fitness value. The formula for updating the location 264 
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can contribute to the preferential selection of food sources with a high nectar supply 265 

rate. 266 

(3) Territorial foraging 267 

Since the quality of food sources within a foraging area may vary, hummingbirds 268 

actively search within that area. The regional foraging strategies and candidate food 269 

sources of hummingbirds can be represented as: 270 

( 1) ( ) ( )i i iv t x t b D x t+ = +         (20) 271 

~ (0,1)b N         (21) 272 

where b is a territorial factor obeying a normal distribution. Eq. (20) allows different 273 

hummingbirds to use their specific flight skills to identify new food sources near the 274 

target source.  275 

(4) Migration foraging 276 

Migration coefficients are defined in the AHA algorithm to prevent the generation of 277 

local optimums. The exceedance of the number of iterations of the set migration 278 

coefficient results in the hummingbird located in the worst food source repeating a 279 

search for a new food source across the entire search range and the subsequent updating 280 

of the visit table. 281 

( 1) ( )warx t Low r Up Low+ = +  −      (22) 282 

where 𝑥𝑤𝑜𝑟  is the food source with the worst nectar supply rate. The migration 283 

coefficient relative to population size can be defined as. 284 
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2M n=          (23) 285 

3. Case studies 286 

The present study designed a groundwater PSC case study and an ASC case study to 287 

verify the applicability of the proposed GCI framework. Since the present study 288 

established two hypothetical examples, a set of variables to be identified and 289 

background variables for input into the groundwater contamination simulation model 290 

were established for each example for forward computation. The pollutant 291 

concentrations monitored at wells were used as observed data. The robustness of the 292 

inversion framework was verified by adding random noise to the observed data, 293 

expressed as: 294 

1 (1 rand),  0.5%,1% and 2%l l = +  =     (24) 295 

where 𝛼  represents the observation data, 𝛼 1 indicates observation data with added 296 

noise, l is the max disturbance range, and rand is a random number between −1 and 1. 297 

3.1 Case study 1: groundwater PSC 298 

The study area is 2,500 m and 1,400 m from east to west and north to south, respectively, 299 

with topography decreasing from west to east and groundwater flow from northwest to 300 

southeast. The study area contains a heterogeneous isotropic aquifer, and the present 301 

study focused on a layer of diving aquifer with a thickness of 10 m (Table 1). The 302 

aquifer comprises unconsolidated sediments, primarily well-sorted coarse sand and 303 

gravel. Groundwater flow was represented as 2D steady flow, and the study area was 304 

divided into three areas according to differences in hydraulic conductivities. Since the 305 

northern and southern parts of the study area are very weakly permeable formations, 306 



18 

 

they were generalized in the present study as no-flow boundaries. Rivers formed the 307 

boundaries of the western and eastern parts, and were generalized as specific head 308 

boundaries (Fig. 3). 309 

In this case study, the variables to be identified fell into three main categories: (1) 310 

head values at the specific head boundaries. including H1 and H2; (2) hydraulic 311 

conductivities for each part of the study area, including K1, K2, and K3; (3) the intensities 312 

of the release of pollutants from the two sources during the release periods: S = SaTb; a 313 

= 1, 2; and b = 1, 2, 3, 4, 5 (Table S1). SaTb represents the intensity of pollution source 314 

a during the bth stress period; this case study had a study period of 10 years (Table 1, 315 

Fig. 4), with both sources only releasing pollutants in the first five years (Table S2). 316 

Five wells were established to monitor the concentrations of groundwater contaminants 317 

once a year. The study area was spatially discretized into 50 m × 50 m grids (Table 1).  318 

3.2 Case study 2: groundwater ASC 319 

The present study selected the hypothetical case study used by Pan et al. (2022a) as a 320 

case study. The site has an area of 5 km2, with a length of 2.5 km and width of 2 km 321 

from east to west and south to north, respectively. Groundwater flows from northwest 322 

to southeast. The study area was conceptualized as a heterogeneous isotropic aquifer 323 

and the current study focused on a diving aquifer, in which flow was represented as 2D 324 

steady flow. The study area’s aquifers were categorized into four zones based on 325 

hydraulic conductivity, labeled K1 to K4. The western and eastern river boundaries were 326 

modeled as specified head boundaries, while the northern and southern regions, 327 

characterized by low permeability granite, were treated as no-flow boundaries (Fig. 5, 328 
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Table 2). The aquifer comprises unconsolidated sediments, primarily well-sorted coarse 329 

sand and gravel. 330 

Within this case study, the variables to be identified fell into two categories: (1) 331 

hydraulic conductivities of each part of the study area, including K1 to K4; (2) the 332 

intensities of pollutants released by three areal sources of contamination: S = SaTb; a = 333 

1, 2, 3; and b = 1, 2, 3, 4, 5 (Table S3). SaTb indicates the intensity of pollution source a 334 

during the bth stress period. A total of nine monitoring wells were established to monitor 335 

the concentrations of groundwater contaminants once a year (Fig. 6). The study area 336 

was spatially discretized as 20 m × 20 m grids (Table 2). 337 

4. Model construction 338 

4.1 Establishment of surrogate models 339 

The present study established two case studies: the PSC and the ASC. The variables to 340 

be identified for the PSC case study included three categories with 15 dimensions, 341 

whereas those to be identified for the ASC case study included two categories with 19 342 

dimensions. The present study used the Latin hypercube method to sample within the 343 

feasible domain of the variables to be identified. This sampling process was 344 

implemented in MATLAB. Sample groups for the PSC and ASC case studies totaled 345 

390 and 490, respectively, and the input sample dataset was generated by random 346 

combination. 347 

The parameters obtained from the above sampling were input into the groundwater 348 

simulation model. The simulation model was then run to obtain the pollutant 349 

concentrations at the 390 and 490 monitoring groups in the PSC and ASC case studies, 350 
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respectively. These simulated pollutant concentrations were used as the output sample 351 

dataset, and the output sample dataset was combined with the input sample dataset to 352 

form the input-output sample dataset. The kriging and BPNN methods were used to 353 

establish the surrogate models of the simulation model. The first 350 and 440 groups 354 

of the PSC and ASC case input-output sample datasets, respectively, were used as 355 

training samples in each case study to construct surrogate models, while the remaining 356 

40 and 50 groups were used as test samples to evaluate the accuracy of the surrogate 357 

models. 358 

The present study applied the coefficient of determination (R2), the mean absolute 359 

relative error (MARE), and the root mean square error (RMSE) to assess the accuracy 360 

of the fit of the estimations of the surrogate models to the output of the simulation model. 361 

1) R2: The closer R2 to 1, the more accurate the surrogate model is. 362 
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2) MARE: The average deviation between the outputs of the surrogate model and the 364 

outputs of the simulation model. 365 
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3）RMSE: The value of the RMSE is inversely proportional to the fitting accuracy 367 

of the surrogate model. 368 
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       (27) 369 

where iy  is the average true value, n is the number of samples, ˆ
iy  is the output of 370 
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the surrogate model, yi is the true value of the variable to be identified. 371 

4.2 Establishment of the optimization models 372 

This study employed the CGI through the S-O method, which consists of two main 373 

components: a groundwater contaminant transport simulation model and an 374 

optimization model aimed at minimizing the least squares error between the simulated 375 

and true values. To reduce the computational burden caused by repeated simulation 376 

calls, a surrogate model was used in place of the simulation model. While the same 377 

objective function was applied in both case studies, there were minor variations in the 378 

decision variables and constraints. The decision variables chosen for case study 1 379 

included the boundary head values, the hydraulic conductivities of the site, and the 380 

release history of the contaminant source; those for case study 2 included the hydraulic 381 

conductivities of the site and the release history of the contaminant source. The 382 

constraint conditions were influenced by the decision variables. The optimization was 383 

expressed as: 384 
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      (28) 385 

where 𝑧 is the objective function, 𝐶𝑚 is the monitored pollutant concentration in the 386 

mth monitoring well, 𝐶̂𝑚  is the simulated pollutant concentration in the mth 387 

monitoring well, 𝐶 is the pollutant concentration, 𝐻 is the head value at the boundary, 388 
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𝑠 is the pollution source intensity, 𝑘 represents the hydraulic conductivities of the site, 389 

𝐶𝐿  and 𝐶𝑈  are the upper and lower bound values of pollutant concentration, 390 

respectively, and 𝑠𝑙 and 𝑠𝑢 are the upper and lower bound values of pollution source 391 

intensity, respectively. 392 

The AHA was used to identify the optimal combination of parameters according to 393 

the objective function through multiple iterative calculations, with this parameter set 394 

adopted as the result of inversion. The numbers of hummingbird populations and 395 

iterations were set to 500 and 1,000, respectively. 396 

5. Results 397 

5.1 Surrogate models 398 

The surrogate model for case study 1 using the kriging method achieved an R² of 0.9942, 399 

MARE of 13.43%, and RMSE of 11.8262 (Table 3), while the BPNN method produced 400 

values of 0.9994, 3.70%, and 3.6526, respectively (Table 3). Similarly, for case study 401 

2, the kriging method yielded an R² of 0.9837, MARE of 9.98%, and RMSE of 37.7547, 402 

whereas the BPNN method provided corresponding values of 0.9989, 3.70%, and 403 

3.6526 (Table 3). The BPNN method demonstrated superior goodness-of-fit statistics 404 

compared to the kriging method in both case studies. While the simulation model 405 

required 50 hours for 1,000 iterations, the BPNN surrogate model completed the same 406 

number of iterations in 67 seconds, significantly reducing the computation time. 407 

5.2 Optimization algorithms 408 

The BPNN surrogate model was embedded into the optimization model to optimize the 409 

parameter combination according to the objective function. This study employed AHA 410 



23 

 

within the optimization process and compared its performance against SSA and PSO 411 

under the same population size and number of iterations. In the optimization of case 412 

study 1, PSO failed to converge after reaching the maximum number of iterations, while 413 

AHA and SSA converged after 120 and 350 iterations, respectively (Fig. 7a). For case 414 

study 2, both PSO and SSA failed to converge within the maximum number of iterations, 415 

whereas AHA converged after 150 iterations (Fig. 7b). 416 

Given the results from case study 1, where both AHA and SSA converged, the 417 

subsequent analysis focused on these two algorithms. AHA achieved an optimal search 418 

value closer to the true value and reached the global optimum, while SSA settled at a 419 

local optimum (Fig. 8). These results demonstrate that AHA not only converged faster 420 

than SSA but also identified the global optimum, thereby improving the accuracy and 421 

efficiency of GCI. 422 

5.3 Inversion results and robustness assessment 423 

The BPNN-AHA inversion framework developed in this study was applied to identify 424 

groundwater PSC and ASC and obtain inversion values. To verify the framework’s 425 

robustness and reliability, random noise levels of 0.5%, 1%, and 2% were added to the 426 

observed data. The average relative errors under each noise level were recorded (Table 427 

4, Table 5). The highest inversion accuracy was achieved in the noise-free case for both 428 

case study 1 and case study 2, with average relative errors of 1.58% and 2.03%, 429 

respectively (Table S4). At a 0.5% noise level, the average relative errors for case study 430 

1 and case study 2 were 1.71% and 2.3%. At 1% noise, they were 2.03% and 2.33%, 431 

while at 2% noise, they increased to 2.55% and 3.52%, respectively. Although noise 432 
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impacted the inversion accuracy, the framework maintained high performance, with the 433 

average relative errors for both case studies remaining below 5% (Fig. 9). These results 434 

confirm the strong robustness and stability of the proposed inversion framework. 435 

There are significant differences in sensitivity to noise among different parameter 436 

categories. Hydraulic conductivity: These parameters showed low sensitivity to noise, 437 

with relative errors remaining below 3% in all scenarios for both PSC and ASC cases. 438 

Their errors increased gradually with noise but remained stable, indicating strong 439 

robustness. Boundary head values (PSC case only): These parameters also exhibited 440 

excellent noise resistance, with relative errors consistently below 1% even at 2% noise 441 

level. Source release intensities: This group showed the highest sensitivity to noise. At 442 

a 2% noise level, some source parameters (e.g., S1T1 in PSC, S1T3, S1T4, S3T2, S3T3, S3T5 443 

in ASC) had relative errors exceeding 6%–10%, reflecting their higher inversion 444 

uncertainty under noisy conditions. 445 

6 Discussion 446 

6.1 Analysis of surrogate models 447 

The results of this study show that the proposed BPNN–AHA framework achieves high 448 

accuracy, strong robustness, and efficient convergence in GCI tasks, performing 449 

consistently well in both PSC and ASC scenarios, even under varying noise levels. In 450 

the PSC and ASC cases analyzed here, the R² values reached 0.9994 and 0.9989, and 451 

the MARE values were 3.70% and 4.48%, respectively, demonstrating the model’s 452 

excellent capability to approximate the input–output relationships of the simulation 453 

model. The BPNN surrogate model, with its simple structure, high flexibility, and broad 454 
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adaptability, effectively balances accuracy and generalizability—characteristics that are 455 

essential for practical inversion applications. Compared to other surrogate modeling 456 

approaches reported in recent GCI research—such as long short‐term memory neural 457 

networks (Li et al., 2021), light gradient boosting machines (Pan et al., 2023), and deep 458 

residual networks (Xu et al., 2024b)—the proposed framework leverages the 459 

adaptability of BPNN together with the global search and adaptive convergence 460 

mechanisms of the artificial hummingbird algorithm to deliver consistently accurate 461 

and stable inversion results. In this paper, the ASC is drawn from Pan et al. (2022a), 462 

which had been widely validated in other studies. For example, Li et al. (2023) used the 463 

same case to validate an inversion method, applying a multilayer perceptron model to 464 

the simulation, achieving the R² of 0.9999 and the MARE of 2.85%. Similarly, Xu et 465 

al. (2024a) employed automatic machine learning methods for surrogate model 466 

construction, achieving the R² of 0.9754 and the MARE of 4.154%. Compared to the 467 

surrogate models developed by these researchers, the BPNN model constructed in this 468 

study also demonstrates excellent approximation accuracy, further validating the 469 

advantages of the proposed method. In summary, the proposed BPNN surrogate model 470 

has practical advantages in tasks related to GCI, thereby enhancing its applicability. 471 

Due to its relatively simple architecture and low computational requirements, the 472 

BPNN model can be trained and updated efficiently even under limited computational 473 

resources. Additionally, the model demonstrates strong generalization capabilities in 474 

both PSC and ASC scenarios, indicating that it is not specific to a particular case. This 475 

adaptability is crucial for practical groundwater inversion problems, as data availability 476 
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and system complexity often vary significantly across different locations. These 477 

characteristics highlight the comprehensive advantages of the BPNN model in terms of 478 

accuracy, efficiency, and flexibility, making it a reliable and practical choice for 479 

surrogate modeling in groundwater simulation. 480 

6.2 Analysis of optimization algorithms 481 

This paper compares the AHA with PSO and SSA under the same preconditions and 482 

finds that AHA offers clear advantages in both convergence speed and global 483 

optimization capability. Based on these results, AHA was chosen to solve the 484 

optimization model, and its adaptability was further verified in two different cases. In 485 

the field of optimization algorithms, the "no free lunch principle" (Zhao et al., 2022b) 486 

emphasizes that no single algorithm performs well across all optimization problems. 487 

When addressing real-world problems, it is essential to understand the nature of the 488 

problem thoroughly before selecting the appropriate optimization algorithm. This 489 

principle encourages researchers to develop new and more effective algorithms from 490 

different perspectives, providing more options for optimization problem researchers. 491 

This insight also applies to groundwater pollution traceability. Given the diverse nature 492 

of pollution traceability problems, it is challenging for any single optimization 493 

algorithm to be universally applicable. As research deepens, these problems tend to 494 

become more high-dimensional and nonlinear, necessitating the exploration of 495 

algorithms with stronger global optimization capabilities and higher search efficiency. 496 

Additionally, it is important to consider alternative uses of optimization methods. One 497 

promising approach involves using optimization techniques to improve machine 498 
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learning models by identifying optimal parameters (hyperparameters) during training, 499 

which can significantly enhance model accuracy (Jia et al., 2024). 500 

6.3 Inversion analysis 501 

Previous studies related to GCI employed a variety of methods to conduct either single 502 

or simultaneous inversion characterization of pollution sources and to identify 503 

hydrogeological parameters of the model. Li et al. (2022) identified the number, 504 

location, and release history of pollution sources, while Li et al. (2008) focused on 505 

determining the hydraulic conductivities of a study site. Bai et al. (2022) utilized 506 

inversion techniques to simultaneously characterize pollution sources and identify the 507 

hydraulic conductivities within their simulation models. While some studies have 508 

applied inversion to the boundary conditions of the simulation model (Jiao et al., 2019), 509 

fewer studies have simultaneously characterized pollution sources and identified both 510 

hydrogeological parameters and boundary conditions of the model. Source information, 511 

model hydrogeological parameters, and boundary conditions are all critical components 512 

of groundwater contamination simulation models. Inaccuracies in any of these 513 

components can affect the overall results of inversion, making it essential to identify all 514 

components simultaneously. Therefore, in the PSC case of this study, the release history 515 

of the pollutant source, the hydraulic conductivity of the model, and the specific head 516 

boundary values were simultaneously identified. This simultaneous identification of 517 

multiple key parameters enhances the reliability and effectiveness of decision support 518 

systems. 519 

In addition to the methods applied in this study, data assimilation methods are also 520 
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widely used in the field of groundwater pollution inversion. They can combine 521 

observational data with numerical models to improve state estimation and parameter 522 

inversion (Zafarmomen et al., 2024). Many researchers have successfully applied data 523 

assimilation methods to the iterative optimization of pollutant transport states and 524 

related parameters, significantly improving inversion accuracy and reducing prediction 525 

uncertainty. For example, Pan et al. (2022a) proposed a refined particle filter with a 526 

deep learning method surrogate as an inverse framework for groundwater pollution 527 

source estimation. This framework was evaluated under different levels of 528 

observational error through estimation tasks for point source pollution cases and non-529 

point source pollution cases. Wang et al. (2023) utilized an improved particle filter 530 

method for groundwater pollution source identification. Zhang et al. (2024) used an 531 

iterative local updating ensemble smoother method to simultaneously identify pollution 532 

source information and hydraulic conductivity fields. However, both the method 533 

proposed in this study and data assimilation methods have their own advantages and 534 

disadvantages. The method proposed in this study possesses strong fine-grained search 535 

capabilities but its performance is highly dependent on the selection of initial points. 536 

Data assimilation methods can integrate multi-source data, significantly improving the 537 

spatio-temporal consistency of inversion results; however, their fine-grained search 538 

capabilities are somewhat limited. Future research could explore combining the real-539 

time updating capabilities of data assimilation with the adaptability and optimization 540 

efficiency of the framework proposed in this study to further enhance the adaptability 541 

and performance of groundwater pollution inversion. 542 
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One of the main methodological motivations of this study is the integration of the 543 

BPNN surrogate model with the AHA for GCI. This choice is grounded both in the 544 

inherent characteristics of GCI problems and in the complementary mechanisms of the 545 

two methods. GCI is a typical high-dimensional, nonlinear, and ill-posed inverse 546 

problem. The mapping from observed contaminant concentrations to source 547 

characteristics and hydrogeological parameters is often multimodal and nonconvex. In 548 

such cases, surrogate models such as BPNN can provide a fast and flexible 549 

approximation to computationally demanding groundwater simulations, but their use 550 

inevitably introduces approximation errors into the inversion objective function. These 551 

errors may create local irregularities in the objective function landscape, which can 552 

mislead optimizers and cause premature convergence—particularly when the 553 

optimization algorithm lacks a mechanism to balance exploration and exploitation 554 

adaptively. AHA offers notable advantages in addressing these issues. Its bio-inspired 555 

mode-switching strategy alternates dynamically between diversified search and focused 556 

search. In the early stages of optimization, the broad and varied exploration capability 557 

helps to survey the global search space and reduces the risk of becoming trapped in 558 

spurious local optima caused by surrogate-induced noise. As the search proceeds, the 559 

algorithm adaptively shifts toward more intensive exploitation, concentrating 560 

computational effort on promising regions and thereby accelerating convergence. This 561 

dynamic adjustment is particularly important in GCI problems, where the optimal 562 

parameter region is often narrow and embedded within a complex and noisy search 563 

space. In addition, AHA’s adaptive update mechanism adjusts search trajectories in 564 
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response to population feedback, effectively mitigating the influence of local 565 

fluctuations in the surrogate-predicted objective function on the optimization process. 566 

This robustness to noisy or irregular fitness landscapes complements the BPNN’s 567 

ability to generalize across diverse contamination scenarios. It is worth emphasizing 568 

that this integration is not a simple “algorithm replacement,” but a targeted design 569 

choice based on the structural characteristics of the problem: BPNN provides broad 570 

adaptability to varying hydrogeological conditions, while AHA contributes resilience 571 

and fine-tuning capability when the optimization landscape is distorted by surrogate 572 

approximation errors. This synergy allows the proposed framework to maintain both 573 

high accuracy and strong robustness under different contamination scenarios and noise 574 

levels. More importantly, the underlying design principle—matching the characteristics 575 

of the surrogate model with the search dynamics of the optimization algorithm—has 576 

broader applicability to other environmental inversion problems. 577 

6.4 Limitations 578 

The overall inversion framework in this paper combines BPNN and AHA and is 579 

validated under different noise scenarios to account for the effect of noise in the 580 

observed data. The results indicate that the inversion framework demonstrates high 581 

robustness. However, a limitation of this paper is that noise is not addressed, and its 582 

presence can contaminate the observed data, further impacting the accuracy of GCI. 583 

Noise elimination methods could be applied to the observed data in future studies. 584 

Another major limitation is the generalization of the actual groundwater system. 585 

Groundwater systems are often complex, necessitating model simplifications through 586 
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assumptions (e.g., homogeneity, isotropy) that may not reflect the actual geological 587 

conditions, thereby affecting model accuracy. To address actual problems, the 588 

hydrogeological conditions of the study area should be thoroughly investigated, 589 

ensuring the model closely represents the actual situation, reducing error, improving 590 

model accuracy, and ultimately enhancing inversion accuracy. In terms of 591 

computational time and efficiency, by integrating the agent model, we can avoid 592 

repeatedly calling the numerical simulation model during the optimization process, 593 

thereby significantly improving computational efficiency. In our current 594 

implementation, thousands of optimization iterations can be completed in just a few 595 

minutes. However, as the complexity of the inversion problem increases, the number of 596 

required samples and the training time for the surrogate model will also increase 597 

significantly. Additionally, the current BPNN surrogate model is relatively lightweight, 598 

while deeper networks or ensemble-based surrogate models may require more 599 

computational resources. To address these issues, potential future solutions include 600 

parallel computing, adaptive sampling, and hybrid surrogate strategies that balance 601 

accuracy and efficiency. 602 

7 Conclusions 603 

In this study, a BPNN-AHA inversion framework was developed to accurately and 604 

synergistically identify groundwater point and areal sources of contamination and 605 

combined hydrogeologic parameters. Among them, the BPNN surrogate model can 606 

well replace the simulation model, and the AHA had good global optimization 607 

capability and excellent solution accuracy. The robustness of the proposed methodology 608 
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was verified by applying the inversion framework to scenarios with different noise 609 

levels. The conclusions of the present study are listed below: 610 

(1) The construction of a surrogate model to the simulation model satisfied the fitting 611 

accuracy requirement while also significantly reducing the computational time. The 612 

current study established BPNN and kriging surrogate models, with a comparison of 613 

the outputs of the models illustrating that the former obtained a higher fitting accuracy, 614 

with R² values of 0.9994 and 0.9989 for case 1 and case 2, respectively. Therefore, it 615 

can be applied to the inversion framework. 616 

(2) The present study applied AHA within the model optimization, with the results 617 

compared to those of PSO and SSA optimization. Compared to PSO and SSA, AHA 618 

rapidly reached convergence and identified the global optimum, the MAPE values for 619 

the inversion results of case 1 and case 2 were 1.58% and 2.03%, respectively. 620 

(3) The proposed inversion framework can realize the synergistic identification of PSC 621 

and ASC combined with hydrogeological parameters, which can ensure high 622 

identification accuracy, and the inversion framework has strong robustness under 623 

different noise levels. While individual identification simplifies the problem but may 624 

ignore correlations between parameters, synergistic identification improves the 625 

accuracy and consistency of identification by synchronizing the estimation of pollution 626 

sources and hydrogeological parameters. However, noise and parameter estimation 627 

uncertainties may still affect the reliability of the inversion results. Therefore, 628 

uncertainty analysis needs to be further considered in subsequent studies. Overall, the 629 

BPNN-AHA inversion framework has excellent inversion performance and strong 630 
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practicability, which can provide a reliable basis for groundwater pollution remediation 631 

and management. For researchers working in groundwater contamination source 632 

identification, this study underscores that method selection should not be guided solely 633 

by algorithmic novelty, but should be informed by the inherent complexity of the 634 

problem and the compatibility between the research question and the chosen approach. 635 

In groundwater contamination inversion, selecting a highly compatible method can 636 

substantially improve efficiency, while leveraging and organically integrating the 637 

strengths of different methods can greatly enhance robustness. This concept is equally 638 

applicable to a broader range of complex environmental inversion problems, offering 639 

valuable insights and practical potential.  640 
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Figure captions 804 

Figure 1: General process used in the present study to construct the machine learning 805 

surrogate model-artificial hummingbird algorithm framework. 806 

Figure 2: Structure of a back-propagation neural network (BPNN). 807 

Figure 3: Schematic diagram of case study 1. 808 

Figure 4: Distributions of concentrations of groundwater pollutants over different 809 

periods: (a)–(j) represent 1–10 years. 810 

Figure 5: Schematic diagram of case study 2. 811 

Figure 6: Distributions of concentrations of groundwater pollutants over different 812 

periods: (a) 1 year; (b) 2 years; (c) 3 years; (d) 4 years; (e) 5 years. 813 

Figure 7: Convergence curves of the sparrow search algorithm (SSA), particle swarm 814 

optimization (PSO), and artificial hummingbird algorithm (AHA) applied to case study. 815 

(a) case study1; (b) case study2. 816 

Figure 8: Comparison between the true values and optimal values for the sparrow 817 

search algorithm (SSA) and artificial hummingbird algorithm (AHA). 818 

Figure 9: Comparison of relative errors for case studies 1 and 2 under different noise 819 

levels. 820 

 821 

 822 

 823 



43 

 

824 

Figure 1 825 



44 

 

 826 

Figure 2  827 



45 

 

 828 

Figure 3 829 



46 

 

 830 

Figure 4 831 



47 

 

 832 

Figure 5 833 



48 

 

 834 

Figure 6 835 

 836 



49 

 

 837 

Figure 7838 



50 

 

 839 

 840 

Figure 8 841 



51 

 

 842 

Figure 9  843 



52 

 

Table 1 Fundamental values and ranges of aquifer parameters. 844 

Parameter Value or range 

Hydraulic conductivity of zone 1, K1 (m/d) (50,70) 

Hydraulic conductivity of zone 2, K2 (m/d) (35,55) 

Hydraulic conductivity of zone 3, K3 (m/d) (40,60) 

Specific yield of zone 1, μ1 0.27 

Specific yield of zone 2, μ2 0.22 

Specific yield of zone 3, μ3 0.25 

Longitudinal dispersity of zone 1 (m) 40 

Longitudinal dispersity of zone 2 (m) 30 

Longitudinal dispersity of zone 3 (m) 35 

Grid spacing in X and Y direction (m） 50 

Recharge rate (m/d) 0.00042 

Initial concentration (mg/L) 50 

Length of the stress period (y) 10 

Aquifer thickness(m) 10 

Groundwater level at the western boundary, H1 (m) (18,20) 

Groundwater level at the eastern boundary, H2(m) (15,17) 

845 
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Table 2 Fundamental values and ranges of aquifer parameters and pollution 846 

sources. 847 

Parameter Value or range 

Specific yield 0.24 

Transverse dispersity (m) 9.8 

Longitudinal dispersity (m) 40 

Aquifer thickness(m) 40 

Grid spacing in x-direction(m） 20 

Grid spacing in y-direction(m） 20 

Number of stress periods 5 

Hydraulic conductivity(m/d) (30,50) 

Fluxes of contamination source during 

stress period(g/d) 
(0,52) 

848 
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Table 3 A comparison of the accuracies of the assessed surrogate models. 849 

Case Surrogate model R2 MARE RMSE 

Case1 
Kriging 0.9942 13.43% 11.8262 

BPNN 0.9994 3.70% 3.6526 

Case2 
Kriging 0.9837 9.98% 37.7547 

BPNN 0.9989 4.48% 9.8488 

850 
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Table 4 A comparison of inversion values under different noise levels for case 851 

study 1. 852 

Unknown 

variables 

True 

value 

Inversion values under different noise levels 

0 0.5% 1% 2% Relative error 

K1 60.37  58.91  59.46  61.16  61.15  2.42% 1.50% 1.31% 1.29% 

K2  42.84  42.12  41.73  41.72  42.18  1.67% 2.58% 2.61% 1.54% 

K3 50.17  49.28  48.52  48.58  50.01  1.78% 3.29% 3.17% 0.31% 

H1 19.09  19.10  19.04  19.06  19.27  0.06% 0.24% 0.18% 0.96% 

H2 16.11  16.05  15.97  16.01  16.27  0.40% 0.87% 0.64% 0.97% 

S1T1  34.25  34.65  34.82  35.37  36.50  1.16% 1.66% 3.26% 6.57% 

S1T2 57.07  57.20  57.35  57.66  58.79  0.24% 0.49% 1.04% 3.01% 

S1T3 5.80  5.48  5.59  5.64  5.56  5.49% 3.63% 2.78% 4.19% 

S1T4 31.76  31.80  31.84  31.99  32.71  0.15% 0.25% 0.74% 3.00% 

S1T5 18.14  18.21  18.24  18.31  18.63  0.39% 0.55% 0.96% 2.73% 

S2T1  82.07  81.45  81.67  82.48  84.62  0.76% 0.50% 0.49% 3.10% 

S2T2 22.18  21.02  20.99  21.10  21.86  5.22% 5.37% 4.87% 1.44% 

S2T3  74.35  75.69  75.95  76.44  77.69  1.80% 2.15% 2.81% 4.49% 

S2T4 4.92  4.86  4.85  4.74  4.84  1.37% 1.48% 3.76% 1.78% 

S2T5  15.84  15.95  16.00  16.12  16.29  0.73% 1.06% 1.81% 2.86% 
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Table 5 A comparison of inversion values under different noise levels for case 854 

study 2. 855 

Unknow

n 

variables 

True 

value 

Inversion values under different noise levels 

0 0.5% 1% 2% Relative error 

K1 45.93 44.94  45.44  45.07  46.01  2.15% 1.07% 1.87% 0.17% 

K2  46.54 46.68  47.28  46.83  47.92  0.29% 1.59% 0.62% 2.97% 

K3 32.11 32.08  31.91  32.05  31.73  0.08% 0.62% 0.20% 1.19% 

K4 44.23 44.56  43.79  44.35  42.95  0.75% 0.98% 0.26% 2.89% 

S1T1  38.05 37.48  37.59  37.85  38.14  1.48% 1.22% 0.51% 0.23% 

S1T2 32.24 32.84  32.55  33.10  32.42  1.84% 0.95% 2.65% 0.55% 

S1T3 24.96 26.75  26.46  26.89  26.48  7.18% 6.01% 7.74% 6.09% 

S1T4 5.17 4.89  4.85  4.93  4.77  5.44% 6.33% 4.79% 7.82% 

S1T5 25.42 26.48  26.29  26.69  26.42  4.18% 3.43% 5.03% 3.94% 

S2T1  31.15 31.17  31.21  31.38  31.48  0.08% 0.19% 0.74% 1.07% 

S2T2 39.94 40.17  40.12  40.65  40.58  0.57% 0.43% 1.76% 1.59% 

S2T3  51.5 51.77  51.74  52.00  52.00  0.53% 0.47% 0.97% 0.97% 

S2T4 49.47 48.91  48.81  49.51  49.36  1.13% 1.33% 0.09% 0.21% 

S2T5  31.53 33.54  33.30  33.41  33.03  6.38% 5.61% 5.97% 4.75% 

S3T1 27.49 27.61  28.03  28.01  28.75  0.43% 1.96% 1.90% 4.59% 

S3T2 26.93 27.33  27.88  27.68  28.80  1.47% 3.52% 2.76% 6.95% 

S3T3  5.95 5.97  6.14  6.11  6.38  0.27% 3.15% 2.66% 7.13% 

S3T4 30.5 30.97  31.18  31.16  31.70  1.54% 2.21% 2.16% 3.92% 

S3T5  23.7 23.05  24.32  24.06  26.06  2.77% 2.59% 1.49% 9.95% 
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