Responses to Reviewer:

[Authors’ response] First of all, we would like to sincerely thank the 4 reviewers for
his/her supporting and for taking the time to review our manuscript. Your good
suggestions have increased our papers quality. And also thank the editors to spend more

time on our paper in the submitting process, thank you very much!

To Reviewer 1:

The paper presents a novel and well-structured inversion framework combining BPNN
surrogate  modeling with the AHA optimization algorithm for groundwater
contamination source identification. The methodology is sound and the results are
promising. The paper is generally well-written, but could benefit from some
improvements in organization, clarity, and depth of discussion in certain sections.
[Authors’ response] We sincerely thank the reviewers for their positive evaluation of
this study in terms of novelty, methodological soundness, and the potential implications
of the results. We also place great importance on the constructive suggestions regarding
the article’s organizational structure, clarity of expression, and depth of discussion, as
these comments are of significant value in further refining the paper. During the
revision process, we optimized the overall structure of the introduction and discussion
sections to ensure a more logical and rigorous flow from problem formulation to
method design, result presentation, and interpretation of significance. We have also
provided clearer explanations of key concepts and methodological steps, and

strengthened the connections between different sections. Additionally, we have
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expanded the discussion section to conduct a more in-depth analysis of the implications
and potential applications of the research findings, provide a more comprehensive
comparison with recent related studies, and further elaborate on the limitations of the
proposed framework and future research directions. We believe these improvements
effectively address the reviewers' concerns and further enhance the paper's readability,
transparency, and academic value. Thank you again for your careful guidance and

valuable suggestions!

General comments:

1. The introduction provides good background but could better highlight the novelty of
the work compared to previous studies. What specific gaps does this study address that
haven't been adequately covered before?

[Authors’ response] We appreciate the reviewer's valuable suggestion. In the revised
manuscript, we have strengthened the exposition in the introduction to better highlight
the innovative aspects of this study. Previous studies have primarily focused on either
pollution source identification or hydrogeological parameter inversion, and typically
only addressed a single type of pollution (point source or nonpoint source). In contrast,
this study proposes a highly adaptable inversion framework applicable to various
groundwater pollution scenarios. It not only enables the simultaneous identification of
pollution source information, hydraulic conductivity coefficients, and boundary
conditions in point source contamination (PSC) cases but also handles non-point source

contamination (ASC) issues with equivalent robustness. Additionally, we introduce the



artificial hummingbird algorithm to solve the optimization model, which demonstrates
superior performance in convergence speed and global optimization capability
compared to other optimization methods. This study combines a highly adaptive
surrogate model with advanced optimization algorithms and validates its robustness
under multiple noise levels, enabling high-precision, high-efficiency, and high-
robustness synergistic inversion across various groundwater pollution scenarios. These
innovative points are explicitly emphasized in the revised introduction to clearly
distinguish the differences and advantages of this study from existing work. The
modified content is highlighted in red in the Introduction section. Please refer to lines
139-146 for details. Thank you again for your careful guidance and valuable

suggestions!

2. For the surrogate modeling section, it would be helpful to provide more details about
the architecture of the BPNN (number of layers, nodes, etc.) and how these were
determined.

[Authors’ response] We appreciate the reviewers' attention to and suggestions regarding
the architectural details of the BPNN proxy model. We will include detailed
explanations of the relevant network structures in the revised manuscript. Specifically:
The network structure of Case 1 BPNN is 19-30-45, and the network structure of Case
2 BPNN is 15-20-50. The number of neurons was empirically optimized using grid
search and cross-validation to minimize RMSE and avoid overfitting. The sigmoid

function is used as the activation function, and the Bayesian regularization algorithm is



selected as the training algorithm. The learning rate is set to 0.01, and the maximum
number of iterations is 1,000. The modified content is highlighted in red in the text.
Please refer to lines 208-214 for details. Thank you again for your careful guidance and

valuable suggestions!

3. The robustness analysis is good, but could be strengthened by showing how the errors
distribute across different parameter types (e.g., are some parameters more sensitive to
noise than others?).

[Authors’ response] We thank the reviewer for this thoughtful suggestion. To enhance
the robustness analysis, we conducted an additional evaluation of how the relative error
varies among different types of inversion parameters under increasing noise levels
(0.5%, 1%, and 2%)).

Our findings reveal clear differences in sensitivity to noise among parameter
categories: Hydraulic conductivity: These parameters showed low sensitivity to noise,
with relative errors remaining below 3% in all scenarios for both PSC and ASC cases.
Their errors increased gradually with noise but remained stable, indicating strong
robustness. Boundary head values (PSC case only): These parameters also exhibited
excellent noise resistance, with relative errors consistently below 1% even at 2% noise
level. Source release intensities: This group showed the highest sensitivity to noise. At
a 2% noise level, some source parameters (e.g., S171 in PSC, $173, S174, $317, S373, S37T5
in ASC) had relative errors exceeding 6%—10%, reflecting their higher inversion

uncertainty under noisy conditions. This analysis has been summarized in the revised



manuscript to better highlight parameter-specific sensitivities. These results underscore
the need for targeted noise-reduction strategies (e.g., preprocessing) for more sensitive
parameters in future work. The modified content is highlighted in red in the text. Please
refer to lines 436-445 for details. Thank you again for your careful guidance and

valuable suggestions!

4. The discussion of limitations is good but could be expanded. For example, how might
the method perform with more complex, heterogeneous aquifers? What are the
computational limits?

[Authors’ response] We sincerely appreciate the reviewer’s constructive feedback. In
response, we have expanded the discussion to further elaborate on the limitations
regarding aquifer complexity and computational feasibility.

First, with respect to aquifer complexity, the current study focuses on spatially
inhomogeneous but isotropic aquifers under steady-state flow assumptions. However,
in real-world hydrogeological systems, aquifers are often strongly heterogeneous and
anisotropic, with nonlinear flow and transport dynamics. Applying the proposed
inversion framework to such complex systems would introduce several challenges,
including increased dimensionality of inversion variables, heightened parameter
correlation and non-uniqueness, and difficulties in capturing highly irregular input—
output relationships using surrogate models. These issues could compromise both the
accuracy and stability of the inversion process. To address these challenges in future

studies, techniques such as geostatistical priors, spatial regularization constraints, and



multi-fidelity surrogate modeling could be incorporated to improve performance under
realistic conditions.

Second, regarding computational limits, the integration of a surrogate model (BPNN)
significantly improves computational efficiency by avoiding repeated calls to the
numerical simulation model during optimization. In our current implementation,
thousands of optimization iterations can be completed within a few minutes. However,
as the complexity of the inversion problem increases, the number of required samples
and surrogate training time would increase substantially. The dimensionality of the
decision variables also plays a critical role in determining the size of the training set
needed to maintain surrogate accuracy. Additionally, while BPNN are relatively
lightweight, deeper networks or ensemble-based surrogates may demand greater
computational resources. Potential solutions to mitigate these issues include parallel
computing, adaptive sampling, and hybrid surrogate strategies that balance accuracy
and efficiency. The modified content is highlighted in red in the text. Please refer to

lines 579-602 for details. Thank you again for your patient guidance and suggestions.

5. The practical implications section could be expanded. How would this method be
implemented in real-world remediation projects?

[Authors’ response] We thank the reviewer for the important question. In real-world
groundwater contamination scenarios, the proposed surrogate-assisted inversion
framework demonstrates effectiveness in identifying contamination sources,

particularly when field data are limited, hydrogeological information is incomplete, and



contamination source history is complex or unknown. The framework is typically
implemented through a series of coordinated steps.

The process begins with an initial field investigation to collect spatiotemporal
distribution data on contaminant concentrations from monitoring wells and obtain key
information such as aquifer structure and boundary conditions. Although these data may
be sparse and uncertain, they form the basis for inversion observations. Based on expert
judgment and site-specific details, the study area is divided into subregions reflecting
potential contaminant source locations, spatial variations in hydraulic conductivity, and
uncertain boundary conditions. This partitioning establishes a framework for parameter
inversion. Subsequently, a site-specific numerical groundwater flow and transport
model (e.g., MODFLOW, MT3DMS) is developed to simulate contaminant migration.
Through systematic sampling within a reasonable range, the model generates a set of
training samples. These samples provide the data required to train a backpropagation
neural network (BPNN) proxy model, which subsequently replaces the computationally
intensive numerical simulation model to enable faster forward simulation. To identify
the optimal parameter combination, the AHA is then applied to efficiently search the
high-dimensional parameter space. This optimization process aims to find the optimal
combination of parameters to minimize the difference between predicted and observed
concentrations. The inversion results can reconstruct the spatiotemporal distribution of
pollutant release, providing important evidence for guiding subsequent investigations,
determining pollution responsibility, and formulating remediation plans. By effectively

integrating observational data, numerical modeling, and intelligent optimization within



a flexible and efficient framework, this method offers a practical solution for identifying
pollution sources in complex and data-scarce groundwater systems. Thank you again

for your patient guidance and suggestions!

6. Lines 231: While the proposed BPNN-AHA framework presents a robust approach,
the authors may wish to consider and discuss alternative methodologies such as data
assimilation techniques, which have shown promise in similar environmental modeling
applications. For instance, data assimilation and cite paper such as Assimilation of
sentinel -based leaf area index for modeling surface- ground water interactions in
irrigation districts.

[Authors’ response] We appreciate the reviewer' professional suggestions. We agree that
data assimilation techniques (such as ensemble Kalman filters or particle filters) have
been widely used in environmental modeling. The literature cited by the reviewers
adequately demonstrates the excellent comprehensive application of data assimilation
methods. We specifically discussed this issue in our revised manuscript. The details are
as follows: In addition to the methods applied in this study, data assimilation methods
are also widely used in the field of groundwater pollution inversion. They can combine
observational data with numerical models to improve state estimation and parameter
inversion (Zafarmomen et al., 2024). Many researchers have successfully applied data
assimilation methods to the iterative optimization of pollutant transport states and
related parameters, significantly improving inversion accuracy and reducing prediction

uncertainty. For example, Pan et al. (2022) proposed a refined particle filter with a deep



learning method surrogate as an inverse framework for groundwater pollution source
estimation. This framework was evaluated under different levels of observational error
through estimation tasks for point source pollution cases and non-point source pollution
cases. Wang et al. (2023) utilized an improved particle filter method for groundwater
pollution source identification. Zhang et al. (2024) used an iterative local updating
ensemble smoother method to simultaneously identify pollution source information and
hydraulic conductivity fields. However, both the method proposed in this study and
data assimilation methods have their own advantages and disadvantages. The method
proposed in this study possesses strong fine-grained search capabilities but its
performance is highly dependent on the selection of initial points. Data assimilation
methods can integrate multi-source data, significantly improving the spatio-temporal
consistency of inversion results; however, their fine-grained search capabilities are
somewhat limited. Future research could explore combining the real-time updating
capabilities of data assimilation with the adaptability and optimization efficiency of the
framework proposed in this study to further enhance the adaptability and performance
of groundwater pollution inversion. The modified content is highlighted in red in the
text. Please refer to lines 520-542 for details. Thank you again for your patient guidance

and suggestions!
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To Reviewer 2:

Luo et al. present an inversion framework that combines BPNN surrogate modeling
with the AHA optimization algorithm for groundwater contamination source
identification, and they comprehensively evaluate the performance of different
surrogate models. The work is generally well written. However, several significant
issues must be addressed to improve the clarity of the paper. The most critical concern
lies in the structure of the Introduction. Although the authors provide an extensive
literature review, the research gap and the novelty of this study in relation to previous

work are not clearly emphasized. Secondly, the Discussion section lacks depth, which
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substantially weakens the novelty and the implications of this study. Finally, the
language throughout the manuscript should be thoroughly revised and polished before
publication.

[Authors’ response] We are grateful to the reviewer for your positive evaluation of the
methodological framework of this paper and their valuable suggestions. Regarding the
main issues related to the structure of the introduction, we have rewritten the research
objectives of this study and also added the innovative points of this research.
Additionally, we have expanded the discussion section to provide a more in-depth
analysis of the theoretical significance and practical applicability of the proposed
method. Furthermore, we have conducted a comprehensive revision of the language
throughout the entire paper, including improving clarity of expression, eliminating
redundant content, standardizing terminology and grammatical expressions, to enhance
overall readability. Once again, we sincerely thank you for your careful guidance and

valuable suggestions!

Specific comments:

1. Lines 127-135 The authors are recommended to reorganize the research objectives.
The current unclear objectives obscure the novelty of the paper. This confusion is
caused by an unclear summary of the research gap.

[Authors’ response] We appreciate the reviewer' comments pointing out that the original
research objectives did not fully reflect the scientific innovation of this study. After

careful consideration, we believe that the previous wording was indeed more inclined

1



toward “listing operational steps” rather than being directly driven by scientific
questions. Below are our revised research objectives:

(1) Develop a flexible groundwater pollution inversion scheme that can reliably invert
parameters under various groundwater pollution scenarios;

(2) Adopt an integrated parameter identification strategy to achieve the simultaneous
identification of multiple variables, including pollutant release characteristics and
hydrogeological parameters;

(3) Design an optimization-based surrogate modeling method combining meta-heuristic
search algorithms with neural network surrogate models to efficiently explore the
solution space and reduce the risk of getting stuck in local optima during inversion
calculations;

(4) Evaluate the performance of the proposed scheme under various noise intensities
and pollution patterns to validate its robustness and application potential in
groundwater pollution inversion problems.

The modified content is highlighted in red in the Introduction section. Please refer to
lines 129-138 for details. Thank you again for your careful guidance and valuable

suggestions!

2. Line 151 MODFLOW and MT3DMS are not packages.
[Authors’ response] Thank you to the reviewers for pointing out the inappropriate use
of terminology. We confirm that MODFLOW and MT3DMS should be referred to as

numerical models rather than “packages.” The modified content is highlighted in red in
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the text. Please refer to line 161 for details. Thank you again for your careful guidance

and valuable suggestions!

3. Line 305 Replace “inhomogeneous” by “Heterogeneous”.

[Authors’ response] We appreciate the reviewers' comments regarding the terminology
used. We agree that in the field of hydrogeology, “heterogeneous” is a more accurate
and commonly used term than “inhomogeneous.” We will correct the relevant
expressions in the revised version. The modified content is highlighted in red in the text.
Please refer to line 301 and line 323 for details. Thank you again for your careful

guidance and valuable suggestions!

4. Lines 387-389 The authors are suggested to combine this sentence with the previous
paragraph to create a clearer contrast, which would make the comparison more striking.
Additionally, I am skeptical about the reported runtime for the 1000 iterations.
Considering that the model in this study is at the field scale, consists of only a single
model layer, and uses a rather coarse grid discretization, a runtime of 500 hours seems
excessively long.

[Authors’ response]| We appreciate the valuable suggestions provided by the reviewers.
Regarding the structural suggestions, we adjusted the paragraph around lines 405-407
and merge the sentence into the previous paragraph to enhance the coherence of the
preceding and following content, making the argumentation more logical and fluent.

We also sincerely thank the reviewers for pointing out the inaccuracies in the runtime
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description. After re-verification, we confirm that the original text stating “500 hours”
was incorrect. In the current computational environment, a single simulation takes
approximately 3 minutes to complete, and the total runtime for 1,000 optimization
iterations is approximately 50 hours. We sincerely acknowledge this error and thank the
reviewers for providing the opportunity to correct it. Thank you again for your patient

guidance and suggestions.

5. Lines 420-424 This section reads more like a repetition of the Introduction. It is
recommended that the authors first present their own findings in the Discussion before
comparing them with other studies. Additionally, emphasizing the implications of this
study would greatly enhance the value of the paper.

[Authors’ response] We appreciate the reviewers' valuable suggestions. We agree that
the current introduction to the discussion section (lines 420—424) repeats background
information already provided in the introduction and fails to effectively transition to
our core findings. In the revision, we will restructure this section to first provide a
focused summary of the main results, followed by a comparison with related studies.
Details are as follows: The results of this study show that the proposed BPNN-AHA
framework achieves high accuracy, strong robustness, and efficient convergence in GCI
tasks, performing consistently well in both PSC and ASC scenarios, even under varying
noise levels. In the PSC and ASC cases analyzed here, the R? values reached 0.9994
and 0.9989, and the MARE values were 3.70% and 4.48%, respectively, demonstrating

the model’s excellent capability to approximate the input—output relationships of the
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simulation model. The BPNN surrogate model, with its simple structure, high flexibility,
and broad adaptability, effectively balances accuracy and generalizability—
characteristics that are essential for practical inversion applications. Compared to other
surrogate modeling approaches reported in recent GCI research—such as long short-
term memory neural networks (Li et al., 2021), light gradient boosting machines (Pan
et al., 2023), and deep residual networks (Xu et al., 2024b)—the proposed framework
leverages the adaptability of BPNN together with the global search and adaptive
convergence mechanisms of the artificial hummingbird algorithm to deliver
consistently accurate and stable inversion results. The modified content is highlighted
in red in the text. Please refer to line 448-462 for details. Thank you again for your

patient guidance and suggestions!

6. Lines 438-440 Please specify the advantages more clearly.

[Authors’ response] We appreciate the helpful suggestions provided by the reviewer.
We agree that the current statements in lines 438-440 do not clearly and specifically
summarize the advantages of this method. In the revision, we have clearly pointed out
the main advantages of this surrogate model: In summary, the proposed BPNN proxy
model has practical advantages in tasks related to GCI, thereby enhancing its
applicability. Due to its relatively simple architecture and low computational
requirements, the BPNN model can be trained and updated efficiently even under
limited computational resources. Additionally, the model demonstrates strong

generalization capabilities in both PSC and ASC scenarios, indicating that it is not
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specific to a particular case. This adaptability is crucial for practical groundwater
inversion problems, as data availability and system complexity often vary significantly
across different locations. These characteristics highlight the comprehensive
advantages of the BPNN model in terms of accuracy, efficiency, and flexibility, making
it a reliable and practical choice for surrogate modeling in groundwater simulation. The
modified content is highlighted in red in the text. Please refer to lines 470-480 for

details. Thank you again for your patient guidance and suggestions!

7. Lines 483 Including the limitations is good. The authors are suggested to include
limitations in a separate section.

[Authors’ response] We appreciate the reviewer’s suggestion regarding the presentation
of the study’s limitations. While we have included some discussion of limitations in the
current manuscript, we agree that presenting them in a standalone section will improve
clarity and help readers better understand the scope and applicability of our method.
The modified content is highlighted in red in the text. Please refer to lines 578-602 for

details. Thank you again for your patient guidance and suggestions!

8. Lines 501 The authors are encouraged to include more quantitative findings rather
than just qualitative notifications.

[Authors’ response] We appreciate the reviewers' suggestion to add quantitative results
to the conclusion section. We agree that introducing specific numerical indicators will

help improve the expression of the conclusion and better reflect the core findings of
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this study. Therefore, we will supplement the main quantitative results in the revision,
such as relative error, R? value, and performance comparison of different surrogate
models, to more clearly summarize the accuracy and advantages of the proposed
method. The modified content is highlighted in red in the text. Please refer to lines 615-
616 and lines 619-620 for details. Thank you again for your patient guidance and

suggestions!

To Reviewer 3:

While the manuscript addresses an important challenge in groundwater contamination
source identification, its novelty is limited. The core contribution lies in introducing the
Artificial Hummingbird Algorithm (AHA) into a simulation-optimization framework,
which is not a fundamentally new algorithm nor specifically tailored to groundwater
inverse problems. Furthermore, many techniques used—BPNN, Kriging, PSO, SSA—
are already well-established in the literature.

Moreover, the reported simulation results show extremely high precision (e.g., R* >
0.999, MRE < 2%), which may suggest possible overfitting or idealized experimental
setups. The study lacks rigorous testing of generalization under realistic uncertainty
scenarios, such as sparse observations, complex geological heterogeneity, or parameter
noise. Without such assessments, the practical robustness and transferability of the
proposed framework remain questionable.

The paper would benefit from a deeper methodological insight into why AHA performs

better in this specific problem context, rather than merely benchmarking its numerical
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results. The current framing gives the impression of "algorithm replacement" without
substantive theoretical or application-driven innovation.

[Authors’ response] We are grateful to the reviewer for your insightful evaluations and
valuable comments, which have greatly inspired us. We fully understand your concerns
regarding the innovativeness of the methods, the rationality of the algorithm selection,
and the authenticity of the experimental design. Here, we would like to provide a
systematic explanation of the following points to further clarify the structural design,
academic contributions, and application applicability of this study, thereby addressing
the core issues raised by the reviewer.

This study does not aim to propose a novel algorithm in a strict sense, but rather to
construct an inversion framework specifically tailored to the complex characteristics of
groundwater contamination source identification. The source identification problem
typically requires simultaneous estimation of pollutant sources, aquifer hydraulic
parameters, and boundary conditions, resulting in a high-dimensional, ill-posed, and
strongly coupled system. Many existing studies address only one category of these
parameters, or rely on idealized assumptions (e.g., known boundaries or fixed
parameter fields) to simplify the inversion process, limiting their applicability to real-
world field conditions.

To address this challenge, we propose a hybrid framework that couples surrogate
modeling and intelligent optimization, enabling efficient and coordinated inversion of
multiple unknowns in complex pollution scenarios while maintaining computational

tractability. One of the main methodological motivations of this study is the integration
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of the BPNN surrogate model with the AHA for GCI. This choice is grounded both in
the inherent characteristics of GCI problems and in the complementary mechanisms of
the two methods. GCI is a typical high-dimensional, nonlinear, and ill-posed inverse
problem. The mapping from observed contaminant concentrations to source
characteristics and hydrogeological parameters is often multimodal and nonconvex. In
such cases, surrogate models such as BPNN can provide a fast and flexible
approximation to computationally demanding groundwater simulations, but their use
inevitably introduces approximation errors into the inversion objective function. These
errors may create local irregularities in the objective function landscape, which can
mislead optimizers and cause premature convergence—particularly when the
optimization algorithm lacks a mechanism to balance exploration and exploitation
adaptively. AHA offers notable advantages in addressing these issues. Its bio-inspired
mode-switching strategy alternates dynamically between diversified search and
focused search. In the early stages of optimization, the broad and varied exploration
capability helps to survey the global search space and reduces the risk of becoming
trapped in spurious local optima caused by surrogate-induced noise. As the search
proceeds, the algorithm adaptively shifts toward more intensive exploitation,
concentrating computational effort on promising regions and thereby accelerating
convergence. This dynamic adjustment is particularly important in GCI problems,
where the optimal parameter region is often narrow and embedded within a complex
and noisy search space. In addition, AHA’s adaptive update mechanism adjusts search

trajectories in response to population feedback, effectively mitigating the influence of
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local fluctuations in the surrogate-predicted objective function on the optimization
process. This robustness to noisy or irregular fitness landscapes complements the
BPNN’s ability to generalize across diverse contamination scenarios. It is worth
emphasizing that this integration is not a simple “algorithm replacement,” but a targeted
design choice based on the structural characteristics of the problem: BPNN provides
broad adaptability to varying hydrogeological conditions, while AHA contributes
resilience and fine-tuning capability when the optimization landscape is distorted by
surrogate approximation errors. This synergy allows the proposed framework to
maintain both high accuracy and strong robustness under different contamination
scenarios and noise levels. More importantly, the underlying design principle—
matching the characteristics of the surrogate model with the search dynamics of the
optimization algorithm—has broader applicability to other environmental inversion
problems.

For case design, two representative and challenging contamination scenarios were
selected. The first involves temporally varying point-source pollution, often observed
in industrial accidents and accidental spills. The second involves spatially diffuse non-
point source pollution, commonly associated with agricultural runoff and leaching sites.
Both scenarios feature unknown pollution source parameters, uncertain aquifer
properties, and complex boundary conditions. These synthetic cases are not intended to
validate the framework under idealized assumptions, but rather to serve as a controlled
and structurally representative testbed for evaluating the performance of different

surrogate—optimizer combinations under identical problem structures. We acknowledge
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the reviewer’ concerns regarding the reported high prediction accuracy (e.g., R*>0.999,
MRE < 2%) in the simulation results. While these test cases are critical for verifying
model behavior and enabling comparative analysis, we agree that they cannot fully
represent the complexities of real-world environments. We have already begun
incorporating such tests into our ongoing work and have outlined this as a key direction
for future development.

Lastly, we wish to clarify that although our study does not involve algorithmic invention
per se, its primary contribution lies in application innovation and modular adaptability.
We present a framework that not only achieves high performance under controlled
conditions but is also sufficiently flexible to be extended to various field-scale
groundwater inverse problems, including both point and non-point source
contamination scenarios. Such an integrated and application-oriented modeling
approach—particularly one that is computationally efficient and compatible with
limited field data—is of direct relevance to both environmental practitioners and
researchers. We hope these clarifications and revisions more accurately convey the
intention, applicability, and potential of our work. The modified content is highlighted
in red in the section 6.3. Please refer to lines 543-577 for details. Thank you again for

your patient guidance and suggestions!
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To Reviewer 4:
General comments
Good modelling research in the field of subsurface hydrology. Please, see my comments

to fix the existing minor issues.

Specific comments:

1. Line 64. “Hydrogeological conditions”. Insert recent papers on high-resolution
datasets for determanation of hydrogeological conditions at contamianted sites.

- Maliva, R. G., Herrmann, R., Coulibaly, K., & Guo, W. (2015). Advanced aquifer
characterization for optimization of managed aquifer recharge. Environmental Earth
Sciences, 73, 7759-7767.

- Medici, G., Munn, J. D., & Parker, B. L. (2024). Delineating aquitard characteristics
within a Silurian dolostone aquifer using high-density hydraulic head and fracture
datasets. Hydrogeology Journal, 32, 1663-1691.

[Authors’ response] Thank you for your suggestions. We have incorporated the relevant
research literature you provided into the revised manuscript, which pertains to the
application of high-resolution data in identifying hydrogeological conditions at
contaminated sites, thereby enhancing the contextual explanation of the relevant
content. The modified content is highlighted in red in the text. Please refer to line 65,
lines 721-723 and lines 726-728 for details. Once again, we sincerely appreciate your

thoughtful guidance and valuable suggestions!
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2. Line 151. MODFLOW, which version?

[Authors’ response] Thank you for your valuable feedback. The version of MODFLOW
used in this study is MODFLOW-2005. The modified content is highlighted in red in
the text. Please refer to line 161 for details. Thank you again for your careful guidance

and valuable suggestions!

3. Line 282. Specify the type of aquifer in terms of lithology.

[Authors’ response] Thank you for the comment. In the revised manuscript, we clarified
the type of aquifer based on lithology. The aquifer consists of loose sediments, mainly
well-sorted coarse sand and gravel, providing a clearer geological background. The
modified content is highlighted in red in the text. Please refer to lines 302-304 for

details. Thank you again for your careful guidance and valuable suggestions!

4. Line 302. Same here, specify the type of aquifer in terms of lithology.

[Authors’ response] Thank you for the comment. In the revised manuscript, we clarified
the type of aquifer based on lithology. The aquifer consists of loose sediments, mainly
well-sorted coarse sand and gravel, providing a clearer geological background. The
modified content is highlighted in red in the text. Please refer to lines 329-330 for

details. Thank you again for your careful guidance and valuable suggestions!

5. Lines 340-341. “Mean relative error”. 1 suggest Mean Absolute Relative Error

because there is the modulus.
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[Authors’ response] Thank you for the suggestion. We agree with the reviewer that
“Mean Absolute Relative Error” is the more accurate term, given the use of absolute
values in the calculation. The modified content is highlighted in red in the text. Please
refer to lines 359-360 and line 364 for details. Meanwhile, the corresponding part of
the full text has also been corrected. Thank you again for your careful guidance and

valuable suggestions!

6. Line 521. Add a “take home message” for the researchers working in the field.

[Authors’ response] Thank you for the helpful suggestion. In the revised manuscript,
we added a concise “take-home message” at the end of the Conclusion section to clearly
summarize the key contributions and practical relevance of our study for researchers
working on groundwater contamination source identification. The specific content is as
follows: For researchers working in groundwater contamination source identification,
this study underscores that method selection should not be guided solely by algorithmic
novelty, but should be informed by the inherent complexity of the problem and the
compatibility between the research question and the chosen approach. In groundwater
contamination inversion, selecting a highly compatible method can substantially
improve efficiency, while leveraging and organically integrating the strengths of
different methods can greatly enhance robustness. This concept is equally applicable to
a broader range of complex environmental inversion problems, offering valuable
insights and practical potential. The modified content is highlighted in red in the text.

Please refer to lines 632-640 for details. Thank you again for your patient guidance and
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suggestions!

Figures and tables

1. Figure 5. Add the general flow direction with an arrow. Figure 5. Alternatively, divide
the figures in two parts (A and B) adding the piezometric surfaces.

[Authors’ response] Thank you for the suggestion. We added arrows to Figures 3 and 5
to indicate the approximate direction of groundwater flow and improve the clarity of
the spatial background. Please refer to Figures 3 and 5 for details. Thank you again for

your patient guidance and suggestions!

2. Figure 6. I would add a spatial scale using a bar.

[Authors’ response] Thank you for the suggestion. We have added a spatial scale bar to
Figure 4 and Figure 6 in the revised manuscript to enhance the interpretability of the
spatial layout. Please refer to Figures 4 and 6 for details. Thank you again for your

patient guidance and suggestions!

3. 9 tables are too many. Some of them can go in the Supplementary Material?

[Authors’ response] Thank you very much for your thoughtful suggestions. We fully
understand that nine tables may be burdensome for readers of the main text. Based on
your feedback, we have moved Tables 2, 3, 5, and 9 to the supplementary materials and
added references to the supplementary materials in the main text to ensure that readers

can easily access them. The remaining tables, after careful consideration, contain core
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information that is indispensable for supporting the research conclusions, and thus have

been retained. Thank you again for your patient guidance and suggestions!

Thank you so much for your carefully review and good suggestions that make our paper
quality improve. Best wishes for you and your whole family members!

Best wishes for you!

Sincerely

Chengming Luo, Xihua Wang, Y. Jun Xu, Qinya Lv, Xuming Ji, Boyang Mao,
Shunging Jia, Zejun Liu, Yanxin Rong, Yan Dai

August 3 2025
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