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Abstract 17 

Airborne hazardous trace metals pose significant risks to human health. However, the response 18 

characteristics of ambient trace metals to emission reductions remain poorly understood. The 19 

COVID-19 pandemic offered a unique opportunity to investigate these response mechanisms and 20 

optimize emission control strategies. In this study, we employed the Global Modeling System for 21 

Chemistry (GEOS-Chem) chemical transport model to predict global variations in atmospheric 22 

concentrations of nine hazardous trace metals (As, Cd, Cr, Cu, Mn, Ni, Pb, V, and Zn) and assess 23 

their responses to COVID-19 lockdown measures. Our results revealed that global average 24 

concentrations of As, Cd, Cr, Cu, Mn, Ni, and V decreased by 1-7%, whereas Pb and Zn levels 25 

increased by 0.4% and 2%, respectively. The rise in Pb and Zn concentrations during lockdowns 26 

was primarily linked to sustained coal combustion and non-ferrous smelting activities, which 27 

remained essential for residential energy demands. Spatially, India, Western Europe (WE), and 28 

North America (NA) experienced the most pronounced declines in trace metal levels, while Sub-29 
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Saharan Africa (SS) and Australia showed minimal sensitivity to lockdown-induced emission 30 

reductions. Based on the scenario analysis, we found the concentrations of trace metals displayed 31 

linear response to emission reduction. Combined with the health risk assessment, we demonstrated 32 

the reduced emissions of Pb and As during the lockdown period yielded the greatest health 33 

benefits—Pb reductions were associated with lower non-carcinogenic risks, while As declines 34 

contributed most significantly to reduced carcinogenic risks. Targeting fossil fuel combustion 35 

should be prioritized in Pb and As mitigation strategies. 36 

1. Introduction 37 

With the rapid advancement of industrial development and urbanization, numerous hazardous 38 

trace metals have been released into the atmosphere (Cheng et al., 2015; Yu et al., 2012; Zhu et al., 39 

2020). These toxic elements injected into the air can negatively impact terrestrial and aquatic 40 

ecosystems through dry or wet deposition and pose significant risks to human health through long-41 

term exposure (Al-Sulaiti et al., 2022; Pan and Wang, 2015; Sharma et al., 2023). Certain trace 42 

elements, including arsenic (As), cadmium (Cd), chromium (Cr), and lead (Pb), have been classified 43 

as carcinogens by the International Agency for Research on Cancer (IARC) (Bai et al., 2023; Loomis 44 

et al., 2018; Pearce et al., 2015). Therefore, it is crucial to investigate the spatiotemporal 45 

characteristics of hazardous trace metals in the atmosphere and assess their health impacts. Such 46 

efforts are instrumental in identifying hotspots and formulating effective control measures to 47 

mitigate health risks. 48 

A growing body of studies have explored the long-term trends of ambient trace elements in 49 

various cities (Das et al., 2023; Guo et al., 2022; Nirmalkar et al., 2021). For example, Farahani et 50 

al. (2021) reported significant decreases in PM2.5-bound levels of nickel (Ni), vanadium (V), zinc 51 

(Zn), lead (Pb), manganese (Mn), and copper (Cu) in central Los Angeles between 2005 and 2018 52 

(Farahani et al., 2021). Very recently, Li et al. (2022) confirmed that concentrations of Pb, zinc (Zn), 53 

and arsenic (As) in PM2.5 in Tangshan decreased by 62%, 59%, and 54% from 2017 to 2020, 54 

respectively, owing to the implementation of clean air actions. Although some studies have analyzed 55 

the long-term trends of ambient hazardous trace metals in specific regions, the spatiotemporal 56 

variations in most areas remain poorly understood due to the limited spatial representativeness of 57 

monitoring sites. To address these limitations, some researchers have utilized chemical transport 58 
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models to predict regional or global concentrations of ambient hazardous trace metals. For instance, 59 

Liu et al. (2021) employed the Community Multiscale Air Quality (CMAQ) model to estimate the 60 

concentrations of 11 trace elements and found that most of these elements exhibited higher levels 61 

in the North China Plain (NCP). Additionally, Zhang et al. (2020) used the GEOS-Chem model to 62 

predict global ambient arsenic (As) concentrations from 2005 to 2015. Their findings revealed that 63 

atmospheric As levels in India exceeded those in eastern China, primarily due to the sharp increase 64 

in coal combustion across India. However, to date, the spatiotemporal variations of multiple 65 

hazardous trace metals on a global scale remain poorly understood. Moreover, the response of 66 

ambient trace elements to changes in emissions is still unknown. Bridging this knowledge gap is 67 

crucial for implementing effective control and prevention measures targeted at specific trace 68 

elements. 69 

COVID-19 swept across the globe between January and April 2020 (Fonseca et al., 2021; 70 

Saadat et al., 2020; Venter et al., 2020). To prevent the rapid spread of this complex disease, many 71 

strict lockdown measures such as lockdown were implemented, including the partial or complete 72 

closure of international borders, the shutdown of nonessential businesses, and restrictions on citizen 73 

mobility (Meo et al., 2020; Onyeaka et al., 2021; Xing et al., 2021). These stringent control measures 74 

led to dramatic decreases in the levels of many gaseous precursors, such as NOx and CO. Keller et 75 

al. (2021) estimated that global NOx emissions were reduced by 3.1 Tg N during January-June 2020, 76 

accounting for 5.5% of total anthropogenic emissions. In addition, many studies have analyzed the 77 

response mechanisms of secondary pollutants to emission reductions during this period. Li et al. 78 

(2023b) identified three distinct response mechanisms of secondary nitrogen-bearing components 79 

to the reduction in NOx emissions. Although the impacts of COVID-19 lockdown on multiple 80 

pollutants have been explored, the response of ambient hazardous trace metals to emission changes 81 

and the emission reduction thresholds during the COVID-19 period still remains remained unknown. 82 

Additionally, the separate contributions of emission reductions and meteorological factors to 83 

ambient hazardous trace metal levels are also unclear. The COVID-19 pandemic provided an 84 

unprecedented opportunity to uncover these response mechanisms and marginal benefits of 85 

emission reduction, offering valuable insights for developing effective air pollution mitigation 86 

strategies. 87 
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Here, we developed a new trace metal emission inventory and employed the GEOS-Chem 88 

model to predict the global variations of ambient trace elements before and during the COVID-19 89 

period. First, we analyzed the spatiotemporal variations of ambient trace metal levels. Then, we 90 

distinguished the contributions of emission changes and meteorology. Finally, we quantified the 91 

health benefits resulting from emission reductions. Our study provides valuable insights and 92 

targeted policy implications for future air pollution control. 93 

2. Materials and methods 94 

2.1 Overview 95 

The workflow of our methodology is depicted in Figure S2. At first, we developed a global 96 

trace metal emission inventory based on activity levels and emission factors. Then, we incorporated 97 

the global emission inventory into the chemical transport model to estimate the global trace metal 98 

concentrations during 2017–2020. The parametrization scheme of chemical transport model was 99 

configured based on the ground-level observations. The optimal scheme was set up to obtain the 100 

accurate spatial maps of global trace metal concentrations. At last, we assessed the health risks 101 

associated with the trace metal exposures during this period. 102 

2.2 The global emission inventory of hazardous trace metals 103 

According to the classification standard proposed by Streets et al. (2011), all countries and 104 

regions worldwide could be categorized into five groups, ranging from the most developed (Region 105 

1) to the least developed (Region 5). Anthropogenic emission factors and the removal efficiency of 106 

hazardous trace metals vary significantly among these regions. Detailed data were obtained from 107 

Table S1-S9. Coal combustion sources were further divided into two subcategories: coal-fired power 108 

plants and other coal-fired sectors. Non-coal combustion sources were classified into six subsectors: 109 

liquid fuel combustion, ferrous metal smelting, non-ferrous metal smelting, non-metallic mineral 110 

manufacturing, vehicle emissions, and municipal solid waste incineration. Natural emissions, 111 

including those from dust, biomass burning, and sea salt (Table S10-S13), were estimated in detail 112 

using the methodology described by Wu et al. (2020). Based on these categorizations and 113 

methodologies, an emission inventory for nine trace metals including As, Cd, Cr, Cu, Mn, Ni, Pb, 114 

V, and Zn was developed. The detailed emission inventory description was introduced in Supporting 115 

Information (Text S1). 116 
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2.3 Ground-level observations 117 

Most of the ground-level ambient hazardous trace metal observations (PM10) mainly focused 118 

on China, Western Europe, and Contiguous United States. China did not possess regular ground-119 

level observations of ambient trace metals, and thus we only collected these data from previous 120 

references. Both of Western Europe and Contiguous United States possessed regular ambient trace 121 

metal observations. The European Monitoring and Evaluation Programme (EMEP) comprises of 122 

more than 100 sites about trace metal observations across Europe in past 20 years. The quality 123 

control of EMEP was explained by Tørseth et al., (2012). The dataset of daily ambient trace metal 124 

concentrations in many sites across the United States were downloaded from the website of 125 

https://www.epa.gov/ (Figure S1 and Table S14).   126 

2.4 GEOS-Chem model 127 

The GEOS-Chem model (v12-01) was utilized to simulate the concentration differences of nine 128 

hazardous trace metals in the atmosphere during the period from January 23 to April 30, comparing 129 

2020 to 2017–2019. These differences were attributed to the combined effects of emission changes 130 

and meteorological variations. The core mechanism of this model integrates tropospheric NOx-131 

VOC-O3-aerosol chemistry (Mao et al., 2010; Park et al., 2004). In our study, we treated the 132 

deposition processes of trace metals similarly as aerosol particles because most (90% or more) 133 

atmospheric trace metals sorb onto aerosols especially fine-mode (i.e., PM2.5) aerosols. Furthermore, 134 

the trace metals were generally considered to be inert, and thus the chemical reactions were not 135 

added in the trace metal modelling. Only physical processed such as emission, mixing, transport, 136 

and depositions were considered in the model. Wet deposition processes include sub-grid 137 

scavenging in convective updrafts, in-cloud rainout, and below-cloud washout (Liu et al., 2001). 138 

Dry deposition was calculated using a resistance-in-series model (Wesely, 2007). The model was 139 

driven by meteorological data assimilated from the MERRA2 reanalysis (Qiu et al., 2020). A global 140 

simulation at a 2 × 2.5° resolution was conducted to estimate the concentrations of hazardous 141 

trace metals on a global scale (Qiu et al., 2020). Anthropogenic trace metal emission inventories for 142 

2019 2017–2019 and 2020 were derived from Section 2.1, while natural emissions included dust, 143 

biomass burning, and sea salt. The modelled trace metal concentration is the sum of trace TE 144 

concentrationsmetal concentrations in particle sizes≤2.5 μm in diameter (accumulation mode) and 145 

设置了格式: 下标
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particle sizes between 2.5 and 10 μm in diameter (coarse mode). Model performance was evaluated 146 

using several statistical indicators, with the detailed equations provided in the Supplementary 147 

Information (SI). 148 

To isolate the effects of emission reductions and meteorological changes on ambient hazardous 149 

trace metals, simulations using the 2019 2017–2019 emission inventory and 2020 meteorological 150 

conditions (GC2019emiGC2017 –2019emi-2020met) were also conducted. GC2020 and GC2019 GC2017 –2019 151 

represent simulation results based on the emissions and meteorological conditions of 2020 and 152 

20192017–2019, respectively. The pollutant concentration differences between 2019 2017–2019 153 

and 2020 caused by emissions (GCemi) and meteorology (GCmet) were quantified using the following 154 

equations: 155 

2020 2017 2019e 2020

2017 2019 2020 2017 2019

  (1)

  (2)

emi mi met

met emi met

GC GC GC

GC GC GC

− −

− − −

= −

= −
 156 

The detailed calculation process is as follows. First, the concentrations of ambient trace metals 157 

for both 2019 2017–2019 and 2020 were simulated. In the second step, the meteorology for 2020 158 

was fixed, and the emission inventory was adjusted to 2017–20192019 to calculate GC2019emi-2020met. 159 

The simulated ambient trace metal levels for 2020 were then subtracted from the simulated 160 

concentrations with 2017–20192019 emissions and 2020 meteorology (Eq. 1) to determine the 161 

contribution of emissions to the total difference in ambient trace metals during the COVID-19 period 162 

(GCemi). Similarly, based on Eq. 2, the same method was applied to estimate the contribution of 163 

meteorology to the total difference in ambient trace metals during the COVID-19 period (GCmet). 164 

Different regions exerted lockdown measures during different periods. The lockdown periods in 165 

various regions were collected from https://en.wikipedia.org/wiki/COVID-166 

19_pandemic_lockdowns (Keller et al., 2021). Five scenarios including base, 20%_reduction, 167 

40%_reduction, 60%_reduction, and 80%_reduction were set up to assess the response of trace 168 

metal concentrations to emission change. For example, the 20%_reduction means the global trace 169 

metal emission experienced 20% reduction. In our study, the trace metal concentrations in eight 170 

major study regions including China, India, Western Europe (WE), North America (NA), South 171 

America (SA), Sub-Sahara Africa (SS), Russia, and Australia were simulated and further analyzed. 172 

2.5 Health risk assessment model 173 

https://en.wikipedia.org/wiki/COVID-19_pandemic_lockdowns
https://en.wikipedia.org/wiki/COVID-19_pandemic_lockdowns
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In this study, the carcinogenic and non-carcinogenic risks associated with hazardous trace 174 

metals in aerosols were evaluated using statistical thresholds established by IARC. Based on the 175 

IARC classification, trace metals such as As, Cd, Cr, Cu, Mn, Ni, Pb, V, and Zn are identified as 176 

potentially carcinogenic to humans (Marufi et al., 2024; Tikadar et al., 2024). The risks of exposure 177 

to these hazardous trace metals were assessed for both adults (≥24 years old) and children (<6 178 

years old) using carcinogenic risk (CR) and hazard quotient (HQ) metrics. Both CR and HQ were 179 

derived from the average daily dose (ADD). The formulas used to calculate ADD, CR, and HQ were 180 

adopted from Kan et al. (2021) and Zhang et al. (2021) (Table S15-S2S16): 181 

ADD=(C×InhR×EF×ED)/(BW×AT)           (3) 182 

HQ=ADD/RfD                            (4) 183 

CR = ADD×CSF                           (5) 184 

where C (mg m-3) represents the concentration of hazardous trace metals in the atmosphere, whereas 185 

InhR denotes the respiratory rate (m3 d-1) (Table S15). EF refers to the exposure frequency (day), 186 

ED is the exposure duration (years), BW represents the average body weight (kg), and AT is the 187 

average exposure time (days). ADD indicates the average daily intake (mg kg-1 d-1) of hazardous 188 

trace metals, RfD is the reference dose (mg kg-1 d-1) derived from reference concentrations, and CSF 189 

is the cancer slope factor (kg d mg-1) (Table S16). The potential non-carcinogenic risk of hazardous 190 

trace metals is considered high if the hazard quotient (HQ) exceeds 1.0, indicating significant health 191 

concerns. Conversely, an HQ below 1.0 suggests negligible health risks. The carcinogenic risk (CR) 192 

of each hazardous trace metal is assessed as significant if CR exceeds 10-4. 193 

3 Results and discussions 194 

3.1 Model evaluation 195 

Initially, the GEOS-Chem model was employed to estimate ambient trace metal concentrations 196 

at the global scale. The correlation coefficients (R values) between the simulated and observed 197 

values for As, Cd, Cr, Cu, Mn, Ni, Pb, V, and Zn were 0.79, 0.81, 0.81, 0.78, 0.79, 0.81, 0.83, 0.78, 198 

and 0.79 (Figure 1), respectively. The root mean square errors (RMSE) for As, Cd, Cr, Cu, Mn, Ni, 199 

Pb, V, and Zn were 2.57, 4.43, 4.84, 11.0, 12.7, 3.64, 28.1, 9.33, and 30.1 ng/m3, respectively. The 200 

mean absolute errors (MAE) for these trace metals were 0.94, 2.88, 2.15, 5.48, 6.73, 1.60, 12.3, 4.09, 201 

and 13.5 ng/m3, respectively. Only Ni and V were overestimated, while the concentrations of most 202 

设置了格式: 上标
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other trace metals were slightly underestimated. The predictive R values in our study were generally 203 

higher than those reported by Liu et al. (2021), with the exception of Mn (R = 0.87) and Cu (R = 204 

0.86). It is likely that Liu et al. (2021) simulated ambient trace metal concentrations specifically in 205 

China, which experiences some of the most severe trace metal pollution globally. As a result, the 206 

simulated values in China were often underestimated. In contrast, our study conducted global 207 

simulations, which helped avoid such significant underestimation. Additionally, the predictive 208 

accuracy for ambient As concentrations in our study was higher than that of Zhang et al. (2020) (R 209 

= 0.69). Overall, the predictive accuracy of ambient trace metal concentrations in our study was 210 

satisfactory, allowing us to use these data to further analyze the spatiotemporal characteristics of 211 

trace metal distributions. 212 

3.2 The concentration differences and health benefits of ambient trace metals during 2019 and 2020 213 

Based on the simulated results, the global average concentrations of ambient As, Cd, Cr, Cu, 214 

Mn, Ni, Pb, V, and Zn during January-April in 2017–2019 (2020) were 0.05 (0.04), 0.02 (0.02), 0.12 215 

13 (0.12), 0.39 41 (0.37), 0.21 22 (0.20), 0.17 (0.16), 0.82 84 (0.83), 0.24 25 (0.22), and 0.43 (0.44) 216 

ng/m3 (Figure 2 and Figure S2-S4), respectively. Most trace metals in the atmosphere experienced 217 

decreases during the COVID-19 period in 2020 compared to the "business-as-usual" period during 218 

2017–2019. The global average concentrations of ambient As, Cd, Cr, Cu, Mn, Ni, and V decreased 219 

by 58%, 1%, 14%, 47%, 59%, 76%, and 710%, respectively. However, global average 220 

concentrations of particulate Pb and Zn exhibited slight increases of 0.14% and 2%, respectively, 221 

during the same period. 222 

The ambient hazardous trace metals exhibited distinct spatial variations across regions during 223 

this period. Nearly all trace metal concentrations in India (Ind), WE, and NA showed significant 224 

decreases following the COVID-19 outbreak (Figure 3 and S5). For example, particulate As 225 

concentrations in these regions decreased by 48%, 1718%, and 1011%, respectively. These 226 

reductions are likely linked to the high trace metal emissions during the "business-as-usual" period, 227 

driven by fossil fuel combustion for industrial activities (activity level decreased by 23%), which 228 

were substantially curtailed by stay-at-home orders (Bai et al., 2023; Doumbia et al., 2021). In China, 229 

the concentrations of As, Cu, Mn, and V decreased by 310%, 28%, 311%, and 11%, respectively. 230 

However, ambient levels of Cd, Ni, Pb, and Zn increased by 3%, 2%, 6%, and 7%, respectively. It 231 
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was assumed that most of these trace metals were mainly derived from residential fossil fuel 232 

combustion (increase by 5%) and essential industrial emissions (remained relatively stable) (Zhu et 233 

al., 2020; Zhu et al., 2018), which even increased due to the stay-at-home order. In SA, the 234 

concentrations of nearly all of the trace metals showed slight decreases during the COVID-19 period. 235 

Conversely, ambient trace metal concentrations in SS and Australia (Aus) were relatively insensitive 236 

to COVID-19 lockdown measures, remaining stable or showing slight increases throughout the 237 

period. It was supposed that the concentrations of trace metals in these regions were relatively low 238 

during the “business-as-usual” period. Besides, the natural source dominated the ambient trace 239 

metal concentrations in Australia, which remained relatively stable or slight increases during 240 

COVID-19 period.  241 

Although the absolute concentrations provide an overall indication of the impact of lockdown 242 

measures on ambient trace metals, the contribution of meteorological factors cannot be disregarded. 243 

Meteorological conditions can significantly influence ambient trace metal concentrations, 244 

potentially complicating the interpretation of trace metal responses to emission changes. To isolate 245 

this effect, we applied the isolation technique to separate the contributions of emission changes from 246 

those of meteorological factors. At the global scale, most ambient trace metal concentrations, except 247 

for Pb and Zn, showed slight decreases, reflecting minor emission reductions coupled with favorable 248 

meteorological conditions that decreased concentrations (Figure 4 and Figure S6-S13). However, 249 

the slight increases in Pb and Zn concentrations were likely due to the fact that favorable 250 

meteorological conditions could not offset the significant rise in emissions of these metals during 251 

the period. It is assumed that Pb and Zn were primarily derived from coal combustion and non-252 

ferrous smelting industries (Li et al., 2023a). In our study, the global residential energy consumption 253 

even increased by 5% during COVID-19 period based on the statistical data (https://www.iea.org/), 254 

which could lead to slight increases of Pb and Zn concentrations. Previous studies also have 255 

confirmed that residential coal consumption increased notably (10-20%) during the lockdown 256 

period (Li et al., 2021; Smith et al., 2021). Emission changes and meteorological conditions 257 

exhibited significant spatial heterogeneity. In China, overall meteorological conditions were not 258 

favorable to the trace metal removal (Chang et al., 2020; Huang et al., 2020; Li et al., 2023b). Our 259 

previous studies also have confirmed that the low wind speed and high relative humidity aggravated 260 
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the particle pollution during COVID-19 period in China (Li et al., 2023b). Despite this, the 261 

concentrations of most trace metals still showed marked decreases due to large emission reduction. 262 

However, emission-induced concentrations of Cd, Ni, Pb, and Zn in China still showed slight 263 

increases during the COVID-19 period, suggesting that essential sectors, such as coal and non-264 

ferrous industries, could not be fully shut down. The data of National Bureau of Statistics 265 

(https://data.stats.gov.cn/index.htm) also verified that the coal consumption and products of non-266 

ferrous industries in China nearly remained invariable during this period. In regions like India, WE, 267 

and NA, and Russia, favorable meteorological conditions combined with substantial emission 268 

reductions led to decreases in most trace metal concentrations. Keller et al. (2021) demonstrated 269 

that stay-at-home orders in WE and parts of NA resulted in more than a 50% reduction in NOx 270 

emissions (mainly from vehicle emission and industrial activity), a trend consistent with the trace 271 

metal reductions observed in our study. Furthermore, our results suggested that the natural-derived 272 

trace metal concentrations in WE showed marked decreases (e.g., Cr (-16%), Cu (-18%), and Mn (-273 

18%) during COVID-19 period, which also promoted the decreases of the trace metal concentrations 274 

in WE (Figure S14-S22). In SA, the emission-induced reductions of trace metals were more 275 

pronounced than those due to meteorological conditions. This might be because countries such as 276 

Chile and Brazil have relatively high non-essential trace metal emissions, which were strongly 277 

affected by lockdown measures (Huber et al., 2016; La Colla et al., 2021; Zhu et al., 2020). In SS, 278 

the lockdown measures did not show marked impact on trace metal concentrations and their 279 

concentrations even experienced slight increases due to high dust contribution. In Australia, 280 

emission-induced reductions (even display slight increase) were also less significant compared to 281 

China, WE, and NA. Despite its developed mineral mining industries, Australia has more effective 282 

pollution control measures, resulting in lower total trace metal emissions (Zhu et al., 2020; Pacyna 283 

and Pacyna, 2001; Zhou et al., 2015). Moreover, most of the ambient trace metals in Australia were 284 

mainly sourced from the natural emissions (e.g., dust emissions), which was closely associated with 285 

the local meteorological conditions (Figure S14-S22).  286 

In order to assess the response of trace metal concentrations to assumed emission change, the 287 

five emission scenarios (base (annual average concentration in 2019), 20%, 40%, 60%, and 80%) 288 

were set up to evaluate the impact of emission reduction. In our study, the results suggested that the 289 

https://data.stats.gov.cn/index.htm
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As concentrations in China, India, WE, NA, SA, SS, Russia, and Australia decreased from 1.14, 290 

0.55, 0.13, 0.09, 0.04, 0.01, 0.08, and 0.01 to 0.23, 0.11, 0.03, 0.02, 0.01, 0, 0.02, and 0 ng/m3 291 

(Figure S13a), respectively. Besides, concentrations of other trace metals also displayed linear 292 

decreases with the increasing of emission reduction ratio (Figure S23). It was assumed that these 293 

trace metals did not participate in chemical reactions in the atmosphere and were only affected by 294 

physical processes.  295 

3.3 Unexpected health benefits from COVID-19 period 296 

Based on the equations of (3)-(5), the global health risk indicators including CR (carcinogenic 297 

risk) and HQ (hazard quotient) values were calculated. At the global scale, among all of the trace 298 

metals, Pb showed the highest CR values (9.8×10-8 (adult, 95% CI: 7.4×10-8–1.2×10-7)) and 2.4×10-299 

7 (children, 95% CI: 1.8×10-7–3×10-7)), followed by Ni (3.6×10-8 (95% CI: 2.8×10-8–4.4×10-8)) and 300 

8.7×10-8 (95% CI: 6.7×10-8–1.1×10-7)), Cd (3.4×10-8 (95% CI: 2.7×10-8–4.1×10-8) and 8.4×10-8 (95% 301 

CI: 6.7×10-8–1×10-7)), As (1.7×10-8 (95% CI: 1.4×10-8–2×10-8) and 4.1×10-8 (95% CI: 3.3×10-8–302 

4.9×10-8)), and Cr (1.5×10-8 (95% CI: 1.2×10-8–1.8×10-8) and 3.6×10-8 (95% CI: 2.8×10-8–4.4×10-303 

8)), and the lowest ones for Cu, Mn, V, and Zn for both of adults and children, respectively. For non-304 

carcinogenic risk, HQ values showed the higher values for As (3.7×10-5 (95% CI: 2.6×10-5–4.8×10-305 

5) and 9.1×10-5 (95% CI: 6.6×10-5–1.2×10-4)) and Cu (2.4×10-5 (95% CI: 1.7×10-5–3.1×10-5) and 306 

5.7×10-5 (95% CI: 4.1×10-5–7.3×10-5)). The results were in good agreement with previous studies 307 

because As often showed the higher non-carcinogenic risk (Li et al., 2023). 308 

The CR and HQ values can be summed to estimate the total carcinogenic and non-carcinogenic 309 

risks. By comparing the CR and HQ values between 2017–2019 and 2020, we quantified the health 310 

burden (or benefits) attributable to the COVID-19 lockdown (Figure 5 and Figure S24-S25). At the 311 

spatial scale, significant decreases in health burden were observed across most regions of the NCP, 312 

Southeast China, WE, the Dun River Basin, and the eastern United States. Following January 23, 313 

2020, at least 29 provinces in China reported confirmed COVID-19 cases. In response, strict control 314 

measures, including the shutdown of commercial activities and the lockdown of entire cities, were 315 

implemented. These measures significantly reduced emissions, particularly in populous regions 316 

such as the NCP and Southeast China (Jia et al., 2021; Shi and Brasseur, 2020). Similarly, in New 317 

York, stay-at-home orders and social restrictions were rigorously enforced by late March 2020 318 
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(Tzortziou et al., 2022). These interventions contributed to substantial reductions in trace metal 319 

emissions, thereby mitigating associated health damages. In contrast, notable increases in health 320 

burden were observed in Northeast China, the southern coastal regions of China, and certain 321 

scattered areas in the Middle East. The rise in health risks linked to trace metal exposure in Northeast 322 

China and southern coastal regions may be associated with pollution aggravation during the 323 

COVID-19 period (Huang et al., 2021). This is primarily because these regions have relatively high 324 

humidity, which facilitates the aggregation of fine particulate matter. Additionally, low wind speeds 325 

and limited environmental capacity hinder the dispersion of pollutants, leading to elevated 326 

concentrations of particulate matter and high levels of trace metals adsorbed onto these particles 327 

(Huang et al., 2021; Li et al., 2023b). Previous studies have highlighted that these regions 328 

experienced persistent air pollution or increased metal concentrations during the lockdown, 329 

primarily due to unfavorable meteorological conditions (Li et al., 2023b). For instance, the 330 

prevalence of stable weather patterns, such as reduced wind speeds and atmospheric stagnation, 331 

significantly elevated ambient trace metal concentrations (McClymont and Hu, 2021; Şahin, 2020). 332 

To confirm the assumption, we isolated the contributions of emission change and meteorology to 333 

the total changes of health risks. For instance, the emission-induced CR and HQ values of As, Cd, 334 

Cr, Cu, Mn, Ni, Pb, V, and Zn accounted for -111%, 95%, -121%, -113%, -112%, 129%, 60%, -335 

111%, and 101% of the total changes after COVID-19 outbreak, respectively. The meteorology-336 

induced CR and HQ values of As, Cd, Cr, Cu, Mn, Ni, Pb, V, and Zn accounted for 11%, 5%, 21%, 337 

13%, 12%, -29%, 40%, 11%, and -1%, respectively. The results were in good agreement with our 338 

assumptions, indicating Chinese lockdown measures overcome the unfavorable meteorological 339 

conditions to decrease the health risks associated with the trace metal exposures (Table S17). 340 

In our study, the global regions were categorized into eight major domains. During the COVID-341 

19 period, China and India demonstrated the highest health benefits resulting from reductions in 342 

trace metal emissions. Additionally, EuropeWE, NA, and Russia also exhibited significant health 343 

benefits. In contrast, SA, SS, and Australia showed the lowest health benefits, with some areas even 344 

experiencing an increase in health burden following the COVID-19 outbreak. The ambient trace 345 

metals in SA, SS, and Australia appeared to be less sensitive to lockdown measures due to relatively 346 

low baseline trace metal exposures in these regions. Combined the response of trace metal 347 
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concentration to emission reduction in five scenarios, we also demonstrated that trace metal 348 

emission reductions are most effective in mitigating health damages in regions with high baseline 349 

exposures, such as China and India. Future efforts to target emission reductions in these regions 350 

could yield substantial public health benefits. 351 

In addition, we performed the sensitivity experiment to assess the responses of CR and HQ 352 

values to some indicators. The results suggested that both of InhR and BW showed the 353 

approximately linear relationship with both of CR and HQ values (Figure S26). Overall, the results 354 

confirmed the health risk assessment model was robust because both of CR and HQ values did not 355 

show intense or irregular changes along with the linear change of InhR and BW. 356 

4 Conclusions and implications 357 

The global lockdowns during the COVID-19 pandemic significantly reduced anthropogenic 358 

emissions, yet the response of ambient trace metal concentrations to these control measures remains 359 

insufficiently understood. In this study, we developed an updated global trace metal emission 360 

inventory and employed a chemical transport model to predict the concentrations of nine trace 361 

metals for January-April in 2017–2019 and 2020. Our results revealed that the response 362 

characteristics of trace metals to lockdown measures varied substantially. Global average 363 

concentrations of ambient As, Cd, Cr, Cu, Mn, Ni, and V decreased by 8%, 1%, 4%, 7%, 9%, 6%, 364 

and 10%, respectively, following the COVID-19 outbreak. However, global average concentrations 365 

of particulate Pb (0.4%) and Zn (2%) showed slight increases during the same period. This trend 366 

can be attributed to coal combustion and non-ferrous smelting industries for essential sectors, which 367 

are critical sectors for meeting residential needs and thus less responsive to emission control 368 

measures. Significant spatial variations in trace metal responses to lockdown measures were also 369 

observed. For instance, lockdown interventions were more effective in reducing trace metal 370 

pollution in India, EuropeWE, and NA compared to other regions. Moreover, the trace metal 371 

concentrations show the linear response to emission reduction, and thus the prioritizing emission 372 

reductions in heavily polluted areas (e.g., China, India, WE, and NA) yields higher marginal benefits 373 

and greater public health gains. From a health burden perspective, controlling emissions of Pb and 374 

As emerged as the most effective strategies for mitigating carcinogenic and non-carcinogenic risks, 375 

respectively. Both elements are primarily associated with fossil fuel combustion (coal combustion). 376 
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However, the persistent increase in energy consumption poses a challenge to achieving meaningful 377 

reductions in Pb and As emissions. In the future, it will be essential to implement additional control 378 

measures to curb Pb and As emissions during coal combustion processes, thereby maximizing health 379 

benefits and reducing environmental risks.  380 

It is important to acknowledge several limitations in our study. Firstly, the simulated 381 

concentrations of hazardous trace metals in SA and SS might contain uncertainties due to the 382 

scarcity of ground-level observations in these regions. This lack of observational data makes it 383 

challenging to accurately evaluate the predictive reliability of ambient trace metal concentrations in 384 

these areas. Consequently, these uncertainties may also propagate to the health risk assessments. To 385 

address this, it is crucial to establish more monitoring sites for ambient trace metals in SA and SS. 386 

Secondly, the health risk assessment in this study was based solely on trace metal concentrations, 387 

without considering population exposure. In reality, health impacts are closely tied to population 388 

size and distribution. Future research should prioritize the development of more accurate 389 

methodologies that incorporate population exposure to better assess the health impacts of ambient 390 

trace metal exposure. 391 
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Figure 1 The predictive accuracy of nine trace metals including As (a), Cd (b), Cr (c), Cu (d), Mn 402 

(e), Ni (f), Pb (g), V (h), and Zn (i) at the global scale based on GEOS-Chem model (Unit: ng/m3). 403 

 404 
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Figure 2 The global difference of trace element concentrations between January-April during 2017-

2019 and 2020. Nine trace elements including As (a), Cd (b), Cr (c), Cu (d), Mn (e), Ni (f), Pb (g), 

V (h), and Zn (i) were selected to analyze the annual variations (Unit: ng/m3).  
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Figure 3 The violin graphs of nine trace elements including As (a), Cd (b), Cr (c), Cu (d), Mn (e), 

Ni (f), Pb (g), V (h), and Zn (i) in eight major regions during January-April in 2020. Chi, Ind, WE, 

NA, SA, SS, Rus, and Aus represent China, India, Western Europe, North America, South America, 

Sub-Sahara Africa, Russia, and Australia, respectively. 
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Figure 4 The emission and meteorological contributions to ambient As concentrations during 2017-

2020 at global and eight major regions. Chi, Ind, WE, NA, SA, SS, Rus, and Aus represent China, 

India, Western Europe, North America, South America, Sub-Sahara Africa, Russia, and Australia, 

respectively. 
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Figure 5 The total CR and HQ differences of adults and children for all of the nine hazardous trace 

metals during January-April during 2017-2019 and 2020 (the minus of CR and HQ values in 2020 

and those during 2017-2019).  
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