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Abstract. The upper mesosphere, a transition region between Earth’s atmosphere and space, is characterized by complex
interactions among water vapor (H>O), atomic hydrogen (H), ozone (O3), atomic oxygen (O), and temperatures. Using MLS,
SABER, and SOFIE satellite data, we explore the upwelling-driven interannual variability of temperatures near 90 km (T90)
and atmospheric constituents during solstice months, revealing a bottom-up control mechanism of “upwelling—H,O(H)—
03(0)—T90” in the two hemispheres. First, summer polar upwelling transports H,O upward, which is then transported
toward the winter hemisphere by meridional winds. Subsequently, the hydration increases H via photolysis and depletes O3
in the winter hemisphere through H-driven catalytic loss. The O varies in pace with O3 due to chemical equilibrium, and the
radiative and chemical heating by O/O; reactions reduces the T90 in the winter hemisphere (T90w). Second, upwelling-
induced cooling promotes polar mesospheric cloud (PMC) formation, with ice particle growth blocking H>O transport and
dehydrating heights above PMCs. This dehydration reduces H abundance, thereby decreasing H-driven Os loss. Meanwhile,
the colder temperatures directly increase Oz through ozone kinetics. The enhanced Os, together with the coupled O,
collectively increase the summer polar temperatures above 90 km (T90s). This anti-phase interannual variability between
hemispheres, mediated by PMC microphysics and H,O-O3 chemistry, establishes summer polar upwelling as a fundamental

driver of mesospheric climate and highlights the importance of dynamical-chemical coupling in the upper mesosphere.

1 Introduction

The summer upper mesosphere is the coldest region on Earth’s atmosphere, with temperatures as low as 130 K due to the
adiabatic cooling of gravity wave-driven upwelling (Plane et al., 2023). During solstice months, zonal winds are westward
below ~90 km and eastward above, and meridional winds flow from summer to winter hemispheres (Ramesh et al., 2024).
Despite recent advances in mesospheric wind observations, direct measurements of vertical winds remain challenging (Lee
et al., 2024; Vincent et al., 2019; Zhang et al., 2020). The upper mesosphere exhibits complex couplings between dynamics

and chemistry, particularly through H>O and Oj interactions that remain incompletely understood.



30

35

40

45

50

55

60

1.1 Water vapor and PMC dynamics

Upwelling and methane oxidation are primary H,O sources in the upper mesosphere (Liibken et al., 2018; Shi ef al., 2023).
The rapid decrease of H,O with altitude in the upper mesosphere (Figure 1a) is mainly caused by the photolysis of solar
ultraviolet (UV) radiation, particularly in the summer polar region under continuous illumination. Fig. 1 demonstrates how
summer polar upwelling creates concurrently temperature minima and H,O maxima in the summer hemisphere. These
conditions promote PMC formation between 80 km and 90 km (Rapp and Thomas, 2006), which subsequently redistributes
H,O through the well-established freeze-drying effect (Hervig et al., 2015; von Zahn and Berger, 2003). This top-down
process, involving ice particle nucleation, growth, sedimentation, and sublimation, produces dehydration above PMCs and
subsequently hydration below (Hultgren and Gumbel, 2014), with clear H>O depletion visible above 60°S-80°S PMCs in Fig.
la. Siskind ef al. (2018) successfully simulated the dehydration and hydration above and below PMCs, which extend to
midlatitudes due to meridional circulations (Fig. 1 therein). Current PMC models systematically overestimate the
dehydration/hydration magnitudes (Bardeen ef al., 2010; Liibken ef al., 2009), suggesting an incomplete understanding of
PMC formation. PMC variability is modulated by various dynamical processes, including gravity waves (Gao et al., 2018),
planetary waves (Liu et al., 2015), tides (Fiedler and Baumgarten, 2018), and inter-hemispheric coupling (Gumbel and
Karlsson, 2011). While solar UV theoretically influences H,O and thus PMCs (Remsberg et al., 2018), the 11-year solar
signal is insignificant over the past two decades (Hervig et al., 2019; Vellalassery et al., 2023), highlighting the need to

identify alternative drivers.

1.2 Ozone chemistry and variability

In the upper mesosphere, the O concentrations increase sharply with altitude due to solar photolysis of O, (Mlynczak et al.,
2013), and the three-body recombination reaction of O produces a secondary ozone layer near 90 km (O+O;+M—-03+M)
(Smith et al., 2013). The O exhibits a long photochemical lifetime near the mesopause (days to months), consequently, its
daily and seasonal variability is governed by vertical transport processes, including tides and downwelling of the mean
circulation (Smith ef al., 2010b). O; is primarily destroyed by photolysis (O3+hv—>O('D,*P)+0,) during daylight with ~2
minute lifetime, and by reaction with hydrogen (H+O3—=OH+0,) and oxygen (O+03—20,) at night (Huang et al., 2008;
Smith and Marsh, 2005). The ozone photochemical equilibrium assumption, i.e., ozone loss is balanced by ozone production,
is crucial for retrieving O and H concentrations (Kulikov et al., 2018; Mlynczak et al., 2007). The secondary ozone layer
exhibits strong seasonal dependence, with peak Oz mixing ratios occurring in winter (Fig. 1b) when reduced sunlight
minimizes photolysis and lower H,O limits H availability. Temperature further modulates ozone kinetics, with colder
conditions enhancing O3 by accelerating production rate and inhibiting loss rates (Smith et al., 2018).

Despite these advances in understanding ozone chemistry, key questions remain regarding ozone variability drivers.
Solar activity appears to suppress ozone via production of odd hydrogen and odd nitrogen species (Jia et al., 2024), with

solar cycle signals and long-term trends occasionally documented (Huang et al., 2014; Lee and Wu, 2020). PMCs may
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enhance ozone through dehydration, which is expected to reduce the H above PMCs (Siskind et al., 2008; Siskind et al.,
2018; Siskind and Stevens, 2006). The secondary ozone layer impacts mesospheric energy budgets through competing
processes, including solar radiative heating, chemical heating, and infrared cooling (Ramesh et al., 2015), and the total
(radiative and chemical) heating of O and Os is of great importance for the energy budget of upper mesosphere (Mlynczak et

al., 2018; Mlynczak and Solomon, 1993).

1.3 Temperature trends and variability

Mesospheric temperatures display complex variability patterns across multiple timescales. Interannual variations (4~5 K),
outweigh the 11-year solar signal (1~3 K/100 solar flux unit) and the long-term cooling trend (-1~-2 K/decade) (French et al.,
2020a; French et al., 2020b). In the summer polar mesopause, solar signals are unexpectedly absent in temperature,
presumably due to a compensating dynamical cooling effect (Karlsson and Kuilman, 2018; Qian et al, 2019). A well-
established COs-induced cooling trend prevails throughout most of the middle atmosphere, with a rate exceeding
tropospheric warming magnitudes (Feofilov and Kutepov, 2012; Lastovicka, 2017; Roble and Dickinson, 1989). This strong
cooling is regarded as a potential indicator of climate change (Liu ef al., 2024; Solomon ef al., 2018). However, the summer
polar mesopause presents a notable exception, exhibiting an unexpected warming trend that contradicts the dominant CO»
cooling. Proposed explanations include shrinking effect (Bailey et al., 2021; Dawkins et al., 2023; Liibken et al., 2013) and
long-period vertical oscillations of temperature profile (Kalicinsky et al., 2018; Offermann et al., 2021), though the primary
mechanism remains elusive. Stratospheric ozone recovery further complicates this picture by modulating gravity wave
propagation, which subsequently affects mesospheric winds and temperatures (Smith ef al., 2010a; Venkateswara Rao ef al.,
2015).

These interconnected physical and chemical processes create substantial challenges for a comprehensive understanding
of the climate in upper mesosphere. This paper elucidates a systematic bottom-up mechanism, linking summer polar
upwelling to interannual variability in H,O, H, Os, O, and temperatures. Section 2 details the satellite datasets (MLS,
SABER, SOFIE) and theoretical framework, Section 3 quantifies the hemispheric climate patterns during solstice months

(December/June), Section 4 discusses variability mechanism, and Section 5 summarizes key conclusions.
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Figure 1. December climatology of (a) water vapor mixing ratio, (b) ozone mixing ration, and (c) temperature in the upper
mesosphere. Data represent monthly means from MLS/Aura observations during 2004-2022.
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2 Data and method
2.1 Multi-satellite Data

This study utilizes measurements from three satellite instruments to investigate upper mesospheric climate variability. The
Microwave Limb Sounder (MLS) aboard NASA’s Aura satellite, launched in July 2004, provides global atmospheric
measurements between 82°N and 82°S (Jiang et al., 2007). Operating in a sun-synchronous orbit with equatorial crossings at
01:30 (ascending) and 13:30 (descending) local time, MLS delivers vertical profiles of H,O (0.001 hPa top level
recommended, 7~9 km vertical resolution, 30% precision), Oz (0.001 hPa, 5~7 km, 35%), and temperature (0.00046 hPa,
6~12 km, 3 K). Daily mean values were generated by averaging ascending and descending orbits, focusing on zonal (5°
gridded) and monthly means for interannual variability studies. Fig. 1 shows the December climatology of H,O, Os, and
temperature observed by MLS.

The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument aboard the
Thermosphere, lonosphere, Mesosphere Energetics, and Dynamics (TIMED) satellite was launched in December 2001. With
an orbital inclination of 74.1°, SABER’s limb scan provides latitude coverage alternating between 83°N to 52°S (during June)
and 52°N to 83°S (during December) due to its 60-day yaw cycle (Russell et al., 1999). This 60-day yaw cycle allows
interannual comparison by maintaining stable latitude and local time coverage for a given month across different years. We
used TIMED/SABER version 2.07 data between 0.01 and 0.003 hPa from 2002 to 2019, including temperature (Remsberg et
al., 2008), ozone (Rong et al., 2009; Smith et al., 2013), atomic oxygen (Mlynczak et al., 2013; Mlynczak et al., 2018), and
atomic hydrogen (Mlynczak et al., 2014).

The Solar Occultation for Ice Experiment (SOFIE) instrument onboard the Aeronomy of Ice in the Mesosphere (AIM)
satellite was launched on 25 April 2007 into a sun-synchronous polar orbit (Russell III et al., 2009). SOFIE covers latitudes
between 65° and 82°, with particular focus on ~70° latitude during PMC seasons. Using solar occultation measurements,
SOFIE obtains vertical profiles of PMC properties, temperature, water vapor, and ozone (Gordley et al., 2009; Hervig et al.,
2009). SOFIE provides datasets for 8 PMC seasons (from 2007 to 2014) in the northern hemisphere (NH) and 7 PMC
seasons (from 2007/2008 to 2013/2014) in the southern hemisphere (SH), after which SOFIE measurements shifted to lower
latitudes where PMCs typically do not form.

2.2 Bottom-up control mechanism framework

Our methodology examines the responses of mesospheric variables (H.O, H, O3, O, T90) to upwelling on interannual
timescales. Since direct observations of summer polar upwelling are unavailable, we use temperature at ~80 km (T80s) as a
proxy, based on its relationship with adiabatic cooling. Figure 2 illustrates the conceptual framework for how summer polar
upwelling drives interannual climate variability during solstice months through the interconnected pathways in the

“upwelling—H,O(H)—O3(0) —T90” chain:
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(1) H,O/H variability. Upwelling produces both hydration that occurs below PMCs through direct transport of H,O
by upwelling, and dehydration above PMCs through a “cold-trap effect”. Explicitly, adiabatic cooling from upwelling lowers
T80s promotes water vapor condensation into ice particles, thereby reduces upward H,O transport and causes dehydration
above PMCs (Zhang et al., 2025a). While similar to the conventional freeze-drying effect, the cold-trap effect shows distinct
characteristics that we discuss later in section 4.1. Meridional winds then transport both the hydration and dehydration
toward the winter hemisphere. Atomic hydrogen H, produced through H>O photolysis, consequently varies in synchrony
with H,O in both hemispheres.

(2) 03/0 responses. Oz abundance is negatively influenced by H>O through H acting as a primary O3 sink (Zhang et
al., 2025b). Upwelling therefore enhances summer-hemisphere O3 through dehydration while it inhibits winter-hemisphere
O; through hydration. Additionally, the adiabatic cooling of upwelling directly enhances summer-hemisphere O3z through
temperature-dependent ozone kinetics. Following the ozone photochemical equilibrium assumption, the O varies in phase
with O3 and is similarly controlled by summer polar upwelling.

(3) Temperature modulation. In the upper mesosphere, the total (radiative and chemical) heating of O and O3
significantly influences the energy budget, creating a positive correlation between O/O3 and T90. Since upwelling oppositely
controls O3/O in the two hemispheres, it produces an anti-phase temperature response: T90s in the summer polar region
shows a negative correlation with T80s, while T90w in winter hemisphere exhibits a positive correlation with T80s.

This theoretical framework enables a quantitative evaluation of variable sensitivities to T80s through inter-satellite

comparisons, to establish robust causal relationships in the observed climate variability.
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Figure 2. Schematic diagram of the bottom-up control mechanism in solstice months, showing how summer polar upwelling
controls interhemispheric climate variability through coupled dynamical and chemical processes. Key pathways include: (1)
winter-hemisphere hydration is induced by summer polar upwelling in combination with meridional transport, and summer-
hemisphere dehydration is governed by the cold-trap effect; (2) subsequent modulation of O3 through H-driven ozone loss
and temperature-dependent ozone kinetics, with O varying in pace with O3 due to the ozone photochemical equilibrium
assumption; and (3) resulting temperature (T90) variations via radiative and chemical heating of O3/O.
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3 Results

3.1 Climate patterns in December

Our analysis of MLS/Aura data reveals distinct interannual variability patterns during December (Figure 3). Using T80s as
an upwelling proxy, we observe opposing H,O responses between hemispheres: dehydration in the summer polar mesopause
(75°S-82°S) indicated by positive correlations with T80s (R=0.93, Fig. 3a), and hydration at low latitudes (15°N-20°N) in
the NH indicated by negative correlations (R=-0.84, Fig. 3e). The H,O patterns drive corresponding O3 variations through
chemical interaction, with T80s showing negative correlations (R=-0.91) with O3 at 0.001 hPa (65°S-75°S, Fig. 3b) but
positive correlations (R=0.94) at 0.002 hPa (15°N-20°N, Fig. 3f). Temperature responses exhibit clear hemispheric anti-
symmetry, with T90s at 0.0046 hPa (65°S-75°S) negatively correlated (R=-0.92, Fig. 3d) and T90w at 0.001 hPa (15°N-20°N)
positive correlated (R=0.80, Fig. 3h) with T80s. In addition, the standard deviations of these variables significantly exceed
their linear trends, potentially masking long-term signals.

Figure 4 shows the latitudinal extent of these relationships, with sensitivities derived from linear regression. Meridional
transport extends dehydration signature to 35°S (beyond the PMC coverage) and hydration to 35°N (Fig. 4a), while O;
responses show comparable latitudinal ranges (Fig. 4b). SABER observations corroborate these findings (Figure 5), though
atomic hydrogen data gaps at summer high latitudes (Fig. 5a) prevent complete verification of dehydration effects. The
ozone photochemical equilibrium assumption holds well, with atomic oxygen O varying in pace with O; (Fig. 5b, c).
Mlynczak et al. (2018) showed that the total (radiative and chemical) heating rate of O and Os is ~10 Kday™' on global and
annual scale (Fig. 3 therein). The relative variations of O and O; to T80s in Fig. 5 are both ~4%/K, therefore the sensitivity
of O/O; total heating rate to T80s is roughly estimated to be ~0.4 Kday!/K, which partly explain the ~1K/K (Fig. 5d)
response of T90 to T80s.

Daily-scale SOFIE observations provide further insights (Figures 6-8). Figure 6 shows that Oz at 90 km is bottom-up
controlled by the T80s at 79 km. It is noteworthy that in November, during which PMCs are weak and dehydration is absent,
the negative correlation between Oz and T80s remains significant, possibly due to the temperature-dependent ozone kinetics.
Summer polar Oz near 0.01 hPa (Fig. 5b) or 80 km (Fig. 7c) is negatively correlated to T80s, which should be attributed to
ozone kinetics. As shown in Fig. 8b, O3 below 90 km lags T80s by zero days possibly through ozone kinetics, while O3
above 90 km lags T80s by ~3 days, suggesting combined kinetic and dehydration influences. However, for upper-level O3,
the relative contribution of ozone kinetics and dehydration (depletion of H) is unclear.

Fig. 7a, b shows that the H,O above and below PMCs is both bottom-up controlled by T80s rather than the temperature
above PMC, which supports the cold-trap effect. Fig. 8a further shows that the hydration and dehydration both lag behind
T80s by about zero days, consistent with the cold-trap effect. In contrast, according to the conventional freeze-drying effect,
the dehydration tends to occur prior to the hydration, with the time interval roughly equal to the lifetime of ice particle which

is up to two days in simulations (not consider transport and diffusion of ice particles). In addition, T90 is positively
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correlated to O3 (Fig. 7c) and negatively correlated to T80s (Fig. 7d), with lag time of about ~3 days, matching the radiative
and chemical heating of O3/0.

3.2 Climate patterns in June

The climate patterns in June (Figures 9-12) mirror those of December, but with reduced amplitudes. The T80s variability is
weaker (1.5 K vs. 5.1 K in December), yielding smaller constituent variations and lower significance (Figs. 3, 9). SABER H
responses are insignificant (Fig. 11a), while T90s correlations weaken or disappear (Figs. 11d, 12d). MLS data show a
localized hydration signal at 0.001 hPa between 70°N~80°N (Fig. 10a), possibly from PMC sublimation due to higher T90s.
Interhemispheric transports are more pronounced in June than in December due to differences in gravity wave forcing of
the circulation (Smith ef al., 2011). The enhanced meridional transport extends H,O influences to 40°S~50°S, affecting O
and T90w in the winter high-latitudes (Fig. 10). Downward winds in the winter polar region generally result in the lowest
H,O levels near solstice, although vertical winds and diffusion can increase winter polar H,O above 90 km (Lossow et al.,
2009). Whether the summer polar upwelling in June could influence the winter high-latitude climate through

interhemispheric H>O transport is an interesting question.
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Figure 3. Hemispheric responses of mesospheric (a, ¢) H>O, (b, f) O3, and (d, h) T90 to upwelling variability (indicated by

195 T&80s) during December, showing anti-phase behavior between (left) summer and (right) winter hemispheres. Panels (c, g)
show O3-T90 correlations. All plots display monthly and zonal means from MLS/Aura observations during 2004-2022, with
correlation coefficients (R), sensitivities, standard deviations (o), and trends derived from linear regression analysis. The
opposing H>O responses reflect hydration (winter hemisphere, negative correlation) and dehydration (summer hemisphere,
positive corelation), while O3 and T90 variations demonstrate the consequent chemical and thermal feedbacks.
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Figure 4. Spatial patterns of bottom-up control processes during December showing (a) H.O hydration (blue) and

dehydration (red) response to upwelling (indicated by T80s, white stars), (b) corresponding O3z variations in both

hemispheres, and (c) resultant temperature (T90) changes driven by radiative and chemical heating. Sensitivities of variables
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Figure 5. Bottom-up control of atmospheric constituents in December from SABER observations during 2002-2019. (a) H
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220 Figure 7. Daily-scale bottom-up control processes observed by SOFIE at ~70°S for the SH PMC seasons during 2007-2013.
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Figure 8. Time-lag analysis of bottom-up control processes from SOFIE observations at ~70°S for the SH PMC seasons
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7, with dashed lines marking the 0.95 significance level.
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235 Figure 9. Hemispheric responses of mesospheric (a, ¢) H2O, (b, f) O3, (d, h) T90 to upwelling variability (indicated by T80s)
during June, showing analogous but weaker anti-phase behavior compared to December (Fig. 3). Panels (c, g) show O3-T90
correlations. Note the reduced amplitude of T80s standard deviation (1.5 K in June vs. 5.1 K in December) and weaker
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240 Figure 10. Spatial patterns of bottom-up control processes during June showing (a) H>O, (b) Os, and (c) temperature
responses to upwelling (indicated by T80s, white stars), analogous to but weaker than December patterns (Fig. 4).
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Figure 12. Daily-scale bottom-up control processes from SOFIE/AIM observations for the NH PMC seasons during 2007-
2014. (a) H,O in NH shows weaker control by T80s compared to that in SH (Fig. 7). (b) Combined H>O and ice content
demonstrating similar but less pronounced T80s dependence. (¢) Anti-correlation between O3 and T80s with reduced Os-
T90s relationship. (d) Weaker negative relationship between T90s and T80s. Correlation coefficients calculated for -10 to 50
days relative to solstice (35-day running mean removed), with black dots marking the 0.95 significance level. Note the
generally weaker responses compared to SH observations in Fig. 7.
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4 Discussion

4.1 H,O/H variability mechanisms

Our results demonstrate it is the summer polar upwelling that fundamentally drives the interannual variability of both
hydration and dehydration through two distinct pathways: (1) direct upward transport of HO by upwelling combined with
meridional wind transport creates hydration in the winter hemisphere; and (2) adiabatic cooling associated with upwelling
enhances ice particle growth that blocks upward H,O transport, causing dehydration above PMC in the summer hemisphere.

The cold-trap effect differs from the conventional freeze-drying effect in several ways. While freeze-drying effect
describes a top-down process dominated by ice particle sedimentation, the cold-trap effect represents a bottom-up process
driven primarily by upwelling dynamics. Sedimentation of ice particles plays a dominant role in the freeze-drying effect,
however, it is unnecessary in the cold-trap effect (Zhang et al., 2025a). Importantly, the cold-trap effect produces
simultaneous hydration and dehydration. In contrast, the freeze-drying effect involves dehydration prior to hydration, with a
time lag (estimated as the ice particle lifetime) of up to two days. Particularly, if PMCs are weak or absent and ice particles
could not block upward H,O transport, hydration could even occur in the absence of dehydration, inconsistent with the
freeze-drying effect.

It should be emphasized that we are not attempting to demonstrate that the freeze-drying effect is incorrect. Instead, the
two mechanisms should be complementary rather than contradictory. The freeze-drying effect has been verified by
simulations for describing PMC microphysical processes at local scales, while the cold-trap effect better explains the global-
scale H>O redistribution patterns, especially the H,O in the winter hemisphere. Additionally, the parameterization of freeze-
drying effect is unavailable until now, due to the complexity in PMC simulations. In contrast, the cold-trap effect is much
simpler, the interannual variability of hydration/dehydration is only dependent on the T80s. The limited H variability
detected in SABER data (Figs. 5a, 11a) may reflect both measurement uncertainties in H retrieval and gaps in spatial

coverage in high-latitude regions where dehydration effects are strongest.

4.2 03/0 response pathways

Upwelling forcing drives distinct hemispheric patterns in Os variations. In the winter hemisphere, hydration-driven increases
in H abundance lead to enhanced O; destruction. In the summer hemisphere, however, O3 increases via two pathways:
reduced H abundance due to dehydration and temperature-dependent ozone kinetics caused by adiabatic cooling.

Our vertical analysis shows that these processes operate at different altitudes (Figs. 5b, 7c). Below 85 km, where
dehydration is absent, temperature-dependent ozone kinetics dominate O3 abundance, while above 85 km both dehydration
and ozone kinetics contribute, with their relative contribution remaining unclear. In addition, the lag time of O3 to T80s

differs for varying altitudes (Fig. 8b), which may be useful for identifying the two pathways.
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4.3 Temperature modulation processes

The anti-phase temperature responses between hemispheres (T90w and T90s) reflect the combined effect of dynamical
processes and O/O3 heating. In the winter hemisphere, based on the known radiative and chemical heating rate (~10 K/day
on global and annual scale) of O/O3, the 3~4%/K sensitivity of O3 and O in low latitudes to T80s (Fig. 5b, ¢) approximately
explains the observed ~0.5 K/K sensitivity of T90w to T80s (Fig. 5d).

The summer hemisphere presents a more complex scenario involving competing processes. The Oz concentration in
summer polar region is very low due to the destruction by sunlight and H>O (Fig. 1b), while the O concentrations do not
differ much between the summer and winter hemispheres. The high sensitivity of T90s to O3 (51.7 K/ppmv, Fig. 3¢) in
December is likely unrealistic. O-heating likely dominates the interannual variability of T90s, with Os-heating playing a
minor role.

Another explanation is that a potential downwelling may result in higher T90s by adiabatic heating and higher O
concentration by downward transports, which further increase Os. The zonal winds change direction above the mesopause
height, and gravity waves that induce upwelling near 80 km tend to cause downwelling at altitudes above the mesopause. In
this scenario, the positive correlation between T90s and O/O; results from vertical winds rather than solar or chemical
heating. However, Fig. 8c, d shows that the T90s lags behind O3 and T80s by ~3 days, ruling out pure dynamical
explanations. Fig. 4c and Fig. 5d shows that the T90s at latitudes as low as 30°S are negatively correlated with T80s, which
should not be attributed to the adiabatic heating of downwelling. Moreover, shrinking effect may explain the negative
correlation between T90s and T80s through the vertical shift of the temperature profile. However, the MLS and SABER
results are presented on pressure levels rather than geometric heights, not supporting a shrinking effect as the major driver
for the interannual variability of T90s. In addition, T90s lags behind T80s by ~3 days (Fig. 8d), inconsistent with the

shrinking effect on the daily scale.

5 Conclusion

This study establishes that summer polar upwelling serves as the primary driver of interannual variability in the upper
mesospheric H,O(H), O3(0), and T90 through a bottom-up mechanism. Our findings build a simple picture for
understanding the interhemispheric anti-phase climate of the upper mesosphere, revealing three key aspects of dynamical-
chemical interactions: First, we demonstrate that the summer polar upwelling drives the global-scale interannual H,O
variability, namely the hydration in the winter hemisphere and dehydration in the summer hemisphere. Second, owing to the
negative modulation of Oz by H>O and the ozone photochemical equilibrium assumption, the winter-hemisphere O3/O
decreases due to the hydration-induced depletion of H, while the summer-hemisphere O3/O increases due to combined
effects of dehydration and temperature-dependent ozone kinetics. Third, because of the radiative and chemical heating of
03/0, there is a positive correlation between the winter-hemisphere T90w and T80s, and a negative correlation between the

summer-hemisphere T90s and T80s.
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Several important questions remain unresolved and need further investigation. Summer polar upwelling plays a pivotal
role in the bottom-up control mechanism, while the pronounced hemispheric difference in the interannual T80s variability
(5.1 K in December, 1.5 K in June) lacks a detailed explanation. Given the importance of H>O for mesospheric climate, the
relationship between our proposed cold-trap effect and conventional, well-established freeze-drying effect should be a
priority for further study. Similarly, the relative contribution of dehydration versus ozone kinetics to summer-hemisphere O3
enhancement require quantification. Alternative explanations for the interannual T90s variability, including shrinking effect
and adiabatic heating of gravity wave-driven downwelling, cannot fully account for the observed patterns, but may make
some contribution. These advances will further elucidate mesospheric climate variability while improving the physical basis

for interpreting long-term trends in this intricate atmospheric region.
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