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Abstract. Organic aerosol (OA), as a key component of particulate matter, exerts
significant impacts on public health and the environment. However, understanding of
molecular characterization of OA under diverse environments remains limited. This
study employed offline FIGAERO-I-CIMS (Filter Inlet for Gases and Aerosols
coupled with iodide-adduct Chemical Ionization Mass Spectrometry) to analyze the
molecular composition of OA in PM» s samples collected from a coastal city (urban
and seaside sites) in Southeast China during spring 2024. A total of 737 and 768
CHOX compounds were identified at the urban and seaside sites, respectively. CHO
compounds dominated in signal intensity (>70%) at both sites, while CHON were
more abundant at the urban site and S-containing compounds at the seaside site. The
weighted effective oxygen to carbon content (O./C) ratios (urban 0.82, seaside 0.85)
indicated the highly oxidized nature of coastal compounds. Seaside CHOX exhibited
lower unsaturation, reduced aromaticity, and higher oxidation states. Categorization
showed that urban OA was more influenced by aromatic compounds, whereas seaside
OA contained higher proportions of aged aliphatic compounds. Two distinct pollution
episodes were selected to investigate CHOX evolution. Case 1 (local accumulation)
exhibited enhanced CHON signals attributable to increased organonitrate formation
under elevated NOx levels, whereas Case 2 (marine air masses) showed enhanced
CHO signals and a higher CHOX oxidation state likely resulting from intensified
aqueous/heterogeneous reactions under humid conditions. These findings advance our
understanding of OA molecular characteristics and chemical evolution under different

environmental conditions.
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1 Introduction

The chemical compositions of organic aerosol (OA) are highly complex, exerting
distinct impacts on human health and the environment. Parts of OA are emitted
directly from natural and anthropogenic sources, known as primary organic aerosols
(POA). Additionally, gaseous precursors such as SOz, NOx, and volatile organic
compounds (VOCs) could undergo a series of chemical reactions to form secondary
organic aerosol (SOA) (Putman et al., 2012; Qi et al., 2017; Xu et al., 2020). Current
research has focused more on the quantification and the characteristic of bulk OA
(Chazeau et al., 2021; Huang et al., 2014; Sun et al., 2018; Zhou et al., 2020). At the
molecular level, OA remains not well understood due to its complex composition,
consisting of numerous individual compounds with diverse volatility, functionality,
and solubility, and its ultralow atmospheric concentration, which introduces large
uncertainties in detection and compound-specific identification (Stark et al., 2017; Xu
et al., 2017a; Yu et al., 2016; Zheng et al., 2021). Both anthropogenic and natural
sources of OA exacerbate the challenge of their identification and quantification in
molecular composition (Daellenbach et al., 2024). Several studies have characterized
OA in different environments and have found significant variations in its molecular
composition (Chen et al., 2020; Siegel et al., 2021; Zhang et al., 2024). A recurring
pattern shows that CHO and CHON compounds dominate urban OA, whereas
S-containing species are more abundant in marine aerosols. Nevertheless, there has
been inadequate research on the molecular characterization of OA under complex
conditions, such as the urban-coastal interface. This is particularly true regarding the
evolution of OA composition during high PMa.s episodes in such environments.
Therefore, detailed molecular-level characterization of OA is essential for advancing
the understanding of OA formation mechanisms and providing critical insights into
aerosol control strategies (Redman et al., 2002; Wan et al., 2020).

Hard ionization techniques, such as Aerosol Mass Spectrometer (AMS) and
Aerosol Chemical Speciation Monitor (ACSM), which are commonly used for online

observation of aerosol organic components, cannot provide molecular information of
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individual compounds. In contrast, soft ionization techniques overcome this limitation
by enabling observation of OA molecular compounds. A variety of advanced mass
spectrometry techniques, such as two-dimensional Gas Chromatograph-Electron
Ionization time-of-flight Mass Spectrometry (GCxGC-EI-ToF-MS), Electrospray
Ionization-Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
(ESI-FT-ICR  MS), Extractive Electrospray lonization time-of-flight Mass
Spectrometry (EESI-TOF MS), and Filter Inlet for Gases and Aerosols-Chemical
Ionization Mass Spectrometry equipped with reagent ion iodide (FIGAERO-I-CIMS),
have been widely used to characterize OA compositions due to their ultrahigh mass
accuracy and resolution (An et al., 2019; Cui et al., 2024; Daellenbach et al., 2024;
Lopez-Hilfiker et al. 2019). However, these methods differ in their detection
characteristics, including pretreatment procedures, instrumental resolution, and
sensitivity toward specific compound classes. Among these, FIGAERO-I-CIMS has
proven particularly effective for detecting highly oxidized, acidic, and polar organic
species (Lee et al. 2014; Lopez-Hilfiker et al. 2014; Bianchi et al. 2019; Du et al.,
2022; Xin et al., 2024). Moreover, FIGAERO-I-CIMS performs direct thermal
desorption of filter samples, which reduces potential sample loss or compositional
changes associated with conventional pretreatment procedures.

FIGAERO-I-CIMS can operate in both online and offline modes. However,
conducting long-term online observation poses significant challenges, particularly in
maintaining instrument stability and airtightness. To date, the longest such
observation reported was conducted by Daellenbach et al. (2024) in Beijing, which
lasted for seven months. Compared to online mode, the offline mode of
FIGAERO-I-CIMS lowers operating and maintenance costs and provides greater
convenience for detecting samples from different environments within a short period
of time. Recent studies have reported the employments of FIGAERO-I-CIMS in
offline mode, e.g., at an urban background site during summer and winter in Stuttgart
City, Germany (Huang et al. 2019), at an urban site in Beijing, China, under varying

pollution levels (Cai et al. 2022), and on the route near the North Pole (Siegel et al.
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2021). To date, research on the molecular composition of OA under varying
environmental conditions remains quite limited.

In this study, offline FIGAERO-I-CIMS was applied to characterize OA at the
molecular level in PM> 5 samples collected from two different sites (urban and seaside)
in Xiamen, a coastal city in Southeast China, during spring 2024. Expanding on our
earlier ACSM measurement, OA constituted 30-60% of fine aerosol in Xiamen, with
SOA accounting for over 70% (Chen et al. 2022; Zhang et al. 2020). This work has
three main objectives: (i) to characterize the molecular composition of OA and assess
source impacts; (i1) to compare the physicochemical properties of CHOX compounds
including saturation, oxidation state, and aromaticity, between urban and seaside
environments; and (iii) to elucidate the chemical evolution processes of organic
molecules through case studies. The findings will shed light on the influence of
emission sources and atmospheric chemical processes on OA molecular composition
in different environments.

2 Experimental Methods
2.1 PM:5 Sampling and Offline FIGAERO-I-CIMS Analysis

The study was conducted at two distinct sampling sites (an urban site and a
seaside site) in Xiamen, a city situated along the southeast coast of China and
characterized by a subtropical marine monsoon climate. The urban site was situated at
the Institute of Urban Environment, Chinese Academy of Sciences (24°26°N,
118°03°E). This site lies in proximity to major roads (Jimei Avenue and Haixiang
Avenue) approximately 100 m away. The seaside site was located at the Xiamen
Atmospheric Observation Supersite (24°28’N, 118°10’E), approximately 2.5 km from
the coastline. Both sites are influenced by anthropogenic and marine sources, though
to varying degrees. In terms of human activities, both sites are affected by vehicle
emissions, while the urban site is more affected by industrial coal combustion and the
seaside site is more affected by port machinery/ship fuel emissions. Regarding marine
sources, the seaside site experiences stronger impacts from sea salt and marine

biological activities. PM2 s was sampled during the spring season from 20 March to 30
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April, 2024, with a sampling time of 23 hours from 10:00 a.m. to 9:00 a.m. the
following day for each sample. A total of 38 and 32 filter samples were obtained from
the urban and seaside sites, respectively, with one procedure blank used to assess
potential contamination during sampling and transportation.

The offline filter sampling steps are similar to previous studies (Hong et al., 2018;
Hong et al., 2022). Briefly, a high-volume aerosol sampler (TH-1000 series, Tianhong
Corp., Wuhan, China) was operated at a flow rate of 1.05 m® min"! and particulate
matter with a diameter of less than 2.5 um was collected on pre-baked quartz fiber
filters (18 cm x 23 cm). Before sampling, the quartz filters were wrapped in
aluminum foil and burned in a muffle furnace for 4 h (temperature: 450 C) to remove
residual carbon components from the filters. The burned quartz filters were
conditioned in a constant temperature (25 C) and humidity (60%) chamber for 24 h,
and then weighed using a balance. After sampling, the filter samples were stored at
-20 °C before further chemical analysis. The field blank sample was taken following
the same procedure without drawing air through the sampler.

PM: s filter samples were analyzed by the FIGAERO-CIMS in offline mode with
negative iodide (I') ions as the reagent (Aerodyne Research Inc., USA and Tofwerk
AG, Switzerland). Heated and dry ultra-high-purity (UHP) N> was passed through a
permeation tube containing liquid methyl iodide (CHsI; Alfa Aesar, 99%) to an X-ray
source (Tofwerk AG, P-type), producing I to charge the thermally desorbed
compounds. Different from the sandwich method used in other studies (Cai et al.,
2022; Cai et al., 2023; Xin et al., 2024), an area (1.85 cm?) of the sample filters was
punched and placed manually in the dedicated filter holder of FIGAERO directly.
This larger area of filter membrane was used to enhance mass spectrometry signals
due to the relatively low particle concentration in this study. More information was
described in Text S1. A uniform temperature ramping protocol was applied for all
filters, following four steps: (1) stabilization at 25 °C for 1 min; (2) heating from
25 °C to 200 °C in 24 min; (3) soaking at 200 °C for 15 min; and (4) cooling to 25 °C

within 15 min. Two heating cycles were analyzed for each filter sample to assess the
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instrument background (Fig. S1). Meanwhile, parallel experiments were conducted to
evaluate the reproducibility of sampling and analytical procedures. These tests
showed excellent agreement between the OA signal intensities of duplicate samples,
with linear regression slopes of 0.84—1.13 and correlation coefficients (r?) upwards to
0.997 (Fig. S2).
2.2 Coordinated Observations

Simultaneous observations of atmospheric species were also carried out at the
same stations during the sampling campaign. The method of N>Os concentration
detected by online I-CIMS was described by Chen et al. (2024). The concentrations of
water-soluble ions, including Na*, NH4*, K, Ca?", Mg?*, F-, CI, NO3* and SO4*,
were measured by lon Chromatography (Metrohm 883). OC and EC concentrations
were detected by a Model-4 semi-continuous OC/EC aerosol analyzer (Sunset
Laboratory Inc., USA). Additional measurements were obtained from instruments
deployed at the sampling sites and nearby national air quality monitoring stations,
located approximately 1 km and 2 km from the IUE and XS, respectively. Trace gases,
i.e., carbon oxide (CO), ozone (O3), sulfur dioxide (SO:), and nitrogen oxides (NOx),
were simultaneously measured by gas analyzers (Thermo Fisher Scientific, Waltham,
MA, USA). Meteorological parameters, including wind speed (WS), wind direction
(WD), temperature (T), and relative humidity (RH), were recorded by automatic
weather observation station. Ultraviolet radiation (UVB) was determined by a UV
radiometer (KIPP & ZONEN, SUVS5 Smart UV Radiometer). Comprehensive data for
all measured parameters at both sites are summarized in Table S1.
2.3 Data Process and Analysis

The TofTools package (Junninen et al., 2010; version 6.11) based on MATLAB
(MathWorks Inc.) was used to analyze offline FIGAERO-I-CIMS data. The majority
of detected compounds fell within the m/z range of 200-500. These ions formed I
adducts, i.e., [M]I', where M represents the original molecular formula of the analytes.
Besides, a small proportion of compounds existed in other forms, such as losing a

hydrogen (H) atom and combining with NOs~ or HNOsI. Mass calibration was
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performed using five calibrants: NO3; (m/z 61.99), I'(m/z 126.91), H>OI' (m/z 144.92),
HNOsI- (m/z 189.90), and I3 (m/z 380.71).

High-resolution peak fitting was performed on I-minute averaged data, the
signal intensity of each compound was subsequently normalized to the signal of
reagent I" and HoOI'. Signals of the first 1-min of ramping and the last 1-min of
soaking periods were excluded in order to minimize potential interference from
temperature transitions (Cai et al., 2023), the calculation formula of the normalized

signal for each compound i was as follows:

=39 =99
Iz signal, j 7Slgnall.
t=

Normalized _Signal, = y = yrey

szgnalHEO[, J;:57 signal +L

=39
S signal +I

122 signal 10

")

The detected molecules were classified into four categories based on their

=57

elemental composition: CHO (containing only C, H, and O elements), CHON
(containing 1-2 N atoms in addition to C, H, and O elements), CHOS (containing
only C, H, O, and S elements), and CHONS compounds (containing C, H, O, N, and
S elements). In this study, CHOS and CHONS were collectively categorized as
S-containing compounds. The sum of the four compound classes was denoted as
CHOX, where X indicates the potential presence of N, S, or both.

To characterize the properties of the OA compounds, the double bond equivalent
(DBE), oxidation state of carbon atoms (OSc), modified aromaticity index (Almod),
and the effective number of oxygen atoms (Oefr) were calculated for the obtained
molecular formulas. The DBE, which quantifies the number of rings and double
bonds in a molecule (Koch and Dittmar, 2006), was calculated using Equation (2):

DBE - 2xXc+2—h+n )

The OSc was estimated according to Equation (3) described by Kroll et al.
(2011):
OSc~2xo/c—h/c (3)
The Almoa Was first proposed by Koch and Dittmar (2006, 2016) to evaluate the

aromaticity of compounds identified through high-resolution mass spectrometry. The
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index is calculated based on two parameters. DBEa; is the DBE of molecular core
structure, and Car is the number of carbon atoms in the core structure. Almod 1S defined
as the DBEAaj to Cai ratio, with the Almoa = 0 when either DBEa1 < 0 or Car < 0 (Brege
et al., 2018):

Al _DBE,, 1+c-0.5x0-5-0.5x(h+n) 4)
e, c—05x0—s—n

The Ocrwas evaluated following Equation (5):
O =0-2xn-3xs (5)

In the aforementioned formulas, ¢, h, o, n, and s represent the number of C, H, O,
N, and S atoms, respectively, in the molecular formulas of the corresponding
compounds. The ratios DBE/C and O./C indicate the degree of aromaticity and
oxidation of compounds, respectively.

An intensity-weighted parameter (Pw) for CHOX compounds was calculated
using Equation (6):

Py =D (BxI)/>.1, (6)

where P represents the following parameters: DBE, DBE/C, O.s/C, OSc, or Almod.
Pi corresponds to the specific parameter value for individual compound i and I;
denotes the signal intensity of compound i. The weighted parameters for both
sampling sites are summarized in Table S2.
3 Results and Discussion
3.1 Overview of the sampling period

During the sampling period, distinct differences in conventional air pollutants

were observed between the urban and seaside sites. As shown in Table SI,
primary-emitted and traffic-related pollutants like CO and NOx exhibited significantly
higher concentrations at the urban site compared to the seaside site, while an opposite
trend was observed for SOz concentrations (t-test, p<0.001). Additionally, the seaside
site displayed enhanced O; concentrations and UVB intensity, indicating more
favorable conditions for photochemical reactions. The average OC/EC ratio in PMas

was 6.7 + 4.4 at the seaside site, significantly higher than the urban site value of 4.0 £
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0.8 (t-test, p<0.001). Both sites exceeded the SOA formation indicator value (OC/EC
= 2) proposed by Chow et al. (1996), indicating strong SOA production in the study
area, particularly at the seaside site. In this study, a total of 737 and 768 organic
molecules (CHOX) were identified by FIGAERO-I-CIMS for the urban site and the
seaside site, respectively. Significant correlations were observed between CHOX
signal intensities and OC concentrations at both sites (R = 0.70 and 0.80, Fig. S3),
demonstrating the reliability of the OA molecule detection method in this study. The
number of identified molecules is comparable to that at a rural site in Southeast US
(769 organic molecules, Chen et al., 2020) but lower than those observed in highly
industrialized urban areas such as Beijing (939 molecules, Cai et al., 2022) and
Guangzhou (815 molecules, Ye et al., 2021). These spatial differences highlight the

significant influence of environmental conditions on OA molecular composition.

() o o m cros ®) %
Urban_number Seaside number Urban_signal Seaside signal
(©
CHO CHON S-containing
Urban Seaside Urban Seaside  Urban Scaside
0.05 s
()] CHO| CHON (.009./S-containing
E 0.09 0.04
& overlap
(7]
= 0.06 0.006
N
=
g
50.03 UL
k4
0.00 0.000
Urban Seaside Urban Seaside Urban Seaside

Fig. 1 Numbers (a) and signals intensity (b) proportion of CHO, CHON, and S-containing
compounds in CHOX, Venn diagram of the number distribution of overlapping molecular
formulas between sites (c), and average signals of overlapping and unique CHO, CHON, and
S-containing compounds at both sites (d).

As described in the methodology section, the identified CHOX were classified
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into four groups. CHO and CHON compounds were predominant in quantity (Fig. 1a),
accounting for 46% and 47% of the total CHOX at the urban site, and 38% and 42%
at the seaside site, respectively. In terms of signal intensity, CHO and CHON
contributed over 70% and 20% to the total CHOX, respectively, at both sites (Fig. 1b).
This observation is consistent with the well-documented predominance of CHO
compounds across various environments, including urban areas (e.g., 65 + 5% in
Beijing) (Cai et al., 2022), rural areas (79.9 = 5.2% on average in the Rhine river
valley, Hyytidld boreal forest, Finland, and Alabama, US; 87.7 = 10.8% in Georgia,
US) (Chen et al., 2020; Lopez-Hilfiker et al., 2016) and mountain sites (e.g., 66.2 +
5.5% in Chacaltaya, Bolivia) (Bianchi et al., 2022). In addition, enhanced
contributions of CHON compounds are consistently found at the urban sites, such as
in Beijing (30 + 5%) (Cai et al., 2022) and on average across Stuttgart and Karlsruhe,
Germany and Delhi, India (27.1 + 4.3%) (Haslett et al., 2023; Huang et al., 2019;
Huang et al., 2024), strongly suggesting an association with urban NOx enrichment.
The molecular masses were identified within the range of m/z 200-500 (Fig. S4).
The highest relative abundances, covering m/z 200-320, were found for CHO
compounds, while CHON was mainly concentrated in the range of m/z 320-400.
These characteristics are consistent with the results reported from Beijing, Wuhan,
and Xi’an (Cai et al., 2022; Xin et al., 2024; Shang et al., 2024). As shown in Fig. 1d
and S5, the signal intensities of CHO and CHON were steadily higher at the urban site,
whereas the signals of S-containing compounds were more pronounced at the seaside
site. These differences align with the elevated NO> at the urban location and the
higher SO> measured at the seaside location during sampling (Table S1). Comparing
CHOX chemical compounds at the two sites (Fig. 1¢ and S6), we found that over 50%
of CHO and CHON molecules at both sites shared the same molecular formula,
accounting for 86%-94% of total signals. Notably, the overlapping S-containing
compounds constituted only a minor proportion of total S-containing species at the
seaside site (35%). These results reveal distinct variations in OA composition between

the urban and seaside sites, attributable to differences in anthropogenic emission
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influences. To further explore the discrepancies in CHOX compounds between the
two sites, the characteristics and properties of CHOX were analyzed in detail.

3.2 Characteristics and Properties of CHOX Compounds

3.2.1 The Characteristics of CHOX Distribution

The bulk molecular formulas of CHOX compounds were determined as
Ci0sH137N0505.4S0.1 at the urban site and Cio7H144No4Os4S02 at the seaside site, with mean
weighted effective oxygen numbers to carbon content (Ocf/C) ratios of 0.82 and 0.85,
respectively, indicating the highly oxidized nature of these compounds in the coastal
region. In comparison, the bulk CHOX composition at the seaside site exhibited a
higher O/C ratio, fewer CHON compounds, and more S-containing compounds. The
elevated CHON signal intensity at the urban site could be attributed to the high NOx
concentrations from vehicle emissions, facilitating nitrogen-containing compound
formation. In contrast, the enhanced S-containing compound signals at the seaside site
likely resulted from marine-driven sources.

Figure 2 and S7 show the signal intensity and quantity distribution of CHO and
CHON compounds as a function of carbon number. The distribution characteristics of
CHO and CHON compounds were broadly consistent between the two sites. As
shown in Fig. S7, the quantity of CHO compounds exhibited a normal distribution
with carbon number, mainly concentrated in the ranges of 8-14 carbon and 4-6
oxygens, while the distribution of CHON compounds was relatively uniform, with a
minor abundance peak at Ce¢ 10 and Os6. In contrast to the quantity distribution, the
signal intensity of CHO compounds decreased with increasing carbon number (Fig.
2a-b). Both sites exhibited significant signal contributions from Os-CHO compounds,
which likely correspond to dicarboxylic acid species. Oxalic acid (C2) and succinic
acid (Cs) were the most abundant species, followed by malonic acid (Cs). These
low-molecular-weight dicarboxylic acids are typically associated with aqueous
reactions (Lim et al., 2010). With increasing carbon number, the dominant oxygen
content in CHO compounds shifted from Os4 to Oss. The signals of CHON

compounds were predominantly concentrated in the Cs 1o range, with their oxygen
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content shifting from O3 to Os 7 as carbon number increased (Fig. 2c—d). Site-specific
differences in molecular distribution were observed. CHO and CHON compounds
with high carbon content (>Ci0) exhibited stronger signal intensities at the urban site
than the seaside site, with Os-CHO and O7s-CHON species showing particular
enhancement. As shown in Figures S8 and S9, the proportion of Os-CHO species
increased significantly with carbon number at the urban site, reaching up to 41% and
61% at Ci4-15. These likely correspond to molecular formulas such as Ci4H160s and
Ci5H180s, which are oxidation products of sesquiterpenes. Under the combined
influence of anthropogenic and biologic emissions, OA compounds at both sites
included products from photochemical oxidation of aromatic VOCs and oxidation of
biological precursors such as isoprene and monoterpenes. However, composition
differed between sites, with the urban site showing higher signal intensity of species
including C3H4O4, Cs6H4Os, CsoHi1204, and CeH1i1NOs, while the seaside site

exhibited stronger signal intensity of species such as Co-10H1603, C4Ha/60s, CsHgOs,

and CoH;5NOs.
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Fig. 2 Signal intensity of CHO and CHON categorized by the number of carbon atoms at the

urban (a, c¢) and seaside (b, d) sites.
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3.2.2 The Unsaturation, Oxidation State, and Aromaticity of CHOX Compounds
The double bond equivalent (DBE) characterizes the potential number of rings
and double bonds in organic compound molecules. Quantitatively, CHOX compounds
were predominantly distributed within the DBE range of 2—-8 (Fig. S10). In terms of
signal intensity (Fig. 3), CHO compounds exhibited significant contributions in the
DBE = 2-4 range, while CHON compounds were concentrated in the DBE = 2-5
range. Compounds with DBE > 6 showed higher signal contributions at the urban site
(9%) than at the seaside site (7%). These highly unsaturated compounds may undergo
oxidative transformation into higher molecular weight products, being particularly
prone to photooxidation with oxidants like O3 to form C=O bonds in carbonyls and
carboxylic acids (Zhao et al., 2014). As shown in Table S2, the weighted-DBE values
of CHOX compounds ranged from 2.32 to 3.68, which is close to the previously
reported values (2.64-3.82) for urban and marine samples (Xin et al., 2024). The
urban site exhibited higher weighted-DBE values for CHOX compounds (3.25)
compared to the seaside site (2.99) (Table S2), indicating distinct formation pathways.
The highly unsaturated CHOX compounds are likely derived from anthropogenic
precursors such as aromatic VOCs and PAHs, whereas the more saturated components
primarily originated from biogenic terpene compounds and saturated fatty acids from

marine sources (Du et al., 2024; Chan et al., 2011; Nguyen et al., 2012; Noziere et al.,

2010).
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Fig. 3 Signal intensity of CHOX categorized by double bonds equivalent (DBE) at the urban site

DBE/C ratios greater than 0.7 generally indicate the presence of soot materials or

(a) and the seaside site (b).
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oxidized polycyclic aromatic hydrocarbons (PAHs) (Cui et al., 2019). During the
sampling period, while the signal proportions of compounds with DBE/C > 0.7 were
comparable between the two sites (CHO: ~25%; CHON: ~16%), their number
proportions were significantly higher at the urban site (CHO: 17%; CHON: 22%) than
at the seaside site (CHO: 6%; CHON: 19%). Consistent with the above discussion,
S-containing compounds with DBE/C > 0.7 exhibited higher proportions in both
signal intensity and quantity at the urban site (24% and 26%, respectively) compared
to the seaside site (14% and 10%, respectively). The systematically higher DBE/C
ratios for OA compounds at the urban site suggest more contribution from soot
materials and/or oxidized PAHs, which aligns with the observed EC concentrations
(urban: 1.57 £ 0.80 pg m3; seaside: 0.91 + 0.42 ug m). The Almod, which reflects the
minimum number of carbon-carbon double bonds and aromatic rings (Koch and
Dittmar, 2006, 2016), was correspondingly higher at the wurban site
(weighted-Almoa=0.17) than at the seaside site (0.15), further supporting the greater
contribution of aromatic species to urban OA.

The carbon oxidation state (OSc), a parameter introduced by Kroll et al. (2011),
serves to quantify the oxidation degree of organic mixtures undergoing dynamic
atmospheric processes. The weighted-OSc values of CHOX compounds were higher
at the seaside site (0.55) than at the urban site (0.49) (Table S2), consistent with the
aforementioned enhanced SOA formation at the seaside site. The van Krevelen (VK)
diagrams (Fig. S11) revealed that homologue series such as CqH2nxO4 (Where x=2,4,6)
made significant contributions to CHOX compounds in this study. The elevated
weighted-OSc values of seaside CHO compounds could be attributed to the strong
signal intensities of low-carbon-number homologues, such as ChH2n204and CiH20404.
In contrast to CHO compounds, both CHON and S-containing compounds exhibited
higher weighted-OSc values at the urban site, indicating a more chemically aged state
of N- and S-containing species. The increased weighted-OSc of urban CHON
compounds mainly resulted from enhanced signals of highly oxidized species, such as

C3HsNOs and CsH7NOs. These compounds are likely formed through
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multi-generational oxidation of aromatic or biogenic VOCs, ultimately yielding
products containing highly oxidized functional groups, such as -COOH and -ONOx.
The relatively low weighted-OSc of seaside S-containing compounds was likely
associated with fresh sulfur emissions from local sources, including oceanic discharge
and ship exhaust. Furthermore, S-containing compounds in seaside OA contained
more Aliphatic-like OSs species with low carbon numbers, such as CiHan2n+204-5S
(n=2-4), and Reduced-sulfur species (0O<4) (to be discussed later), which also
contributes to their relatively low weighted-OSc values. This observation is consistent
with previous findings that S-containing compounds in primary organic sea spray
aerosols were predominantly composed of fatty acids and other lipid molecules with
lower oxidation degrees (Siegel et al., 2021). Additionally, the limited number of
identified S-containing compounds may have artificially inflated the weighted-OSc
values for urban S-containing compounds.
3.2.3 The Classification of CHOX Compounds

As shown in Fig. 4, CHOX compounds were categorized based on Almod, DBE,
H/C, and O/C ratios. Low H/C ratios, combined with high DBE and Alm.d values
indicate a high degree of unsaturation and the presence of aromatic structures. CHOX
were classified into Aromatic-like and Aliphatic-like compounds based on Almed and
H/C, following the methodology of Xin et al. (2024). Compounds with Almed > 0.5 or
Almoa < 0.5 and H/C < 1.5 were defined as Aromatic-like compounds. Conversely,
compounds with Almea < 0.5 and H/C > 1.5 were defined as Aliphatic-like compounds
(Coward et al., 2019). The categorical distribution of CHOX compounds showed
similarities between the two sites, with Aromatic-like CHOX species contributing
significantly to the signal at both sites (> 50%). Nevertheless, their relative abundance
was markedly higher at the urban site, while the seaside site exhibited a greater
proportion of Aliphatic-like compounds (42.0% vs. 39.2%).

Using an O/C threshold of 0.5, both Aromatic-like and Aliphatic-like CHOX
were further subdivided into two subcategories, with O-rich (O/C > 0.5) compounds

being more abundant than O-poor (O/C < 0.5) compounds. The signal ratios of O-rich
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to O-poor compounds were higher at the seaside site for both categories. Specifically,
the O-rich/O-poor ratio for Aromatic-like CHOX was 4.9 at the seaside site versus 4.1
at the urban site. Similarly, the ratio for Aliphatic-like CHOX was 3.9 at the seaside
site compared to 3.3 at the urban site. These results are consistent with the findings of
OC/EC ratios and OSc discussed earlier, suggesting that the seaside atmosphere is
more conducive to the formation of highly oxidized organic compounds. Notably, the
proportion of Aliphatic-like O-rich CHOX was significantly higher at the seaside site
than at the urban site, aligning with a recent study that reported elevated levels of
Aliphatic-like O-rich CHOX in marine-remote PMzs (Xin et al., 2024). This finding
demonstrates a consistent spatial pattern that urban OA is more strongly influenced by
anthropogenic emissions and is dominated by aromatic species, whereas

marine-influenced OA exhibits relatively higher proportions of aged, aliphatic

compounds.
1.4% 0
Urban g 194 4.99%5% CHOX
30.2%  48.9% . 47.2%
60.9% W 40.3%
11.8% CHON
Il NACs(DBE<6)
. 1.8% I NACs(DBE>6)
Seaside.g oy, Lagill
5.5%
29.9% ..
33.4%  48.2% 9 S-containing
. 0
w 51.4%

9.8%

Fig. 4 Fraction of CHOX signal intensity categorized by different parameter.

For CHON compounds, Aromatic-like compounds with O/N > 2 and
Aliphatic-like compounds with O/N > 3 were categorized as Nitro-aromatic
compounds (NACs) and Aliphatic Nitrates, respectively, while the remaining
compounds were classified as Reduced-nitrogen compounds. The distribution patterns
of CHON classifications were highly consistent between the two sites. Aliphatic-like

CHON exhibited the highest signal proportion, followed by NACs, with
17



436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Reduced-nitrogen compounds showing the lowest signal contribution. The most
abundant compound in Aliphatic-like CHON was C10H15sNOs, accounting for 7.5% of
total signals at both sites. Previous studies have demonstrated that CioHisNOg is
produced through nitrate radical (NOs-)-initiated oxidation of monoterpenes (e.g.,
limonene or B-pinene, CioHis) (Boyd et al., 2015; Faxon et al., 2018). The signal
profiles of NACs were dominated by C.H2.7OxN homologues (e.g., CsHsNOs3 and
C7H7NO:3) at both sites. Their prevalent presence is primarily attributable to formation
pathways initiated by the oxidation of VOCs under anthropogenic influence, coupled
with elevated NOx levels (Wang et al., 2019; Xia et al., 2023; Xie et al., 2017). While
biomass burning emissions were relatively limited in the study area, NACs and their
aromatic VOC precursors likely originated from other combustion sources, such as
coal combustion, traffic emissions, and industrial activities (Lu et al., 2019a; Lu et al.,
2019b; Lu et al., 2021). Notably, NACs with DBE > 6 exhibited higher signal
intensities at the urban site, suggesting a stronger contribution from these combustion
emissions.

Following Lin et al. (2012) and Xie et al. (2020), S-containing compounds with
O/S > 4 were defined as organosulfates (OSs) and further divided into three
subcategories: (1) Aromatic-like OSs (Almod > 0.5, or Almed < 0.5 with H/C < 1.5); (2)
Aliphatic-like OSs (Almod < 0.5, H/C > 1.5, and DBE < 2); (3) Biogenic-like OSs
(Almoda < 0.5, H/C > 1.5, and DBE > 2). Compounds with O/S < 4 were classified as
Reduced-sulfur compounds. Unlike CHO and CHON, the classification distribution of
S-containing compounds differed significantly between the two sites. At the urban site,
the signal profiles were dominated by Aromatic-like OSs, followed by Aliphatic-like
OSs. In contrast, the seaside site exhibited the highest signal proportion of
Aliphatic-like OSs, primarily contributed by C3HeOsS, C3;HsOsS, and CsHi10OsS.
Additionally, the seaside site showed higher signal intensities of Reduced-sulfur
compounds, largely due to abundant CoH2:40xS and CnH24+20xS homologues. The
elevated abundances of Aliphatic-like OSs and Reduced-sulfur compounds in seaside

OA were likely attributed to the oxidation of biogenic reduced sulfur gases,
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particularly dimethyl sulfide (DMS) emitted from the ocean (Shen et al., 2022; Siegel
etal., 2021).
3.3 Case study: Evolution of molecular compositions

To investigate the impact of atmospheric processes on organic molecular
composition, we selected two distinct episodes with significant increases in PMas
concentrations (Case 1: March 26-29; Case 2: April 10-13) for further analysis (Fig.
S12). In Case 1, the daily average offline PM2 s concentration increased from 27.35 to
38.80 pg m at the urban site and from 27.37 to 45.89 ug m™ at the seaside site. While
in Case 2, it increased from 17.13 to 59.78 pg m at the urban site and from 17.11 to
40.63 ug m at the seaside site. Backward trajectory analysis (Fig. S13) revealed that
the air masses in Case 1 were transported from North China along the coastline to
study area over a long distance and then shifted to local air masses. This transport
pattern was accompanied by initially elevated nighttime Os; concentrations under
regional influence, followed by a significant rise in NOx levels due to local
accumulation. RH in Case 1 remained relatively stable at both sites, averaging
approximately 72% (urban) and 86% (seaside). In contrast, the air masses in Case 2
were primarily influenced by long-range marine transport. The Ox levels displayed
repetitive and stable diurnal variations. Notably, RH progressively increased from
66% to 91% at the urban site and from 76% to 99% at the seaside site, while UVB
intensity declined gradually from 12.6 to 5.4 w m at the urban site and from 12.4 to
8.7 w m™? at the seaside site. We also observed that as Case 2 progressed, the NOs™ and
SO4* concentrations increased markedly with rising RH. Overall, the two episodes
exhibited distinct source origins and environmental conditions.

The evolution of daily CHOX signal intensity during pollution episodes is
presented in Fig.5. Case 1 exhibited higher CHOX signal intensities than Case 2.
Spatially, the urban site showed higher levels of CHO and CHON compounds, while
the seaside site had relatively higher concentrations of S-containing compounds,
consistent with the general characteristics of the two sites. During Case 1, all CHOX

compounds showed increased signal intensities, particularly urban CHON and seaside
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S-containing compounds (Fig. 5b—d). This feature aligns with the earlier hypothesis
that local emissions dominantly contributed to CHOX in this episode. As expected,
NOx concentrations were significantly higher at the urban site (38.21 pg m™) than at
the seaside site (24.91 pg m), while SOz levels exhibited an inverse trend (urban:
3.29 pug m3; seaside: 4.54 ug m3). In contrast, Case 2 (Fig. 5b—d) was characterized
by a significant temporal increase in CHO compounds, while CHON levels remained
stable. Additionally, S-containing compounds showed a slight but synchronized
enhancement at both sites, likely due to the influence of a common marine air mass
source. Given the more pronounced variations in CHOX composition at the urban site,

we conducted further analysis on CHOX at this location.
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Fig. 5 Signal intensity of CHOX during the different periods at the two sites.

Figure 6 illustrates the compositional changes of CHOX compounds during the
two pollution episodes. The OSc (0.37) of CHOX in Case 1 was significantly lower
than the campaign average (0.49). Regarding CHOX composition, as the dominant
influence shifted from long-distance transport to local accumulation, the proportion of
Aliphatic-like O-rich components in CHOX decreased, while Aliphatic-like O-poor
components contributed increasingly. These observations reflect the enhanced

influence from local anthropogenic emissions. Our aforementioned results have
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shown a significant enhancement of CHON signals in Case 1. Further compositional
analysis revealed that as the episode progressed, the proportion of NACs (DBE<6) in
CHON compounds decreased, while the proportion of Aliphatic Nitrates increased.
Figures 7a-d specifically show that the urban CHON signal enhancement was
primarily driven by low DBE/C compounds, including CioHi19NOs, CioHisNOe,
C4H7NO3, CsH11NOsg, and C3H7NOs. These organonitrates are mainly formed through
the oxidation of VOCs such as alkanes, alkenes and monoterpenes by OH, O3, and
NO:s in the presence of NOx (Lee et al., 2016; Ng et al., 2017; Yan et al., 2019; Yang
et al, 2025), and subsequently partition into the particle phase. Additionally,
particulate organonitrates can also be generated via heterogeneous reactions of
organic compounds with NO; (Nah et al., 2016). During Case 1, elevated O3
concentrations resulting from regional transport (Fig. S12a) likely facilitated
nocturnal NOs radical formation (via NO2 + O3). Online CIMS measurements also
revealed that N2Os signals in Case 1 were one order of magnitude higher than in Case
2 (data not shown). Hence, nocturnal oxidation of monoterpenes by NOs, yielding
products such as C1oH19NOs and C10H1sNOs, might have led to the observed increase

in the proportion of Aliphatic Nitrates.
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Fig. 6 Fraction distribution of urban CHOX signal intensity categorized by different parameter
(Almod, DBE, H/C, and O/C) during Case 1 and Case 2.

Case 2 exhibited different characteristics compared to Case 1 (Fig. 6). The OSc
(0.51) of CHOX compounds in Case 2 increased in contrast to the campaign average
(0.49). The proportion of Aliphatic-like O-rich compounds demonstrated a continuous
upward trend, rising from 28% to 39% at the urban site, while Aromatic-like O-rich

compounds remained stable. Conversely, the proportion of both Aromatic-like O-poor
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and Aliphatic-like O-poor compounds decreased. The overall increase in OSc and the
high abundance of Aliphatic-like O-rich compounds can be attributed to the influence
of marine air masses. Although these air masses diluted OA concentrations, they
introduced aliphatic compounds and enhanced atmospheric oxidative capacity likely
via abundant halogen radicals, thereby driving the observed changes. Unlike CHO
compounds, the total signal intensities of CHON compounds in Case 2 remained
relatively constant (Fig. 5c), but their molecular composition underwent significant
changes. Specifically, the proportion of NACs (DBE<6) in CHON compounds
increased from 26% to 39% at the urban site, whereas Aliphatic Nitrates decreased
correspondingly from 64% to 51%. The variation of CHON compositions indicates a
change in the formation pathways of N-containing compounds. The notably higher
RH in Case 2 would facilitate the uptake of gas-phase NACs into aerosols (Frka et al.,
2016; Vidovic et al., 2018) and probably their heterogeneous reactions with NO;
radicals. Concurrently, reduced UVB diminished the photolytic degradation of NACs
(Peng et al., 2023). This dual effect collectively led to the observed increase in the
proportion of NACs. Additionally, variations in S-containing compounds were
generally consistent across both sites (Fig. S14), with the most notable increases
observed in Aliphatic-like OSs and Reduced sulfur compounds.

A distinct characteristic of Case 2 was the increased signal intensity of CHO
compounds (Fig. 5b), particularly on April 13. The VK diagrams (Fig. 7i-1) showed
that CHO compounds evolved into highly oxidized species (e.g., C2H204, C4HeOs4,
CsHsgOs) as aerosol concentrations increased. Previous studies have demonstrated that
organic acids are continuously generated during aqueous photochemical aging
processes (Ervens et al., 2011; Ye et al., 2025). The CyH2,204 homologues, such as
C4H6O4 (succinic acid) and C3H4O4 (malonic acid), were predominantly formed via
aqueous-phase reactions and/or photochemical oxidation of VOCs (Kawamura et al.,
2016). The CsHgO4 species likely represents glutaric acid, a known oxidation product
of isoprene (Berndt et al., 2019). Research indicates that aqueous-phase reactions play

a crucial role in generating highly oxidized OA (Xu et al., 2017b). We therefore infer
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that the increased RH under marine air mass influence during Case 2 promoted
aqueous reaction-driven organic aerosol formation, thereby enhancing OA oxidation
levels. This interpretation is supported by the observation that CHO compounds at the
seaside site exhibited higher oxidation degrees than those at the urban site (Table S2).
Regarding CHON compositional changes, the VK diagrams clearly showed a decline
in signals from low DBE/C species (e.g., CioH19NOs, Ci1oH1sNOs, and Ci0H17NOg)
alongside an increase in oxygen-rich and lower-carbon species (e.g., CsHsNOs,
CsH3NOs3, C3HsNOs, CsHsNOg, and CsHoNOs, Fig. 7e-h). These CHON compounds
most likely originated from aromatic hydrocarbon oxidation followed by atmospheric
aging processes, leading to concurrent increases in both weighted-Almod (0.16 vs. 0.14)
and weighted-OSc (0.02 vs. -0.08). Overall, the compositional evolution in Case 2
demonstrates that marine-derived humid air masses enhanced aqueous-phase reactions,

thereby promoting organic aerosol formation and intensifying oxidative states.
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Fig. 7 The van Krevelen (VK) diagram of urban CHON (a—h) and CHO (i) day by day during
different periods. The circle size corresponds to signal intensity and the color scale represents the

DBE/C ratio.

4 Conclusions
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This study investigates the molecular characteristics and chemical evolution of
OA in coastal environments (urban and seaside sites) through FIGAERO-I-CIMS
analysis of PMzs samples collected during spring 2024. CHO and CHON compounds
dominated the OA composition at both sites, sharing over 50% of molecular formulas
and accounting for 86%—94% of total signal intensities. The urban site exhibited
higher signal intensities of CHON compounds, while the seaside site showed elevated
S-containing compounds. These results clearly reflect distinct source-specific
molecular fingerprints. The Oet/C values (urban 0.82; seaside 0.85) indicated the
highly oxidized nature of coastal compounds. Compared to urban OA, Seaside OA
exhibited lower unsaturation, reduced aromaticity, and higher oxidation states.
Categorization showed that Aromatic-like CHOX exhibited higher signals than
Aliphatic-like compounds at both sites, while urban OA was enriched in aromatic
species (e.g., NACs from vehicle- and combustion-related emissions) and seaside OA
featured aliphatic and highly oxidized compounds. Two pollution episodes were
selected to investigate CHOX evolution mechanisms. Case 1 (local accumulation)
exhibited a significant increase in urban CHON compounds, likely attributable to
elevated NOx levels that promoted the formation of organonitrates. Case 2 (marine air
masses) was characterized by high-humidity conditions that enhanced
aqueous-/heterogeneous-phase reactions, thereby promoting the formation of CHO
and NACs compounds and intensifying the overall oxidation state. The offline
FIGAERO-I-CIMS proved robust for molecular-level characterization of OA across
diverse environments. These findings not only advance our understanding of OA
molecular characteristics and chemical evolution processes, but also provide insights

for region-specific control strategies.
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