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Abstract

With the Two Phases of Clean Air Actions in China, the shipping sector has emerged as a
significant source with substantial emission reduction potential compared to land-based
anthropogenic sectors. Therefore, understanding the contribution of shipping emissions to
ozone (O3) pollution is therefore essential for advancing China’s air pollution control efforts.
In this study, a coupled framework including a chemical transport model with machine learning
techniques was developed to systematically investigate the interannual and seasonal impacts of
shipping emissions on Os concentrations across China during the period from 2016 to 2020,
and explore mechanisms by which shipping emissions influence O3 formation. Results indicate
that shipping emissions increase O3 concentrations by a five-year average of 3.5 ppb nationwide,
exhibiting significant spatial and temporal heterogeneity across different regions and seasons.
Although significant differences exist between the emissions of ocean vessels and inland
vessels, their contributions to O3 formation are becoming increasingly comparable. Solely
controlling shipping emissions may has limited impact on O3 mitigation. Instead, coordinated
reductions targeting both shipping and land-based anthropogenic sources, along with region-
specific and targeted emission control strategies, are critical for achieving substantial
improvements in O3 pollution mitigation.
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1 Introduction

Over the past decades, China’s rapid industrialization and urbanization have boost the
economy but also exacerbated air pollution (Zhang et al., 2019). To address air pollution and
the health burden from anthropogenic emissions, China introduced the Air Pollution Prevention
and Control Action Plan in 2013 (Zheng et al., 2018). Although China has implemented
synergistic control of VOC and NO, emissions, the warm-season mean maximum daily 8 h
average ozone (MDAS8 O;) increased by 2.6 ug m> yr! in China between 2013 and 2020,
especially in urban areas where declining PM 5 levels offset gains in O3 mitigation (Liu et al.,
2023). Numerous epidemiological studies have shown that ground-level Oz pollution leads to
a range of adverse health effects, including increased incidence and mortality of respiratory
diseases (Ito et al., 2005; Jerrett et al., 2009; Tao et al., 2012). Therefore, the health benefits
achieved by reducing PM; s pollution are partially offset by the increase in O3 pollution (Wang
et al., 2021a; Xie et al., 2019), indicating a need to explore strategies to mitigate O3 pollution
in China.

During the promotion of China’s emission control actions, emissions from the industry
and power sectors declined substantially, with NO, reductions exceeding 50%, while the
transportation sector still retains significant potential for further cuts (Liu et al., 2023). Ships
emit both gaseous and particulate pollutants, including sulfur dioxide (SO>), nitrogen oxides
(NOy), particulate matter, and volatile organic compounds (VOC). As the largest maritime
trading nation, China has a higher share of shipping emissions among anthropogenic sources
compared to international levels (Fu et al., 2017; Yi et al., 2025). From 2016 to 2019, shipping
emission controls in China focused on reducing SO, and PM emissions through the adoption
of low-sulfur fuels, while NO, and VOC emissions from shipping continued to rise by
approximately 13% due to increasing trade volumes (Wang et al., 2021b). Additionally, the use
of low-sulfur fuel may further increase VOC emissions (Wu et al., 2020). Therefore, clarifying
the historical and current contribution of shipping emissions to the formation of Os is critically
important for further pollution control in China.

Previous studies have quantified the impacts of shipping emissions on O3 pollution in
China. In the southern coastal region, shipping emissions contributed approximately 0.9 ug/m?
to annual O3 pollution (Cheng et al., 2023), with a peak winter contribution of up to 10% (Feng
et al., 2023). In the eastern coastal region during summer, the shipping-related O3 concentration
ranged from -15 to 15 ppb (Fu et al., 2023; Wang et al., 2019a). In the Bohai Rim Area (BRA),
shipping emissions showed a maximum annual negative contribution of 0.5 pg/m* (Wan et al.,
2023), while summer O3 concentration in Shandong Province increased by up to 10 ppb due to
shipping (Wang et al., 2022).. However, these studies predominantly focused on coastal areas,
such as Yangtze River Delta (YRD), Pearl River Delta (PRD), and BRA, while the potential
inland impacts are not well studied. However, recent studies have indicated that the air quality
effects of inland shipping should not be neglected (Huang et al., 2022; Luo et al., 2024). The
formation of O3 exhibits strong spatial heterogeneity and is influenced by multiple factors, such
as meteorological conditions and the emission intensities from both shipping and land-based
sources. Currently, there is a lack of comprehensive studies employing a unified methodology
to assess the nationwide impact of shipping emissions on Os. Furthermore, previous studies
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were limited to restricted periods, resulting in a deficiency in comprehensive assessments of
multi-year scenarios that encompass coordinated variations in both land and shipping emissions.

O3 is generated by photochemical reactions between NO, and VOC under solar radiation,
thus, the impacts of shipping emissions on Oz concentrations are attributed by the nonlinear
response of O3 to changes in NOy and VOC emissions (Wang et al., 2019a, 2017). Additionally,
the titration of O3 by NO from shipping emissions, particularly within a few kilometers of ship
tracks, can further complicate the simulation and interpretation of O3 concentrations at the local
scale (Merico et al., 2016). However, previous studies commonly used the zero-out method to
assess ship’s impacts by comparing scenario differences simulated by chemical transport
models, which does not fully involve the nonlinear response of O3 to its precursors and would
result in considerable uncertainty in the evaluations (Cheng et al., 2023; Feng et al., 2023; Fu
et al., 2023; Wan et al., 2023; Wang et al., 2022, 2019a). Furthermore, although model-based
assessments can generate large amounts of simulation data to investigate the impacts of
shipping emissions, the number of scenarios that can be simulated by chemical transport models
remains limited due to computational constraints. As a result, current analyses struggle to
struggles the mechanism of how shipping emissions contribute to Osformation from these
discrete scenarios. Recently, the advancement of machine learning techniques, with strong
capabilities in capturing nonlinear relationships, provides a valuable approach for uncovering
underlying patterns in such datasets (Luo et al., 2025).

In this study, we conducted source-oriented chemical transport model with a spatial
resolution of 36 kmx36 km, to investigate the annual and seasonal impacts of shipping
emissions on O3z concentrations in China, especially for key coastal and inland regions from
2016 to 2020. We also apportion the contribution of shipping emissions from ocean-going
vessels (OGVs), coastal vessels (CVs), and river vessels (RVs) to Os pollution to identify the
influences of regionally differentiated shipping emission control policies. Furthermore, an
explainable machine learning model was applied to explore investigate the potential source-
receptor relationships between shipping emissions and the O3 formation based on five-years
simulated data. Our study provides a nationwide and long-term analysis of the impacts shipping
emissions on China’s O3 pollution, and provide new insights for shipping control measures in
the future.

2 Methods

2.1 Shipping emissions

The Shipping Emission Inventory Model (SEIM v2.0) is a disaggregate dynamic method
(Wang et al., 2021b) driven by (a) the high-frequency ship Automatic Identification System
(AIS) data, including signal time, coordinate location, navigational speed, and operating status,
and (b) the integrated Ship Technical Specifications Database (STSD) (updated to 2020),
which describes ship static properties, including vessel type, maximum designed speed, DWT
and engine power. First, the originally collected raw AIS data and ship profile data from
multiple sources are combined to form a ship activity database and STSD. Second, a route
restoration module is applied for cross-land trajectory with a long distance in the AIS data, in
which the 10 min linear interpolation will be applied on the shorted paths instead. Third, the
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instantaneous emission along with the movement of the ship’s trajectory will be calculated
based on the ship’s static technical parameters, dynamic load changes, and extra parameters
and factors. In the SEIM, shipping emissions for both air pollutants (e.g., SO,, PM, NO,, CO
and VOC) and greenhouse gases (e.g., CO,, CHs and N,O) from the main engines, auxiliary
engines and boilers were calculated, detailed information of SEIM is described in our previous
study (Wang et al., 2021b). Here, emissions beyond 200 nautical miles from the Chinese
mainland’s territorial sea baseline were excluded from the domain by applying GIS-based
spatial processing to the global shipping emission inventory, and only the annual shipping
emissions from 2016 to 2020 within 200 nautical miles were used in the simulation.

In this study, vessels were classified as ocean-going vessels (OGVs), coastal vessels (CVs)
and river vessels (RVs) for emission estimation according the following rules: (a) OGVs were
identified by both valid International Maritime Organization (IMO) numbers and the Maritime
Mobile Service Identity (MMSI) numbers, since they are mostly engaged in international trade
following the management of the IMO; (b) RVs were identified by frequency distribution
method based on the navigation trajectories for each vessel. Vessels with more than 50 % of the
AIS signals throughout the entire year occurring on inland rivers (14—43° N, 104-130°E) were
considered as RVs; and (c) vessels that are not identified as OGVs or RVs are regarded as CVs.
Figure 1 shows the interannual variation of shipping NO, and VOC emissions from 2016 to
2020. Overall, the growing trade demands and total cargo throughput of Chinese ports
contributed to increased shipping activities, which in turn resulted in a steady rise in shipping
NOx and VOC emissions, especially for OGVs. Additionally, following the implementation of
the global sulfur cap (IMO, 2018), the shift to low-sulfur fuels, which are typically richer in
short-chain hydrocarbons (Wu et al., 2020), has contributed to a rise in shipping VOC emissions.
It is worth noting that changes in vessel operating conditions, such as idling time and engine
load, also influenced emissions. Although the COVID-19 pandemic had a temporary effect on
maritime activity, its impact on annual shipping emissions was relatively minor due to the rapid
rebound in trade during the second half of the year (Yi et al., 2024).
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Figure 1. The interannual variation of shipping (a) NO, and (b) VOC emissions from 2016 to
2020.

2.2 Air quality model

The Weather Research and Forecasting (WRF, version 3.8.1, using meteorological fields
from 2018, as detailed later)~Community Multiscale Air Quality (CMAQ, version 5.4) model
was applied to simulate the air quality in China from 2016 to 2020. Considering the relatively
stable monthly anthropogenic emissions, this study simulated the O3 concentrations during
January, April, July, and November to represent winter, spring, summer, and fall, respectively,
for the calculation of annual and seasonal mean values. As shown in Figure S2, the modeling
domain covered all of China and some parts of East Asia with a horizontal resolution of
36 km x 36 km. Here, we have defined four key regions: BRA, YRD, PRD and inland river
areas (Moirangthem, 2016), in which we focus on shipping-related O3 pollution.

Here, we primarily focused on examining the impact of anthropogenic emission changes
on shipping-related Oz from a historical perspective. To eliminate the impact of interannual
meteorological variability, we used meteorological field of 2018 (Zhao et al., 2022), which
simulated by WRF and identified as a typical meteorological year due to its relatively stable
climate conditions, to drive the CMAQ simulations for the period 2016-2020. The first guess
field and boundary conditions for WRF were generated from the 6 h NCEP FNL Operational
Model Global Tropospheric Analyses dataset. The four-dimensional data assimilation (FDDA)
was enabled using the NCEP ADP global surface and upper air observational weather data
(http://rda.ucar.edu, last access: 25 March 2023). WRF and CMAQ used 32 vertical layers up
to 100 hPa, and the lowest layer had a thickness of approximately 37 m. The major physical
options in WRF included a Morrison two-moment microphysics scheme (Morrison et al., 2009),
a Kain—Fritsch cumulus cloud parameterization (Kain, 2004), the Rapid Radiative Transfer
Model (RRTM) longwave and shortwave radiation scheme (Iacono et al., 2008), the Pleim—Xiu
Land Surface Model (Xiu and Pleim, 2001), and the Asymmetric Convective Model version
3.0 for the PBL parameterization (Pleim, 2007). The distribution of meteorological stations for
validation and WRF performance is shown in Figure S3 and Table S1, respectively.

Atmospheric gas-phase chemistry in the CMAQ was simulated with the SAPRCO07tic
chemical mechanism, and aerosols were predicted using the AERO7. The chemical boundary
conditions of CMAQ inputs, corresponding to each simulation period, were collected from the
Community Atmosphere Model with Chemistry (CAM-chem) simulation output of global
tropospheric and stratospheric compositions (Buchholz et al., 2019). Each run included a 3-day
spin-up period. In this study, the Integrated Source Apportionment Method (ISAM) was applied
to determine the source contribution to the ambient Os concentrations. Here, ISAM-OP3 was
applied to attribute all secondary products to sources emitting NOy or reactive VOC species and
radicals when present in the parent reactants, and otherwise assign them based on stoichiometric
reaction rates (Shu et al., 2023). We divided the emissions into five groups to trace them
separately in the ISAM, including the land-based anthropogenic emission (the mobiles, industry,
power, domestic, and agriculture) from the MEIC and the open burning emissions from Cai’s
study (Cai et al., 2017), the RVs’ emission, the CVs’ emission, the OGVs’ emission, and the

other emission (the nature sources emission from the MEGANv3 and the anthropogenic
5
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emission from other countries within the modeling domain from the MIX (Li et al., 2017),
details of emissions are shown in Table S2.

We evaluated the simulated MDAS Oj; concentrations for the of 2018 against 1455
available ground-based observations (Figure S3) for model validation. As shown in Table S3,
the simulated MDAS Os agreed well with observations, with the overall model performance
within the performance criteria suggested by Boylan and Russell (Boylan and Russell, 2006)
(mean fractional bias (MFB)<+60 % and mean fractional error (MFE) <+75 %), while the
model overestimated Os a little, mainly due to uncertainties in emission inventory and
unavoidable deficiencies during meteorological and air quality simulation. Meteorological
performance for simulated periods was described in our previous study (Zhao et al., 2022).

2.3 Explainable machine learning model

Although CMAQ-ISAM can generate large amounts of simulation data to investigate the
impacts of shipping emissions, the number of scenarios remains limited due to computational
constraints. As a result, current analyses struggle to elucidate the mechanisms by which
shipping emissions contribute to O3 formation from these discrete scenarios. In particular,
capturing nonlinear interactions between emission sources, meteorological conditions, and
chemical processes is challenging when only a limited number of emission perturbations are
available. Recently, the advancement of machine learning techniques, especially explainable
models, has provided a promising complementary approach (Liu et al., 2025; Yao et al., 2024a,
b). These models can learn from existing models to approximate the source-receptor
relationships embedded in the simulation results. By identifying key emission drivers,
quantifying their nonlinear contributions to Os, and revealing latent patterns across

spatiotemporal scales.

Here, based on the simulated data from 2016 to 2020 using WRF-CMAQ-ISAM, the RF
model was used to simulated the monthly average O3 concentration. In the RF model, the input
predictor variables included relative humidity, temperature, wind speed, wind direction, solar
radiation, land anthropogenic NO, emissions, land anthropogenic VOC emissions, shipping
NOx emission and shipping VOC emission. Notably, the emissions selected were the sum of
emissions from each grid and its eight neighboring grids. We trained four RF models
specifically for the BRA, YRD, PRD, and IRA regions, respectively. The simulation data from
2016 to 2019 were used as the training samples, while the simulation data from 2020, under the
scenario of the most significant changes in shipping emissions, used as the test samples to
validate the generalization capability of the RF models. By comparing the root mean squared
error (RMSE) for testing datasets across models with candidate parameter combinations, we
set mtry and NumTrees as 6 and 200 in RF, respectively. Additionally, the 10-fold cross-
validation repeated 10 times was considered to evaluate the prediction performance of our
models. The total dataset was randomly divided into 10 subsets, where 9 subsets was used to
train the model and another was applied for validation. As shown in Figure 2. averages of
RMSE and correlation coefficient (R2) in the CV of the RF models were 2.12~2.47 ppb, and
0.90~0.98, respectively, indicating an acceptable performance.
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Figure 2. Performances of RF models for (a) BRA, (b) YRD, (c) PRD and (d) IRA. Each point
represents the monthly average Oz concentration at each CMAQ grid cell.

In order to identify the sensitivity and response relationship between prediction variables
and results in the RF models, the SHapley Additive exPlanations (SHAP) technique, a game-
theoretic framework introduced by Lundberg et al. (Lundberg et al., 2020; Lundberg and Lee,
2017), was employed to interpret the pattern learned from the 2016-2019 simulation data by
the RF model using the Python scikit-learn library. The SHAP approach enables the
quantification of both global and local influences of input variables on the model’s predictions,
thereby improving the interpretability of factors contributing to air pollution. Additionally, the
study examined feature interactions, which can affect the model's predictive accuracy, to gain
a more comprehensive understanding of the intricate relationships among the variables.

2.4 Limitations

In this study, the spatial resolution of 36 km x 36 km may not fully capture the fine-scale spatial
heterogeneity of O3 concentrations, particularly in coastal urban areas where emissions and
photochemical reactions exhibit strong spatial variability. This resolution is relatively coarse for
accurately representing Oz exceedances and local photochemical processes, which often occur at
much finer spatial scales. Consequently, localized O3 peaks and gradients may be underestimated or
smoothed in the model outputs. Despite this limitation, the selected resolution represents a practical

compromise that enables multi-year simulations across the national domain.



©O© oo D O~ W N

[ T =SS Y
D w N R O

N DN DNDDNDDN PR PP
g b WO N FP O O© 0N O O

W W W w NN DNDN
W NP O O oo NO

w
~

35

36
37
38
39
40
41

Only four representative months were simulated each year to reflect annual and seasonal
patterns. While this captures broad seasonal variability, it may overlook intra-seasonal fluctuations
and short-term anomalies. Using these months to estimate annual and seasonal means introduces
uncertainty, especially for sources with stronger monthly variation. Although monthly changes in
anthropogenic and shipping emissions are generally modest (except in 2020), future work could

benefit from higher temporal resolution to improve accuracy.

Anthropogenic emissions from other countries within the modeling domain were held fixed at
2010 levels, and open burning emissions were fixed at 2015 levels throughout the simulation period
(2016-2020). Although this assumption simplifies the modeling framework and is unlikely to
significantly alter the relative changes in shipping-related O3 assessed in this work, it may still
introduce some degree of uncertainty, particularly in regions where long-range transport or fire-
related emissions could have contributed more dynamically during specific years. Future studies
could benefit from incorporating temporally varying background emissions to further reduce
potential uncertainties and improve the representation of external influences.

Explainable machine learning model relies on the structure and quality of the input dataset and
cannot account for unmeasured or omitted variables, such as hemispheric background O;
concentrations. As a result, the derived feature importance reflects statistical associations rather than
causal relationships. It should be noted that if one seeks to determine whether a given variable
promotes or suppresses O3z pollution using machine learning methods, additional field observations,
experimental data, and corresponding simulation results may be required as supporting evidence.
Considering the interactions among variables, even if individual contributions are small, the SHAP
estimates for each explanatory variable are unlikely to perfectly reflect their actual contributions in
the underlying physical processes. Furthermore, in the presence of strong collinearity or complex
nonlinear interactions, SHAP values may not fully disentangle overlapping influences among
features.

In this study, monthly and annual mean O3 concentrations were derived from hourly model
outputs, rather than the widely used MDAS8 Os;. While this approach is consistent with the study’s
focus on long-term trends and average responses, it may introduce bias due to the well-known
overestimation of nighttime ozone in chemical transport models. A sensitivity test comparing
shipping-related O3z contributions based on hourly averages and MDAS revealed that over oceanic
areas, the difference may reach 2-5 ppb, while over land, it remains within 2 ppb. Given that the
relative contribution of shipping emissions to total O3 is generally low, the impact of this bias is

expected to be limited.

3 Results and discussions

3.1 Annual O3 impact from shipping emissions

Figure 3a shows the five-year average of shipping-related Os calculated based on hourly values,
which is defined as the sum of O3 concentration caused by emissions of OGVs, CVs, and RV traced
by CMAQ-ISAM. Overall, the shipping emissions increases O3 concentrations by 3.5 ppb
nationwide (Table S4), showing a decrease trend from the southeast coast toward inland areas. This
result is greater than the findings in other countries such as 1.97 ppb in Europe, and 2.08 ppb in the
United States under ambient temperature and pressure (Sun et al., 2024). Due to the high coastal

8
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shipping emissions, the shipping-related O3 could exceed 15.0 ppb in southeast coastal regions,
especially in YRD and PRD, where maximum values reach 25.4 ppb and 26.3 ppb, respectively. For
the regions with low shipping emissions, the shipping-related Os is relatively low, not exceeding 5
ppb. For example, in IRA and BRA, the shipping-related O3 is 3.9 ppb and 4.5 ppb respectively, but
is slightly higher than the national average. Meteorological factors are just as important as
anthropogenic emission influences in Os production (Liu et al., 2023; Zhang et al., 2024). For
example, the PRD region is characterized by a persistently warm and humid climate, which provides
favorable conditions for ozone formation. In contrast, although the BRA is also a coastal region, it
experiences lower temperatures and weaker solar radiation (Figure S4), which reduces the formation
of hydroxyl radicals, weaking the atmospheric photochemical oxidizing capacity and ultimately

limiting the O3 production.

Figure 3b shows the five-year average of the relative contribution of shipping emissions to Os.
Nationwide, the shipping emissions accounts for a 8.6% increase in Os, showing a similar
decreasing trend of from the southeast coast to inland regions. This result is higher than 3.7%
reported for the Mediterranean region in 2015 (Fink et al., 2023), but lower than the 12-21%
reported in another European study for 2010 (Lupascu and Butler, 2019). Notably, some coastal
cities exhibit particularly high values. For example, in PRD region, such as in Shenzhen, Guangdong
Province, the relative shipping-related Oz exceeds 30.4%, due to the high intensity of shipping
emissions combined with relatively low emissions from land-based anthropogenic sources such as
industry and power generation. Similarly, the IRA is relatively low at 10.4%, mainly because of the

higher background O3 concentrations from land-based anthropogenic sources.

(a)

40°N 4

30°N7 - §

20°N 4

10°N 4

T v T T T v T T
90°E 100°E 110°E 120°E 90°E 100°E 110°E 120°E

Figure 3. Contributions of shipping emissions to the five-year average O3 pollution, including
(a) absolute contributions and (b) relative contributions. Maps created with MeteolnfoMap
(http://www.meteothink.org).

Figure 4 illustrates the interannual trend in shipping-related O3 in key regions from 2016 to
2020. Nationwide, the shipping-related O3 shows a slight upward trend, with an average annual
growth rate of 1.7%, primarily observed in coastal regions. This trend aligns with the changes in
shipping NO, and VOC emissions, especially in 2020 when a 0.2-0.3 ppb rise in shipping-related
O; was observed, partly attributable to the notable increase in VOC emissions following the
implementation of the global sulfur cap. However, this increase in O3 concentrations is substantially

9
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lower than the growth in precursor emissions, highlighting the complex and nonlinear response of
O; formation to changes in shipping emissions. This is because the formation of O3 depends on
photochemical reactions involving NOx and VOC under solar radiation, and is influenced not only
by the level of shipping emissions but also by land-based anthropogenic emissions, meteorological
conditions, and long-range transport (Ye et al., 2023). Therefore, changes in shipping-related O3 do
not scale linearly with the changes in shipping NO, and VOC emissions. The Chinese government’s
two phases of clean air actions (Phase I, 2013—-2017; Phase II, 2018-2020) resulted in increasing
trend of O3 nationwide (Liu et al., 2023), and the relative contribution of shipping emissions to O3
also rose slightly during the same period. It is worth noting that, despite continuous increases in
shipping NO, and VOC emissions, their relative contributions to O3 decreased in 2018 and 2020.
This pattern may result from simultaneous land-based emission reductions, which can affect

atmospheric oxidizing capacity (Lv et al., 2020).
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Figure 4. The interannual trend in shipping-related Os, including (a) absolute contributions and
(b) relative contributions, in key regions from 2016 to 2020.

3.2 Contribution of different types of vessels

We further investigated the relationship between O3 pollution and shipping emissions from
sub-ship sectors. Figure 5 and Table S4 shows the five-year average contribution of emissions from
different ship types to the shipping-related O3 and the total O3, respectively. Nationwide, OGVs,
CVs, and RVs contributed 2.6%, 2.6%, and 3.3% to the total Os, respectively. In coastal regions,
OGVs contribute more than 50% to the shipping-related Os, and 9.7% to the total O3. CVs are the
second-largest contributor to O3z pollution with an average contribution of 20-30%, and contribute
up to 40% in the southern coastal regions near Zhejiang and Fujian Provinces. Notably, RVs can
still contribute over 30% to shipping-related O3 pollution in some coastal regions, particularly in
the YRD and PRD. This is primarily due to the presence of major inland waterways such as the
lower Yangtze River and the Pearl River, respectively, as well as the influence of regional pollutant
transport that enhances the impact of RVs’ emissions in these areas. In inland regions, RVs remain
the main source of shipping-related Os, with contributions in the middle reaches of the Yangtze

River reaching 50%.

10
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Figure 5. Contributions of emissions from (a) OGVs, (b) CVs, and (c) RVs to the five-year
average  shipping-related Os; pollution. Maps created with MeteolnfoMap
(http://www.meteothink.org).

The interannual variation in the contribution of the different types of ship to shipping-related
O3 between 2016 and 2020 for different regions is illustrated in Figure 6. Nationwide, the
contribution of OGVs and RVs increased by 2.7% and 0.6%, respectively, while the contribution of
CVs decreased by 3.3%. This pattern was observed in all coastal regions and IRA. The interannual
variation in the contribution of the different types of ship to shipping-related Oz follows a similar
pattern to that of shipping-related NO, and VOC (Figure 1), particularly NO, emissions, which
shows an upward trend for OGVs and RV's but a downward trend for CVs. As a result, the difference
in the contribution of different types of ships to air quality is gradually narrowing. Notably, although
RVs emissions significantly less than those of OGVs and CVs, its contribution to O3 is comparable
to that of other ship types, even exceeds that of CVs in some coastal regions. In addition, although
China has required certain categories of ships to install AIS equipment since 2010, a large part of
small RVs in China have not been equipped with AIS (Zhang et al., 2017), which is not considered
in this study. This result suggests the importance of paying greater attention to RVs in future
emission control strategies.
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Figure 6. The interannual trend in Contributions of emissions from OGVs, CVs, and RVs to
shipping-related Os in key regions from 2016 to 2020.

3.3 Seasonal O; impact from shipping emissions

The five-years-average seasonal variations in the contribution of shipping emissions to O3
concentrations across different regions are shown in Figure 7 and Tabel 1, with January, April, July,
and November representing winter, spring, summer, and fall, respectively. For cold seasons,
including winter and fall, due to weaker solar radiation and lower temperatures that limit O3
formation (Figure S4), the shipping-related O3 remains relatively lower than warm seasons (spring
and summer), with national average and relative contribution of 1.53 ppb (5.6%) and2.41 ppb
(7.9%), respectively (Figure S5). However, in the south of PRD, especially Guangdong and Hainan
Provinces (Figure 7a, 7d, and Table 1), the average and maximum of seasonal shipping-related O3
exceeds 5 ppb and 21 ppb, respectively, Notably, fall pollution even severer than that in summer.
This is mainly because the PRD remains warm and humid in fall, and prevailing monsoon winds
are more likely to transport ship-borne pollutants from the sea to inland areas (Figure S4, S6, and
S7). Another distinct pattern is observed in BRA, where shipping-related O3 formation tends to be
more localized during the cold seasons, as indicated by a larger difference between the median and
average values (Table 1). During this period, mainland China is under the influence of the
Mongolian High Pressure System, and continental winds generally suppress the inland transport of
ship-related Os (Cheng et al., 2023; Zhao et al., 2023). Therefore, significant shipping-related O
pollution only appears in major port cities with intensive maritime activity.

In spring, shipping-related O3 reached its peak in YRD and PRD , with the maximum value
exceeding 30 ppb (Figure 7b and Table 1), consistent with the results of previous studies (Cheng
etal., 2023; Schwarzkopf et al., 2022). Although spring is generally less favorable for O3 formation
compared to summer in terms of temperature and humidity, strong onshore winds may play an
important role in reduce the influence of shipping emissions (Cheng et al., 2023; Ma et al., 2022)
(Figure S4, S6, and S7). In addition, more complex physicochemical interactions may drive
springtime O3 (Cao et al., 2024; Zhang et al., 2024), which needs further investigation. In summer,
shipping emissions significantly increased Oz concentrations nationwide by 4.77 ppb and
responsible for 13.7% of national O3 pollution (Figure 7c and Figure S5). Notably, even in IRA,
where shipping emissions are much lower than in coastal regions, shipping-related O3 were
comparable to those along the coast. This is primarily because central China lies in a perennial
monsoon region, where summer monsoons can carry shipping-related air pollutants inland from
coastal cities (Zheng et al., 2024).

These findings indicate that seasonal variations for shipping-related Os are driven by
meteorological factors, particularly changes in prevailing wind direction, which are crucial for the
diffusion and long-range transport of shipping emissions. Researchers suggest that the mixing
emissions between shipping and local anthropogenic emissions can amplify complicated Os
chemical formation in coastal cities (Wang et al., 2019b). Therefore, seasonal mitigation strategies
and a better understanding of regional monsoon dynamics and their interaction with local
anthropogenic emissions are crucial for effectively reducing shipping-related O3 pollution.
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MeteolnfoMap (http://www.meteothink.org).

Table 1 Seasonal ranges of shipping-related O3 across BRA, YRD, PRD, and IRA. (unit: ppb)

Region Metric Winter Spring Summer Fall
Minimum 0.01 0.83 1.25 0.06
25% Quartile 0.05 3.09 7.13 0.39
Median 0.11 4.02 9.32 0.78
BRA
75% Quartile 0.91 6.55 11.90 1.63
Maximum 6.59 23.22 32.40 14.39
Mean 0.71 5.36 10.13 1.74
Minimum 0.20 1.92 1.45 0.55
25% Quartile 1.01 5.02 6.11 1.91
YRD
Median 1.79 6.64 7.29 3.23
75% Quartile 2.93 8.35 9.03 5.14
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Maximum 16.32 31.47 25.86 24.59

Mean 2.47 7.39 7.92 4.41
Minimum 1.11 3.91 0.11 1.91
25% Quartile 2.79 7.94 3.19 4.85
Median 5.19 10.07 5.65 7.97

PRD
75% Quartile 7.68 15.17 7.77 11.25
Maximum 21.98 33.46 26.19 28.78
Mean 5.96 11.91 5.77 8.79
Minimum 0.17 0.91 2.32 0.10
25% Quartile 1.19 2.88 5.65 1.44
Median 1.61 4.85 9.07 2.85

IRA
75% Quartile 2.29 5.73 11.31 4.16
Maximum 5.53 11.91 26.19 7.52
Mean 1.76 4.58 9.03 2.87

3.4 Effects of shipping emission on O; formation

Although the features in the RF model include both meteorological factors and emissions,
this section focuses on impacts of anthropogenic emissions, especially shipping emissions, on
Os pollution. Figure 8 presents the SHAP summary plots for selected features in the RF model
for BRA, YRD, PRD, and IRA, showing the magnitude, prevalence, and direction of each
feature’s impact on the model output (O3 concentration). In the summary plot, the further a
feature’s SHAP value is from zero, the greater its influence; positive SHAP values indicate a
positive contribution, while negative values indicate a negative effect. For example, in Figure
8a, land-based NO, and VOC emissions both have a significant impact on O3 formation in the
BRA, with contributions of 16.8% and 11.0%, respectively, suggesting that the atmospheric
chemistry in this area is significantly affected by land-based anthropogenic emissions.
Moreover, lower NO, and VOC emissions leads to higher SHAP values, indicating a negative
correlation between land-based anthropogenic emissions and Os pollution. In the coastal areas
of BRA, shipping emissions are much smaller than land-based emissions, therefore, contribute
only approximately 2.9% to Oz formation, and exhibit a similar negative correlation as land-
based sources.

As the share of shipping emissions increases within total anthropogenic emissions in the
coastal areas of YRD and PRD, the difference between the contributions of shipping and land-
based emissions to Os pollution regions decreases. Especially in the PRD, shipping NOx
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contributes up to 9.7%, exceeding the land-based VOC contribution of 5.3%. In the IRA,
emissions from inland vessels are much lower than those from ocean-going and coastal ships,
thus, shipping NO and VOC contributions only 1.5% and 0.8% to O3 pollution, respectively.

For meteorological factors, the contributions of solar radiation (25.2%), temperature
(20.0%), wind speed (11.5%), and wind direction (4.9%), relative humidity (4.8%) to Os
formation exhibit clear regional heterogeneity. Overall, meteorological influences are greater
than those of shipping emissions. This may be attributed to the highly complex physical and
chemical processes involved, including cloud—radiation interactions, air mass transport, and
water-related reactions.
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Figure 8. Feature importance results of the random forest regression model for (a) BRA, (b)
YRD, (c) PRD, and (d) IRA. The x-axis shows SHAP values representing the impact of each
feature on Os predictions (positive: increasing Os; negative: decreasing O3). Each dot is a grid-
month sample, with color indicating the feature value. Instances with identical x-values are
stacked, and the stack height signifies the density.

The dependence plot (Figure. 9) further quantifies how changes in shipping emissions
affect O3 concentrations. Notably, due to the uneven distribution of shipping emissions, the x-
axis in Figure. 9 is set to non-uniform intervals to better illustrate their impact. Overall, as
previously mentioned, changes in shipping NO, and VOC emissions have a relatively minor
effect on regional Os levels—approximately between —2.5 ppb to 8 ppb—although there is clear
regional heterogeneity. In the BRA region, shipping emissions are negatively correlated with
03, with increases in shipping NOx and VOC emissions leading to a reduction of about 1-2 ppb
in Os. Differently, in the YRD and PRD, increases in shipping NO, emissions slightly promote
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Os formation-especially in the PRD region, where O3 may increase by up to 3 ppb, which is
opposite to the impact of land-based NO, emissions (Figure. S7). This difference may be
because, in the YRD and PRD, land-based NO, emissions do not dominate the overall
anthropogenic emissions as they do in the BRA, allowing shipping NO, to also influence
atmospheric chemistry. Furthermore, changes in shipping VOC emissions have almost no
impact, consistent with the effect of changes in land-based VOC emissions (Figure. S7). Only
when shipping VOC emissions increase dramatically in the YRD region is Oz formation
suppressed—though such cases are rare, as reflected by the partially negative SHAP values for
shipping VOC emissions in Figure. 8b. In the IRA, similar to the BRA region, shipping
emissions are very small compared to land-based sources, so that changes in shipping NO; and
VOC emissions have a similar negative effect on O3 as those from land-based sources.
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Figure 9. SHAP dependence plot for (a) BRA, (b) YRD, (c) PRD, and (d) IRA.

4 Conclusion

In this study, we conducted multi-year CMAQ-ISAM simulations to investigate the how
shipping emissions impacted O3 across China, with a focus on three coastal regions and a inland
region. From 2016 to 2020, shipping emissions increased national average O3 concentrations
by 3.5 ppb, accounting for 8.6% of total Os, with a spatial gradient decreasing from coastal to
inland regions. Despite the increasing intensity of shipping activity and the implementation of
the global sulfur cap, shipping NO. and VOCs emissions rose significantly during this period.
However, the national average shipping-related O; increased by only 0.23 ppb, while the
relative contribution of shipping emissions to O3 pollution rose by approximately 0.5%. Notably,
this relative contribution did not increase continuously; instead, a decline was observed in 2018
and 2020. This non-linear response, under conditions of simultaneous changes in multiple
pollutants from different sectors, highlights the complexity and need for further investigation
of attribution of Os pollution. For the four focus regions, the contribution of shipping to Os;
levels exceeded the national average, with more pronounced interannual increases.

We further disaggregate ship types to OGVs, CVs, and RVs. The result revealed that OGVs
16
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were the dominant contributors to shipping-related Os in coastal areas, followed by CVs,
whereas RVs were the main source in inland river areas. Although OGVs, CVs, and RVs differ
significantly in their emission magnitudes, the difference in their contributions to O3 pollution
is gradually narrowing. This trend suggests that the influence of RVs on regional O3 levels
should no longer be overlooked and that emission control efforts for RVs deserve renewed
attention. However, from the perspective of sulfur emission control, RVs in China had already
reached the final stage of sulfur regulation by 2018 under the implementation of domestic
emission control policies. In contrast, NO. control for inland vessels remains largely
unaddressed. Globally, there is limited precedent or experience in regulating NO, emissions
from inland waterways, leaving China without a clear reference framework for RVs NO,
mitigation. Future control of shipping NO; emissions needs to take into account both inland
waterways and coastal areas.

The impacts of shipping emissions on O3 also exhibited significant seasonal and regional
characteristics. While shipping-related Os levels were generally lower in colder seasons, fall
pollution in southern coastal regions exceeded that of summer due to favorable land—sea
monsoon transport. Peak shipping-related Os levels occurred in spring over YRD and PRD, and
in summer over inland areas. These patterns highlight the importance of implementing seasonal
and region-specific control strategies to mitigate shipping-related Oz pollution effectively. In
particular, quality-oriented management policies such as seasonal routing adjustments, port
operation scheduling, or dynamic emission monitoring, may play a more immediate role than
emission control policies, which are typically less adaptable to seasonal variability and require
long-term infrastructure or regulatory changes. Therefore, combining flexible operational
measures with long-term emission reduction plans could enhance the overall effectiveness of
Os mitigation.

Interpretable machine learning analysis further revealed significant spatial differences in
the contribution of shipping emissions to Os. In BRA and IRA, Os formation was primarily
driven by land-based NO, and VOC emissions, with shipping emissions playing a minor role
and even showing a suppressive effect on O3 formation. In contrast, in coastal regions such as
YRD and PRD, the increasing share of shipping emissions in the total anthropogenic emissions
enhanced their contribution to O3, with shipping NO;x emissions showing a slight promoting
effect on O; formation. This regional difference suggests that solely controlling shipping
emissions may lead to unexpected atmospheric chemical responses and, under certain
conditions, could even cause an increase in Oz concentrations. Therefore, effective Oz pollution
control requires a coordinated reduction of both land-based and shipping emissions, based on
regional emission structures and atmospheric oxidation characteristics.
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