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Abstract 12 

With the Two Phases of Clean Air Actions in China, the shipping sector has emerged as a 13 

significant source with substantial emission reduction potential compared to land-based 14 

anthropogenic sectors. Therefore, understanding the contribution of shipping emissions to 15 

ozone (O3) pollution is therefore essential for advancing China’s air pollution control efforts. 16 

In this study, a coupled framework including a chemical transport model with machine learning 17 

techniques was developed to systematically investigate the interannual and seasonal impacts of 18 

shipping emissions on O₃ concentrations across China during the period from 2016 to 2020, 19 

and explore mechanisms by whichof shipping emissions influence O3 formation. Results 20 

indicate that shipping emissions increases O3 concentrations by a five-year average of 3.5 ppb 21 

nationwide, exhibiting significant spatial and temporal heterogeneity across different regions 22 

and seasons. Although significant differences exist between the emissions of ocean vessels and 23 

inland vessels, their contributions to O3 formation are becoming increasingly comparable. 24 

Solely controlling shipping emissions may has limited impact on O3 mitigationnot necessarily 25 

result in effective O3 mitigation. Instead, coordinated reductions targeting both shipping and 26 

land-based anthropogenic sources, along with region-specific and targeted emission control 27 

strategies, are critical for achieving substantial improvements in O3 pollution mitigation. 28 

  29 
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1 Introduction 1 

Over the past decades, China’s rapid industrialization and urbanization have boost the 2 

economy but also exacerbated air pollution (Zhang et al., 2019). To address air pollution and 3 

the health burden from anthropogenic emissions, China introduced the Air Pollution Prevention 4 

and Control Action Plan in 2013 (Zheng et al., 2018). Although China has implemented 5 

synergistic control of VOC and NOx emissions, the warm-season mean maximum daily 8 h 6 

average ozone (MDA8 O3) increased by 2.6 μg m-3 yr-1 in China between 2013 and 7 

2020,Although a serious of stringent measures have greatly improved PM2.5 pollution in China, 8 

ozone (O3) pollution has become increasingly prominent  especially in urban areas where 9 

declining PM2.5 levels offset gains in O3 mitigation (Liu et al., 2023). Numerous 10 

epidemiological studies have shown that ground-level O3 pollution leads to a range of adverse 11 

health effects, including increased incidence and mortality of respiratory diseases (Ito et al., 12 

2005; Jerrett et al., 2009; Tao et al., 2012). Therefore, the health benefits achieved by reducing 13 

PM2.5 pollution are partially offset by the increase in O3 pollution (Wang et al., 2021a; Xie et 14 

al., 2019), indicating a need to explore strategies to mitigate O3 pollution in China. 15 

With During the promotion of China’s emission control actions, emissions from the 16 

industry and power sectors declined substantially, with NOx reductions exceeding 50%, while 17 

the transportation sector still retains significant potential for further cutsthe potential for further 18 

reductions from land anthropogenic emissions has diminished, while the shipping sector has 19 

shown considerable potential (Liu et al., 2023). Ships emit both gaseous and particulate 20 

pollutants, including sulfur dioxide (SO2), nitrogen oxides (NOx), particulate matter, and 21 

volatile organic compounds (VOC). As the largest maritime trading nation, China has a higher 22 

share of shipping emissions among anthropogenic sources compared to international levels (Fu 23 

et al., 2017; Yi et al., 2025). CurrentlyFrom 2016 to 2019, shipping emission controls in China 24 

focused on reducing SO2 and PM emissions through the adoption of low-sulfur fuels, while 25 

NOx and VOC emissions from shipping continued to rise by approximately 13% due to 26 

increasing trade volumes, shipping emission controls in China focus on reducing SO2 and PM 27 

emissions through the adoption of low-sulfur fuels (Wang et al., 2021). With increasing trade 28 

volumes, however, shipping NOx and VOC emissions continue to rise  (Wang et al., 2021b)., 29 

Additionally,and the use of low-sulfur fuel may further increase VOC emissions (Wu et al., 30 

2020). Therefore, clarifying the historical and current contribution of shipping emissions to the 31 

formation of O3 is critically important for further pollution control in China. 32 

Previous studies have quantified the impacts of shipping emissions on O3 pollution in 33 

China. In the southern coastal region, shipping emissions contributed approximately 0.9 μg/m3 34 

to annual O3 pollution (Cheng et al., 2023), with a peak winter contribution of up to 10% (Feng 35 

et al., 2023). In the eastern coastal region during summer, the shipping-related O3 concentration 36 

ranged from -15 to 15 ppb (Fu et al., 2023; Wang et al., 2019a). In the Bohai Rim Area (BRA), 37 

shipping emissions showed a maximum annual negative contribution of 0.5 μg/m3  (Wan et al., 38 

2023), while summer O3 concentration in Shandong Province increased by up to 10 ppb due to 39 

shipping (Wang et al., 2022)., particularly in the Yangtze River Delta (YRD), Pearl River Delta 40 

(PRD), and Bohai Rim Area (BRA) (Wang et al., 2019; Fu et al., 2023; Zheng et al., 2024). 41 

However, these studies predominantly focused on coastal areas, such as Yangtze River Delta 42 
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(YRD), Pearl River Delta (PRD), and BRA, while the potential inland impacts are not well 1 

studied. However, recent Research hastudies haves indicated that the air quality effects of inland 2 

shipping should not be neglected (Huang et al., 2022; Luo et al., 2024). The formation of O3 3 

exhibits strong spatial heterogeneity and is influenced by multiple factors, such as 4 

meteorological conditions and the emission intensities from both shipping and land-based 5 

sources. Currently, there is a lack of comprehensive studies employing a unified methodology 6 

to assess the nationwide impact of shipping emissions on ozoneO3. Furthermore, previous 7 

studies were limited to restricted timeframesperiods, resulting in a deficiency in comprehensive 8 

assessments of multi-year scenarios that encompass coordinated variations in both land and 9 

shipping emissions. 10 

O3 is generated by photochemical reactions between NOx and VOC under solar radiation, 11 

thus, the impacts of shipping emissions on O3 concentrations are attributed by the nonlinear 12 

response of O3 to changes in NOₓ and VOC emissions (Wang et al., 2019a, 2017). Additionally, 13 

the titration of O3 by NO from shipping emissions, particularly within a few kilometers of ship 14 

tracks, can further complicate the simulation and interpretation of O3 concentrations at the local 15 

scale (Merico et al., 2016). However, previous studies commonly used the zero-out method to 16 

assess ship’s impacts by comparing scenario differences simulated by chemical transport 17 

models, which does not fully involve the nonlinear response of O3 to its precursors and would 18 

result in considerable uncertainty in the evaluations (Cheng et al., 2023; Feng et al., 2023; Fu 19 

et al., 2023; Wan et al., 2023; Wang et al., 2022, 2019a). Furthermore, although model-based 20 

assessments can generate large amounts of simulation data to investigate the impacts of 21 

shipping emissions, the number of scenarios that can be simulated by chemical transport models 22 

remains limited due to computational constraints. As a result, current analyses struggle to 23 

struggles the mechanism of how shipping emissions contribute to O3ozone formation from 24 

these discrete scenarios. Recently, the advancement of machine learning techniques, with strong 25 

capabilities in capturing nonlinear relationships, provides a valuable approach for uncovering 26 

underlying patterns in such datasets from these simulation big data (Luo et al., 2025). 27 

In this study, we conducted source-oriented chemical transport model with a spatial 28 

resolution of 36 km×36 km, to investigate the annual and seasonal impacts of shipping 29 

emissions on O3 concentrations in China, especially for key coastal and inland regions from 30 

2016 to 2020. We also allocate apportion culpabilities of the contribution of shipping emissions 31 

from ocean-going vessels (OGVs), coastal vessels (CVs), and river vessels (RVs) on to O3 32 

pollution to identify the influences of regionally differentiated shipping emission control 33 

policies. Furthermore, an explainable machine learning model was applied to explore 34 

investigate the potential source-receptor relationships betweenhow shipping emissions affect 35 

and the formation of O3 formation based on five-years simulated data. Our study provides a 36 

nationwide and long-term analysis of the impacts shipping emissions on China’s O3 pollution, 37 

and provide new insights for shipping control measures in the future. 38 

2 Methods 39 

2.1 Shipping emissions 40 

The Shipping Emission Inventory Model (SEIM v2.0) is a disaggregate dynamic method 41 
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(Wang et al., 2021b)(Luo et al., 2025)  driven by driven (a) the high-frequency ship 1 

Automatic Identification System (AIS) data, including signal time, coordinate location, 2 

navigational speed, and operating status, and (b) the integrated Ship Technical Specifications 3 

Database (STSD) (updated to 2020), which describes ship static properties, including vessel 4 

type, maximum designed speed, DWT and engine power. First, the originally collected raw 5 

AIS data and ship profile data from multiple sources are combined to form a ship activity 6 

database and STSD. Second, a route restoration module is applied for cross-land trajectory 7 

with a long distance in the AIS data, in which the 10 min linear interpolation will be applied 8 

on the shorted paths instead. Third, the instantaneous emission along with the movement of 9 

the ship’s trajectory will be calculated based on the ship’s static technical parameters, dynamic 10 

load changes, and extra parameters and factors. Finally, shipping emission inventory datasets 11 

will be established and used for visualization and analyses from multiple perspectives. In the 12 

SEIM, shipping emissions for both air pollutants (e.g., SO2, PM, NOx, CO and VOCHC) and 13 

greenhouse gases (e.g., CO2, CH4 and N2O) from the main engines, auxiliary engines and 14 

boilers were calculated, detailed information of SEIM is described in our previous study 15 

(Wang et al., 2021b). Here, emissions beyond 200 nautical miles from the Chinese mainland’s 16 

territorial sea baseline were excluded from the domain by applying GIS-based spatial 17 

processing to the global shipping emission inventory, and only the annual shipping emissions 18 

from 2016 to 2020 within 200 nautical miles were used in the simulationHere, we calculated 19 

annual shipping emissions from 2016 to 2020 within 200 Nm from the Chinese mainland’s 20 

territorial sea baseline. 21 

In this study, vessels were classified as ocean-going vessels (OGVs), coastal vessels (CVs) 22 

and river vessels (RVs) for emission estimation according the following rules: (a) OGVs were 23 

identified by both valid International Maritime Organization (IMO) numbers and the Maritime 24 

Mobile Service Identity (MMSI) numbers, since they are mostly engaged in international trade 25 

following the management of the IMO;. (b) RVs were identified by frequency distribution 26 

method based on the navigation trajectories for each vessel. Vessels with more than 50 % of the 27 

AIS signals throughout the entire year occurring on inland rivers (14–43∘ N, 104–130∘ E) were 28 

considered as RVs;. (c) Finallyand, (c) vessels that are not identified as OGVs or RVs are 29 

regarded as CVs. Figure 1 shows the interannual variation of shipping NOx and VOC emissions 30 

from 2016 to 2020. Overall, the increasing growing trade demands and total cargo throughput 31 

of Chinese ports led tocontributed to increased elevated levels of shipping activities, which in 32 

turn resulted in a steady rise and consequently a sustained rise in shipping NOx and VOC 33 

emissions, especially for OGVs. Additionally, following the implementation of the global sulfur 34 

cap (IMO, 2018), the shift to low-sulfur fuels, which are typically richer in short-chain 35 

hydrocarbons (Wu et al., 2020), has contributed to a rise in shipping VOC emissions. It is worth 36 

noting that changes in vessel operating conditions, such as idling time and engine load, also 37 

influenced emissions. Although the COVID-19 pandemic had a temporary effect on maritime 38 

activity, its impact on annual shipping emissions was relatively minor due to the rapid rebound 39 

in trade during the second half of the year (Yi et al., 2024). 40 
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 1 

Figure 1. The interannual variation of shipping (a) NOx and (b) VOC emissions from 2016 to 2 

2020. 3 

2.2 Air quality model 4 

The Weather Research and Forecasting (WRF, version 3.8.1, using meteorological fields 5 

from 2018, as detailed later)−Community Multiscale Air Quality (CMAQ, version 5.4) model 6 

was applied to simulate the air quality in China during January, April, July and November from 7 

2016 to 2020. Considering the relatively stable monthly anthropogenic emissions, this study 8 

simulated the O3 concentrations during January, April, July, and November to represent winter, 9 

spring, summer, and fall, respectively, for the calculation of annual and seasonal mean values., 10 

which represented winter, spring, summer and fall, respectively, with 3 days of spin-up time for 11 

each run. As shown in Figure S1S2, the modeling domain covered all of China and some parts 12 

of East Asia with a horizontal resolution of 36 km × 36 km. Here, we have defined four key 13 

regions: BRA, YRD, PRD and inland river areas (Moirangthem, 2016), in which we focus on 14 

shipping-related O3 pollution. 15 

Here, we primarily focused on examining the impact of anthropogenic emission changes 16 

on shipping-related O3 from a historical perspective. To eliminate the impact of interannual 17 

meteorological variability, we used meteorological field of 2018 (Zhao et al., 2022), which 18 

simulated by WRF and identified as a typical meteorological year due to its relatively stable 19 

climate conditions, to drive the CMAQ simulations for the period 2016-2020.Here the year of 20 

2018 was regarded as a typical meteorological year since the climate for this year was relatively 21 

stable, and we used the meteorological filed of 2018 simulated by WRF in our previous study 22 

(Zhao et al., 2022) to drive the CMAQ simulation from 2016 to 2020. The first guess field and 23 

boundary conditions for WRF were generated from the 6 h NCEP FNL Operational Model 24 

Global Tropospheric Analyses dataset. The four-dimensional data assimilation (FDDA) was 25 

enabled using the NCEP ADP global surface and upper air observational weather data 26 

(http://rda.ucar.edu, last access: 25 March 2023). WRF and CMAQ used 32 vertical layers up 27 

to 100 hPa, and the lowest layer had a thickness of approximately 37 m. The major physical 28 

options in WRF included a Morrison two-moment microphysics scheme (Morrison et al., 2009), 29 

a Kain–Fritsch cumulus cloud parameterization (Kain, 2004), the Rapid Radiative Transfer 30 

Model (RRTM) longwave and shortwave radiation scheme (Iacono et al., 2008), the Pleim–Xiu 31 
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Land Surface Model (Xiu and Pleim, 2001), and the Asymmetric Convective Model version 1 

3.0 for the PBL parameterization (Pleim, 2007). The distribution of meteorological stations for 2 

validation of and WRF performance is shown in Figure S3 and Table S1, respectively. 3 

Atmospheric gas-phase chemistry in the CMAQ was simulated with the SAPRC07tic 4 

chemical mechanism, and aerosols were predicted using the AERO7. The chemical boundary 5 

conditions of CMAQ inputs , corresponding to each simulation period, were collected from the 6 

Community Atmosphere Model with Chemistry (CAM-chem) simulation output of global 7 

tropospheric and stratospheric compositions (Buchholz et al., 2019). Each run included a 3-day 8 

spin-up period. In this study, the Integrated Source Apportionment Method (ISAM) was applied 9 

to determine the source contribution to the ambient O3 concentrations. Here, ISAM‑OP3 was 10 

applied to attribute all secondary products to sources emitting NOx or reactive VOC species and 11 

radicals when present in the parent reactants, and otherwise assign them based on stoichiometric 12 

reaction rates (Shu et al., 2023). We divided the emissions into five groups to trace them 13 

separately in the ISAM, including the land-based anthropogenic emission (the mobiles, industry, 14 

power, domestic, and agriculture) from the MEIC and the open burning emissions from Cai’s 15 

study et al (Cai et al., 2017), the RVs’ emission, the CVs’ emission, the OGVs’ emission, and 16 

the other emission (the nature sources emission from the MEGANv3 and the anthropogenic 17 

emission from other countries within the modeling domain from the MIX (Li et al., 2017), 18 

details of emissions are shown in Table S2.  19 

We evaluated the simulated MDA8 O3 concentrations for the of 2018 against 1455 20 

available ground-based observations  (Figure S3) for model validation.. Until the simulation 21 

time, a total of 1455 available observation sites in China were used for O3 validation. As shown 22 

in Table S3, the simulated MDA8 O3 agreed well with observations, with the overall model 23 

performance within the performance criteria suggested by Boylan and Russell (Boylan and 24 

Russell, 2006) (mean fractional bias (MFB) ≤±60 % and mean fractional error (MFE) ≤±75 %), 25 

while the model overestimated O3 a little, mainly due to uncertainties in emission inventory and 26 

unavoidable deficiencies during meteorological and air quality simulation. Meteorological 27 

performance for simulated periods was described in our previous study (Zhao et al., 2022). 28 

2.3 Explainable machine learning model 29 

Although CMAQ-ISAM can generate large amounts of simulation data to investigate the 30 

impacts of shipping emissions, the number of scenarios remains limited due to computational 31 

constraints. As a result, current analyses struggle to elucidate the mechanisms by which 32 

shipping emissions contribute to O3 formation from these discrete scenarios. In particular, 33 

capturing nonlinear interactions between emission sources, meteorological conditions, and 34 

chemical processes is challenging when only a limited number of emission perturbations are 35 

available. Recently, the advancement of machine learning techniques, especially explainable 36 

models, has provided a promising complementary approach (Liu et al., 2025; Yao et al., 2024a, 37 

b). These models can learn from existing models to approximate the source-receptor 38 

relationships embedded in the simulation results. By identifying key emission drivers, 39 

quantifying their nonlinear contributions to O3, and revealing latent patterns across 40 

spatiotemporal scales. 41 
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Here, based on the simulated data from 2016 to 2020 using WRF-CMAQ-ISAM, the RF 1 

model was used to simulated the monthly average O3 concentration. In the RF model, the input 2 

predictor variables included relative humidity, temperature, wind speed, wind direction, solar 3 

radiation, land anthropogenic NOx emissions, land anthropogenic VOC emissions, shipping 4 

NOx emission and shipping VOC emission. Notably, the emissions selected were the sum of 5 

emissions from each grid and its eight neighboring grids. To investigate the impact of shipping 6 

emissions on O3 formation in different regions, wWe trained four RF models specifically for 7 

the BRA, YRD, PRD, and IRA regions, respectively. The simulation data from 2016 to 2019 8 

were used as the training samples, while the simulation data from 2020, under the scenario of 9 

the most significant changes in shipping emissions, used as the test samples to validate the 10 

generalization capability of the RF models. By comparing the root mean squared error (RMSE) 11 

for testing datasets across models with candidate parameter combinations, we set mtry and 12 

NumTrees as 6 and 200 in RF, respectively. Additionally, the 10-fold cross-validation repeated 13 

10 times was considered to evaluate the prediction performance of our models. The total dataset 14 

was randomly divided into 10 subsets, where 9 subsets was used to train the model and another 15 

was applied for validation. As shown in Figure 2. averages of RMSE and correlation coefficient 16 

(R2) in the CV of the RF models were 2.12~2.47 ppb, and 0.90~0.98, respectively, indicating 17 

an acceptable performance. 18 

 19 
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Figure 2. Performances of RF models for (a) BRA, (b) YRD, (c) PRD and (d) IRA. Each point 1 

represents the monthly average O3 concentration at each CMAQ grid cell. 2 

In order to identify the sensitivity and response relationship between prediction variables 3 

and results in the RF models, the SHapley Additive exPlanations (SHAP) technique, a game-4 

theoretic framework introduced by Lundberg et al. (Lundberg et al., 2020; Lundberg and Lee, 5 

2017), was employed to interpret the pattern learned from the 2016-2019 simulation data by 6 

the RF models using the Python scikit-learn library. The SHAP approach enables the 7 

quantification of both global and local influences of input variables on the model’s predictions, 8 

thereby improving the interpretability of factors contributing to air pollution. Additionally, the 9 

study examined feature interactions, which can affect the model's predictive accuracy, to gain 10 

a more comprehensive understanding of the intricate relationships among the variables. 11 

2.4 Limitations 12 

In this study, the spatial resolution of 36 km × 36 km may not fully capture the fine-scale spatial 13 

heterogeneity of O3 concentrations, particularly in coastal urban areas where emissions and 14 

photochemical reactions exhibit strong spatial variability. This resolution is relatively coarse for 15 

accurately representing O3 exceedances and local photochemical processes, which often occur at 16 

much finer spatial scales. Consequently, localized O3 peaks and gradients may be underestimated or 17 

smoothed in the model outputs. Despite this limitation, the selected resolution represents a practical 18 

compromise that enables multi-year simulations across the national domain. 19 

Only four representative months were simulated each year to reflect annual and seasonal 20 

patterns. While this captures broad seasonal variability, it may overlook intra-seasonal fluctuations 21 

and short-term anomalies. Using these months to estimate annual and seasonal means introduces 22 

uncertainty, especially for sources with stronger monthly variation. Although monthly changes in 23 

anthropogenic and shipping emissions are generally modest (except in 2020), future work could 24 

benefit from higher temporal resolution to improve accuracy. 25 

Anthropogenic emissions from other countries within the modeling domain were held fixed at 26 

2010 levels, and open burning emissions were fixed at 2015 levels throughout the simulation period 27 

(2016–2020). Although this assumption simplifies the modeling framework and is unlikely to 28 

significantly alter the relative changes in shipping-related O3 assessed in this work, it may still 29 

introduce some degree of uncertainty, particularly in regions where long-range transport or fire-30 

related emissions could have contributed more dynamically during specific years. Future studies 31 

could benefit from incorporating temporally varying background emissions to further reduce 32 

potential uncertainties and improve the representation of external influences. 33 

Explainable machine learning model relies on the structure and quality of the input dataset and 34 

cannot account for unmeasured or omitted variables, such as hemispheric background O3 35 

concentrations. As a result, the derived feature importance reflects statistical associations rather than 36 

causal relationships. It should be noted that if one seeks to determine whether a given variable 37 

promotes or suppresses O3 pollution using machine learning methods, additional field observations, 38 

experimental data, and corresponding simulation results may be required as supporting evidence. 39 

Considering the interactions among variables, even if individual contributions are small, the SHAP 40 

estimates for each explanatory variable are unlikely to perfectly reflect their actual contributions in 41 
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the underlying physical processes. Furthermore, in the presence of strong collinearity or complex 1 

nonlinear interactions, SHAP values may not fully disentangle overlapping influences among 2 

features. 3 

In this study, monthly and annual mean O3 concentrations were derived from hourly model 4 

outputs, rather than the widely used MDA8 O3. While this approach is consistent with the study’s 5 

focus on long-term trends and average responses, it may introduce bias due to the well-known 6 

overestimation of nighttime ozone in chemical transport models. A sensitivity test comparing 7 

shipping-related O3 contributions based on hourly averages and MDA8 revealed that over oceanic 8 

areas, the difference may reach 2-5 ppb, while over land, it remains within 2 ppb. Given that the 9 

relative contribution of shipping emissions to total O3 is generally low, the impact of this bias is 10 

expected to be limited. 11 

3 Results and discussions 12 

3.1 Annual O3 impact from shipping emissions 13 

Figure 3a shows the five-year average of shipping-related O3 calculated based on hourly values, 14 

which is defined as the sum of O3 concentration caused by emissions of OGVs, CVs, and RVs traced 15 

by CMAQ-ISAM. Overall, the shipping emissions increases O3 concentrations by 3.5 ppb 16 

nationwide (Table S4), showing a decrease trend from the southeast coast toward inland areas. This 17 

result is greater than the findings in other countries such as 1.97 ppb in Europe, and 2.08 ppb in the 18 

United States under ambient temperature and pressure (Sun et al., 2024). Due to the high coastal 19 

shipping emissions, the shipping-related O3 could exceed 15.0 ppb in southeast coastal regions, 20 

especially in YRD and PRD, where maximum values reach 25.4 ppb and 26.3 ppb, respectively. For 21 

the regions with low shipping emissions, the shipping-related O3 is relatively low, not exceeding 5 22 

ppb. For example, in IRA and BRA, the shipping-related O3 is 3.9 ppb and 4.5 ppb respectively, but 23 

is slightly higher than the national average. Meteorological factors are just as important as 24 

anthropogenic emission influences in O₃ production (Liu et al., 2023; Zhang et al., 2024). For 25 

example, the PRD region is characterized by a persistently warm and humid climate, which provides 26 

favorable conditions for ozone formation. In contrast, although the BRA is also a coastal region, 27 

The BRA and IRA haveit experiences lower temperatures and weaker solar radiation compared to 28 

the YRD and PRD (Figure SXS4), which reduces the formation of hydroxyl radicals, weaking the 29 

atmospheric photochemical oxidizing capacity and ultimately limiting the O3 production. 30 

Figure 3b shows the five-year average of the relative contribution of shipping emissions to O3. 31 

Nationwide, the shipping emissions accounts for a 9.98.6% increase in O3, showing a similar 32 

decreasing trend of from the southeast coast to inland regions. This result is higher than 3.7% 33 

reported for the Mediterranean region in 2015 (Fink et al., 2023), but lower than the 12-21% 34 

reported in another European study for 2010 (Lupascu and Butler, 2019). Notably, some coastal 35 

cities exhibit particularly high values. For example, in PRD region, such as in Shenzhen, Guangdong 36 

Province, the relative shipping-related O3 exceeds 30.4% in Shenzhen, Guangdong Province,. due 37 

to  the high intensity of shipping emissions combined with relatively low emissions from land-38 

based anthropogenic sources such as industry and power generation. Similarly, tThe IRA is 39 

relatively low at 10.4%, mainly because of the higher background O3 concentrations from land-40 

based anthropogenic sources or O3 already formed by chemical reactions at sea and subsequently 41 
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transported inland by onshore winds (Cheng et al., 2023). 1 

 2 

Figure 3. Contributions of shipping emissions to the five-year average O3 pollution, including 3 

(a) absolute contributions and (b) relative contributions. Maps created with MeteoInfoMap 4 

(http://www.meteothink.org). 5 

Figure 4 illustrates the interannual trend in shipping-related O3 in key regions from 2016 to 6 

2020. OverallNationwide, the shipping-related O3 shows a slight upward trend, with an average 7 

annual growth rate of 0.541.7%,  primarily observed in coastal regions. This trend aligns with the 8 

changes in shipping NOx and VOC emissions, especially in 2020 when a 0.2-0.3 ppb rise in 9 

shipping-related O3 was observed, partly attributable to the notable increase in VOC emissions 10 

following the implementation of the global sulfur cap. However, this increase in O3 concentrations 11 

is substantially lower than the growth in precursor emissions, highlighting the complex and 12 

nonlinear response of O3 formation to changes in shipping emissionswhich is lower than the 13 

increases in shipping-related NOx and VOC (Figure 1). This finding suggests that O3 formation is 14 

not highly sensitive to ship emissions.  This is because the formation of O3 depends on 15 

photochemical reactions involving NOx and VOC under solar radiation, and is influenced not only 16 

by the level of shipping emissions but also by land-based anthropogenic emissions, meteorological 17 

conditions, and long-range transportBecause O3 is produced by photochemical reactions of NOx and 18 

VOC in the presence of solar radiation, influenced by factors such as meteorological conditions, 19 

anthropogenic emissions, and long-range transport (Ye et al., 2023). Its response to shipping 20 

emissions is complexTherefore, changes in shipping-related O3 do not scale linearly with the 21 

changes in shipping NOx and VOC emissions. . The Chinese government’s two phases of clean air 22 

actions (Phase I, 2013–2017; Phase II, 2018–2020) resulted in increasing trend of O3 nationwide 23 

(Liu et al., 2023), and the relative contribution of shipping emissions to O3 also rose slightly during 24 

the same period. period. It is worth noting that, despite continuous increases in shipping NOx and 25 

VOC emissions, their relative contributions to O3 decreased in 2018 and 2020. This pattern may 26 

result from simultaneous land-based emission reductions, which can affect atmospheric oxidizing 27 

capacity (Lv et al., 2020). 28 
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 1 

Figure 4. The interannual trend in shipping-related O3, including (a) absolute contributions and 2 

(b) relative contributions, in key regions from 2016 to 2020. 3 

3.2 Contribution of different types of vessels 4 

We further investigated the relationship between O3 pollution and shipping emissions from 5 

sub-ship sectors. Figure 5 and Table S4 shows the spatial distribution of the five-year average 6 

contribution of emissions from different ship types to the shipping-related O3 and the total O3, 7 

respectively. Nationwide, OGVs, CVs, and RVs contributed 2.6%, 2.6%, and 3.3% to the total O3, 8 

respectively. In coastal regions, OGVs contribute more than 50% to most to the shipping-related O3, 9 

accounting for more than 50% of such O3 pollutionand 9.7% to the total O3. CVs are the second-10 

largest contributor to O3 pollution with an average contribution of 20-30%, and contribute up to 40% 11 

in the southern coastal regions near Zhejiang and Fujian Provinces. Notably, RVs can still contribute 12 

over 30% to shipping-related O3 pollution in some coastal regions, particularly in the YRD and PRD. 13 

This is primarily due to the presence of major inland waterways such as the lower Yangtze River 14 

and the Pearl River, respectively, as well as the influence of regional pollutant transport that 15 

enhances the impact of RVs’ emissions in these areasDue to the regional transport and some RVs 16 

sail on coastal regions, contributions from RVs can also reach 20-30%. In inland regions, RVs 17 

remain the main source of shipping-related O3, with contributions in the middle reaches of the 18 

Yangtze River reaching 50%.  19 

 20 

Figure 5. Contributions of emissions from (a) OGVs, (b) CVs, and (c) RVs to the five-year 21 

average shipping-related O3 pollution. Maps created with MeteoInfoMap 22 

(http://www.meteothink.org). 23 

The interannual variation in the contribution of the different types of ship to shipping-related 24 

O3 between 2016 and 2020 for different regions is illustrated in Figure 6. Nationwide, the 25 

contribution of OGVs and RVs increased by 2.7% and 0.6%, respectively, while the contribution of 26 
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CVs decreased by 3.3%. This pattern was observed in all coastal regions and IRA. The interannual 1 

variation in the contribution of the different types of ship to shipping-related O3 follows a similar 2 

pattern to that of shipping-related NOx and VOC (Figure 1), particularly NOx emissions, which 3 

shows an upward trend for OGVs and RVs but a downward trend for CVs. As a result, the difference 4 

in the contribution of different types of ships to air quality is gradually narrowing. Notably, although 5 

RVs emissions significantly less than those of OGVs and CVs, its contribution to O3 is comparable 6 

to that of other ship types, even exceeds that of CVs in some coastal regions. In addition, although 7 

China has required certain categories of ships to install AIS equipment since 2010, a large part of 8 

small RVs in China have not been equipped with AIS (Zhang et al., 2017), which is not considered 9 

in this study. This result suggests the importance of paying greater attention to RVs in future 10 

emission control strategies. 11 

 12 

Figure 6. The interannual trend in Contributions of emissions from OGVs, CVs, and RVs to 13 

shipping-related O3 in key regions from 2016 to 2020. 14 

3.3 Seasonal O3 impact from shipping emissions 15 

The five-years-average seasonal variations in the contribution of shipping emissions to O3 16 

concentrations across different regions arethe continent is shown in Figure 7 and Tabel 1, with 17 

January, April, July, and November representing winter, spring, summer, and fall, respectively. The 18 

relative contributions of ship emissions to O3 in different seasons are presented in Figure S3. 19 

Overall, the contributions of ship emissions to O3 concentrations in China were 1.53 ppb (5.6%), 20 

4.24 ppb (9.8%), 4.77 ppb (13.7%), and 2.41 ppb (7.9%) for January, April, July, and November, 21 

respectively, which affected by the prevailing wind direction (Figure S4) and atmospheric oxidizing 22 

properties.  23 

For cold seasons, including winter and fall, the shipping-related O3 remains relatively low, 24 

primarily due to less weaker solar irradiation and lower temperatures that limit O3 formation (Figure 25 

S5S4),. the shipping-related O3 remains relatively lower than warm seasons (spring and summer), 26 

with national average and relative contribution of 1.53 ppb (5.6%) and2.41 ppb (7.9%), respectively 27 

(Figure S5)Consequently, most regions remain under 5 ppb. However,, except in the south of 28 
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YRAPRD, especially Guangdong and Hainan Provinces (Figure 7a, 7d, and Table 1), where the 1 

average and maximum of seasonal shipping-related O3 exceeds 5 ppb and 21 ppb, respectively, 2 

Notably, fall pollution even severer than that in summer. This is mainly because the PRD remains 3 

warm and humid in fall, and prevailing monsoon winds are more likely to transport ship-borne 4 

pollutants from the sea to inland areas (Figure S4, S6, and S7). Another distinct pattern is observed 5 

in BRA, where shipping-related O3 formation tends to be more localized during the cold seasons, 6 

as indicated by a larger difference between the median and average values (Table 1). During this 7 

period, mainland China is under the influence of the Mongolian High Pressure System, and 8 

continental winds generally suppress the inland transport of ship-related O₃ (Cheng et al., 2023; 9 

Zhao et al., 2023). Therefore, significant shipping-related O3 pollution only appears in major port 10 

cities with intensive maritime activity. (Figure 7a and 7d).  11 

 12 

During winter and fall, when the wind direction is mainly north and northeast, shipping-related 13 

pollutants are transported to the sea, limiting the accumulation of O3 on land (Cheng et al., 2023). 14 

However, shipping-related O3 in fall is slightly higher than in winter, mainly because the persistent 15 

and intense solar radiation after the rainy summer season enhances O3 formation. Another reason 16 

for this is that during the winter months, mainland China is under the influence of the Mongolian 17 

High Pressure System, where continental winds reduce the shipping‐related O3 (Cheng et al., 2023; 18 

Zhao et al., 2023). 19 

Warm seasons generally include spring and summer. In spring, shipping-related O3 reached its 20 

peak is highest in YRD and PRDin coastal areas,  particularly across Guangdong, Fujian, and 21 

Zhejiang Provinces, where it with the maximum value exceedings 15 30 ppb (Figure 7b and Table 22 

1). During this season, increasing solar radiation and moderate temperatures can enhance 23 

photochemical reactions, thereby promoting O3 formation in these coastal areas,. consistent with the 24 

results of previous studies (Cheng et al., 2023; Schwarzkopf et al., 2022). Although spring is 25 

generally less favorable for O3 formation compared to summer in terms of temperature and humidity, 26 

strong onshore winds may play an important role in reduce the influence of shipping emissions 27 

(Cheng et al., 2023; Ma et al., 2022) (Figure S4, S6, and S7). In addition, more complex 28 

physicochemical interactions may drive springtime O3 (Cao et al., 2024; Zhang et al., 2024), which 29 

needs further investigation. In summer, shipping emissions significantly increased O3 30 

concentrations nationwide by 4.77 ppb and responsible for 13.7% of national O3 (pollution (Figure 31 

7c and Figure S5). Notably, even in IRA, where shipping emissions are much lower than in coastal 32 

regions, shipping-related O3 were comparable to those along the coast. Most coastal regions near 33 

the BRA and the PRD recorded levels above 10 ppb, while central China, located hundreds of 34 

kilometers from the coast, was still significantly impacted with average level of around 10 ppb. This 35 

is primarily because central China lies in a perennial monsoon region, where summer monsoons can 36 

carry shipping-related air pollutants inland from coastal cities (Zheng et al., 2024). Notably, the 37 

impact of ship emissions on O3 in PRD reaches its highest contribution in spring rather than summer, 38 

consistent with the results of previous studies (Cheng et al., 2023; Schwarzkopf et al., 2022). The 39 

possible reason for this is that in PRD, particularly Fujian and Guangdong Provinces, experiences 40 

high humidity and frequent precipitation in summer (Figure S6), which decreases both O3 41 

concentrations and the impact of shipping emissions, even though high temperatures can promote 42 
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photochemical activity. Strong onshore winds also play a role in reducing the influence of shipping 1 

emissions (Cheng et al., 2023; Ma et al., 2022).  2 

These findings indicate that seasonal variations for shipping‐related O3 are driven by 3 

meteorological factors, particularly changes in prevailing wind direction, which are crucial for the 4 

diffusion and long-range transport of shipping emissions. Researchers suggest that the mixing 5 

emissions between shipping and local anthropogenic emissions can amplify complicated O3 6 

chemical formation in coastal cities (Wang et al., 2019b). Therefore, seasonal mitigation strategies 7 

and a better understanding of regional monsoon dynamics and their interaction with local 8 

anthropogenic emissions are crucial for effectively reducing shipping-related O3 pollution.  9 

 10 

Figure 7. Contributions of shipping emissions to the seasonal mean O3 concentrations for (a) 11 

winter (JAN), (b) spring (APR), (c) summer (JUL), and (d) fall (NOV). Maps created with 12 

MeteoInfoMap (http://www.meteothink.org). 13 

Table 1 Seasonal ranges of shipping-related O3 across BRA, YRD, PRD, and IRA. (unit: ppb) 14 

Region Metric Winter Spring Summer Fall 

BRA 

Minimum 0.01 0.83 1.25 0.06 

25% Quartile 0.05 3.09 7.13 0.39 

Median 0.11 4.02 9.32 0.78 

75% Quartile 0.91 6.55 11.90 1.63 

http://www.meteothink.org/
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Maximum 6.59 23.22 32.40 14.39 

Mean 0.71 5.36 10.13 1.74 

YRD 

Minimum 0.20 1.92 1.45 0.55 

25% Quartile 1.01 5.02 6.11 1.91 

Median 1.79 6.64 7.29 3.23 

75% Quartile 2.93 8.35 9.03 5.14 

Maximum 16.32 31.47 25.86 24.59 

Mean 2.47 7.39 7.92 4.41 

PRD 

Minimum 1.11 3.91 0.11 1.91 

25% Quartile 2.79 7.94 3.19 4.85 

Median 5.19 10.07 5.65 7.97 

75% Quartile 7.68 15.17 7.77 11.25 

Maximum 21.98 33.46 26.19 28.78 

Mean 5.96 11.91 5.77 8.79 

IRA 

Minimum 0.17 0.91 2.32 0.10 

25% Quartile 1.19 2.88 5.65 1.44 

Median 1.61 4.85 9.07 2.85 

75% Quartile 2.29 5.73 11.31 4.16 

Maximum 5.53 11.91 26.19 7.52 

Mean 1.76 4.58 9.03 2.87 

 1 

3.4 Effects of shipping emission on O3 formation 2 

Although the features in the RF model include both meteorological factors and emissions, 3 

this section focuses on impacts of anthropogenic emissions, especially shipping emissions, on 4 

O3 pollution. Figure 8 presents the SHAP summary plots for selected features in the RF model 5 

for BRA, YRD, PRD, and IRA, showing the magnitude, prevalence, and direction of each 6 

feature’s impact on the model output (O3 concentration). In the summary plot, the further a 7 

feature’s SHAP value is from zero, the greater its influence; positive SHAP values indicate a 8 

positive contribution, while negative values indicate a negative effect. For example, in Figure 9 

8a, land-based NOx and VOC emissions both have a significant impact on O3 formation in the 10 

BRA, with contributions of 16.8% and 11.0%, respectively, suggesting that the atmospheric 11 

chemistry in this area is significantly affected by land-based anthropogenic emissions. 12 
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Moreover, lower NOx and VOC emissions leads to higher SHAP values, indicating a negative 1 

correlation between land-based anthropogenic emissions and O3 pollution. In the coastal areas 2 

of BRA, shipping emissions are much smaller than land-based emissions, therefore, contribute 3 

only approximately 2.9% to O3 formation, and exhibit a similar negative correlation as land-4 

based sources. 5 

As the share of shipping emissions increases within total anthropogenic emissions in the 6 

coastal areas of YRD and PRD, the difference between the contributions of shipping and land-7 

based emissions to O3 pollution regions decreases. Especially in the PRD, shipping NOx 8 

contributes up to 9.7%, exceeding the land-based VOC contribution of 5.3%. In the IRA, 9 

emissions from inland vessels are much lower than those from ocean-going and coastal ships, 10 

thus, shipping NO and VOC contributions only 1.5% and 0.8% to O3 pollution, respectively. 11 

For meteorological factors, the contributions of solar radiation (25.2%), temperature 12 

(20.0%), wind speed (11.5%), and wind direction (4.9%), relative humidity (4.8%) to O₃ 13 

formation exhibit clear regional heterogeneity. Overall, meteorological influences are greater 14 

than those of shipping emissions. This may be attributed to the highly complex physical and 15 

chemical processes involved, including cloud–radiation interactions, air mass transport, and 16 

water-related reactions. 17 

 18 

 19 
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Figure 8. Feature importance results of the random forest regression model for (a) BRA, (b) 1 

YRD, (c) PRD, and (d) IRA. The x-axis shows SHAP values representing the impact of each 2 

feature on O3 predictions (positive: increasing O3; negative: decreasing O3). Each dot is a grid-3 

month sample, with color indicating the feature value. Instances with identical x-values are 4 

stacked, and the stack height signifies the density. 5 

The dependence plot (Figure. 9) further quantifies how changes in shipping emissions 6 

affect O3 concentrations. Notably, due to the uneven distribution of shipping emissions, the x-7 

axis in Figure. 9 is set to non-uniform intervals to better illustrate their impact. Overall, as 8 

previously mentioned, changes in shipping NOx and VOC emissions have a relatively minor 9 

effect on regional O3 levels—approximately between –2.5 ppb to 8 ppb—although there is clear 10 

regional heterogeneity. In the BRA region, shipping emissions are negatively correlated with 11 

O3, with increases in shipping NOx and VOC emissions leading to a reduction of about 1–2 ppb 12 

in O3. Differently, in the YRD and PRD, increases in shipping NOx emissions slightly promote 13 

O3 formation-especially in the PRD region, where O3 may increase by up to 3 ppb, which is 14 

opposite to the impact of land-based NOx emissions (Figure. S7). This difference may be 15 

because, in the YRD and PRD, land-based NOx emissions do not dominate the overall 16 

anthropogenic emissions as they do in the BRA, allowing shipping NOx to also influence 17 

atmospheric chemistry. Furthermore, changes in shipping VOC emissions have almost no 18 

impact, consistent with the effect of changes in land-based VOC emissions (Figure. S7). Only 19 

when shipping VOC emissions increase dramatically in the YRD region is O3 formation 20 

suppressed—though such cases are rare, as reflected by the partially negative SHAP values for 21 

shipping VOC emissions in Figure. 8b. In the IRA, similar to the BRA region, shipping 22 

emissions are very small compared to land-based sources, so that changes in shipping NOx and 23 

VOC emissions have a similar negative effect on O3 as those from land-based sources. 24 

It should be noted that if one seeks to determine whether a given variable promotes or 25 

suppresses O3 pollution using machine learning methods, additional field observations, 26 

experimental data, and corresponding simulation results may be required as supporting 27 

evidence. Considering the interactions among variables, even if individual contributions are 28 

small, the SHAP estimates for each explanatory variable are unlikely to perfectly reflect their 29 

actual contributions in the underlying physical processes. 30 
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 1 

Figure 9. SHAP dependence plot for (a) BRA, (b) YRD, (c) PRD, and (d) IRA. 2 

 3 

4 Conclusion 4 

In this study, we conducted multi-year CMAQ-ISAM simulations to investigate the how 5 

shipping emissions impacted O3 across China, with a focus on three coastal regions and a inland 6 

region. From 2016 to 2020, shipping emissions increased national average O3 concentrations 7 

by 3.5 ppb, accounting for 8.6% of total O3, with a spatial gradient decreasing from coastal to 8 

inland regions. Despite the increasing intensity of shipping activity and the implementation of 9 

the global sulfur cap, shipping NOx and VOCs emissions rose significantly during this period. 10 

However, the national average shipping-related O3 increased by only 0.23 ppb, while the 11 

relative contribution of shipping emissions to O3 pollution rose by approximately 0.5%. Notably, 12 

this relative contribution did not increase continuously; instead, a decline was observed in 2018 13 

and 2020. This non-linear response, under conditions of simultaneous changes in multiple 14 

pollutants from different sectors, highlights the complexity and need for further investigation 15 

of attribution of O3 pollution. For the four focus regions, the contribution of shipping to O3 16 

levels exceeded the national average, with more pronounced interannual increases. 17 

We further disaggregate ship types to OGVs, CVs, and RVs. The result revealed that OGVs 18 

were the dominant contributors to shipping-related O3 in coastal areas, followed by CVs, 19 

whereas RVs were the main source in inland river areas. Although OGVs, CVs, and RVs differ 20 

significantly in their emission magnitudes, the difference in their contributions to O3 pollution 21 

is gradually narrowing. This trend suggests that the influence of RVs on regional O3 levels 22 

should no longer be overlooked and that emission control efforts for RVs deserve renewed 23 

attention. However, from the perspective of sulfur emission control, RVs in China had already 24 

reached the final stage of sulfur regulation by 2018 under the implementation of domestic 25 

emission control policies. In contrast, NOx control for inland vessels remains largely 26 

unaddressed. Globally, there is limited precedent or experience in regulating NOx emissions 27 

from inland waterways, leaving China without a clear reference framework for RVs NOx 28 

mitigation. Future control of shipping NOx emissions needs to take into account both inland 29 
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waterways and coastal areas. 1 

Overall, the shipping emissions increases O3 concentrations by 3.5 ppb nationwide, with 2 

a significant spatial and temporal heterogeneity. The air quality in Chinese coastal cities is 3 

highly impacted by shipping emissions. For example, the relative shipping-related O3 exceeds 4 

26.3 ppb (30.4%) in PRD, while is relatively low at 3.9 ppb (10.4%) in IRA. Such pollution is 5 

more serious in warm seasons with an average of 4.77 ppb (13.7%) nationwide in summer, due 6 

to the increased solar radiation and moderate temperatures. although OGVs, CVs, and RVs 7 

exhibit significant differences in their emissions, the difference in their contributions to O3 8 

pollution are diminishing and becoming relatively comparable on a national scale.The impacts 9 

of shipping emissions on O3 also exhibited significant seasonal and regional characteristics. 10 

While shipping-related O3 levels were generally lower in colder seasons, fall pollution in 11 

southern coastal regions exceeded that of summer due to favorable land–sea monsoon transport. 12 

Peak shipping-related O3 levels occurred in spring over YRD and PRD, and in summer over 13 

inland areas. These patterns highlight the importance of implementing seasonal and region-14 

specific control strategies to mitigate shipping-related O3 pollution effectively. In particular, 15 

quality-oriented management policies such as seasonal routing adjustments, port operation 16 

scheduling, or dynamic emission monitoring, may play a more immediate role than emission 17 

control policies, which are typically less adaptable to seasonal variability and require long-term 18 

infrastructure or regulatory changes. Therefore, combining flexible operational measures with 19 

long-term emission reduction plans could enhance the overall effectiveness of O3 mitigation. 20 

Interpretable machine learning analysis further revealed significant spatial differences in 21 

the contribution of shipping emissions to O3. In BRA and IRA, O3 formation was primarily 22 

driven by land-based NOx and VOC emissions, with shipping emissions playing a minor role 23 

and even showing a suppressive effect on O3 formation. In contrast, in coastal regions such as 24 

YRD and PRD, the increasing share of shipping emissions in the total anthropogenic emissions 25 

enhanced their contribution to O3, with shipping NOx emissions showing a slight promoting 26 

effect on O3 formation. To mitigate O3 pollution, it is important to coordinate the control of 27 

shipping emissions with land-based emission sources. The results show that the impact of 28 

shipping NOx and VOC emissions on O3 formation exhibits significant regional differences. In 29 

areas where land-based emissions dominate, such as the BRA region, the impact of shipping 30 

emissions on O3 pollution is relatively small and shows a negative correlation. In contrast, in 31 

coastal regions such as the YRD and PRD, where the share of land-based emissions has 32 

decreased, the contribution of shipping emissions to O3 formation becomes more significant. 33 

In particular, s shipping NOx emissions have become an important source of O3 precursors in 34 

the PRD region. This regional difference suggests that solely controlling shipping emissions 35 

may lead to unexpected atmospheric chemical responses and, under certain conditions, could 36 

even cause an increase in O3 concentrations. Therefore, effective O3 pollution control requires 37 

a coordinated reduction of both land-based and shipping emissions, based on regional emission 38 

structures and atmospheric oxidation characteristics. Further analysis reveals that 39 

meteorological conditions play an even more critical role in regulating O3 formation. Variables 40 

such as solar radiation, temperature, wind speed, and relative humidity show strong sensitivity 41 

to changes in O₃ concentration and also display clear regional differences. Therefore, it is 42 
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recommended that differentiated and refined joint control strategies be developed for different 1 

regions based on their specific emission characteristics and meteorological conditions. 2 
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