Qualification of an online device for the measurement of the oxidative potential of atmospheric particulate matter

Albane Barbero¹, Guilhem Freche¹, Luc Piard¹, Lucile Richard¹, Takoua Mhadhbi¹, Anouk Marsal¹, Stephan Houdier¹, Julie Camman^{1,2}, Mathilde Brezins^{1,2}, Benjamin Golly³, Jean-Luc Jaffrezo¹, Gaëlle Uzu¹

¹Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP*, IGE, 38000 Grenoble, France*Institute of Engineering and Management Univ. Grenoble Alpes

²Aix Marseille Univ., CNRS, LCE, UMR 7376, 13331 Marseille, France

³Univ. Savoie Mont Blanc, CNRS, LOCIE (UMR 5271), 73376, Le Bourget-du-Lac, France

Correspondence to: Albane Barbero (albane.barbero@univ-grenoble-alpes.fr)

1 ROS-Online answer under semi-controlled environment

1.1 Atmospheric OP in near real conditions

10

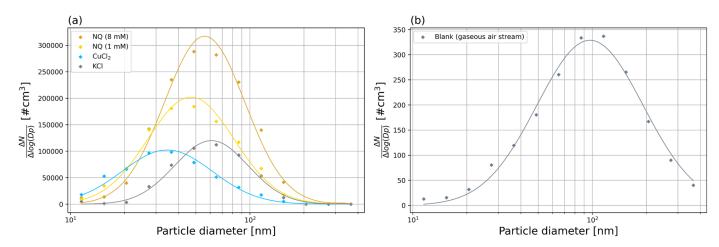


Figure S 1. particle size and distribution found in the pipe in (a) the four experiments generating respectively atomized KCl, CuCl₂, and NQ at 1mM and 8 mM and (b) the gaseous air stream blank

15 1.2 ROS-Online answer to gas

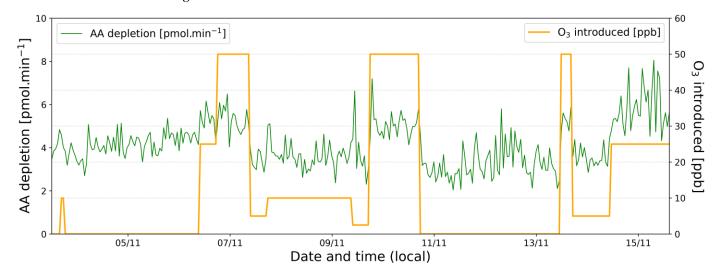


Figure S 2. Timeserie of AA depletion [pmol.min⁻¹] (green) measured at different O₃ (orange) concentrations [ppb] introduced in the sampling line of *ROS-Online*.

2 Real-life case study in Chamonix

20

25

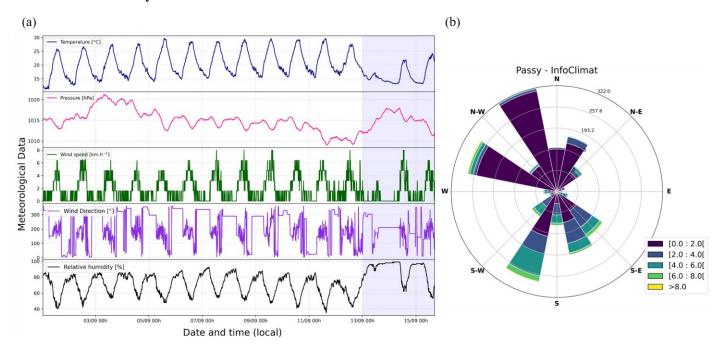


Figure S 3. Meteorological data at the air quality monitoring station of "Passy" during the ambient air OP sampling campaign (a) Temperature ($^{\circ}$ C - dark blue), Dew point ($^{\circ}$ C - dashed light blue), Pressure (hPa - pink), Wind speed (km.h $^{-1}$ - green), Wind direction ($^{\circ}$ - purple) and Relative humidity ($^{\circ}$ - black). (b) The associated Wind Rose.

2.1 Time series - OP^{AA}

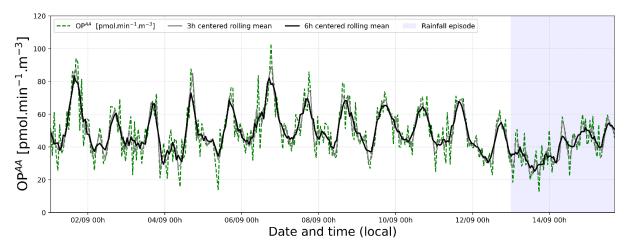
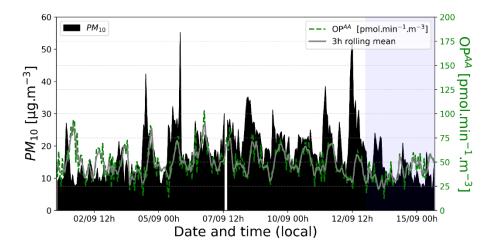



Figure S 4: Time series of OPAA [pmol.min⁻¹.m⁻³] measurements during the 15 days' field campaign in Chamonix.

Figure S 5: Time series of PM₁₀ [μg.m⁻³] (left-hand side) and OP^{AA} [pmol.min⁻¹.m⁻³] (right-hand side) measurements during the 15 days' field campaign in Chamonix.

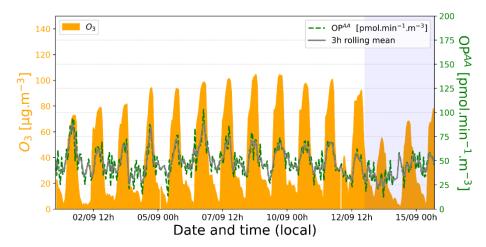


Figure S 6: Time series of O_3 [µg.m⁻³] (left-hand side) and OP^{AA} [pmol.min⁻¹.m⁻³] (right-hand side) measurements during the 15 days' field campaign in Chamonix

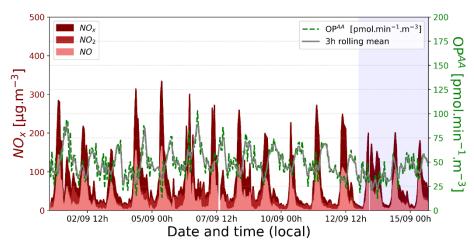


Figure S 7: Time series of NO_x [µg.m⁻³] (left-hand side) and OP^{AA} [pmol.min⁻¹.m⁻³] (right-hand side) measurements during the 15 days' field campaign in Chamonix.

2.2 Time series – OPDTT

30

35

40

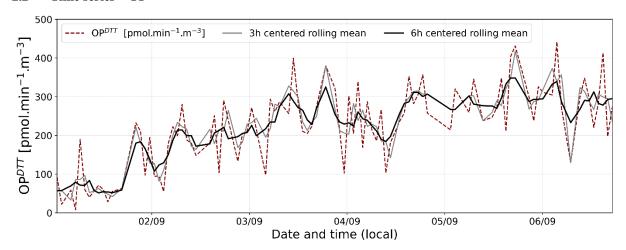
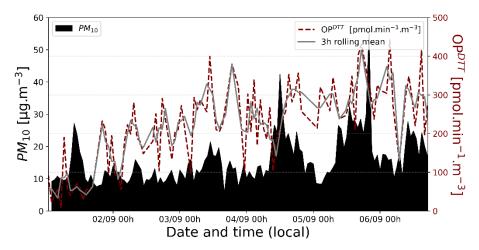
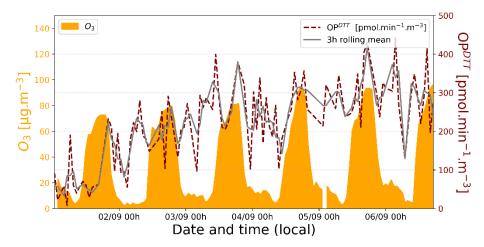




Figure S 8: Time series of OPDTT [pmol.min⁻¹.m⁻³] measurements during the 6 days' field campaign in Chamonix.

45 Figure S 9: Time series of PM₁₀ [μg.m⁻³] (left-hand side) and OP^{DTT} [pmol.min⁻¹.m⁻³] (right-hand side) measurements during the 6 days' field campaign in Chamonix.

50

55

Figure S 10: Time series of O_3 [µg.m⁻³] (left-hand side) and OP^{DTT} [pmol.min⁻¹.m⁻³] (right-hand side) measurements during the 6 days' field campaign in Chamonix.

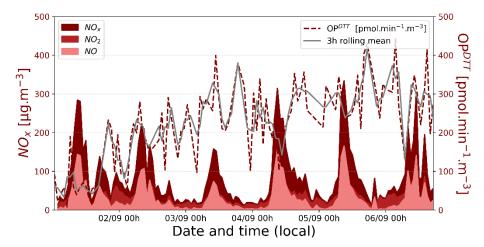


Figure S 11: Time series of NO_x [µg.m⁻³] (left-hand side) and OP^{DTT} [pmol.min⁻¹.m⁻³] (right-hand side) measurements during the 6 days' field campaign in Chamonix.