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Abstract. Aerosol-cloud interactions (ACI) in warm clouds alter reflected shortwave radiation by influencing cloud microphys-

ical and macrophysical properties. The variable of state controlling ACI is the cloud droplet number concentration (Nd). Here,

we examine the perturbations in Nd due to anthropogenic aerosols (∆Nd,PD−PI ) using a perturbed parameter ensemble (PPE)

hosted in the sixth Community Atmosphere Model (CAM6). Surrogate models are created for the CAM6 PPE outputs and are

used to generate 1 million model variants of CAM6 by sampling 45 sources of parameter uncertainty. The range of uncertain5

physical parameters related to ACI are constrained with observations of aerosol and cloud properties from SOCRATES. The

likely range of uncertain parameters and the associated range of ∆Nd,PD−PI are more strongly constrained with observations

of Nd relative to observations of cloud condensation nuclei. We conduct sensitivity tests of how constraints on ∆Nd,PD−PI are

affected by systematic uncertainties in observations and our limitations in our surrogate models created for CAM6 PPE outputs.

Based on this, we provide guidance on the impact of reducing systematic uncertainty in airborne microphysical observations10

and in surrogate models.

1 Introduction

Clouds play an essential role in setting Earth’s top of atmosphere energy flux by reflecting incoming shortwave radiation

back to space. Aerosols are important for cloud formation as they serve as cloud condensation nuclei (CCN) for water vapor to

condense onto. CCN make cloud droplet formation possible in atmospheric conditions. Aerosols from anthropogenic emissions15

alter cloud droplet number concentration (Nd) by acting as CCN, enhancing cloud reflectivity (Twomey, 1977). The change

in reflected shortwave radiation (i.e., radiative forcing: RF in W/m2) through changes in Nd is referred to as the instantaneous

radiative forcing due to aerosol-cloud interactions (IRFaci). According to the formulation in Bellouin et al. (2020), IRFaci is

given by

IRFaci=
∂R

∂ lnNd

∣∣∣∣
LWPc,C

·∆lnNd (1)
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where R is the net radiative flux. LWPc is the in-cloud liquid water path (LWP) and ∆lnNd is the fractional perturbation in20

Nd (Ghan et al., 2016; Bellouin et al., 2020). The vertical line in the partial derivative denotes LWPc and cloud fraction (C)

are held constant (Bellouin et al., 2020). With changes in Nd, cloud macrophysical properties can be altered in response to

changes in cloud microphysics, such as cloud lifetime, liquid water content and cloud cover (Ackerman et al., 2004). The RF

caused by modifications to cloud macrophysics is referred to as aerosol-cloud adjustment and is given by

RFadjustment =

(
∂R

∂C

dC

dlnNd
+

∂R

∂LWPc

dLWPc

dlnNd

)
·∆lnNd (2)

The sum of radiative forcing from IRFaci and aerosol-cloud adjustment is termed effective RF due to ACI (ERFaci), which25

can be expressed as

ERFaci=

(
∂R

∂ lnNd

∣∣∣∣
LWPc,C

+
∂R

∂C
· dC

d lnNd
+

∂R

∂LWPc
· dLWPc

d lnNd

)
·∆lnNd (3)

Recent assessments place ERFaci as the largest uncertainty in anthropogenic climate forcing. This uncertainty also compli-

cates efforts to infer climate sensitivity from the historical record, as the cooling from ACI can mask the warming effects of

greenhouse gases (GHGs) (Bellouin et al., 2020; Forster, 2016; Watson-Parris and Smith, 2022).

Earth system models (ESMs) are essential for estimating ERFaci as they can estimate the unobservable preindustrial baseline30

of the atmosphere (Carslaw et al., 2017; Wall et al., 2022). However, ESMs are uncertain in their representations of aerosols and

their climate effects. This uncertainty can be related to structural uncertainty (what processes to include in a model) (Regayre

et al., 2023) and parametric uncertainty (how the values of parameters in the mathematical representation of processes are set

in the ESM) (Regayre et al., 2018). The uncertainties in ERFaci related to parametrizations of unresolved aerosol processes,

emissions, and cloud microphysical processes within a single model can be as large as the spread across models with different35

model structures. This supports the utility of understanding parametric uncertainties (Johnson et al., 2018). A commonly

used method is to employ a perturbed parameter ensemble (PPE). This method involves exploring many possible parameter

combinations across their uncertainty range to quantify the range of possible outcomes. The plausible range of ERFaci can

be estimated using a set of parameter combinations, provided there is good agreement between observations and the model

simulations generated by those parameter combinations (Regayre et al., 2018).40

Wood (2012) argues that the variable of state (or most important variable) in understanding ACI is the Nd. Effectively,

changes in Nd play a pivotal role in governing cloud radiative and macrophysical behavior. This means that to reduce un-

certainty in ERFaci, constraining the anthropogenic perturbation to Nd is essential as both IRFaci (Eq 1) and aerosol-cloud

adjustment (Eq 2) scale with change in Nd (Bellouin et al., 2020; Song et al., 2024).

One obstacle in seeking an observational constraint on the Nd response to anthropogenic aerosol is that the processes45

driving the Nd response primarily occur at the microscale and the result of these processes poses observational challenges.

Past studies have used observations of Nd from spaceborne remote sensing to constrain the change in Nd during historical

periods, achieving consistent observational constraints across different host models using the same observations (McCoy et al.,

2020; Song et al., 2024; Gryspeerdt et al., 2016). However, observations of aerosol and cloud microphysical properties from

remote sensing are known to have uncertainties arising from factors such as assumptions about particle size distributions, cloud50
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microphysics, and radiative transfer models used in the retrieval process (Grosvenor et al., 2018; Zhang et al., 2016; Gryspeerdt

et al., 2022).

In-situ measurements provide direct measurements of aerosol and cloud microphysical properties without reliance on re-

trieval algorithms or assumptions used in remote sensing. It also measures more detailed microphysical properties such as

aerosol size distribution, chemical composition, and cloud droplet number concentration and size distributions. However, in-55

situ measurements can suffer from a wide variety of instrument biases and limitations and the impact of these limitations on

our ability to use them for climate studies is not well characterized. For instance, instruments used for measuring aerosol and

cloud properties can only detect subsets of the full particle distribution due to their limited sampling volume, and they cannot

measure the full spectrum of particle sizes (Lance et al., 2010). In-situ measurements from aircraft occur with a much smaller

footprint than a typical ESM and are often targeted towards features that make them not representative to compare to an ESM60

grid cell (Field and Furtado, 2016). Additionally, by their nature aircraft campaigns have minimal global coverage and it is

unclear how effective a constraint on global model behavior they provide.

In this paper, we focus on characterizing an observational constraint on the change in Nd during the historical period

(∆Nd,PD−PI ) based on in-situ measurements from a single campaign to illustrate the utility of combining two key tools:

ESMs and airborne observations of microscale properties. We expand on previous work (Gettelman et al., 2020) by examining65

parametric uncertainty across a single ESM (i.e. using a PPE) and characterizing what we can learn from an airborne campaign

and expanding on previous PPE work leveraging surface observations of aerosol properties (Regayre et al., 2020). We use

observations of both aerosol and cloud properties from aircraft in-situ measurements. We address the following question: 1)

do aerosol or cloud measurements better constrain global cloud microphysical behavior? 2) can sparse in-situ measurements

produce constraints on cloud microphysical behavior on a global scale? 3) how sensitive is the observational constraint on70

∆Nd,PD−PI to observation uncertainties? We provide this analysis with the goal of (i) showing the connection between in-

situ measurements and our understanding of climate (Regayre et al., 2020) and (ii) characterizing where to expend effort in

terms of sampling with in-situ measurements and model development.

2 Materials and Methods

2.1 The CAM6 Perturbed parameter ensemble75

We use the Community Atmosphere Model version 6 (CAM6), which is the atmosphere component of the Community Earth

System Model version CESM-2.0 (Danabasoglu et al., 2020). The CAM6 model uses a two-moment microphysics scheme

for stratiform clouds, with liquid, ice, rain, and snow hydrometeors calculated as prognostic variables, allowing CAM6 to

explicitly represent the aerosol indirect effect (Gettelman and Morrison, 2015; Gettelman et al., 2015).

We leverage a perturbed parameter ensemble (PPE) hosted in CAM6 (Eidhammer et al., 2024). A PPE is a large set of80

simulations based on the structure of a single ESM (e.g., CAM6) with a different combination of parameter values to examine

parameter uncertainty (Lee et al., 2011; Carslaw et al., 2013). The CAM6 PPE is fully described in Eidhammer et al. (2024).

CAM6 is run at the standard resolution of 1.25°×0.9375° resolution. Briefly, 262 model simulations (i.e., 262 parameter com-
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binations) of CAM6 sample 45 sources of uncertainty in the parameterizations for cloud, precipitation, convection, boundary

layer, and aerosol processes. The 45 parameters are simultaneously perturbed using Latin Hypercube within the plausible range85

of realistic values based on expert-elicitation. We examine 203 ensemble members out of 262 integrated. The remaining 59

members were excluded based on criterion: (1) the linear regression slope of Nd to CCN in log space (dlnNd/dlnCCN ) is

less than 0; (2) the correlation coefficient between Nd and CCN is less than 0.3. The two criteria are used to exclude PPE

members that are too far outside the observational constraint behaviors (i.e., the Southern Ocean field campaign measurements

analyzed in Figure 14 in McCoy et al. (2021)). Following Song et al. (2024), we also exclude PPE members that simulate too90

much ice in tropics, which is inconsistent with satellite observations (King et al., 2013).

2.2 Model Configuration

Two scenarios are simulated and each of them use the same parameter combinations - consistent with previous studies (Song

et al., 2024). First, 2-year global simulations saved at monthly-mean are completed for pre-industrial (PI) and present-day (PD)

emissions. PI and PD aerosol emission scenarios are integrated from 2019 to 2020 so anthropogenic perturbations in Nd can be95

calculated over global coverage by taking the difference between PI and PD. The atmosphere is nudged to horizontal winds and

temperature and sea surface temperature and sea ice fraction are prescribed from observations. Wind and temperature fields are

nudged to the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) reanalysis (Bosilovich

et al., 2015) with 24-hour relaxation time. MERRA2 output is interpolated to CAM6 vertical resolution with standard 32

vertical levels from the surface to 3 hPa following Gettelman et al. (2020). Previous studies have shown the CAM6 PPE100

produces a wide range of perturbations in cloud microphysics (e.g., ∆Nd,PD−PI ) and cloud macrophyiscs (∆LWPPD−PI ).

In this study, we focus on diagnosing the parametric effects on cloud microphysical responses to anthropogenic aerosols from

different parameter combinations using the PPE.

In addition to the two-year integrations of the PPE used to calculate anthropogenic perturbations in Nd, the PPE is in-

tegrated over short periods consistent with the Southern Ocean Clouds, Radiation, Aerosol, Transport Experimental Study105

(SOCRATES) field campaign based from Hobart, Tasmania (McFarquhar et al., 2021) (Figure 1). The SOCRATES campaign

occurred over the midlatitude Southern Ocean (SO) during austral summer and was dominated by a series of frontal systems,

postfrontal stratocumulus decks, and cyclonic activity typical of the storm track region (McFarquhar et al., 2021). Model out-

puts are saved along flight tracks over SOCRATES and is sampled at 1 min resolution following Gettelman et al. (2020). It

applies atmospheric nudging to horizontal winds and temperature, consistent with global simulation with PI and PD aerosol110

emissions scenarios, but nudged to the period of January-March 2018 when the aircraft observations were conducted. The be-

havior of the default parameter configuration in CAM6 has been characterized using this approach in Gettelman et al. (2020);

McCoy et al. (2021); McCluskey et al. (2023); Zhou et al. (2021).

Previous studies have shown that the CAM6 PPE, configured with 2-year global simulations, produces a wide spread in

present-day (PD) cloud microphysical (Nd) and macrophysical (LWP) properties. The mean-state PD values have been shown115

to fall within the observational range derived from satellite remote sensing (Song et al., 2024). Additionally, CAM6 simulations

along flight tracks using the default parameter configuration reproduce many features of in-situ observations, including cloud
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phase, cloud location, and boundary layer structure (Gettelman et al., 2020). These results give us confidence that at least

some members of the nudged PPE simulations provide a physically plausible baseline in terms of cloud microphysical and

macrophysical properties. In this study, we focus specifically on microphysical properties.120

2.3 Aircraft Sampling

We examine in-situ airborne observations taken from SOCRATES as our observational constraint (McFarquhar et al., 2021).

The importance of the Southern Ocean (SO) to understanding the global anthropogenic contribution to Nd has been shown

in several previous studies (Carslaw et al., 2013; McCoy et al., 2020). The National Science Foundation Gulfstream-V (GV)

aircraft was deployed during January-March 2018 for SOCRATES. There were 15 flights sampling data from 42°S to 62°S125

with aerosol and cloud properties sampled at 1 Hz frequency. The GV was equipped with a variety of sensors and instruments.

In this work, Nd from the cloud droplet probe (CDP) and aerosol number concentrations from the ultra-high sensitivity aerosol

spectrometer (UHSAS) are examined. We focus on accumulation mode aerosols, with diameters ranging from 0.1 µm to 1 µm,

reported as UHSAS100 in this paper following McCoy et al. (2021). Accumulation mode aerosol usually accounts for most of

the surface area of aerosols and is a good estimate of the CCN concentration for stratocumulus updraft velocities (Seinfeld and130

Pandis, 2016).

With a focus on low-level, liquid cloud, we restrict the aircraft measurements of aerosol and cloud to be below 2 km. As in

previous studies (McCoy et al., 2021), in-situ aircraft aerosol measurements are discarded when the liquid water content (LWC)

from the CDP exceeds 0.001 g/m3, along with the subsequent 10 seconds after cloud detection. This is to avoid measurement

contamination from cloud (McCoy et al., 2021). In-cloud Nd measurements are restricted to regions where the LWC from the135

CDP is greater than a threshold (0.1 g/m3) following McCoy et al. (2021). Because the observations of aerosols and in-cloud

Nd that are considered valid for use are taken at different locations, direct comparison is challenging due to inconsistencies in

spatial and temporal coverage. To make comparisons between Nd and aerosol observations, we bin the aircraft measurements

by 2 min in duration and 50 m in altitude so that aerosols and Nd can be compared in the same bin. Only bins with at least ten

1 Hz flight observations are considered valid composites for use. Median values of aerosol concentration and Nd are computed140

for each bin for observations from each flight following McCoy et al. (2021). The instrument limitation inevitably forces us

to look either at small clouds or cloud edges, where both the measurements of aerosol and cloud are valid for use. This has

minimal impact on our comparison between models and observations as we colocate model output with observations as detailed

in Section 2.4.

In this study, we focus exclusively on low-level, liquid clouds simulated by the stratiform (large-scale) cloud microphysics145

scheme (MG2) in CAM6, as CAM6’s convective scheme does not include prognostic microphysical variables such as Nd,

which is a key quantity in our analysis. As such, all Nd values analyzed in this study originate from the stratiform cloud

scheme. Furthermore, we limit our comparison with aircraft observations to altitudes below 2 km, corresponding to the marine

boundary layer and excluding a large potion of clouds formed by deep convection (Kang et al., 2024). The majority of simulated

Nd in CAM6 is also concentrated below 2 km (Zhou et al., 2021). The convective scheme, while it may be triggered during150
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Figure 1. Maps of SOCRATES mission flight tracks from the NSF G-V aircraft. (a) Location of the SOCRATES aircraft sampling and the

ratio of preindustrial to present day Nd shown in colors. The ratio is computed as PINd
PDNd

using the preindustrial and present-day simulations

run for two years configured with default CAM6 parameter setting. Ratios less than 1 indicate anthropogenically polluted regions. (b)

Comparison of sampling of aircraft measurements (black line) with CAM6 grid point centers (red dots). Along-flight-track simulations are

run for January–March 2018, covering late austral summer into early autumn.

postfrontal cloud conditions, does not contribute to Nd in CAM6. The convective scheme can contribute to precipitation, while

this is beyond the scope of analysis in the present study.

2.4 Comparison Between Model data and Observations

The default configuration of CAM6 has been extensively evaluated in Gettelman et al. (2020) and McCoy et al. (2021) and

has been shown to be able to reproduce many features consistent with in-situ observations in Gettelman et al. (2020). Here, we155

examine a PPE that is hosted in the same model evaluated in previous studies (McCoy et al., 2021; Gettelman et al., 2020). The

CAM6 model parameterization and the prior distribution of parameters (i.e., 217 sets of parameter combinations) in the PPE

(Eidhammer et al., 2024) produce simulated aerosol and cloud properties that we can compare with observations to evaluate

how process representation impacts aerosol-cloud interactions. Here, we focus on microphysical quantities that are available

from in-situ measurements but hard to observe from spaceborne remote sensing.160

Nd is directly available from both CAM6 and in-situ measurements from the CDP. CAM6 in-cloud Nd is calculated as Nd

divided by liquid cloud fraction (when cloud fraction ≤ 1%, we set Nd = 0). This cloud fraction threshold is smaller than the

one used in McCoy et al. (2021) as we found it retains more flight composites but does not significantly change the results of

our analysis (Figure S1).

CCN is a subset of aerosols that can be activated to cloud droplets at a given supersaturation. CAM6 outputs CCN at a set165

of fixed supersaturations. Here, we look at supersaturation at 0.2%. It is found that observed CCN at 0.2% supersaturation
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(CCN02) has an one-to-one relationship with accumulation mode aerosol (e.g., UHSAS100) measured over SOCRATES (Mc-

Coy et al., 2021). Following previous work (McCoy et al., 2021), we use UHSAS100 as a proxy to CCN02 over SOCRATES

as UHSAS100 lies very close to the one-to-one line with CCN02. This supersaturation level is shown to be representative of

marine low-level stratocumulus (Hudson and Svensson, 1995).170

To make comparisons between the modeled and observed Nd and aerosol properties, model data are colocated to observa-

tions by linearly interpolating to temporal and spatial locations from the 2 min × 50 m observational composites following

McCoy et al. (2021). Our comparison between observations and models follows two strategies. First, model outputs (CCN

and Nd) are confronted with in-situ observations for collocated bins (flight track composites) along flight tracks for each

simulation ensemble. This method allows for the evaluation of simulated CCN, Nd, and the inferred efficiency of aerosol175

activation ( dNd
dCCN ) relative to observations within individual PPE members. The results are discussed in Section 3.1. Second,

campaign-means of CCN and Nd are calculated for each PPE ensemble and compared with campaign-means of CCN and Nd

calculated from in-situ observations. In this approach, we evaluate aerosol activation efficiency across the CAM6 PPE members

(run with different parameter sets) and use campaign-means of in-situ aerosol properties and Nd to constrain the CAM6 PPE

(Section 3.3.3).180

The intention of taking the campaign-mean is to reduce random error by averaging over a large number of samples. However,

there remains potential sources of systematic error. One possible source of systematic error is from differences in sampling

between the observations and the model (e.g. if the pilot only flew through clear air and avoided cloud). Sampling during

airborne campaigns may have some systematic sampling biases as discussed in Field and Furtado (2016). Output from CAM6

is representative of an average within the grid box of the model, whereas flight patterns in a similar-sized domain may not185

be sampling randomly (e.g. focusing on convective cores). We believe that this is a minimal concern for SOCRATES. The

SOCRATES flight pattern was designed to focus on cold sectors of cyclones and synoptically uplifted aerosol layers, but

followed a random sampling pattern in those large-scale features (McCoy et al., 2021). In addition to any systematic errors

from sampling strategy, instrument error inherent in the CDP introduces additional uncertainties in the measurements of Nd.

CDP measures cloud droplets within a specific size range (i.e., 2 to 50 µm in diameter). It has limitations regarding droplets that190

fall outside its designed size range. Coincidence errors may occur when multiple droplets pass through the sensor’s detection

volume but is counted as a single droplet. The impact of observational uncertainty on the model constraints is examined in in

section 3.4.

Another potential source of systematic uncertainty may arise from the use of UHSAS100 as a proxy to CCN02 over

SOCRATES. While a near one-to-one relationship between UHSAS100 and CCN02 has been reported for the SOCRATES195

campaign (McCoy et al., 2021), the campaign-mean ratio of CCN02 to UHSAS100 is approximately 1.08 (±0.3), based on the

median and interquartile range of the CCN02:UHSAS100 ratio uncertainty shown in their Figure S2. This suggests that UH-

SAS100 may underestimate CCN02 by 8% on average. Moreover, the activation diameter for SO aerosol is typically below 100

nm at 0.2% supersaturation, and likely closer to 80 nm for the aerosol population sampled during SOCRATES (Fossum et al.,

2018; Mallet et al., 2025). This suggests that USHS100 may introduce an even greater underestimation of CCN02 compared200

to UHSAS100. To reflect the potential offset between UHSAS100 and CCN02, we conducted sensitivity tests by increasing
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the observed “CCN” by 8% and 40%, representing the lower and upper bounds of the CCN02 to N100 ratio uncertainty, to

examine how this affects our results (Section 3.3.3).

Having discussed uncertainty in the observations, we can turn our attention to uncertainty in the representation of processes

in models. While the PPE samples a large number of possible representations of the underlying physics, it is still quite sparse205

(Lee et al., 2011). To systematically explore parametric uncertainty across the PPE, we build emulators (surrogate models) for

the campaign-mean Nd and CCN using Gaussian Process (GP) regression (Watson-Parris et al., 2021). Emulators are trained

by using the 45 perturbed parameters as inputs and simulation outputs (e.g., campaign-mean Nd and CCN) using a subset of

the PPE ensemble as training data. Emulators are trained on the sample of different process representations in the CAM6 PPE

data (Figure S2). The creation and validation of the emulators follows previous literature (Lee et al., 2011; Regayre et al., 2020;210

Song et al., 2024). With the GP emulators, we sample 1 million model realizations of Nd and CCN (e.g., model variants) with

1 million different combinations of parameter values sampled uniformly across 45 dimensional parameter space.

Model variants are ruled out when they are observationally implausible based on a implausibility measure

I(x) =
|M −O|

|Error(M)|+ |Error(O)|
> 1 (4)

where M is the emulator campaign-mean and O is the observed campaign-mean (Regayre et al., 2020). Error(M) and Error(O)

denote the deviation from the emulator campaign-mean and observation campaign-mean, respectively. Error(M) comes from215

emulator uncertainty and the variance Var(M) in the emulator estimate is directly calculated from GP regression. Error(M) is

estimated as ±1.96*
√
V ar(M). The number of 1.96 is chosen as ±1.96 ∗

√
V ar(M) covers approximately 95% confidence

bounds of the emulator uncertainty. Estimating observational uncertainty Error(O) as fractional value is commonly used in

observational constraints on models (Johnson et al., 2020; Song et al., 2024). We discuss observational uncertainty in terms of

a fractional error fobs. Finally, we write the implausibility metric I(x) where we account for 95% uncertainty in the emulator220

and an arbitrary observational uncertainty as

I(x) =
|M −O|

|
√
V ar(M) · 1.96|+ |O · fobs|

> 1 (5)

Model variants are excluded when I(x) exceeds 1. An illustration of our constraint process is summarized in Figure S3.

In this paper, we vary the observational uncertainty by varying fobs under two conditions: (1) with emulator uncertainty and

(2) without emulator uncertainty, to characterize the impact of different sources of uncertainty on our ability to constrain the

response of Nd to anthropogenic aerosol. We discuss the impact of different values of fobs on the model constraint process225

in section 3.4. Eq 5 is a simplified implausibility metric as in Williamson et al. (2013); Johnson et al. (2020). Here, we

only consider observational uncertainty and emulator uncertainty in the comparison between 1 million model variants with

observations. Spatial-temporal representation uncertainty and model structural uncertainty are also important as discussed in

Johnson et al. (2020). We set the spatial-temporal representation uncertainty to 0 in Eq 5 as we collocated the model outputs

to flight track locations in 2-min × 50-meter composites. The characterization of model structural uncertainty is conceptually230

ambiguous to quantify (Regayre et al., 2023) and is not considered in this work.
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2.5 Constraint metric

We conducted sensitivity tests on the observationally plausible 2.5-97.5th percentile range of ∆Nd,PD−PI to the emulator

and observational uncertainties. The observationally plausible 2.5-97.5th percentile range of ∆Nd,PD−PI was calculated with

varying presumed observation uncertainties. To reduce noise from imperfect emulators, we conduct another set of sensitivity235

tests with emulator uncertainties set to 0 (Error(M)=0) in Eq 4 in the sensitivity test. The ’constraint’ is quantified as the

reduction in the observational plausible range relative to the prior range predicted from the 1 million model variants. The

relative reduction in range is calculated using

constraint = 1−
Posterior: ∆Nd,(PD−PI),obs, 97.5 −∆Nd,(PD−PI),obs, 2.5

Prior: ∆Nd,(PD−PI),97.5 −∆Nd,(PD−PI),2.5
(6)

Where the subscript ’obs’ denotes the sources of observations that are used for constraints. The posterior range refers to the

range of observationally plausible ∆Nd,PD−PI at 2.5-97.5th percentiles. The prior range refers the 2.5-97.5th percentile range240

of ∆Nd,PD−PI derived from the original 1-million-member sample. Mathematically, the range of constraint in Eq 6 should

vary between 0 to 1. The greater the magnitude, the better constraints we can achieve.

2.6 Spaceborne observation

In addition to the comparison between aircraft measurements and model outputs saved along flight tracks, we examine the

simulated global oceanic mean Nd and confront it with observations. Observations of global oceanic Nd are derived from the245

Moderate Resolution Imaging Spectroradiometer (MODIS). MODIS is a passive radiometer onboard NASA’s Terra and Aqua

satellites. Nd is calculated from MODIS retrievals of effective radius (re) and optical depth (τ ) assuming an adiabatic cloud

(Grosvenor and Wood, 2014). MODIS Nd is calculated for daily means for the period 2003–2015 and is gridded to 1 by 1

degree resolution as in Grosvenor and Wood (2014). During winter, high-latitude regions (e.g., Arctic, Antarctic) have greater

solar zenith angle (SZA), resulting in lower reflected solar radiation, making retrievals of cloud properties (e.g., re and τ ) less250

reliable. MODIS Nd is unavailable during wintertime high latitude regions. To ensure consistency in the comparison between

MODIS Nd and the model data, Nd data from months and latitudes where MODIS retrievals are unavailable are removed

from the ESM dataset. In addition to global oceanic mean Nd from MODIS, we also examine a box region from MODIS with

latitude range of 65 So - 42 So and longitude range of 132 Eo - 165 Eo, which covers the SOCRATES campaign. MODIS Nd

is computed in this box region and compared with campaign-mean Nd from SOCRATES in-situ measurements.255

3 Results

As discussed above, previous studies have evaluated CAM6 in terms of its representation of SO aerosol, cloud, and precipitation

characteristics using in-situ observations from SOCRATES (McCoy et al., 2021; Zhou et al., 2021; Gettelman et al., 2020;

McCluskey et al., 2023). They found that simulated Nd is typically too low in CAM6, which is similar to other ESMs (McCoy

et al., 2020). However, finding why the SO Nd is low is complex since Nd is the result of sources and sinks (Wood et al.,260
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2012; McCoy et al., 2020; Kang et al., 2022). To understand what leads to biases in Nd we need to simultaneously consider the

impact of multiple processes to tackle the equifinality problem. Briefly, equifinality means multiple combinations of physical

processes can result in the same observable state (i.e. Nd).

A common suggestion by previous studies is that investigation of aerosol, cloud, precipitation, glaciation, turbulence and

activation processes is needed to understand the source of the model Nd bias (McCoy et al., 2021; Zhou et al., 2021; McCluskey265

et al., 2023). Here, we examine how different parameter combinations of these processes impact SOCRATES aerosol, clouds,

and ACI in CAM6 in section 3.1. By observationally confronting simulations with different parameter combinations, we can

evaluate the constrained parameter spaces (Section 3.2) and the likely range of observationally-plausible parameter spaces and

their associated range of ∆Nd,PD−PI (Section 3.3).

3.1 CCN, Nd and aerosol activation over SOCRATES in CAM6 PPE270

We examine relationships between CCN and Nd across flight composites (50-meter × 2-min bin median) within individual

PPE members. The number of flight composites valid for CCN-Nd comparisons from SOCRATES in-situ observations is 44

(Figure 2: red dots). This number is smaller than the results in McCoy et al. (2021) as we choose a lower altitude level for

analysis with a focus on warm liquid cloud. The number of colocated flight composites valid for CCN-Nd comparisons for

each PPE ensemble member (Figure 2: black dots) is less than that from observations (red dots) since some flight composites275

simulates near-zero Nd and are excluded from our analysis. This might be due to the coarse vertical resolution of CAM6 and

linear interpolation cannot fully capture the Nd variability in the vertical. Despite the limitations, PPE ensemble members

simulate CCN and Nd flight composites that are comparable with observations.

CCN at 0.2% supersaturation correlates positively with Nd when comparing matched flight composites along individual

flight tracks in the PPE (Figure 2). This is not surprising as we expect CCN at 0.2% supersaturation to be a reasonable proxy280

for the aerosol particles that activate to form cloud droplets under typical marine boundary layer updraft conditions, consistent

with observations (McCoy et al., 2021). Hereafter, we refer to the simulated CCN at 0.2% supersaturation from CAM6 simply

as CCN for simplicity. Observations of CCN refer to the observed aerosol concentration with diameters ranging from 0.1 µm

to 1 µm from UHSAS100.

Figure 2 shows a subsample of ensemble members with varying levels of agreement with observations, but a positive cor-285

relation between CCN and Nd in log space is found for most of the PPE members (i.e., 224 out of 262). However, the linear

regression slope of Nd on CCN is high relative to observations for the majority of PPE members (Figure S4a). Because Nd

is a product of both CCN activating into droplets and precipitation removing drops (Wood et al., 2012), a higher CCN-Nd

slope in CAM6 does not necessarily indicate a higher simulated aerosol activation efficiency. This diagnostic is broadly telling

us that more CCN is required in CAM6 PPE to produce the same amount of Nd through aerosol activation in the presence290

of coalescence scavenging compared to observations, particularly at low Nd concentration (e.g., Figure 2a). Lower Nd over

SOCRATES is associated with increased precipitation rate and greater contribution of coalescence scavenging in controlling

Nd (Kang et al., 2022). The negative correlation between Nd and precipitation rate is also found in the CAM6 PPE (Figure S5).

The high bias in the regression slope of Nd on CCN in CAM6 PPE may indicate a stronger loss in Nd from overestimated
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Figure 2. Relationships between SOCRATES CCN and in-cloud cloud droplet number concentration (Nd) from in-situ measurements (red)

and CAM6 members (black), based on flight composites along individual flight tracks (scatters). Flight composites are constructed by binning

observations into 50 m (altitude) by 2 min (time) bins for each flight. CAM6 PPE CCN and in-cloud Nd are collocated to observation

composites (50 m × 2 min bins) by linear interpolation for individual PPE members. Bin medians are taken for comparison with CAM6

models following McCoy et al. (2021). CAM6 in-cloud Nd is computed as Nd divided by liquid cloud fraction (when cloud fraction ≤

1%, we set Nd = 0). PDFs of number concentrations of CCN (top) and cloud droplets (right) for matched binned values occurring for

CAM6 (black) and observations (red) are shown. (a) Default CAM6 configuration (i.e., PPE simulation for ensemble member 000), (b) PPE

simulation for ensemble member 010, (c) PPE 237, (d) PPE 244. PPE members numbered 010, 237 and 244 are chosen to represent cases

with varying levels of agreement between the simulated and observed CCN and Nd.
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coalescence scavenging at low Nd concentration in models. Additionally, the low-biased Nd may also be influenced by an un-295

derestimation of subgrid-scale vertical velocity, turbulence intensity, and other dynamical factors that suppress supersaturation

and droplet activation. We verify our hypothesis in the discussion of parameter constraints of CAM6 PPE using observations

in section 3.2.

Most of the PPE members simulate Nd that is low relative to observations, regardless of whether CCN is underestimated

(Figure S4, Figure 2). One example is the PPE ensemble of 244 of CAM6 where even though the simulated CCN is relatively300

close to observations, the Nd is still biased low. (Figure 2d). This supports the hypothesis in McCoy et al. (2021) that aerosol

biases are not the sole contributors to the low Nd in CAM6, highlighting the importance of other contributing factors.

Although most PPE members exhibit low Nd, there are some members that are close to observations (Figure S4, Figure 2c).

We next compare the PPE with observations to rule out PPE members that are far away from observations (e.g., Figure 2d) and

characterize which parameterized processes are important to ACI over SO.305

3.2 CAM6 parameter constraints from SOCRATES measurements

We compare campaign-means of CCN and Nd because averages reduce random errors of aircraft measurements due to instru-

ment noise, atmospheric turbulence, or other transient variations (Schutgens et al., 2020). Unlike random errors, systematic

errors such as sensor miscalibration and systematic sampling cannot be reduced by averaging. The model-observation compar-

ison process follows Eq 5 as detailed in Section 2.4.310

Observations of CCN and Nd identify and constrain physical processes that are important for ACI (Figure 3). We show the

10 most constrained parameters out of 45 in Figure 3. The full list of constrained parameter spaces is shown in Figure S6. By

examining how different parameter values are constrained relative to observables we can try to build an understanding of how

different processes drive observables. This also illustrates the problem of equifinality where observed values can be arrived at

by combining processes in different ways.315

Confronting the PPE with observations of CCN constrains aerosol processes (e.g. sea salt emission) and precipitation pro-

cesses (e.g. autoconversion, accretion) (Figure 3a; the detailed parameter explanation is in Table S1). The sea salt emission

scale factor is constrained to higher values, indicating observations of CCN during SOCRATES are consistent with stronger

aerosol production in the CAM6 PPE. This is consistent with a lack of aerosol production in CAM6 (McCoy et al., 2021; Zhou

et al., 2021).320

Constraints on precipitation processes point to the importance of precipitation as an aerosol sink. One of the key parame-

terization in warm cloud in climate models is the autoconversion, which represents the rate of initial rain formation through

collision-coalescence between small cloud droplets.

We can make sense of the relationship between CCN and the autoconversion parameters by looking at how the rate of rain

creation through autoconversion works in CAM6. Autoconversion in CAM6 is written as (Khairoutdinov and Kogan, 2000;325

Gettelman et al., 2015):(
∂qc
∂t

)
auto

= a · qbc ·N−c
d (7)
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Figure 3. 10 parameters with constrained parameter spaces with observations of (a) CCN, (b) Nd and (c) CCN & Nd. Parameter spaces are

standardized with mean 0 and variance 1. Warmer colors mean a higher intensity and more data points in that range.

where
(

∂qc
∂t

)
auto

is the rate of generation of rain from cloud water. The autoconversion rate depends on the cloud droplet con-

centration (Nd [cm−3] in Eq 7) and cloud water content (qc [kg/kg] in Eq 7). a, b and -c are uncertain parameters perturbed in

the CAM6 PPE (Table S1). They are micro_mg_autocon_fact, micro_mg_autocon_lwp_exp and micro_mg_autocon_nd_exp,

respectively. Selecting parts of parameter space that are consistent with observations of CCN leads to lower autoconversion330

scale factors (a in Eq 7) (less efficient rain production by cloud). The effect of larger exponents on liquid water content (b

in Eq 7) on the rain production depends on the relative magnitude of liquid water content qc. Larger b can result in thicker

clouds that precipitate more efficiently under conditions of qc > 1 kg/kg. A reversed effect can happen under conditions of

qc < 1 kg/kg. The condition of qc > 1 kg/kg seems unlikely during SOCRATES campaign observations and model simulations

(Khairoutdinov and Kogan, 2000; Gettelman et al., 2020). Overall, this results in a lower rain rate across cloud liquid water335

content values when the scale factor is minimized and the exponent is maximized for the liquid water content in typical stra-

tocumulus clouds (Figure S7). The shift to lower rain rate with observational constraints in CAM6 PPE indicates that rain rate

and the loss of CCN from precipitation scavenging are overestimated for the majority of members in CAM6 PPE.

Observations of Nd from SOCRATES constrain parameters related to aerosol and precipitation process (Figure 3b), consis-

tent with the findings in Wood et al. (2012) and Kang et al. (2022); McCoy et al. (2020) that the Nd budget is a function of340

a source of droplets from CCN and sink from collision-coalescence. The constraint on initial rain formation rate during auto-

conversion (Eq 7) and the constraint on the strength of precipitation suppression are consistent with CCN observations (Figure

3ab). Broadly, constraints on precipitation formation are consistent with a weaker sink of cloud droplets as well as less cloud
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droplet removal via precipitation. This supports the hypothesis in Section 3.1 that rain rate and the loss of Nd from precipitation

scavenging are overestimated for the majority of members in CAM6 PPE. We also want to note that the SO is dominated by345

supercooled liquid cloud (Gettelman et al., 2020; McCluskey et al., 2023), making the glaciation (Bergeron–Findeisen Process:

water vapor deposits onto ice crystals) important in this region. This means that the growth of ice crystals might be an important

sink for Nd. However, we believe the Nd loss from freezing is minimal when our analysis is restricted to the altitudes below 2

km. This is because a large fraction of snow melts and contributes to rain precipitation at low altitudes (Figure 2 in Field and

Heymsfield (2015)). Mixed-phase and ice cloud processes are important in initiating rain as most rain is derived from ice that350

has melted to form rain (Bergeron, 1935). However, the importance of ice processes is not apparent in our process constraint

focused on warmer clouds (Figure S6). McCluskey et al. (2023) examined ice processes over SOCRATES using observations

of detailed aerosol and ice nucleating particle (INP) measurements and models (e.g., CAM6), but the process constraints on

ice processes with observations of INPs is beyond the scope of this study.

The parameter constraints from observations of Nd are more stringent than the constraints resulting from using observations355

of CCN. This is consistent with Nd being the emergent product of aerosol and precipitation processes (Wood, 2012). In addition

to aerosol and precipitation processes, mechanisms important for aerosol activation are also constrained by Nd observations

(Figure 3b), such as deep convection (e.g., zmconv_capelmt), subgrid velocity (e.g., microp_aero_wsub_scale), and turbulence

(e.g., CLUBB: Cloud Layers Unified by Binormals parameters in table S1), as they play a role in vertical aerosol transport and

in generating supersaturation.In particular, microp_aero_wsub_scale is efficiently constrained to higher values, suggesting an360

underestimated subgrid velocity (i.e., lower updraft speed) that suppresses supersaturation, leading to lower Nd.

Finally, we examine the effect of constraining the PPE using observations of both Nd and CCN. The effect of combining

these constraints is similar to the constraint arrived by Nd alone (Figure 3c). This is consistent with Nd being an emergent

property of both aerosol processes and cloud and precipitation processes.

Observations of CCN and Nd during SOCRATES constrain aerosol, precipitation, and cloud processes. In the next section365

we examine whether the process constraint from observations of CCN and Nd constrains the response of Nd due to anthro-

pogenic aerosol. Precipitation rate would be a useful constraint on the response of Nd as both observations of CCN and Nd

constrain precipitation process as discussed in this section. However, the path to including an observational constraint of cloud

base precipitation is somewhat opaque and is not included here. Light precipitation rate at cloud base can be retrieved using

radar-lidar techniques (Kang et al., 2022), but to provide an apples-to-apples comparison to CAM6 in terms of cloud base370

precipitation we believe that an instrument simulator is needed (Silber et al., 2022).

3.3 Observationally plausible ∆Nd,PD−PI from SOCRATES measurements

As discussed in the previous section, observations of Nd and CCN constrain the range of possible process representations.

In turn, these same processes drive the response of Nd to anthropogenic aerosol. This results in a strong correlation between

PD Nd and PI Nd (Figure 4; black line) and by extension the change in Nd between PI and PD (Figure 4; orange line) in375

the CAM6 PPE. The fractional change in Nd (∆lnNd) is computed by taking the slope of ∆Nd,PD−PI to Nd following the

definition from Bellouin et al. (2020). The ∆lnNd predicted by the CAM6 PPE (0.23) is greater than the expert elicitation
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range from Bellouin et al. (2020) (i.e., 0.05 to 0.17) (Figure 4). The emergent relationship between PD Nd (observable) and

the ∆Nd,PD−PI (unobservable) with a r-value of 0.95 can be used to constrain the likely range of ∆Nd,PD−PI if we know

the possible range of PD Nd (observable). As suggested in Klein and Hall (2015), emergent relationships used for constraints380

require process-level understanding. We explain the emergent behavior from CAM6 PPE (Figure 4) using a sink-source model

of Nd in Section 3.3.2

Figure 4. Global oceanic mean of preindustrial (PI) Nd (black) and ∆Nd,PD−PI (orange) as a function of present-day (PD) oceanic Nd

from CAM6 PPE members (x-shaped markers). The 95% confidence on the interannual range of global oceanic mean Nd from MODIS is

shown in the gray vertical bar. The estimated ∆Nd,PD−PI based on the fractional change in Nd (∆lnNd) from Bellouin et al. (2020) is

shown in the orange shading.
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3.3.1 Constraint using regional measurements

One question is whether SOCRATES, a field campaign over the SO where natural aerosols dominate, can be used to constrain

the perturbation in Nd globally. SOCRATES samples natural aerosols and microphysical processes in a pristine environment385

(McCoy et al., 2021; McFarquhar et al., 2021), but it is not entirely isolated from the effects of anthropogenic aerosol emissions

(Figure 1a). This is consistent with Hamilton et al. (2014), who show that the SO in the present day atmosphere is not always

pristine. In addition to aerosol availability acting as a source for the Nd budget, both Nd and natural or anthropogenic aerosols

share similar removal pathways through precipitation scavenging (Zheng et al., 2024; Wood et al., 2012; Kang et al., 2022),

making the processes sampled during SOCRATES relevant for understanding the Nd perturbations on a global scale.390

Another question is simply how representative is the Nd observed in the sample from SOCRATES of the global mean.

Across the PPE, the campaign-mean Nd over SOCRATES correlates with the global, oceanic-mean of Nd with an explained

variance of 0.36 across the PPE members (Figure 5). This positive correlation in Nd is reasonable as processes that govern

droplet activation and removal of Nd share similarities over the global ocean and in the SO. The removal of Nd is primarily

due to the precipitation scavenging (Wood et al., 2012; Kang et al., 2022). The relationship between the amount of CCN and395

the resultant Nd contain information about this sink term as well as the transport of CCN to cloud.

The relationship between SOCRATES Nd and the global mean also speaks to the importance of the marine, pristine baseline

of aerosol in setting Nd. Previous studies underline the contribution of the oxidation of DMS (McCoy et al., 2015), sea spray

(Wood et al., 2012; McCoy et al., 2015; Kang et al., 2022), and transportation of anthropogenic aerosols from continents (Wood

et al., 2012; McCoy et al., 2018) to oceanic CCN.400

Observational records also show consistency in the amount of Nd between the SO and the globe. Spaceborne observations

of SOCRATES campaign-mean Nd and global-mean Nd are relatively consistent (Figure 5: black dot). In-situ campaign-mean

Nd (Figure 5: gray dashed line) is slightly less than spaceborne observations (Figure 5: black dot), while the difference is small

despite originating from entirely different methodologies.

We hasten to point out that we are not trying to argue that SOCRATES is sufficient to provide a complete picture of global-405

scale processes. However, SOCRATES does illustrate the utility of investigating even a single field campaign in this framework.

Including additional campaigns in future field is likely to provide additional constraint on global-scale processes.

3.3.2 Constraint from present day observations

Nd sampled during SOCRATES contains information for globally-relevant processes (Figure 5), but do PD observations of

aerosol and cloud properties constrain the anthropogenic perturbation in Nd? We find this to be the case in the context of the410

PPE. To dissect the causes of the relationship between PD Nd and PI Nd, the relationship between PD Nd and ∆Nd,PD−PI

and the relationship between CCN and Nd we turn to a simple budget model of Nd. Based on Wood et al. (2012); Kang et al.

(2022), the Nd budget model is described as a function of source of CCN and sink from precipitation scavenging

Nd,PD =

[
CCNFT +

F (σ)U2.8
10

Dzi

]
[
1+ hKPCB

Dzi

] (8)

16



Figure 5. Global oceanic mean of present day (PD) Nd versus SOCRATES campaign-mean Nd from the CAM6 PPE members (x-shaped

markers), 1M emulations from the PPE (orange color shading indicates density) and observations. The black dot shows the observational

global-mean Nd and campaign-mean Nd calculated from MODIS, with its 95% confidence interval based on the interannual range. Obser-

vational SOCRATES campaign-mean Nd from SOCRATES in-situ measurements is shown as the vertical dashed line with an uncertainty of

±20% from the campaign-mean.
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In Eq 8, the parameterized source of CCN is from free troposphere CCNFT and surface contribution F (σ)U2.8
10

Dzi
(e.g., sea spay

aerosol), where F (σ) is the sea spray function that depends on supersaturation (Clarke et al., 2006) and DZi is the subsidence415

rate at cloud top, which is used an approximate for entrainment rate (McCoy et al., 2020). For the precipitation sink term
hKPCB
Dzi

, h is the cloud thickness, K is a constant that depends on the collection efficiency of cloud droplets and PCB is the

rain rate at cloud base (Wood, 2006). The Nd budget model has been used to predict the Nd amount with confidence over the

subtropic and mid-latitudes (Mohrmann et al., 2018; Zheng et al., 2018; Kang et al., 2022).

In this study, we follow the basic source-sink model idea from Wood et al. (2012) but we simplify the Nd budget model to420

fewer terms for a conceptual understanding of the relationships between variables. The Nd budget model is written as

Nd =
λ ·CCN

1+ kremo ·PCB
(9)

Instead of parameterizing CCN source from free troposphere CCNFT and surface contribution F (σ)U2.8
10

Dzi
, we characterize

CCN source as λ ·CCN , where λ is a scale factor that accounts for the amount of CCN that can be activated to cloud droplets

depending on the vertical updraft, relative humidity, size and hygroscopicity of CCN, etc. λ varies from 0 to 1. For precipitation

sink term hKPCB
Dzi

, we simplified it as kremo ·PCB , where kremo equals to hK
Dzi

. It accounts for the rate of loss of Nd from425

precipitation. To estimate kremo, we set K = 2.25 m2 kg−1, subsidence rate Dzi = 4 mm s−1 following Wood et al. (2012);

Kang et al. (2022); McCoy et al. (2020). Cloud thickness h is set to 300 m, which is a typical magnitude for marine clouds

(Wood, 2012). Changing cloud thickness h to smaller (e.g., 100 m) or larger values (e.g., 500 m) does not significantly change

our results.

In this idealized set up, the CCN source (λ ·CCN ) and precipitation sink (kremo ·P ) are set to be the same between PI and430

PD. This is a reasonable assumption for CAM6 PPE as its parameter setup is the same in the paired PI and PD simulations.

The only difference between PI and PD is the amount of CCN. Therefore, we can write Nd budget model in PI and PD as

Nd,PI =
λ ·CCN

1+ kremo ·PCB
(10)

Nd,PD =
λ · (CCN +∆CCN)

1+ kremo ·PCB
(11)

where ∆CCN in Eq 11 stands for CCN from anthropogenic aerosol emissions. Eq 10 and Eq 11 allow for a simplified

representation of the underlying physical processes driving Nd budget in PI and PD. ∆Nd,PD−PI can be calculated by taking

the difference between Eq 11 and Eq 10435

∆Nd,PD−PI =
λ ·∆CCN

1+ kremo ·PCB
(12)

We evaluate the relationship between ∆Nd,PD−PI and PD Nd, CCN and Nd using the budget models. We calculate the

∆Nd,PD−PI and PD Nd in response to a anthropogenic perturbation of +∆CCN at varying precipitation rate PCB and

CCN scale factor λ. With this simplified set up, ∆Nd,PD−PI and PDNd, CCN and Nd are positively correlated (Figure 6),

consistent with the CAM6 PPE (Figure 2, Figure 4). At larger precipitation rate P, more CCN is needed to activate to form the
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Figure 6. Idealized relationships based on the source-sink model of the Nd budget (Eq 8 in Wood et al. (2012) with modifications). (a)

∆Nd,PD−PI versus PD Nd based on Eq 11 and Eq 12 at varying precipitation rate P. P is set to vary from 0 to 2 mm/day in 10 equal

increments. The varying P is within the observational range in Wood et al. (2012). CCN is set to 125 cm−3 as a background CCN from

natural source. ∆CCN is set to be varying between 100 to 400 cm−3 with 20 equal increments. kremo is set to 0.8. (b) Nd versus CCN at

varying precipitation rate P with the same model setup as (a). (c) ∆Nd,PD−PI versus PD Nd at varying CCN scale factor λ. Precipitation

rate P is set to 0.2 mm/day. (d) Nd versus CCN at varying λ with the same model setup as (c).
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same amount of Nd (Figure 6b). This leads to an overall lower Nd and Nd change due to aerosols at high precipitation rate440

(Figure 6a). With more CCN amount (or larger λ), there is a higher Nd and Nd change due to aerosols (Figure 6cd). These

results suggest that the positive correlations in CAM6 PPE members are driven by sink from precipitation scavenging and

source from CCN as depicted in the idealized model.

Understanding the positive relationships in CAM6 PPE we can use PD observations of Nd to constrain unobservable quan-

tities such as perturbations in Nd due to anthropogenic aerosols. To constrain global-mean quantities, we use observations of445

Nd from SOCRATES campaign as the variance in global oceanic-mean Nd is largely explained by SOCRATES campaign-

mean Nd (Figure 5). In addition to PD Nd observations, we use the observed aerosol concentration from UHSAS100 from

SOCRATES as a proxy of CCN to provide an additional constraints on ∆Nd,PD−PI as the parameter spaces of the PPE have

been shown to be constrained by CCN in Section 3.2 (Figure 3a). Precipitation processes are constrained by both observations

of CCN and Nd as discussed in secton 3.2. Inspired by this, we wanted to examine the effects of cloud base precipitation450

on the constraints on ∆Nd,PD−PI . However, we found it difficult to make a direct comparison between CAM6 and cloud

radar–lidar–retrieved precipitation rates at cloud base. Therefore, our constraints on ∆Nd,PD−PI focus on observations of

CCN and Nd. Nonetheless, we provide an illustration of what the constraints would behave if observed precipitation rates were

used, based on idealized sensitivity tests discussed in Section 3.3.3.

3.3.3 Constraints from CCN and Nd measurements455

Figure 7. (a) SOCRATES campaign-mean Nd versus campaign-mean CCN and colored by present-day Nd from the CAM6 PPE members

(color dots) and 1M emulations from the PPE (color shading). Emulate density is shown in solid contours. (b) The same with (a) but colored

by ∆Nd,PD−PI . The color shading shows 2D bin-averaged values of (a) global mean Nd and (b) ∆Nd,PD−PI , computed using 60×60 bins

in SOCRATES CCN and SOCRATES Nd space. This smoothing highlights large-scale patterns while excluding sparsely sampled regions.

Colored points show individual PPE members without averaging. Observational SOCRATES campaign-mean CCN (i.e., UHSAS100) and

Nd from SOCRATES in-situ measurements is shown as the gray shaded bars with an uncertainty of ±20% from the campaign-mean.
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Before going into the constraints, we first examine the aerosol activation across the PPE members with different param-

eterizations. Campaign-mean CCN and Nd are positively correlated across PPE ensembles (Figure 7a), consistent with the

CCN-Nd relationship across flight composite in individual models (Figure 2) and the idealized model (Figure 6ac).

Understanding emergent relationships is essential in constraining unobservable quantities (Klein and Hall, 2015). With the

idealized Nd budget model (Figure 6), we have understood how the physical processes (i.e., source of Nd from CCN; sink of460

Nd from precipitation scavenging) are related to the correlations between variables across the CAM6 PPE (Figure 2, Figure 4).

Next, we use airborne observations of CCN and Nd to rule out implausible model variants out of the 1 million variants

emulated from the CAM6 PPE (Figure 7b) following the implausibility metric (Eq 5). The prior 2.5-97.5th percentile range of

∆Nd,PD−PI is 3.6 cm−3 to 19.8 cm−3. Based on the implausibility metric (Eq 5), observations of CCN have no effect on the

constraints on ∆Nd,PD−PI . Using the same implausibility metric, observations of Nd over SOCRATES constrains the range465

of ∆Nd,PD−PI to be 6.1 cm−3 to 20.4 cm−3 at the 2.5-97.5th percentile, equivalent to 12% reduction in range and the median

increases by 16% (Figure 8a). The constraints on ∆Nd,PD−PI are also consistent with the results in Song et al. (2024) that

utilizes hemispheric contrast of Nd as a proxy to ∆Nd,PD−PI using observations of remote sensing from MODIS, indicating

the consistencies between measurements of Nd from different observing techniques.

Figure 8. The distribution of emulated ∆Nd,PD−PI prior (grey shading), and observationally-constrained posterior from SOCRATES

observed CCN only (orange), Nd only (blue), and CCN and Nd (green). (a) With emulator uncertainty. (b) without emulator uncertainty.
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In this study, the emulator predictions are based on emulator mean predictions (i.e., M in Eq 4) and emulator uncertainties470

(i.e., Error(M) in Eq 4). Although the emulator mean predictions are overall good, the emulator uncertainty created for CAM6

PPE outputs are relatively large (Figure S2). This may have a huge impact on the model-observation comparison process

(Figure S3, Eq 4). We therefore examine the constraints on ∆Nd,PD−PI without the effects of emulator uncertainties (i.e., set

Error(M)=0 by setting the number of variance to 0 (i.e., 0*
√
V ar(M)) in Eq 5) to check whether this change significantly

affects our constraints. The implausibility metric in this case follows475

I(x) =
|M −O|
|O ∗ 20%|

> 1 (13)

Consistencies are found in the observational constraints on ∆Nd,PD−PI under conditions both with and without emulator

uncertainties. Observations of CCN have no effect on the constraints under both conditions (Figure 8), suggesting that the

zero constraint from CCN is not a result of large emulator uncertainties. Instead, the near zero constraint on ∆Nd,PD−PI

from CCN might be because the CCN provides less information about the number of cloud droplets that can form through

aerosol activation compared to direct measurements of cloud droplet numbers. Although CCN number concentration at a given480

supersaturation accounts for a certain level of chemical composition of aerosols (i.e., hygroscopicity and size), environmental

conditions, which is critical for their activation to cloud droplets, is less known. The observational constraints on ∆Nd,PD−PI

from SOCRATES Nd are consistent in both conditions in terms of the positive shift in the likely range of ∆Nd,PD−PI .

Observations of Nd narrow the ∆Nd,PD−PI range more efficiently under the condition without emulator uncertainties than

under the condition with emulator uncertainties. The reduction in range of ∆Nd,PD−PI is 21% and the increase in the median485

is 28% when calculated without emulator uncertainties (Figure 8b).

Observations of CCN and Nd consistently constrain aerosol and precipitation processes as we discussed in section 3.2 so we

examined their joint effects on ∆Nd,PD−PI in Figure 8. We found great improvement on the Nd constraint when including

the effects of CCN, assuming no emulator uncertainty (Figure 8b). The ∆Nd,PD−PI range is narrowed down by 27% and the

median shifts from 11.7 cm−3 to 15.5 cm−3 (i.e., 35% increase in median). The result suggests that the direction (e.g., positive490

or negative shift) of the constraint on ∆Nd,PD−PI is not sensitive to emulator uncertainty, while the strength of constraints is

sensitive to emulator uncertainty.

Precipitation scavenging works as a sink for both CCN and Nd (Figure 6ab), suggesting the strong potential of using pre-

cipitation rate as an observational constraints on ∆Nd,PD−PI . We found it is difficult to make apples-to-apples comparison

between CAM6 and cloud radar-lidar retrieved precipitation rate at cloud base. Therefore, we do not use observed precipitation495

rates in this study. Instead, we examine what the constraints on ∆Nd,PD−PI would respond under two hypothetical campaign-

mean surface precipitation rate constraints, used as idealized sensitivity tests. The results suggest that surface precipitation rate

has no constraint on ∆Nd,PD−PI (Figure S8). The zero constraint might be due to surface precipitation rate is less informative

than cloud base precipitation rate on the Nd budget due to the evaporation during descent. Another possible explanation is

that while the precipitation sink explains a lot of variance from flight to flight, (Kang et al., 2022), it doesn’t vary as dramati-500

cally between ensemble member representations of the entirety of the campaign mean because it is strongly controlled by the

amount of water vapor and circulation. Overall, we believe further development of instrument simulators for simulating cloud
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base precipitation rate for global models is needed to improve our ability to leverage airborne cloud base precipitation rate to

constrain global behavior.

As discussed in Section 2.4, using UHSAS100 as a proxy to CCN at 0.2% (CCN02) supersaturation may underestimate the505

observed CCN02. We conduct a sensitivity test on the constraints on ∆Nd,PD−PI by increasing the observed CCN by 8% to

40%, based on the 25th to 75th percentile range of the CCN0.2:UHSAS100 ratio shown in Figure S2a of McCoy et al. (2021).

The results suggest that increasing the observed CCN does not significantly affect the constraint on ∆Nd,PD−PI (Figure S9).

3.4 Sensitivity tests on the observationally plausible ∆Nd

The uncertainty associated with airborne measurements of aerosol and cloud microphysics is difficult to define as a fixed value510

because it depends on multiple sources of uncertainties such as: sampling error due to limited spatial and temporal coverage

of flight tracks, variability in flight patterns (e.g., altitude, and positioning relative to cloud features), instrument noise due

to environmental variability (e..g., turbulence, wind shear). Therefore, assuming a fixed observation uncertainty of ±20% for

airborne measurements in Section 3.3.3 is just a to provide a baseline amount of uncertainty.

In this section, we perform sensitivity tests on the observationally plausible ∆Nd,PD−PI by the varying observational515

uncertainty under conditions of with emulator uncertainty (i.e., Error(M) = ±1.96 ∗
√

V ar(M) in Eq 5) and without emulator

uncertainty (i.e., Error(M) = 0∗
√
V ar(M) in Eq 5). Systematic uncertainty in the observations is assumed to vary from ±5%

to ±100% for the campaign-mean. The constraints on ∆Nd,PD−PI is calculated as the reduction in the 2.5-97.5 percentile

range of ∆Nd,PD−PI following Eq 6.

Figure 9 shows the constraints on ∆Nd,PD−PI by observations of CCN (orange line), Nd (blue line) and combining CCN520

and Nd (green line). Overall, ∆Nd,PD−PI is more tightly constrained without emulator uncertainty (Figure 9bd), which makes

sense as excluding emulator uncertainties (i.e., Eq 13) allows more model variants to be excluded during model-observation

comparison relative to Eq 5. The constraints on ∆Nd,PD−PI under two conditions (i.e., with and without emulator uncertainty)

both have a positive shift in the 2.5-97.5 percentile range (Figure 9cd), suggesting the constraints are not a result of noise from

emulator uncertainties.525

Consistent with Figure 7, observations of CCN provide nearly no constraint on ∆Nd,PD−PI regardless of the uncertainty

in CCN (Figure 9: orange line). With increasing uncertainties from airborne measurements of Nd, the plausible range of

∆Nd,PD−PI is less constrained under both conditions of with and without emulator uncertainty (Figure 9: blue line). The

weakened constraints on ∆Nd,PD−PI with increasing uncertainties in observations is due to the retention of more model

variants as plausible during model-observation comparison process (Figure S3), thereby exacerbating the equifinality problem530

(Johnson et al., 2020), for which increasing number of plausible parameter combinations results in broader parameter spaces

and thereby reduced constraints on ∆Nd,PD−PI (Figure 9ab).

The reduction in ranges (constraints) becomes negligible with observation uncertainty of Nd reaching ±75% under the

condition with emulator uncertainty (Figure 9a). The threshold of observational uncertainty of Nd that can achieve constraints

is a bit larger under the condition without emulator uncertainty, which is ±85% (Figure 9b), suggesting skillful emulators play535

an important role in advancing our constraints. Again, we view uncertainty from emulation as an eminently tractable problem
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Figure 9. (a) The reduction in the observationally-constrained 2.5-97.5 percentile range of ∆Nd,PD−PI relative to the emulation prior range

with increasing aircraft measurements uncertainties with emulator uncertainties considered, following the implausibility metric as described

in Eq 5. Observations are from SOCRATES CCN from UHSAS100 (orange), Nd from CDP (blue) and both observations (green). Uncertainty

ranges from ±5% to ±100% from the campaign-mean with 5% equal increments. (b) The same (a) but without emulator uncertainty,

following the implausibility metric described as Eq 13. (c) The 2.5th, 50th and 97.5th percentile value of the observationally-constrained

∆Nd,PD−PI from SOCRATES CCN (orange), Nd (blue) and both lines of observations (green) as a function of aircraft measurements

uncertainties. (d) The same with (c) but without the effects of emulator uncertainty.
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compared to developing a better understanding of instrumental systematic uncertainty. Improving emulator uncertainty can

be achieved by creating PPEs that can be easily emulated through a more careful selection of perturbed parameters and an

increased amount of training data.

Another key insight from Figure 9 is that the improvement in constraint when both Nd and CCN are considered emerges at540

low observational uncertainties for both measurements (Figure 9ab: green line is above the blue). The improved constraint is

also found in Regayre et al. (2023) that adding the number of constraint variables with no structural inadequacies improve the

constraints on aerosol forcing when their constraints are consistent across multiple observation types. In our work, although the

constraints on ∆Nd,PD−PI by observations of CCN is minimal, the constraints on parameter spaces by airborne observations

of CCN and Nd are consistent (Figure 3), resulting in the improved constraints on ∆Nd,PD−PI . The improvement of the con-545

straints on ∆Nd,PD−PI only happens with small uncertainties associated with airborne measurements (Figure 9ab: green line),

highlights the importance of accurate airborne measurements of aerosol and cloud properties on constraining ∆Nd,PD−PI .

4 Conclusions

We use observations of aerosol (i.e. CCN) and cloud properties (i.e. Nd) from airborne in-situ measurements taken during

SOCRATES (the Southern Ocean Clouds, Radiation, Aerosol Transport Study, Figure 1) to constrain model parameters related550

to aerosol-cloud interactions. To systematically examine constraints on parameterized processes, we used a PPE that varies

45 parameters related to aerosol-cloud interactions. While a large number of ensemble members (i.e ., 262) were integrated

across 45-dimensional parameter space, this sampling was still very sparse in an absolute sense. To better map this space,

we trained statistical emulators (Figure S2) to create a set of 1 million model variants. Each model variant was compared

against observations and are retained if its implausibility is less than 1 based on the implausibility metric (Figure S3, Eq 4).555

Our constraint on processes in this framework (Figure 2, 3) resulted in a constraint on the anthropogenic perturbation to Nd

(∆Nd,PD−PI ) (Figure 8).

Airborne observations of CCN and Nd over SOCRATES both constrain parameter spaces related to aerosol emission and

precipitation processes (Figure 3), providing insights on developing in-situ instruments targeting these processes to better

constrain cloud properties. Observations of Nd are more effective than CCN at constraining parameter space (Figure 3ab).560

With constrained parameter space with observations of CCN and Nd (Section 3.2), we examine the likely range of ∆Nd,PD−PI

at the constrained parameter space. One key result is that observations of CCN alone have minimal constraint on ∆Nd,PD−PI ,

but the constraint from observations of Nd is strong (Figure 8). This is sensible because aerosol concentrations from UH-

SAS100 give information about the aerosol population, but they do not directly inform the activation of aerosols into droplets.

To explain why the constraints work when using observations of Nd, we use idealized sink-source models of Nd (Eq 11,565

10). Previous work identifies the precipitation sink of droplets as a key driver of Nd variability (Kang et al., 2022; Wood et al.,

2012; McCoy et al., 2020). We extended these budget models to anthropogenic perturbations to Nd (Figure 6), and used the

result to understand relationships emergent from the CAM6 PPE (Figure 2, 4, 7). Within the Nd budget model framework, we
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identified both the precipitation sink and how CCN form droplets as important in controlling the positive correlation between

CCN and Nd (Figure 6bd), the positive correlation between present day (PD) Nd and ∆Nd,PD−PI in CAM6 PPE (Figure 6ac).570

Understanding the emergent behaviors from the CAM6 PPE (Figure 4), we next note that the amount of campaign-mean Nd

over SOCRATES is a good approximate of the global oceanic-mean Nd (Figure 5). Within this framework, observations of

Nd over SOCRATES constrains the amount of global ∆Nd,PD−PI due to anthropogenic aerosol influence in the CAM6 PPE,

with the strong positive correlation between PD Nd and ∆Nd,PD−PI in CAM6 PPE (Figure 4), which can be explained in the

context of Nd sources and sinks (Figure 6).575

We find that the range of parameters associated with precipitation processes that are consistent with observations of CCN

and Nd is narrow, suggesting the potential of using precipitation rate as an observational constraints on ∆Nd,PD−PI . We

examine what the constraints would be like if we know the observed surface precipitation. However, the constraints from two

hypothetical surface precipitation is minimal (Figure S8). We did not include cloud base precipitation rate as a constraint due

to the difficulty in comparing the simulated cloud base precipitation from CAM6 PPE with cloud base precipitation retrieved580

from cloud radar and lidar from SOCRATES. We identify further development of instrument simulators for global models as a

useful avenue to improve our ability to leverage airborne data (e.g., cloud base precipitation) to constrain global behavior.

We find the constraints are sensitive to the implausibility setup. Overall, observations of Nd constrain ∆Nd,PD−PI to a

12% reduction in range and a 16% increase in the median, under the condition of with emulator uncertainty (Figure 8a). The

constraint is improved under condition of no emulator uncertainty, for which the reduction in range of ∆Nd,PD−PI is 21% and585

the increase in the median is 28% (Figure 8b). The results suggest reducing emulator uncertainty is important for improving our

constraint. More skillful emulators can be achieved by a careful selection of parameters focusing on key processes affecting

ACI, particularly aerosol activation, cloud microphysics, and precipitation process as we discussed earlier in Section 3.2.

Additionally, this work provides insights in the possible parameters ranges in creating PPEs in the discussion of parameter

constraints in Section 3.590

We examine the sensitivity of the constraints on ∆Nd,PD−PI with observational uncertainties (Figure 9). We find discard-

ing parameter combinations that don’t mesh with observed CCN and Nd during SOCRATES yields an improved constraint

on ∆Nd,PD−PI when we disregard emulator uncertainty and when observational uncertainty decreases (Figure 9ab). This

highlights the importance of considering systematic uncertainties in observations and continuing to develop our understanding

of systematic uncertainty in observations of microphysics as well as designing campaigns that allow for stochastic sampling595

and more direct comparisons to ESMs.

In future work, incorporating additional in-situ constraints, such as aerosol composition, size distributions, or lidar–radar-

retrieved cloud and precipitation properties could further narrow the range of plausible PPE configurations. Alternatively,

adding more variables as observational constraints may expose structural model uncertainties if the observations are incom-

patible with any members of the PPE ensemble (Regayre et al., 2023). Instrument simulators that translate model outputs600

into observation-like quantities (e.g., cloud-base precipitation rate) will also be essential for consistent comparisons. More-

over, incorporating variables such as ice-nucleating particles or ice crystal concentrations, could extend the PPE framework to

mixed-phase regimes. While such extensions are beyond the current scope of this study, which focuses on warm liquid clouds,
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they represent promising directions for future work. Together, these directions can improve the use of PPEs in constraining

aerosol–cloud interactions.605
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