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Abstract. Aerosol-cloud interactions (ACI) in warm clouds alter reflected shortwave radiation by influencing cloud microphys-
ical and macrophysical properties. The variable of state controlling ACI is the cloud droplet number concentration (/V;). Here,
we examine the perturbations in IV, due to anthropogenic aerosols (AN pp_ pr) using a perturbed parameter ensemble (PPE)
hosted in the sixth Community Atmosphere Model (CAM®6). Surrogate models are created for the CAM6 PPE outputs and are
used to generate 1 million model variants of CAM6 by sampling 45 sources of parameter uncertainty. The range of uncertain
physical parameters related to ACI are constrained with observations of aerosol and cloud properties from SOCRATES. The
likely range of uncertain parameters and the associated range of ANy pp_ py are more strongly constrained with observations
of Ng relative to observations of cloud condensation nuclei. We conduct sensitivity tests of how constraints on ANy pp_ p are
affected by systematic uncertainties in observations and our limitations in our surrogate models created for CAMG6 PPE outputs.
Based on this, we provide guidance on the impact of reducing systematic uncertainty in airborne microphysical observations

and in surrogate models.

1 Introduction

Clouds play an essential role in setting Earth’s top of atmosphere energy flux by reflecting incoming shortwave radiation
back to space. Aerosols are important for cloud formation as they serve as cloud condensation nuclei (CCN) for water vapor to
condense onto. CCN make cloud droplet formation possible in atmospheric conditions. Aerosols from anthropogenic emissions
alter cloud droplet number concentration (/Ng) by acting as CCN, enhancing cloud reflectivity (Twomey, 1977). The change
in reflected shortwave radiation (i.e., radiative forcing: RF in W/m?) through changes in IV is referred to as the instantaneous
radiative forcing due to aerosol-cloud interactions (IRFaci). According to the formulation in Bellouin et al. (2020), IRFaci is
given by

OR
81nNd LWP,,C

IRFaci = -Aln Ny (1)
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where R is the net radiative flux. LW P, is the in-cloud liquid water path (LWP) and Aln N, is the fractional perturbation in
Ny (Ghan et al., 2016; Bellouin et al., 2020). The vertical line in the partial derivative denotes LW P, and cloud fraction (C)
are held constant (Bellouin et al., 2020). With changes in N,4, cloud macrophysical properties can be altered in response to
changes in cloud microphysics, such as cloud lifetime, liquid water content and cloud cover (Ackerman et al., 2004). The RF

caused by modifications to cloud macrophysics is referred to as aerosol-cloud adjustment and is given by

OR dC_ OR_dLWP,
9C dinNy ~ OLWP, dinNy

RFadju,stment = < ) . AlnNd (2)

The sum of radiative forcing from IRFaci and aerosol-cloud adjustment is termed effective RF due to ACI (ERFaci), which

can be expressed as
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Recent assessments place ERFaci as the largest uncertainty in anthropogenic climate forcing. This uncertainty also compli-
cates efforts to infer climate sensitivity from the historical record, as the cooling from ACI can mask the warming effects of
greenhouse gases (GHGs) (Bellouin et al., 2020; Forster, 2016; Watson-Parris and Smith, 2022).

Earth system models (ESMs) are essential for estimating ERFaci as they can estimate the unobservable preindustrial baseline
of the atmosphere (Carslaw et al., 2017; Wall et al., 2022). However, ESMs are uncertain in their representations of aerosols and
their climate effects. This uncertainty can be related to structural uncertainty (what processes to include in a model) (Regayre
et al., 2023) and parametric uncertainty (how the values of parameters in the mathematical representation of processes are set
in the ESM) (Regayre et al., 2018). The uncertainties in ERFaci related to parametrizations of unresolved aerosol processes,
emissions, and cloud microphysical processes within a single model can be as large as the spread across models with different
model structures. This supports the utility of understanding parametric uncertainties (Johnson et al., 2018). A commonly
used method is to employ a perturbed parameter ensemble (PPE). This method involves exploring many possible parameter
combinations across their uncertainty range to quantify the range of possible outcomes. The plausible range of ERFaci can
be estimated using a set of parameter combinations, provided there is good agreement between observations and the model
simulations generated by those parameter combinations (Regayre et al., 2018).

Wood (2012) argues that the variable of state (or most important variable) in understanding ACI is the N,. Effectively,
changes in Ny play a pivotal role in governing cloud radiative and macrophysical behavior. This means that to reduce un-
certainty in ERFaci, constraining the anthropogenic perturbation to N4 is essential as both IRFaci (Eq 1) and aerosol-cloud
adjustment (Eq 2) scale with change in V4 (Bellouin et al., 2020; Song et al., 2024).

One obstacle in seeking an observational constraint on the N, response to anthropogenic aerosol is that the processes
driving the N, response primarily occur at the microscale and the result of these processes poses observational challenges.
Past studies have used observations of N4 from spaceborne remote sensing to constrain the change in Ny during historical
periods, achieving consistent observational constraints across different host models using the same observations (McCoy et al.,
2020; Song et al., 2024; Gryspeerdt et al., 2016). However, observations of aerosol and cloud microphysical properties from

remote sensing are known to have uncertainties arising from factors such as assumptions about particle size distributions, cloud
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microphysics, and radiative transfer models used in the retrieval process (Grosvenor et al., 2018; Zhang et al., 2016; Gryspeerdt
et al., 2022).

In-situ measurements provide direct measurements of aerosol and cloud microphysical properties without reliance on re-
trieval algorithms or assumptions used in remote sensing. It also measures more detailed microphysical properties such as
aerosol size distribution, chemical composition, and cloud droplet number concentration and size distributions. However, in-
situ measurements can suffer from a wide variety of instrument biases and limitations and the impact of these limitations on
our ability to use them for climate studies is not well characterized. For instance, instruments used for measuring aerosol and
cloud properties can only detect subsets of the full particle distribution due to their limited sampling volume, and they cannot
measure the full spectrum of particle sizes (Lance et al., 2010). In-situ measurements from aircraft occur with a much smaller
footprint than a typical ESM and are often targeted towards features that make them not representative to compare to an ESM
grid cell (Field and Furtado, 2016). Additionally, by their nature aircraft campaigns have minimal global coverage and it is
unclear how effective a constraint on global model behavior they provide.

In this paper, we focus on characterizing an observational constraint on the change in N4 during the historical period
(ANg pp—pr) based on in-situ measurements from a single campaign to illustrate the utility of combining two key tools:
ESMs and airborne observations of microscale properties. We expand on previous work (Gettelman et al., 2020) by examining
parametric uncertainty across a single ESM (i.e. using a PPE) and characterizing what we can learn from an airborne campaign
and expanding on previous PPE work leveraging surface observations of aerosol properties (Regayre et al., 2020). We use
observations of both aerosol and cloud properties from aircraft in-situ measurements. We address the following question: 1)
do aerosol or cloud measurements better constrain global cloud microphysical behavior? 2) can sparse in-situ measurements
produce constraints on cloud microphysical behavior on a global scale? 3) how sensitive is the observational constraint on
ANy pp—pr to observation uncertainties? We provide this analysis with the goal of (i) showing the connection between in-
situ measurements and our understanding of climate (Regayre et al., 2020) and (ii) characterizing where to expend effort in

terms of sampling with in-situ measurements and model development.

2 Materials and Methods
2.1 The CAMG6 Perturbed parameter ensemble

We use the Community Atmosphere Model version 6 (CAMG6), which is the atmosphere component of the Community Earth
System Model version CESM-2.0 (Danabasoglu et al., 2020). The CAM6 model uses a two-moment microphysics scheme
for stratiform clouds, with liquid, ice, rain, and snow hydrometeors calculated as prognostic variables, allowing CAM6 to
explicitly represent the aerosol indirect effect (Gettelman and Morrison, 2015; Gettelman et al., 2015).

We leverage a perturbed parameter ensemble (PPE) hosted in CAM6 (Eidhammer et al., 2024). A PPE is a large set of
simulations based on the structure of a single ESM (e.g., CAM6) with a different combination of parameter values to examine
parameter uncertainty (Lee et al., 2011; Carslaw et al., 2013). The CAMG6 PPE is fully described in Eidhammer et al. (2024).

CAMG is run at the standard resolution of 1.25°%0.9375° resolution. Briefly, 262 model simulations (i.e., 262 parameter com-
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binations) of CAMG6 sample 45 sources of uncertainty in the parameterizations for cloud, precipitation, convection, boundary
layer, and aerosol processes. The 45 parameters are simultaneously perturbed using Latin Hypercube within the plausible range
of realistic values based on expert-elicitation. We examine 203 ensemble members out of 262 integrated. The remaining 59
members were excluded based on criterion: (1) the linear regression slope of N, to CCN in log space (dinNy/dinCCN) is
less than 0; (2) the correlation coefficient between Nz and CCN is less than 0.3. The two criteria are used to exclude PPE
members that are too far outside the observational constraint behaviors (i.e., the Southern Ocean field campaign measurements
analyzed in Figure 14 in McCoy et al. (2021)). Following Song et al. (2024), we also exclude PPE members that simulate too

much ice in tropics, which is inconsistent with satellite observations (King et al., 2013).
2.2 Model Configuration

Two scenarios are simulated and each of them use the same parameter combinations - consistent with previous studies (Song
et al., 2024). First, 2-year global simulations saved at monthly-mean are completed for pre-industrial (PI) and present-day (PD)
emissions. PI and PD aerosol emission scenarios are integrated from 2019 to 2020 so anthropogenic perturbations in N4 can be
calculated over global coverage by taking the difference between PI and PD. The atmosphere is nudged to horizontal winds and
temperature and sea surface temperature and sea ice fraction are prescribed from observations. Wind and temperature fields are
nudged to the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) reanalysis (Bosilovich
et al., 2015) with 24-hour relaxation time. MERRA?2 output is interpolated to CAM6 vertical resolution with standard 32
vertical levels from the surface to 3 hPa following Gettelman et al. (2020). Previous studies have shown the CAM6 PPE
produces a wide range of perturbations in cloud microphysics (e.g., ANy pp—pr) and cloud macrophyiscs (ALW Ppp_pr).
In this study, we focus on diagnosing the parametric effects on cloud microphysical responses to anthropogenic aerosols from
different parameter combinations using the PPE.

In addition to the two-year integrations of the PPE used to calculate anthropogenic perturbations in Ny, the PPE is in-
tegrated over short periods consistent with the Southern Ocean Clouds, Radiation, Aerosol, Transport Experimental Study
(SOCRATES) field campaign based from Hobart, Tasmania (McFarquhar et al., 2021) (Figure 1). The SOCRATES campaign
occurred over the midlatitude Southern Ocean (SO) during austral summer and was dominated by a series of frontal systems,
postfrontal stratocumulus decks, and cyclonic activity typical of the storm track region (McFarquhar et al., 2021). Model out-
puts are saved along flight tracks over SOCRATES and is sampled at 1 min resolution following Gettelman et al. (2020). It
applies atmospheric nudging to horizontal winds and temperature, consistent with global simulation with PI and PD aerosol
emissions scenarios, but nudged to the period of January-March 2018 when the aircraft observations were conducted. The be-
havior of the default parameter configuration in CAM®6 has been characterized using this approach in Gettelman et al. (2020);
McCoy et al. (2021); McCluskey et al. (2023); Zhou et al. (2021).

Previous studies have shown that the CAM6 PPE, configured with 2-year global simulations, produces a wide spread in
present-day (PD) cloud microphysical (NV;) and macrophysical (LWP) properties. The mean-state PD values have been shown
to fall within the observational range derived from satellite remote sensing (Song et al., 2024). Additionally, CAM6 simulations

along flight tracks using the default parameter configuration reproduce many features of in-situ observations, including cloud
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phase, cloud location, and boundary layer structure (Gettelman et al., 2020). These results give us confidence that at least
some members of the nudged PPE simulations provide a physically plausible baseline in terms of cloud microphysical and

macrophysical properties. In this study, we focus specifically on microphysical properties.
2.3 Aircraft Sampling

We examine in-situ airborne observations taken from SOCRATES as our observational constraint (McFarquhar et al., 2021).
The importance of the Southern Ocean (SO) to understanding the global anthropogenic contribution to N, has been shown
in several previous studies (Carslaw et al., 2013; McCoy et al., 2020). The National Science Foundation Gulfstream-V (GV)
aircraft was deployed during January-March 2018 for SOCRATES. There were 15 flights sampling data from 42°S to 62°S
with aerosol and cloud properties sampled at 1 Hz frequency. The GV was equipped with a variety of sensors and instruments.
In this work, N4 from the cloud droplet probe (CDP) and aerosol number concentrations from the ultra-high sensitivity aerosol
spectrometer (UHSAS) are examined. We focus on accumulation mode aerosols, with diameters ranging from 0.1 ym to 1 pm,
reported as UHSAS100 in this paper following McCoy et al. (2021). Accumulation mode aerosol usually accounts for most of
the surface area of aerosols and is a good estimate of the CCN concentration for stratocumulus updraft velocities (Seinfeld and
Pandis, 2016).

With a focus on low-level, liquid cloud, we restrict the aircraft measurements of aerosol and cloud to be below 2 km. As
in previous studies (McCoy et al., 2021), in-situ aircraft aerosol measurements are discarded when the liquid water content
(LWC) from the CDP exceeds 0.001 ¢/m—2g/m?, along with the subsequent 10 seconds after cloud detection. This is to avoid
measurement contamination from cloud (McCoy et al., 2021). In-cloud N; measurements are restricted to regions where the
LWC from the CDP is greater than a threshold (0.1 g%m;‘w) following McCoy et al. (2021). Because the observations of
aerosols and in-cloud Ny that are considered valid for use are taken at different locations, direct comparison is challenging due
to inconsistencies in spatial and temporal coverage. To make comparisons between N; and aerosol observations, we bin the
aircraft measurements by 2 min in duration and 50 m in altitude so that aerosols and /N; can be compared in the same bin. Only
bins with at least ten 1 Hz flight observations are considered valid composites for use. Median values of aerosol concentration
and N, are computed for each bin for observations from each flight following McCoy et al. (2021). The instrument limitation
inevitably forces us to look either at small clouds or cloud edges, where both the measurements of aerosol and cloud are valid
for use. This has minimal impact on our comparison between models and observations as we colocate model output with

observations as detailed in Section 2.4.

In this study, we focus exclusively on low-level, liquid clouds simulated by the stratiform (large-scale) cloud microphysics
scheme (MG2) in CAMG, as CAM6’s convective scheme does not include prognostic microphysical variables such as Ng,
which is a key quantity in our analysis. As such, all Ny values analyzed in this study originate from the stratiform cloud
scheme. Furthermore, we limit our comparison with aircraft observations to altitudes below 2 km, corresponding to the marine
boundary layer and excluding a large potion of clouds formed by deep convection (Kang et al., 2024). The majority of simulated
Ng in CAMG is also concentrated below 2 km (Zhou et al.,, 2021). The convective scheme, while it may be triggered during
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Figure 1. Maps of SOCRATES mission flight tracks from the NSF G-V aircraft. (a) Location of the SOCRATES aircraft sampling and the

PINd
PDNd

ratio of preindustrial to present day N4 shown in colors. The ratio is computed as using the preindustrial and present-day simulations

run for two years configured with default CAM6 parameter setting. Ratios less than 1 indicate anthropogenically polluted regions. (b)
Comparison of sampling of aircraft measurements (black line) with CAM6 grid point centers (red dots). Along-flight-track simulations are

run for January—March 2018, covering late austral summer into early autumn.

ostfrontal cloud conditions, does not contribute to N; in CAM6. The convective scheme can contribute to precipitation, while
this is beyond the scope of analysis in the present study.

2.4 Comparison Between Model data and Observations

The default configuration of CAM6 has been extensively evaluated in Gettelman et al. (2020) and McCoy et al. (2021) and
has been shown to be able to reproduce many features consistent with in-situ observations in Gettelman et al. (2020). Here, we
examine a PPE that is hosted in the same model evaluated in previous studies (McCoy et al., 2021; Gettelman et al., 2020). The
CAMG6 model parameterization and the prior distribution of parameters (i.e., 217 sets of parameter combinations) in the PPE
(Eidhammer et al., 2024) produce simulated aerosol and cloud properties that we can compare with observations to evaluate
how process representation impacts aerosol-cloud interactions. Here, we focus on microphysical quantities that are available
from in-situ measurements but hard to observe from spaceborne remote sensing.

N, is directly available from both CAM6 and in-situ measurements from the CDP. CAMG6 in-cloud Ny is calculated as Ny
divided by liquid cloud fraction (when cloud fraction < 1%, we set N; = 0). This cloud fraction threshold is smaller than the
one used in McCoy et al. (2021) as we found it retains more flight composites but does not significantly change the results of
our analysis (Figure S1).

CCN is a subset of aerosols that can be activated to cloud droplets at a given supersaturation. CAM6 outputs CCN at a set

of fixed supersaturations. Here, we look at supersaturation at 0.2%. It is found that observed CCN at 0.2% supersaturation
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(CCNO2) has an one-to-one relationship with accumulation mode aerosol (e.g., UHSAS100) measured over SOCRATES (Mc-
Coy et al., 2021). Following previous work (McCoy et al., 2021), we use UHSAS100 as a proxy to CCN0O2 over SOCRATES
as UHSASI100 lies very close to the one-to-one line with CCNO2. This supersaturation level is shown to be representative of
marine low-level stratocumulus (Hudson and Svensson, 1995).

To make comparisons between the modeled and observed N; and aerosol properties, model data are colocated to observa-
tions by linearly interpolating to temporal and spatial locations from the 2 min x 50 m observational composites following
McCoy et al. (2021). Our comparison between observations and models follows two strategies. First, model outputs (CCN
and Ng) are confronted with in-situ observations for collocated bins (flight track composites) along flight tracks for each
simulation ensemble. This method allows for the evaluation of simulated CCN, N4, and the inferred efficiency of aerosol

activation ( ddc]gv) relative to observations within individual PPE members. The results are discussed in Section 3.1. Second,

campaign-means of CCN and N, are calculated for each PPE ensemble and compared with campaign-means of CCN and Ny
calculated from in-situ observations. In this approach, we evaluate aerosol activation efficiency across the CAM6 PPE members
(run with different parameter sets) and use campaign-means of in-situ aerosol properties and Ny to constrain the CAM6 PPE
(Section 3.3.3).

The intention of taking the campaign-mean is to reduce random error by averaging over a large number of samples. However,
there remains potential sources of systematic error. One possible source of systematic error is from differences in sampling
between the observations and the model (e.g. if the pilot only flew through clear air and avoided cloud). Sampling during
airborne campaigns may have some systematic sampling biases as discussed in Field and Furtado (2016). Output from CAM6
is representative of an average within the grid box of the model, whereas flight patterns in a similar-sized domain may not
be sampling randomly (e.g. focusing on convective cores). We believe that this is a minimal concern for SOCRATES. The
SOCRATES flight pattern was designed to focus on cold sectors of cyclones and synoptically uplifted aerosol layers, but
followed a random sampling pattern in those large-scale features (McCoy et al., 2021). In addition to any systematic errors
from sampling strategy, instrument error inherent in the CDP introduces additional uncertainties in the measurements of V.
CDP measures cloud droplets within a specific size range (i.e., 2 to 50 um in diameter). It has limitations regarding droplets that
fall outside its designed size range. Coincidence errors may occur when multiple droplets pass through the sensor’s detection
volume but is counted as a single droplet. The impact of observational uncertainty on the model constraints is examined in in
section 3.4.

Another potential source of systematic uncertainty may arise from the use of UHSAS100 as a proxy to CCNO2 over

SOCRATES. While a near one-to-one relationship between UHSAS100 and CCNO2 has been reported for the SOCRATES
campaign {e-g(MeCoy-etal;202H)(McCoy et al., 2021), the campaign-mean ratio of CCN02 to UHSAS100 is approxi-

mately 1.08 (£0.3)aecording—te-, based on the median and interquartile range of the CCN0O2:UHSAS100 ratio uncertaint
shown in their Figure S2. This suggests that UHSAS100 may underestimate CCNO2 by 8% on average. Moreover, the acti-

vation diameter for SO aerosol is typically below 100 nm at 0.2% supersaturation, and likely closer to 80 nm for the aerosol
population sampled during SOCRATES (Fossum et al., 2018; Mallet et al., 2025). This suggests that USHS100 may introduce
an even greater underestimation of CCNO2 compared to UHSAS100. To reflect the potential offset between UHSAS100 and



205

210

215

220

225

230

CCNO02, we conducted sensitivity tests by increasing the observed “CCN” by 8% and 40%, representing the lower and upper
bounds of the CCNO2 :to N100 ratio uncertainty, to examine how this affects our results (Section 3.3.3).

Having discussed uncertainty in the observations, we can turn our attention to uncertainty in the representation of processes
in models. While the PPE samples a large number of possible representations of the underlying physics, it is still quite sparse
(Lee et al., 2011). To systematically explore parametric uncertainty across the PPE, we build emulators (surrogate models) for
the campaign-mean Nz and CCN using Gaussian Process (GP) regression (Watson-Parris et al., 2021). Emulators are trained
by using the 45 perturbed parameters as inputs and simulation outputs (e.g., campaign-mean Ny and CCN) using a subset of
the PPE ensemble as training data. Emulators are trained on the sample of different process representations in the CAM6 PPE
data (Figure S2). The creation and validation of the emulators follows previous literature (Lee et al., 2011; Regayre et al., 2020;
Song et al., 2024). With the GP emulators, we sample 1 million model realizations of N; and CCN (e.g., model variants) with
1 million different combinations of parameter values sampled uniformly across 45 dimensional parameter space.

Model variants are ruled out when they are observationally implausible based on a implausibility measure
_ M- 0|

|Error(M)| + |Error(O)|

I(2) >1 @)

where M is the emulator campaign-mean and O is the observed campaign-mean (Regayre et al., 2020). Error(M) and Error(O)
denote the deviation from the emulator campaign-mean and observation campaign-mean, respectively. Error(M) comes from
emulator uncertainty and the variance Var(M) in the emulator estimate is directly calculated from GP regression. Error(M) is
estimated as +1.96* \/W . The number of 1.96 is chosen as +1.96 * \/Var (M) covers approximately 95% confidence
bounds of the emulator uncertainty. Estimating observational uncertainty Error(O) as fractional value is commonly used in
observational constraints on models (Johnson et al., 2020; Song et al., 2024). We discuss observational uncertainty in terms of
a fractional error f,ps. Finally, we write the implausibility metric I(x) where we account for 95% uncertainty in the emulator

and an arbitrary observational uncertainty as
B |M — O] -1
|/ Var(M)-1.96] + 0 - fops|

Model variants are excluded when I(x) exceeds 1. An illustration of our constraint process is summarized in Figure S3.

I(x) )

In this paper, we vary the observational uncertainty by varying f,;s under two conditions: (1) with emulator uncertainty and
(2) without emulator uncertainty, to characterize the impact of different sources of uncertainty on our ability to constrain the
response of Ny to anthropogenic aerosol. We discuss the impact of different values of f,5s on the model constraint process
in section 3.4. Eq 5 is a simplified implausibility metric as in Williamson et al. (2013); Johnson et al. (2020). Here, we
only consider observational uncertainty and emulator uncertainty in the comparison between 1 million model variants with
observations. Spatial-temporal representation uncertainty and model structural uncertainty are also important as discussed in
Johnson et al. (2020). We set the spatial-temporal representation uncertainty to 0 in Eq 5 as we collocated the model outputs
to flight track locations in 2-min x 50-meter composites. The characterization of model structural uncertainty is conceptually

ambiguous to quantify (Regayre et al., 2023) and is not considered in this work.
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2.5 Constraint metric

We conducted sensitivity tests on the observationally plausible 2.5-97.5th percentile range of ANy pp_p; to the emulator
and observational uncertainties. The observationally plausible 2.5-97.5th percentile range of ANy pp_ pr was calculated with
varying presumed observation uncertainties. To reduce noise from imperfect emulators, we conduct another set of sensitivity
tests with emulator uncertainties set to 0 (Error(M)=0) in Eq 4 in the sensitivity test. The ’constraint’ is quantified as the
reduction in the observational plausible range relative to the prior range predicted from the 1 million model variants. The

relative reduction in range is calculated using

) Posterior: ANy (pp—pr),obs,97.5 — AN, (PD—PI),0bs,2.5
constraint = 1 —

(6)

Prior: ANy (pp—p1),97.5 — ANa,(PD-P1),2.5
Where the subscript "obs’ denotes the sources of observations that are used for constraints. The posterior range refers to the
range of observationally plausible AN, pp_ p at 2.5-97.5th percentiles. The prior range refers the 2.5-97.5th percentile range
of ANy pp—pr derived from the original 1-million-member sample. Mathematically, the range of constraint in Eq 6 should

vary between O to 1. The greater the magnitude, the better constraints we can achieve.
2.6 Spaceborne observation

In addition to the comparison between aircraft measurements and model outputs saved along flight tracks, we examine the
simulated global oceanic mean /N4 and confront it with observations. Observations of global oceanic N, are derived from the
Moderate Resolution Imaging Spectroradiometer (MODIS). MODIS is a passive radiometer onboard NASA’s Terra and Aqua
satellites. Ny is calculated from MODIS retrievals of effective radius (r.) and optical depth (7) assuming an adiabatic cloud
(Grosvenor and Wood, 2014). MODIS Nj is calculated for daily means for the period 2003-2015 and is gridded to 1 by 1
degree resolution as in Grosvenor and Wood (2014). During winter, high-latitude regions (e.g., Arctic, Antarctic) have lower
greater solar zenith angle (SZA), resulting in lower reflected solar radiation, making retrievals of cloud properties (e.g., . and
7) less reliable. MODIS N is unavailable during wintertime high latitude regions. To ensure consistency in the comparison
between MODIS N, and the model data, N; data from months and latitudes where MODIS retrievals are unavailable are
removed from the ESM dataset. In addition to global oceanic mean N, from MODIS, we also examine a box region from
MODIS with latitude range of 65 S° - 42 S° and longitude range of 132 E° - 165 E°, which covers the SOCRATES campaign.

MODIS Ny is computed in this box region and compared with campaign-mean Ny from SOCRATES in-situ measurements.

3 Results

As discussed above, previous studies have evaluated CAMG6 in terms of its representation of SO aerosol, cloud, and precipitation
characteristics using in-situ observations from SOCRATES (McCoy et al., 2021; Zhou et al., 2021; Gettelman et al., 2020;
McCluskey et al., 2023). They found that simulated N is typically too low in CAM6, which is similar to other ESMs (McCoy

et al., 2020). However, finding why the SO Ny is low is complex since N; is the result of sources and sinks (Wood et al.,
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2012; McCoy et al., 2020; Kang et al., 2022). To understand what leads to biases in Nz we need to simultaneously consider the
impact of multiple processes to tackle the equifinality problem. Briefly, equifinality means multiple combinations of physical
processes can result in the same observable state (i.e. Ny).

A common suggestion by previous studies is that investigation of aerosol, cloud, precipitation, glaciation, turbulence and
activation processes is needed to understand the source of the model N; bias (McCoy et al., 2021; Zhou et al., 2021; McCluskey
et al., 2023). Here, we examine how different parameter combinations of these processes impact SOCRATES aerosol, clouds,
and ACI in CAMBG in section 3.1. By observationally confronting simulations with different parameter combinations, we can
evaluate the constrained parameter spaces (Section 3.2) and the likely range of observationally-plausible parameter spaces and

their associated range of ANy pp_ py (Section 3.3).
3.1 CCN, Ny and aerosol activation over SOCRATES in CAM6 PPE

We examine relationships between CCN and N4 across flight composites (50-meter X 2-min bin median) within individual
PPE members. The number of flight composites valid for CCN-N; comparisons from SOCRATES in-situ observations is 44
(Figure 2: red dots). This number is smaller than the results in McCoy et al. (2021) as we choose a lower altitude level for
analysis with a focus on warm liquid cloud. The number of colocated flight composites valid for CCN-N,; comparisons for
each PPE ensemble member (Figure 2: black dots) is less than that from observations (red dots) since some flight composites
simulates near-zero N4 and are excluded from our analysis. This might be due to the coarse vertical resolution of CAM6 and
linear interpolation cannot fully capture the N, variability in the vertical. Despite the limitations, PPE ensemble members
simulate CCN and N, flight composites that are comparable with observations.

CCN at 0.2% supersaturation correlates positively with Nz when comparing matched flight composites along individual
flight tracks in the PPE (Figure 2). This is not surprising as we expect CCN at 0.2% supersaturation to be a reasonable proxy
for the aerosol particles that activate to form cloud droplets under typical marine boundary layer updraft conditions, consistent
with observations (McCoy et al., 2021). Hereafter, we refer to the simulated CCN at 0.2% supersaturation from CAM6 simply
as CCN for simplicity. Observations of CCN refer to the observed aerosol concentration with diameters ranging from 0.1 pm
to 1 um from UHSAS100.

Figure 2 shows a subsample of ensemble members with varying levels of agreement with observations, but a positive cor-
relation between CCN and N in log space is found for most of the PPE members (i.e., 224 out of 262). However, the linear
regression slope of N; on CCN is high relative to observations for the majority of PPE members (Figure S4a). Because Ny
is a product of both CCN activating into droplets and precipitation removing drops (Wood et al., 2012), a higher CCN-N
slope in CAMG6 does not necessarily indicate a higher simulated aerosol activation efficiency. This diagnostic is broadly telling
us that more CCN is required in CAM6 PPE to produce the same amount of /N, through aerosol activation in the presence
of coalescence scavenging compared to observations, particularly at low N, concentration (e.g., Figure 2a). Lower N, over
SOCRATES is associated with increased precipitation rate and greater contribution of coalescence scavenging in controlling
Ny (Kang et al., 2022). The negative correlation between N, and precipitation rate is also found in the CAM6 PPE (Figure S5).
The high bias in the regression slope of N; on CCN in CAM6 PPE may indicate a stronger loss in N4 from overestimated
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Figure 2. Relationships between SOCRATES CCN and in-cloud cloud droplet number concentration (/N4) from in-situ measurements (red)
and CAM6 members (black), based on flight composites along individual flight tracks (scatters). Flight eempesite.composites are constructed
by binning observations into 50 m (altitude) by 2 min (time) bins for each flight. CAM6 PPE CCN and in-cloud Ng are collocated to
observation composites (50 m x 2 min bins) by linear interpolation for individual PPE members. Bin medians are taken for comparison with
CAMG6 models following McCoy et al. (2021). CAM6 in-cloud Ny is computed as N4 divided by liquid cloud fraction (when cloud fraction
< 1%, we set Ng = 0). PDFs of number concentrations of CCN (top) and cloud droplets (right) for matched binned values occurring for
CAMBG (black) and observations (red) are shown. (a) Default CAM6 configuration (i.e., PPE simulation for ensemble member 000), (b) PPE
simulation for ensemble member 010, (c) PPE 237, (d) PPE 244. PPE members numbered 010, 237 and 244 are chosen to represent cases

with varying levels of agreement between the simulated and observed CCN and Ng.
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coalescence scavenging at low Ny concentration in models. Additionally, the low-biased Vg may also be influenced by an un-
derestimation of subgrid-scale vertical velocity, turbulence intensity, and other dynamical factors that suppress supersaturation
and droplet activation. We verify our hypothesis in the discussion of parameter constraints of CAM6 PPE using observations
in section 3.2.

Most of the PPE members simulate N, that is low relative to observations, regardless of whether CCN is underestimated
(Figure S4, Figure 2). One example is the PPE ensemble of 244 of CAM6 where even though the simulated CCN is relatively
close to observations, the Ny is still biased low. (Figure 2d). This supports the hypothesis in McCoy et al. (2021) that aerosol
biases are not the sole contributors to the low N, in CAMS6, highlighting the importance of other contributing factors.

Although most PPE members exhibit low V4, there are some members that are close to observations (Figure S4, Figure 2c).
We next compare the PPE with observations to rule out PPE members that are far away from observations (e.g., Figure 2d) and

characterize which parameterized processes are important to ACI over SO.
3.2 CAMG6 parameter constraints from SOCRATES measurements

We compare campaign-means of CCN and N4 because averages reduce random errors of aircraft measurements due to instru-
ment noise, atmospheric turbulence, or other transient variations (Schutgens et al., 2020). Unlike random errors, systematic
errors such as sensor miscalibration and systematic sampling cannot be reduced by averaging. The model-observation compar-
ison process follows Eq 5 as detailed in Section 2.4.

Observations of CCN and N, identify and constrain physical processes that are important for ACI (Figure 3). We show the
10 most constrained parameters out of 45 in Figure 3. The full list of constrained parameter spaces is shown in Figure S6. By
examining how different parameter values are constrained relative to observables we can try to build an understanding of how
different processes drive observables. This also illustrates the problem of equifinality where observed values can be arrived at
by combining processes in different ways.

Confronting the PPE with observations of CCN constrains aerosol processes (e.g. sea salt emission) and precipitation pro-
cesses (e.g. autoconversion, accretion) (Figure 3a; the detailed parameter explanation is in Table S1). The sea salt emission
scale factor is constrained to higher values, indicating observations of CCN during SOCRATES are consistent with stronger
aerosol production in the CAMG6 PPE. This is consistent with a lack of aerosol production in CAM6 (McCoy et al., 2021; Zhou
et al., 2021).

Constraints on precipitation processes point to the importance of precipitation as an aerosol sink. One of the key parame-
terization in warm cloud in climate models is the autoconversion, which represents the rate of initial rain formation through
collision-coalescence between small cloud droplets.

We can make sense of the relationship between CCN and the autoconversion parameters by looking at how the rate of rain
creation through autoconversion works in CAM6. Autoconversion in CAMS6 is written as (Khairoutdinov and Kogan, 2000;

Gettelman et al., 2015):

8(]6 > b —
—a-q)-N;° )

< 8t auto d
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Figure 3. 10 parameters with constrained parameter spaces with observations of (a) CCN, (b) N4 and (c) CCN & N,. Parameter spaces are

standardized with mean O and variance 1. Warmer colors mean a higher intensity and more data points in that range.

where (Baqtc ) - is the rate of generation of rain from cloud water. The autoconversion rate depends on the cloud droplet con-
centration (N [em ™3] in Eq 7) and cloud water content (g.. [kg/kg] in Eq 7). a, b and -c are uncertain parameters perturbed in
the CAM6 PPE (Table S1). They are micro_mg_autocon_fact, micro_mg_autocon_lwp_exp and micro_mg_autocon_nd_exp,
respectively. Selecting parts of parameter space that are consistent with observations of CCN leads to lower autoconversion
scale factors (a in Eq 7) (less efficient rain production by cloud). The effect of larger exponents on liquid water content (b
in Eq 7) on the rain production depends on the relative magnitude of liquid water content g.. Larger b can result in thicker
clouds that precipitate more efficiently under conditions of g. > 1 kg/kg. A reversed effect can happen under conditions of
qc < 1 kg/kg. The condition of ¢. > 1 kg/kg seems unlikely during SOCRATES campaign observations and model simulations
(Khairoutdinov and Kogan, 2000; Gettelman et al., 2020). Overall, this results in a lower rain rate across cloud liquid water
content values when the scale factor is minimized and the exponent is maximized for the liquid water content in typical stra-
tocumulus clouds (Figure S7). The shift to lower rain rate with observational constraints in CAM6 PPE indicates that rain rate
and the loss of CCN from precipitation scavenging are overestimated for the majority of members in CAM6 PPE.
Observations of N; from SOCRATES constrain parameters related to aerosol and precipitation process (Figure 3b), consis-
tent with the findings in Wood et al. (2012) and Kang et al. (2022); McCoy et al. (2020) that the N4 budget is a function of
a source of droplets from CCN and sink from collision-coalescence. The constraint on initial rain formation rate during auto-
conversion (Eq 7) and the constraint on the strength of precipitation suppression are consistent with CCN observations (Figure

3ab). Broadly, constraints on precipitation formation are consistent with a weaker sink of cloud droplets as well as less cloud
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droplet removal via precipitation. This supports the hypothesis in Section 3.1 that rain rate and the loss of /N4 from precipitation
scavenging are overestimated for the majority of members in CAM6 PPE. We also want to note that the SO is dominated by
supercooled liquid cloud (Gettelman et al., 2020; McCluskey et al., 2023), making the glaciation (Bergeron—Findeisen Process:
water vapor deposits onto ice crystals) important in this region. This means that the growth of ice crystals might be an important
sink for Nz. However, we believe the N loss from freezing is minimal when our analysis is restricted to the altitudes below 2
km. This is because a large fraction of snow melts and contributes to rain precipitation at low altitudes (Figure 2 in Field and
Heymsfield (2015)). Mixed-phase and ice cloud processes are important in initiating rain as most rain is derived from ice that
has melted to form rain (Bergeron, 1935). However, the importance of ice processes is not apparent in our process constraint
focused on warmer clouds (Figure S6). McCluskey et al. (2023) examined ice processes over SOCRATES using observations
of detailed aerosol and ice nucleating particle (INP) measurements and models (e.g., CAM6), but the process constraints on
ice processes with observations of INPs is beyond the scope of this study.

The parameter constraints from observations of N, are more stringent than the constraints resulting from using observations
of CCN. This is consistent with /N4 being the emergent product of aerosol and precipitation processes (Wood, 2012). In addition
to aerosol and precipitation processes, mechanisms important for aerosol activation are also constrained by N, observations
(Figure 3b), such as deep convection (e.g., zmconv_capelmt), subgrid velocity (e.g., microp_aero_wsub_scale), and turbulence
(e.g., CLUBB: Cloud Layers Unified by Binormals parameters in table S1), as they play a role in vertical aerosol transport and
in generating supersaturation.In particular, microp_aero_wsub_scale is efficiently constrained to higher values, suggesting an
underestimated subgrid velocity (i.e., lower updraft speed) that suppresses supersaturation, leading to lower N.

Finally, we examine the effect of constraining the PPE using observations of both Nz and CCN. The effect of combining
these constraints is similar to the constraint arrived by Ny alone (Figure 3c). This is consistent with N, being an emergent
property of both aerosol processes and cloud and precipitation processes.

Observations of CCN and N, during SOCRATES constrain aerosol, precipitation, and cloud processes. In the next section
we examine whether the process constraint from observations of CCN and N, constrains the response of N; due to anthro-
pogenic aerosol. Precipitation rate would be a useful constraint on the response of N4 as both observations of CCN and Ny
constrain precipitation process as discussed in this section. However, the path to including an observational constraint of cloud
base precipitation is somewhat opaque and is not included here. Light precipitation rate at cloud base can be retrieved using
radar-lidar techniques (Kang et al., 2022), but to provide an apples-to-apples comparison to CAMG6 in terms of cloud base

precipitation we believe that an instrument simulator is needed (Silber et al., 2022).
3.3 Observationally plausible ANy pp_ pr from SOCRATES measurements

As discussed in the previous section, observations of Ny and CCN constrain the range of possible process representations.
In turn, these same processes drive the response of [N, to anthropogenic aerosol. This results in a strong correlation between
PD Ny and PI N, (Figure 4; black line) and by extension the change in Ny between PI and PD (Figure 4; orange line) in
the CAMG6 PPE. The fractional change in Ny (AlnNy) is computed by taking the slope of ANy pp_pr to Ny following the
definition from Bellouin et al. (2020). The AlnN, predicted by the CAM6 PPE (0.23) is greater than the expert elicitation
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range from Bellouin et al. (2020) (i.e., 0.05 to 0.17) (Figure 4). The emergent relationship between PD N, (observable) and
the ANy pp—pr (unobservable) with a r-value of 0.95 can be used to constrain the likely range of ANy pp_ py if we know
the possible range of PD N, (observable). As suggested in Klein and Hall (2015), emergent relationships used for constraints
require process-level understanding. We explain the emergent behavior from CAMG6 PPE (Figure 4) using a sink-source model

of Ny in Section 3.3.2
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Figure 4. Global oceanic mean of preindustrial (PI) Ny (black) and ANg pp—pr (orange) as a function of present-day (PD) oceanic Ny
from CAMG6 PPE members (x-shaped markers). The 95% confidence on the interannual range of global oceanic mean N4 from MODIS is
shown in the gray vertical bar. The estimated ANy pp—pr based on the fractional change in Ny (AlnNg) from Bellouin et al. (2020) is

shown in the orange shading.
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3.3.1 Constraint using regional measurements

One question is whether SOCRATES, a field campaign over the SO where natural aerosols dominate, can be used to constrain
the perturbation in Ny globally. SOCRATES samples natural aerosols and microphysical processes in a pristine environment
(McCoy et al., 2021; McFarquhar et al., 2021), but it is not entirely isolated from the effects of anthropogenic aerosol emissions
(Figure 1a). This is consistent with Hamilton et al. (2014), who show that the SO in the present day atmosphere is not always
pristine. In addition to aerosol availability acting as a source for the Ny budget, both N, and natural or anthropogenic aerosols
share similar removal pathways through precipitation scavenging (Zheng et al., 2024; Wood et al., 2012; Kang et al., 2022),
making the processes sampled during SOCRATES relevant for understanding the N4 perturbations on a global scale.

Another question is simply how representative is the Ny observed in the sample from SOCRATES of the global mean.
Across the PPE, the campaign-mean Nz over SOCRATES correlates with the global, oceanic-mean of N4 with an explained
variance of 0.36 across the PPE members (Figure 5). This positive correlation in Ny is reasonable as processes that govern
droplet activation and removal of N, share similarities over the global ocean and in the SO. The removal of Ny is primarily
due to the precipitation scavenging (Wood et al., 2012; Kang et al., 2022). The relationship between the amount of CCN and
the resultant V4 contain information about this sink term as well as the transport of CCN to cloud.

The relationship between SOCRATES N, and the global mean also speaks to the importance of the marine, pristine baseline
of aerosol in setting N,;. Previous studies underline the contribution of the oxidation of DMS (McCoy et al., 2015), sea spray
(Wood et al., 2012; McCoy et al., 2015; Kang et al., 2022), and transportation of anthropogenic aerosols from continents (Wood
et al., 2012; McCoy et al., 2018) to oceanic CCN.

Observational records also show consistency in the amount of Ny between the SO and the globe. Spaceborne observations
of SOCRATES campaign-mean V4 and global-mean N are relatively consistent (Figure 5: black dot). In-situ campaign-mean
Ny (Figure 5: gray dashed line) is slightly less than spaceborne observations (Figure 5: black dot), while the difference is small
despite originating from entirely different methodologies.

We hasten to point out that we are not trying to argue that SOCRATES is sufficient to provide a complete picture of global-
scale processes. However, SOCRATES does illustrate the utility of investigating even a single field campaign in this framework.

Including additional campaigns in future field is likely to provide additional constraint on global-scale processes.
3.3.2 Constraint from present day observations

Ny sampled during SOCRATES contains information for globally-relevant processes (Figure 5), but do PD observations of
aerosol and cloud properties constrain the anthropogenic perturbation in N;? We find this to be the case in the context of the
PPE. To dissect the causes of the relationship between PD Ny and PI Ny, the relationship between PD Ny and ANy pp_pr
and the relationship between CCN and N4 we turn to a simple budget model of V4. Based on Wood et al. (2012); Kang et al.

(2022), the N, budget model is described as a function of source of CCN and sink from precipitation scavenging
o 2.8
CCNgr + H 050

[1+ 2T

®)

Na,pp =
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2.8
In Eq 8, the parameterized source of CCN is from free troposphere CC' N and surface contribution F(U%

i

aerosol), where F'(o0) is the sea spray function that depends on supersaturation (Clarke et al., 2006) and D Z; is the subsidence

rate at cloud top, which is used an approximate for entrainment rate (McCoy et al., 2020). For the precipitation sink term

%, h is the cloud thickness, K is a constant that depends on the collection efficiency of cloud droplets and Pcp is the

rain rate at cloud base (Wood, 2006). The N, budget model has been used to predict the N; amount with confidence over the
subtropic and mid-latitudes (Mohrmann et al., 2018; Zheng et al., 2018; Kang et al., 2022).

In this study, we follow the basic source-sink model idea from Wood et al. (2012) but we simplify the /N; budget model to
fewer terms for a conceptual understanding of the relationships between variables. The N; budget model is written as

A-CCN

— SR 9
1+krem,o'PCB ( )

d

2.8
Instead of parameterizing CCN source from free troposphere CC' Npp and surface contribution %, we characterize

CCN source as A - CCN, where ) is a scale factor that accounts for the amount of CCN that can be activated to cloud droplets

depending on the vertical updraft, relative humidity, size and hygroscopicity of CCN, etc. A varies from O to 1. For precipitation

hK Pcg
Dz;,

precipitation. To estimate k;.cp,,, we set K = 2.25 m? kg_l, subsidence rate Dz; = 4 mm s~ * following Wood et al. (2012);

sink term , we simplified it as kyemo - Pop, where kpemo equals to 1}:3}2( . It accounts for the rate of loss of N; from
Kang et al. (2022); McCoy et al. (2020). Cloud thickness h is set to 300 m, which is a typical magnitude for marine clouds
(Wood, 2012). Changing cloud thickness & to smaller (e.g., 100 m) or larger values (e.g., 500 m) does not significantly change
our results.

In this idealized set up, the CCN source (A - CCN) and precipitation sink (k,emo - P) are set to be the same between PI and
PD. This is a reasonable assumption for CAM6 PPE as its parameter setup is the same in the paired PI and PD simulations.
The only difference between PI and PD is the amount of CCN. Therefore, we can write N, budget model in PI and PD as

AN-CCN
Ng.pr

_ 10
7 1+kremo'PCB ( )

A-(CCN +ACCN)
1+ kremo : PCB

Y

Ng.pp =

where ACCN in Eq 11 stands for CCN from anthropogenic aerosol emissions. Eq 10 and Eq 11 allow for a simplified
representation of the underlying physical processes driving Ng budget in PI and PD. ANy pp_ pr can be calculated by taking
the difference between Eq 11 and Eq 10

A ACCN
AN, _py=———— 12
aPD—PI = T (12)

We evaluate the relationship between ANy pp_pr and PD Ny, CCN and Ny using the budget models. We calculate the
ANy pp—pr and PD Ny in response to a anthropogenic perturbation of +ACCN at varying precipitation rate Pop and
CCN scale factor A. With this simplified set up, ANy pp_pr and PDN,, CCN and N, are positively correlated (Figure 6),
consistent with the CAM6 PPE (Figure 2, Figure 4). At larger precipitation rate P, more CCN is needed to activate to form the
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Figure 6. Idealized relationships based on the source-sink model of the N4 budget (Eq 8 in Wood et al. (2012) with modifications). (a)

ANy, pp—pr versus PD Ny based on Eq 11 and Eq 12 at varying precipitation rate P. P is set to vary from 0 to 2 mm/day in 10 equal

increments. The varying P is within the observational range in Wood et al. (2012). CCN is set to 125 cm™> as a background CCN from

natural source. ACCN is set to be varying between 100 to 400 cm™? with 20 equal increments. Kyemo 18 set to 0.8. (b) Vg4 versus CCN at

varying precipitation rate P with the same model setup as (a). (¢) ANg pp—pr versus PD Ny at varying CCN scale factor A. Precipitation

rate P is set to 0.2 mm/day. (d) N4 versus CCN at varying A with the same model setup as (c).
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same amount of N, (Figure 6b). This leads to an overall lower Ny and N, change due to aerosols at high precipitation rate
(Figure 6a). With more CCN amount (or larger \), there is a higher N; and N4 change due to aerosols (Figure 6¢d). These
results suggest that the positive correlations in CAM6 PPE members are driven by sink from precipitation scavenging and
source from CCN as depicted in the idealized model.

Understanding the positive relationships in CAM6 PPE we can use PD observations of N, to constrain unobservable quan-
tities such as perturbations in N4 due to anthropogenic aerosols. To constrain global-mean quantities, we use observations of
Ny from SOCRATES campaign as the variance in global oceanic-mean N, is largely explained by SOCRATES campaign-
mean Ny (Figure 5). In addition to PD N4 observations, we use the observed aerosol concentration from UHSAS100 from
SOCRATES as a proxy of CCN to provide an additional constraints on ANy pp_ p; as the parameter spaces of the PPE have
been shown to be constrained by CCN in Section 3.2 (Figure 3a). Precipitation processes are constrained by both observations
of CCN and N, as discussed in secton 3.2. Inspired by this, we wanted to examine the effects of cloud base precipitation
on the constraints on ANy pp_pr . However, we found it difficult to make a direct comparison between CAM6 and cloud
radar—lidar—retrieved precipitation rates at cloud base. Therefore, our constraints on ANy pp_ py focus on observations of
CCN and Ny. Nonetheless, we provide an illustration of what the constraints would behave if observed precipitation rates were

used, based on idealized sensitivity tests discussed in Section 3.3.3.

3.3.3 Constraints from CCN and N; measurements
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Figure 7. (a) SOCRATES campaign-mean /N4 versus campaign-mean CCN and colored by present-day N, from the CAM6 PPE members
(color dots) and 1M emulations from the PPE (color shading). Emulate density is shown in solid contours. (b) The same with (a) but colored
by ANg4,pp—pr. The color shading shows 2D bin-averaged values of (a) global mean Ny and (b) ANg, pp— pr, computed using 60x60 bins
in SOCRATES CCN and SOCRATES Nd space. This smoothing highlights large-scale patterns while excluding sparsely sampled regions.
Colored points show individual PPE members without averaging. Observational SOCRATES campaign-mean CCN (i.e., UHSAS100) and

Ny from SOCRATES in-situ measurements is shown as the gray shaded bars with an uncertainty of +£20% from the campaign-mean.
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Before going into the constraints, we first examine the aerosol activation across the PPE members with different param-
eterizations. Campaign-mean CCN and N, are positively correlated across PPE ensembles (Figure 7a), consistent with the
CCN- Ny relationship across flight composite in individual models (Figure 2) and the idealized model (Figure 6ac).

Understanding emergent relationships is essential in constraining unobservable quantities (Klein and Hall, 2015). With the
idealized N4 budget model (Figure 6), we have understood how the physical processes (i.e., source of Ny from CCN; sink of
N4 from precipitation scavenging) are related to the correlations between variables across the CAM6 PPE (Figure 2, Figure 4).
Next, we use airborne observations of CCN and N, to rule out implausible model variants out of the 1 million variants
emulated from the CAM6 PPE (Figure 7b) following the implausibility metric (Eq 5). The prior 2.5-97.5th percentile range of
ANy pp_pris3.6 cm~3 to 19.8 cm—2. Based on the implausibility metric (Eq 5), observations of CCN have no effect on the
constraints on ANy pp_ py. Using the same implausibility metric, observations of /Ny over SOCRATES constrains the range
of ANg pp—pr tobe 6.1 cm™3 to 20.4 cm™3 at the 2.5-97.5th percentile, equivalent to 12% reduction in range and the median
increases by 16% (Figure 8a). The constraints on ANy pp_ pr are also consistent with the results in Song et al. (2024) that
utilizes hemispheric contrast of V4 as a proxy to ANy pp_ pr using observations of remote sensing from MODIS, indicating

the consistencies between measurements of Ny from different observing techniques.

With emulator uncertainty Without emulator uncertainty

(a) —

) >
£ =
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Figure 8. The distribution of emulated ANy pp_p; prior (grey shading), and observationally-constrained posterior from SOCRATES

observed CCN only (orange), N4 only (blue), and CCN and Ng4 (green). (a) With emulator uncertainty. (b) without emulator uncertainty.
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In this study, the emulator predictions are based on emulator mean predictions (i.e., M in Eq 4) and emulator uncertainties
(i.e., Error(M) in Eq 4). Although the emulator mean predictions are overall good, the emulator uncertainty created for CAM6
PPE outputs are relatively large (Figure S2). This may have a huge impact on the model-observation comparison process
(Figure S3, Eq 4). We therefore examine the constraints on ANy pp_ pr without the effects of emulator uncertainties (i.e., set
Error(M)=0 by setting the number of variance to O (i.e., 0* \/W) in Eq 5) to check whether this change significantly

affects our constraints. The implausibility metric in this case follows

_ M -0

Consistencies are found in the observational constraints on AN, pp_ py under conditions both with and without emulator
uncertainties. Observations of CCN have no effect on the constraints under both conditions (Figure 8), suggesting that the
zero constraint from CCN is not a result of large emulator uncertainties. Instead, the near zero constraint on ANg pp_p;
from CCN might be because the CCN provides less information about the number of cloud droplets that can form through
aerosol activation compared to direct measurements of cloud droplet numbers. Although CCN number concentration at a given
supersaturation accounts for a certain level of chemical composition of aerosols (i.e., hygroscopicity and size), environmental
conditions, which is critical for their activation to cloud droplets, is less known. The observational constraints on ANy pp_pr
from SOCRATES N, are consistent in both conditions in terms of the positive shift in the likely range of ANy pp_p;.
Observations of N, narrow the ANy pp_ pr range more efficiently under the condition without emulator uncertainties than
under the condition with emulator uncertainties. The reduction in range of ANy pp_ pr is 21% and the increase in the median
is 28% when calculated without emulator uncertainties (Figure 8b).

Observations of CCN and N, consistently constrain aerosol and precipitation processes as we discussed in section 3.2 so we
examined their joint effects on ANy pp_ pr in Figure 8. We found great improvement on the IV, constraint when including
the effects of CCN, assuming no emulator uncertainty (Figure 8b). The ANy pp_ p; range is narrowed down by 27% and the
median shifts from 11.7 em ™3 to 15.5 em ™3 (i.e., 35% increase in median). The result suggests that the direction (e.g., positive
or negative shift) of the constraint on ANy pp_ pr is not sensitive to emulator uncertainty, while the strength of constraints is
sensitive to emulator uncertainty.

Precipitation scavenging works as a sink for both CCN and Ny (Figure 6ab), suggesting the strong potential of using pre-
cipitation rate as an observational constraints on ANy pp_ pr. We found it is difficult to make apples-to-apples comparison
between CAMG6 and cloud radar-lidar retrieved precipitation rate at cloud base. Therefore, we do not use observed precipitation
rates in this study. Instead, we examine what the constraints on ANy pp_ py would respond under two hypothetical campaign-
mean surface precipitation rate constraints, used as idealized sensitivity tests. The results suggest that surface precipitation rate
has no constraint on ANy pp_ pr (Figure S8). The zero constraint might be due to surface precipitation rate is less informative
than cloud base precipitation rate on the N; budget due to the evaporation during descent. Another possible explanation is
that while the precipitation sink explains a lot of variance from flight to flight, (Kang et al., 2022), it doesn’t vary as dramati-
cally between ensemble member representations of the entirety of the campaign mean because it is strongly controlled by the

amount of water vapor and circulation. Overall, we believe further development of instrument simulators for simulating cloud
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base precipitation rate for global models is needed to improve our ability to leverage airborne cloud base precipitation rate to
constrain global behavior.

As discussed in Section 2.4, using UHSAS100 as a proxy to CCN at 0.2% (CCNO02) supersaturation may underestimate the

observed CCN02. We conduct a sensitivity test on the constraints on ANg—pp—pr-by-inereasing- ANy pp_ py by increasing the

observed CCN by 8% to 40%, aceording-to-the-CENOZbased on the 25th to 75th percentile range of the CCN0.2:UHSAS100
ratio uneertainty-shown in Figure S2a in-of McCoy et al. (2021). The results suggest that increasing the observed CCN does

not significantly affect the constraint on ANy pp—_ py (Figure S9).
3.4 Sensitivity tests on the observationally plausible A N4

The uncertainty associated with airborne measurements of aerosol and cloud microphysics is difficult to define as a fixed value
because it depends on multiple sources of uncertainties such as: sampling error due to limited spatial and temporal coverage
of flight tracks, variability in flight patterns (e.g., altitude, and positioning relative to cloud features), instrument noise due
to environmental variability (e..g., turbulence, wind shear). Therefore, assuming a fixed observation uncertainty of +20% for
airborne measurements in Section 3.3.3 is just a to provide a baseline amount of uncertainty.

In this section, we perform sensitivity tests on the observationally plausible ANy pp_pr by the varying observational
uncertainty under conditions of with emulator uncertainty (i.e., Error(M) = +1.96 % /Var(M) in Eq 5) and without emulator
uncertainty (i.e., Error(M) = 0 \/VT(]M) in Eq 5). Systematic uncertainty in the observations is assumed to vary from +5%
to £100% for the campaign-mean. The constraints on AN, pp_ py is calculated as the reduction in the 2.5-97.5 percentile
range of ANy pp_pr following Eq 6.

Figure 9 shows the constraints on ANy pp_ pr by observations of CCN (orange line), N4 (blue line) and combining CCN
and Ny (green line). Overall, AN, pp_ py is more tightly constrained without emulator uncertainty (Figure 9bd), which makes
sense as excluding emulator uncertainties (i.e., Eq 13) allows more model variants to be excluded during model-observation
comparison relative to Eq 5. The constraints on ANy pp_ pr under two conditions (i.e., with and without emulator uncertainty)
both have a positive shift in the 2.5-97.5 percentile range (Figure 9cd), suggesting the constraints are not a result of noise from
emulator uncertainties.

Consistent with Figure 7, observations of CCN provide nearly no constraint on ANy pp_ pr regardless of the uncertainty
in CCN (Figure 9: orange line). With increasing uncertainties from airborne measurements of Ny, the plausible range of
ANy pp_pr is less constrained under both conditions of with and without emulator uncertainty (Figure 9: blue line). The
weakened constraints on ANy pp_ pr with increasing uncertainties in observations is due to the retention of more model
variants as plausible during model-observation comparison process (Figure S3), thereby exacerbating the equifinality problem
(Johnson et al., 2020), for which increasing number of plausible parameter combinations results in broader parameter spaces
and thereby reduced constraints on ANy pp_ py (Figure 9ab).

The reduction in ranges (constraints) becomes negligible with observation uncertainty of N, reaching £75% under the
condition with emulator uncertainty (Figure 9a). The threshold of observational uncertainty of /N, that can achieve constraints

is a bit larger under the condition without emulator uncertainty, which is £85% (Figure 9b), suggesting skillful emulators play
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Figure 9. (a) The reduction in the observationally-constrained 2.5-97.5 percentile range of ANy pp— pr relative to the emulation prior range
with increasing aircraft measurements uncertainties with emulator uncertainties considered, following the implausibility metric as described
in Eq 5. Observations are from SOCRATES CCN from UHSAS100 (orange), N4 from CDP (blue) and both observations (green). Uncertainty
ranges from £5% to +100% from the campaign-mean with 5% equal increments. (b) The same (a) but without emulator uncertainty,
following the implausibility metric described as Eq 13. (¢) The 2.5th, 50th and 97.5th percentile value of the observationally-constrained
ANy pp—pr from SOCRATES CCN (orange), Ny (blue) and both lines of observations (green) as a function of aircraft measurements

uncertainties. (d) The same with (c) but without the effects of emulator uncertainty.
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an important role in advancing our constraints. Again, we view uncertainty from emulation as an eminently tractable problem

compared to developing a better understanding of instrumental systematic uncertainty. Improving emulator uncertainty can

be achieved by creating PPEs that can be easily emulated through a more careful selection of perturbed parameters and an
540 increased amount of training data.

Another key insight from Figure 9 is that the improvement in constraint when both N; and CCN are considered emerges at
low observational uncertainties for both measurements (Figure 9ab: green line is above the blue). The improved constraint is
also found in Regayre et al. (2023) that adding the number of constraint variables with no structural inadequacies improve the
constraints on aerosol forcing when their constraints are consistent across multiple observation types. In our work, although the

545 constraints on ANy pp_ pr by observations of CCN is minimal, the constraints on parameter spaces by airborne observations
of CCN and g are consistent (Figure 3), resulting in the improved constraints on ANy pp_ pr. The improvement of the con-
straints on ANy pp— pr only happens with small uncertainties associated with airborne measurements (Figure 9ab: green line),

highlights the importance of accurate airborne measurements of aerosol and cloud properties on constraining ANg pp_pr .

4 Conclusions

550 We use observations of aerosol (i.e. CCN) and cloud properties (i.e. N;) from airborne in-situ measurements taken during
SOCRATES (the Southern Ocean Clouds, Radiation, Aerosol Transport Study, Figure 1) to constrain model parameters related
to aerosol-cloud interactions. To systematically examine constraints on parameterized processes, we used a PPE that varies
45 parameters related to aerosol-cloud interactions. While a large number of ensemble members (i.e ., 262) were integrated
across 45-dimensional parameter space, this sampling was still very sparse in an absolute sense. To better map this space,

555 we trained statistical emulators (Figure S2) to create a set of 1 million model variants. Each model variant was compared
against observations and are retained if its implausibility is less than 1 based on the implausibility metric (Figure S3, Eq 4).
Our constraint on processes in this framework (Figure 2, 3) resulted in a constraint on the anthropogenic perturbation to Ny
(ANg4,pp—pr) (Figure 8).

Airborne observations of CCN and N; over SOCRATES both constrain parameter spaces related to aerosol emission and

560 precipitation processes (Figure 3), providing insights on developing in-situ instruments targeting these processes to better
constrain cloud properties. Observations of /N4 are more effective than CCN at constraining parameter space (Figure 3ab).

With constrained parameter space with observations of CCN and N (Section 3.2), we examine the likely range of ANy pp_pr
at the constrained parameter space. One key result is that observations of CCN alone have minimal constraint on ANy pp_pr,
but the constraint from observations of Ny is strong (Figure 8). This is sensible because aerosol concentrations from UH-

565 SASI100 give information about the aerosol population, but they do not directly inform the activation of aerosols into droplets.

To explain why the constraints work when using observations of N4, we use idealized sink-source models of Ny (Eq 11,
10). Previous work identifies the precipitation sink of droplets as a key driver of N variability (Kang et al., 2022; Wood et al.,
2012; McCoy et al., 2020). We extended these budget models to anthropogenic perturbations to /N4 (Figure 6), and used the
result to understand relationships emergent from the CAM6 PPE (Figure 2, 4, 7). Within the /N; budget model framework, we
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identified both the precipitation sink and how CCN form droplets as important in controlling the positive correlation between
CCN and Ny (Figure 6bd), the positive correlation between present day (PD) Ng and ANy pp— pr in CAM6 PPE (Figure 6ac).

Understanding the emergent behaviors from the CAM6 PPE (Figure 4), we next note that the amount of campaign-mean Ny
over SOCRATES is a good approximate of the global oceanic-mean N, (Figure 5). Within this framework, observations of
N4 over SOCRATES constrains the amount of global ANy pp_ pr due to anthropogenic aerosol influence in the CAM6 PPE,
with the strong positive correlation between PD Ny and ANy pp— pr in CAM6 PPE (Figure 4), which can be explained in the
context of N4 sources and sinks (Figure 6).

We find that the range of parameters associated with precipitation processes that are consistent with observations of CCN
and Vg is narrow, suggesting the potential of using precipitation rate as an observational constraints on ANy pp_pr. We
examine what the constraints would be like if we know the observed surface precipitation. However, the constraints from two
hypothetical surface precipitation is minimal (Figure S8). We did not include cloud base precipitation rate as a constraint due
to the difficulty in comparing the simulated cloud base precipitation from CAM6 PPE with cloud base precipitation retrieved
from cloud radar and lidar from SOCRATES. We identify further development of instrument simulators for global models as a
useful avenue to improve our ability to leverage airborne data (e.g., cloud base precipitation) to constrain global behavior.

We find the constraints are sensitive to the implausibility setup. Overall, observations of Ny constrain ANy pp_py to a
12% reduction in range and a 16% increase in the median, under the condition of with emulator uncertainty (Figure 8a). The
constraint is improved under condition of no emulator uncertainty, for which the reduction in range of ANy pp_pr is 21% and
the increase in the median is 28% (Figure 8b). The results suggest reducing emulator uncertainty is important for improving our
constraint. More skillful emulators can be achieved by a careful selection of parameters focusing on key processes affecting
ACI, particularly aerosol activation, cloud microphysics, and precipitation process as we discussed earlier in Section 3.2.
Additionally, this work provides insights in the possible parameters ranges in creating PPEs in the discussion of parameter
constraints in Section 3.

We examine the sensitivity of the constraints on AN, pp_ py with observational uncertainties (Figure 9). We find discard-
ing parameter combinations that don’t mesh with observed CCN and N, during SOCRATES yields an improved constraint
on ANy pp—pr when we disregard emulator uncertainty and when observational uncertainty decreases (Figure 9ab). This
highlights the importance of considering systematic uncertainties in observations and continuing to develop our understanding
of systematic uncertainty in observations of microphysics as well as designing campaigns that allow for stochastic sampling
and more direct comparisons to ESMs.

In future work, incorporating additional in-situ constraints, such as aerosol composition, size distributions, or lidar-radar-
retrieved cloud and precipitation properties could further narrow the range of plausible PPE configurations. Alternatively,
adding more variables as observational constraints may expose structural model uncertainties if the observations are incom-
patible with any members of the PPE ensemble (Regayre et al., 2023). Instrument simulators that translate model outputs
into observation-like quantities (e.g., cloud-base precipitation rate) will also be essential for consistent comparisons. More-
over, incorporating variables such as ice-nucleating particles or ice crystal concentrations, could extend the PPE framework to

mixed-phase regimes. While such extensions are beyond the current scope of this study, which focuses on warm liquid clouds,
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they represent promising directions for future work. Together, these directions can improve the use of PPEs in constraining

aerosol—cloud interactions.
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