We thank both reviewers and the editor for their time and thought in reviewing our
paper. Reviewer comments are in black and our responses are in red. We are using the
latexdiff to track changes and provide screenshots of changed text for the reviewers’
convenience as well as a track changes version of the manuscript. The line numbers in
the response refer to the track changes file.

Reviewer #1

The authors use field measurements from the SOCRATES campaign to constrain a
CAMG6 perturbed parameter ensemble. With a primary focus on CCN and Nd, the
authors use an emulator to create surrogate models and constrain plausible
parameter combination. Lastly, the authors show how observational uncertainty
affects the ability to constrain.

The paper is well written and the figures provide sufficient visual context. There are a
few concerns that the authors should address before publication.

Major concerns

The authors stress in several places that the performance of the emulator is crucial for
the task at hand. Looking at Fig. 7, the colors of points and shading strongly disagree in
many places. | wonder if the authors have an explanation of why the apparent
performance is so poor and whether a better emulator is needed (or even possible).

Response: Thank you for pointing this out. We agree that the colors of the points do
not always align with the color shading in Figure 7. This is because the color shading
represents 2D bin averages of global mean present-day (PD) Nd (Figure 7a) and global
mean ANd (Figure 7b), while the color of the points corresponds to individual PPE
members without any averaging. Bin-averaged shading tends to smooth out extreme
values, whereas individual points can reflect larger variability. Therefore, it is not
surprising to observe some mismatch between the two.

However, the overall color patterns (color gradiant) between the shading and the
points show good agreement. Moreover, the emulator performance for both PD Nd
and ANd, as shown in Figure S2, is strong: the emulator’s mean predictions closely
follow the 1-to-1 line when compared with testing data. This gives us confidence in the
emulator’s ability to accurately represent the underlying model behavior, and we do
not believe a different emulator is necessary in this case, as Figure 7 uses the
emulator mean prediction.



Emulator uncertainty becomes important primarily when applying observational
constraints to the PPE. We have acknowledged this in the revised manuscript, and it is
examined in detail in Figures 8b and 9.

To clarify the mismatch between the color points and the color shading in Figure 7, we
have added more explanation of the color shading and point coloring in the caption of
Figure 7 in the revised manuscript.

The color scale in Figure 7 has been revised from the rainbow scheme to a palette that
is accessible to colorblind readers.
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Figure 7. (a) SOCRATES campaign-mean N versus campaign-mean CCN and colored by present-day N, from the CAM6 PPE members
(color dots) and 1M emulations from the PPE (color shading). Emulate density is shown in solid contours. (d¢b) The same with (ea) but colored
by ANga,pp-pr. The color shading shows 2D bin-averaged values of (a) global mean Ny and (b) ANy pp_py, computed using 60x60 bins

in SOCRATES CCN and SOCRATES Nd space. This smoothing highlights large-scale patterns while excluding sparsely sampled regions.
Colored points show individual PPE members without averaging. Observational SOCRATES campaign-mean CCN (i.e., UHSAS100) and

N, from SOCRATES in-situ measurements is shown as the gray shaded bars with an uncertainty of +20% from the campaign-mean.

The authors largely leave out cloud macrophysical properties (e.g., cloud fraction, cloud
geometric thickness, etc.). Does it go without saying that the nudged PPE runs produce
plausible macrophysical properties? The authors should at least provide a brief
assessment.

Response: Thank you for the suggestion. The main focus of this study is to investigate
constraints on cloud microphysical properties using aircraft in-situ measurements.
While a detailed evaluation of cloud macrophysical properties is beyond the scope of
this work, we agree that it is important to establish the credibility of the nudged PPE
simulations. Previous studies using similar CAM6 nudged configurations have shown
that these simulations produce a wide spread in present-day cloud microphysical (Nd)
and macrophysical (LWP) properties, with mean-state values falling within the
observational range derived from satellite remote sensing (Song et al., 2024). In



addition, CAM6 simulations along aircraft flight tracks using the default parameter
configuration reproduce key features of in-situ observations, including cloud phase,
cloud location, and boundary layer structure (Gettelman et al., 2020). We now briefly
note this in Line 114-120 in the revised manuscript and include citations to support it.

Previous studies have shown that the CAM6 PPE, configured with 2-year global simulations, produces a wide spread in
115 present-day (PD) cloud microphysical (V) and macrophysical (LWP) properties. The mean-state PD values have been shown

to fall within the observational range derived from satellite remote sensing (Song et al., 2024). Additionally, CAM6 simulations

along flight tracks using the default parameter configuration reproduce many features of in-situ observations, including cloud

phase, cloud location, and boundary layer structure (Gettelman et al., 2020). These results give us confidence that at least
some members of the nudged PPE simulations provide a physically plausible baseline in terms of cloud microphysical and
120 macrophysical properties. In this study, we focus specifically on microphysical properties.

Along with the above concern, | am wondering if this study is limited to stratiform
clouds (as no convective scheme is described in Sec. 2). Have the authors ensured that
all clouds in CAM6 are stratiform over the SOCRATES domain? How would the results
change if a substantial portion was handled by the convective scheme?

Response: Yes, this study is restricted to low-level, liquid clouds. We focus our analysis
on aircraft measurements of aerosol and cloud properties below 2 km, which
correspond to the marine boundary layer and exclude clouds formed by deep
convection.

In CAM6, cloud microphysics, including cloud droplet number concentration (Nd), is
handled exclusively by the stratiform (large-scale) scheme (MG2). The convective
scheme does not calculate microphysical properties such as Nd. Therefore, all cloud
variables used in this analysis are from stratiform clouds.

The authors use observed surface precipitation rates, but it is unclear where these
rates stem from. The authors need to update Section 2 and describe the retrieval.

Response: Thank you for pointing this out. We apologize for the lack of clarification. In
this study, we did not use observed surface precipitation rates. As noted in the
manuscript, making a direct (apples-to-apples) comparison between CAM6
precipitation and radar-lidar-retrieved cloud-base precipitation is challenging due to
mismatch in vertical level at which precipitation is reported, as well as retrieval



uncertainty and instrument sensitivity. Instead, we conducted a sensitivity test using
two hypothetical campaign-mean surface precipitation rates to examine how such

constraints would influence ANd. We have now clarified this approach in the Results
section of the manuscript (Line 486-488, 569-570), where it was discussed.

485 cipitation rate as an observational constraints on ANy pp_ py. We found it is difficult to make apples-to-apples comparison
between CAMS6 and cloud radar-lidar retrieved precipitation rate at cloud base. Therefore, we do not use observed precipitation
rates in this study. Instead, we examine what the constraints would-be-if-we-dknow-on ANy pp_ p; would respond under two

hypothetical campaign-mean surface precipitation rate constraints, used as idealized sensitivity tests. The results suggest that

examine what the constraints would be like if we know the observed surface precipitation. However, the constraints from two

570 hypothetical surface precipitation is minimal (Figure S8). We did not include cloud base precipitation rate as a constraint due
Minor concerns
l. 16 “possible” rather than “much easier”

Response. Corrected.

B e et i A i

15 condense onto. CCN make cloud droplet formation much-easter-possible in atmospheric conditions. Aerosols from anthro-

ll. 105ff Please briefly describe the synoptic situation encountered during the flights.

Response: Thank you for the suggestion. We have now added a brief description of the
synoptic situation in the revised manuscript (Line 106-108). The campaign took place in
the midlatitude Southern Ocean during austral summer and was characterized by
frequent passages of frontal systems, postfrontal stratocumulus decks, and cyclonic
activity typical of the storm track region (McFarquhar et al., 2021).

105 tegrated over short periods consistent with the Southern Ocean Clouds, Radiation, Aerosol, Transport Experimental Study
(SOCRATES) field campaign based from Hobart, Tasmania (McFarquhar et al., 2021) (Figure 1). The SOCRATES campaign

occurred over the midlatitude Southern Ocean (SO) during austral summer and was dominated by a series of frontal systems.
ostfrontal stratocumulus decks, and cyclonic activit ical of the storm track region (McFarquhar et al., 2021). Model out-

ll. 265-266 Could a lower updraft speed also explain this?

Response: This is a great point—thank you for raising it. Our analysis supports the
interpretation that subgrid-scale vertical velocity is underestimated in CAM6, which
could help explain the low-biased Nd. We have clarified this point in the revised Results
section. (Line 286, 350-352)



285 in the regression slope of Ny on CCN in CAM6 PPE may indicate a stronger loss in Ny from overestimated coalescence

scavenging at low IN; concentration in models. Additionally, the low-biased /N; may also be influenced by an underestimation
of subgrid-scale vertical velocity, turbulence intensity, and other dynamical factors that suppress supersaturation and droplet

activation. We verify our hypothesis in the discussion of parameter constraints of CAM6 PPE using observations in section 3.2.

350 transport and in generating supersaturation;-which-are-impertantfor-aerosel-activation.In particular, microp_aero_wsub_scale

is efficiently constrained to higher values, suggesting an underestimated subgrid velocity (i.e., lower updraft speed) that

suppresses supersaturation, leading to lower Ny.

Typo(s)
[. 453 “of without”

response: we agree the original sentence is confusing. Corrected.

examined their joint effects on ANy pp-— pr in Figure 8. We found great improvement on the Ny constraint when including the

480 effects of CCNundercondition-of without, assuming no emulator uncertainty (Figure 8b). The ANy pp_ pj range is narrowed

Reviewer #2

This is a review of ‘Aircraft In-situ Measurements from SOCRATES Constrain
Anthropogenic Perturbations of Cloud Droplet Number’ by Song et al. It is an important
study that warrants publication in ACP. The analysis is very in-depth and complex.
Using Southern Ocean observations to constrain global cloud properties using a
perturbed parameter ensemble is never going to be an easy thing to synthesize, and |
did have to reread various sections to absorb everything. But | have learned a lot in the
process and | think overall this is a great study.

| have a major comment, related to my public comment about the use of N100 as a
proxy for CCN, as well as a number of minor and technical comments. | suggest major
revisions because | think it is very important that the conclusion that “CCN”
observations do not provide any constraint on global Nd is revisited. In reality, | do not
think the major revision should take long to address.

Major comments:

The authors use observations of N100 (particle concentration above 100nm) as a proxy
for CCN. They cite another study from the same observational aircraft dataset showing
a slope of ~1:1 between CCN (at 0.2% supersaturation) and N100. The authors

responded to my public comment regarding this, stating that it is the distribution mean
that is used as the observational constraint. | understand the logic of this, but it should



be noted that the ratio of campaign mean CCNO0.2:N100 in McCoy et al. (2021) Figure S2
is ~1.08 (+/- ~0.3). If we take that average, that means the use of N100 is
underestimating CCNO0.2 by ~8%. This is a potential known systematic error that is not
discussed (e.g. Lines 165 to 175). What impact would this have on the analysis for the
observational constraint on the distribution of PPE emulated global Pl - PD Nd? | think
this could be roughly determined without needing to repeat the analysis with the
actual CCNO.2 observational dataset. | am trying to assess the potential impact of this
by looking at Figure 7b if the vertical grey shaded area (representing observed N100)
was shifted to the right. It's difficult without the raw data, but I think it would shift the
distribution of plausible emulations constrained with only CCN observations of Pl - PD
Nd to higher values. It's difficult for me to glean from the density contours and colour
scale whether the distribution would be narrower or not. It's clear that the Nd-only
constraint will still be much stronger, but it might also slightly change the Nd + CCN
constraint.

The activation diameter for Southern Ocean aerosol is likely always going to be less
than 100nm for supersaturations of 0.2%, and likely around 80nm for the aerosol
population sampled during SOCRATES (e.g. see Fossum et al., 2018; Figure 2b, where
mP air masses contain aerosol with similar characteristics to oceanic air masses south
of Australia (Mallet et al., 2025, Figure 2b)). | suspect that the SOCRATES CCNO0.2:N100
ratio of ~1.08 shown in McCoy et al 2021 Figure S2a is likely biased low due to some
data points where this ratio is close to zero, which is physically implausible. | therefore
think an 8% underestimation of CCN is conservative, and it would be interesting to see
what the impact would be on Figure 7 and 8 and associated analyses if a ratio closer to
the upper end of the error bar (~1.4) in McCoy et al., 2021 Figure S2 was used.

| recognise the huge amount of effort that's already gone into this paper. | also
recognise that it is likely that the N100 data is probably more readily available and
processed for comparison to the model output. Ideally the whole analysis would be
repeated for the actual QA'd CCNO.2, but that might not be feasible. At the very least |
think the authors should test the impact that increasing the campaign mean observed
N100 by 8% and 40% so that it aligns with the campaign mean observed CCNO.2. | think
that an increase in the “observed” CCN by 8-40% would probably change the
population of plausible PPEs and emulations, which would change the constrained
parameter spaces and constrained PD - Pl Nd distributions. This would impact Figure
3a/c, Figure 7b, Figure 8, and Figure 9, as well as many of the conclusion and discussion
statements regarding the CCN constraint. If those two tests change nothing, then only
some of the discussion might need expanding so that other readers with similar
thoughts to me understand.



In response to my public comment about the use of N100 as a proxy for CCNO.2, the
authors stated “we use N100 as a proxy for CCN to enable comparison across multiple
CAM6 simulations with varied parameter combinations. One advantage of using N100
is that it allows direct comparison of our perturbed parameter ensemble (PPE) results
with those from previous studies (e.g., Figure 2).” My understanding is that the CAM6
model used for the PPE work uses information from simulated aerosol to calculate an
activation diameter for a particular supersaturation (I think from my reading the Abdul-
Razzak & Ghan activation scheme with k-Kohler is used). So it isn't entirely clear why
using observations of N100 is a direct advantage for model comparison over using
actual CCN observations. Observations of N100 would be the better choice if CAM6
used a static 100nm activation diameter, but then the use of the term CCN would be
misleading in this study and the conclusion would be that observations of N100 alone
do not constrain estimates of global Pl Nd.

This might seem nitpicking, but it does seem to me that a slight underestimation of
CCN by using N100 as a proxy could change part of the outcome of the paper. The
value of Nd observations over the Southern Ocean for global climate modelling has
been thoroughly demonstrated here. If CCN observations from the pristine Southern
Ocean only provide a constraint on global estimates of the impact of anthropogenic
aerosols on cloud microphysics globally when collected in conjunction with Nd
observations (which are arguably more expensive and logistically challenge to collect),
then that might (and should) influence decision making and justification for future
measurement efforts in the Southern Ocean. This paper is potentially quite impactful,
so | do think it is worth revisiting the potential implications of using N100 as a proxy for
CCN while considering even small differences in the unity of the relationship between
these two.

Response: Thank you for the detailed and thoughtful comment. We agree that using
UHSAS100 campaign-mean values as a proxy for CCN at 0.2% supersaturation (CCNO.2)
may lead to a systematic underestimation of CCN, as noted in (McCoy et al., 2021). In
response, we conducted sensitivity tests to assess how this potential bias could impact
our constraints on the PD-PI change in Nd. We provide a brief discussion in the
response file, while the detailed discussion can be found in the main text (Line 186).

To reflect the potential offset between UHSAS100 and CCNO.2 we increased the observed
“CCN” by 8% and 40%, representing the lower and upper bounds of the CCN0.2: N100 ratio
uncertainty. This sensitivity scenario is now illustrated in the revised Figure S9, where
the additional red shaded bars represent the expanded observational constraint range.
The result suggests the constraints on PD-Pl change in Nd does not shift much as well
in this case.
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In the second sensitivity test, we further increase the observed ‘CCN' to be 0.3-0.7
higher than the campaign-mean UHSAS100. The resulting constraints on the PD-PI
change in Nd also do not shift significantly in this case.
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Although an increased ‘CCN’ does not change our results, we agree that this analysis
should highlight the potential issue of using UHSAS100 as a proxy for CCNO.2. We have
added further discussion on this point and included Figure S9 as a sensitivity
experiment (Line186-194, 496-499).

Another potential source of systematic uncertainty may arise from the use of UHSAS100 as a proxy to CCN02 over

SOCRATES. While a near one-to-one relationship between UHSAS100 and CCNO2 has been reported for the SOCRATES

i .., (McCoy et al., 2021)), the campaign-mean ratio of CCN02 to UHSAS100 is approximately 1.08 (£0.3) accordin,
to their Figure S2. This suggests that UHSAS100 may underestimate CCNO2 by 8% on average. Moreover, the activation

190 diameter for SO aerosol is typically below 100 nm at 0.2% supersaturation, and likely closer to 80 nm for the aerosol population
sampled during SOCRATES (Fossum et al., 2018; Mallet et al., 2025). This suggests that USHS100 may introduce an even
greater underestimation of CCNO2 compared to UHSAS100. To refiect the potential offset between UHSAS100 and CCNO2,
we conducted sensitivity tests by increasing the observed “CCN” by 8% and 40%, representing the lower and upper bounds of
the CCN02:N100 ratio uncertainty, to examine how this affects our results (Section 3.3.3).

495 cloud base precipitation rate to constrain global behavior.

As discussed in Section 2.4, using UHSAS100 as a proxy to CCN at 0.2% (CCN02) supersaturation may underestimate the
observed CCN02. We conduct a sensitivity test on the constraints on ANy ppp py by increasing observed CCN by 8% to 40%,
according to the CCN02:UHSAS100 ratio uncertainty shown in Figure S2a in McCoy et al. (2021). The results suggest that
increasing the observed CCN does not significantly affect the constraint on ANy pp_ py (Figure 89).



Minor comments:

The use of CCN and Nd separately and combined to constrain the PPEs is interesting.
Could the authors add a few sentences to the conclusion about future directions? Are
there any other observable quantities that could also be used given enough
measurements (e.g. aerosol composition, aerosol size, ice nucleating particles, cloud
ice crystal concentration)? | could imagine a scenario whereby introducing more
observational constraints severely limits or even eliminates the number of plausible
PPEs/emulations, but | wonder if that in itself could be used to highlight structural
issues within these models.

Response: Thank you for the thoughtful comment. As noted in Section 3.4, the
improvement in constraints from using CCN and Nd together occurs primarily when
observational uncertainty is small. This highlights the importance of obtaining accurate
airborne measurements of both variables. In future campaigns, we suggest optimizing
sampling strategies (e.g., stochastic sampling) to enable more direct comparisons with
large-scale Earth system models. This is already discussed in Line 584-587.

In terms of future directions, we agree that additional observable quantities could
further constrain the PPE and help identify structural model limitations. For example,
in-situ measurements of aerosol composition (e.g., sulfate or organic fraction) and
aerosol size distributions could be incorporated. CAM6 provides mass and number
concentrations by mode and species, allowing for some level of comparison, though
differences in mixing assumptions and humidification must be considered. These
added constraints could further narrow the space of plausible PPE configurations, or, if
they provide weaker constraint, they may instead expose structural model
uncertainties.

Incorporating cloud-phase-relevant quantities, such as ice-nucleating particles or ice
crystal concentrations could extend the PPE framework to mixed-phase regimes. While
such extensions are beyond the current scope of this study, which focuses on warm
liquid clouds, we agree that they represent promising directions for future work.

Finally, while our study uses only in-situ measurements, future studies could integrate
lidar-radar-retrieved variables to enhance constraints. We also suggest further
development of instrument simulators that process model output under observation-
like conditions, allowing for more direct comparisons.

We have added a discussion of these ideas in the revised manuscript (Line 588-596).



In future work, incorporating additional in-situ constraints, such as aerosol composition, size distributions, or lidar-radar-retrieved
cloud and precipitation properties could further narrow the range of plausible PPE configurations. Alternatively, adding more
590 variables as observational constraints may expose structural model uncertainties if the observations are incompatible with any.
members of the PPE ensemble (Regayre et al., 2023). Instrument simulators that translate model outputs into observation-like
., cloud-base precipitation rate) will also be essential for consistent comparisons. Moreover, incorporatin
variables such as ice-nucleating particles or ice crystal concentrations, could extend the PPE framework to mixed-phase
regimes. While such extensions are beyond the current scope of this study, which focuses on warm liquid clouds, they represent

26

595 promising directions for future work. Together, these directions can improve the use of PPEs in constraining aerosol—cloud

There appear to be some large differences between the PPE members and the
emulations. The other review raised this concern. | do not have the capacity to
thoroughly review this aspect of the analyses, but | do think the authors have
acknowledged potential limitations with the emulations and gone to lengths to
consider the impact of the emulator uncertainty (e.g. Figure 8b, Figure 9).

Response: Thanks for bring this up. The apparent discrepancies likely stem from Figure
7. The mismatch between the PPE members and the emulator output arises from how
the data are plotted. As noted in our response to Reviewer 1, the color shading
represents 2D bin-averaged values of global mean present-day (PD) Nd (Figure 7a) and
global mean ANd (Figure 7b), while the colored points represent values from individual
PPE members without any averaging. Bin-averaging smooths out extreme values,
whereas individual points can reflect larger variability. Therefore, some degree of
mismatch between the two is expected. We have brought this point in the revised
manuscript.

Figure 7b shows the emulator mean prediction. The emulator performs well for both
PD Nd and ANd, as demonstrated in Figure S2, and this is reflected in the good
agreement in color gradiant between the color shading and the data points in Figure
7b. This gives us confidence in the emulator’s ability to capture the underlying model
behavior, and we do not find it necessary to use a different emulator. Emulator
uncertainty becomes important primarily when applying observational constraints,
which we discuss in Figures 8b and 9.

We have clarified the differences in plotting of shaded areas and scatter points in the
caption of Figure 7.



Figure 7. (a) SOCRATES campaign-mean N versus campaign-mean CCN and colored by present-day N4 from the CAM6 PPE members
(color dots) and 1M emulations from the PPE (color shading). Emulate density is shown in solid contours. (d¢b) The same with (ea) but colored

by ANg,pp—pr. The color shading shows 2D bin-averaged values of (a) global mean Vg and (b) ANg.pp— computed using 60x60 bins

in SOCRATES CCN and SOCRATES Nd space. This smoothing highlights large-scale patterns while excluding sparsely sampled regions.
Colored points show individual PPE members without averaging. Observational SOCRATES campaign-mean CCN (i.e., UHSAS100) and

Ny from SOCRATES in-situ measurements is shown as the gray shaded bars with an uncertainty of +20% from the campaign-mean.

Section 3.3.2 is quite complex. My understanding is that because there is a good
relationship between the global Nd for the Pl and PD (fig 4), it's important to
demonstrate there is a physically plausible reason for that in order to strengthen the
following results/conclusions about the use of present-day pristine observations to
constrain Pl global Nd. | haven't rigorously gone through the maths for this section due
to time constraints, but the logic seems sound to me.

Response: You are correct. Section 3.3.2 uses math equations based on our
understanding of sources and sinks of Nd/aerosol to explain the emergent
relationships we find in Figure 4. Following that we observed CCN and Nd to constrain
the ANd ranges from the PPE.

L247: Are these cases focused only on warm liquid clouds? | would have thought there
was a significant occurrence of supercooled liquid in these flights.

Response: Thank you for the insightful comment. While our study focuses on liquid-
phase clouds below 2 km, we acknowledge that supercooled liquid is common in the
Southern Ocean during SOCRATES. In the manuscript (Section 3.2: line 335-344), we
note that the SO is dominated by supercooled liquid clouds (Gettelman et al., 2020;
McCluskey et al., 2023), and that glaciation via the Bergeron-Findeisen process may act
as a sink for cloud droplet number concentration (Nd). However, we also explain that
this effect is likely minimal in our study, as we restrict analysis to cloud layers below

2 km, where the majority of snow melts and contributes to rain [see Figure 2 in (Field &
Heymsfield, 2015)]. The limited influence of ice-phase processes is also reflected in our
process-based constraints shown in Figure S6, which includes the 2 km altitude
restriction. This supports the assumption that the ice-phase sink of Nd is small within
our filtered domain.

Figure 4 and 5: The grey shaded area in Figure 4 is stated to represent the 95%
confidence on the interannual range of global oceanic mean Nd from MODIS (visually,
~80 - 115 cmA-3). The black dot in Figure 5 also shows this, but the error bar along the
y-axis expressed a much tighter range, despite the caption stating it represents the
same thing as Figure 4.



Response: Thank you for pointing this out. You are correct that there is an
inconsistency between the shaded region in Figure 4 and the error bar in Figure 5. The
wider range in Figure 4 is due to a mistake in how the uncertainty was calculated: we
originally used the 2.5th and 97.5th percentiles of monthly global oceanic mean Nd
values, rather than computing the interannual spread from yearly means. In contrast,
the error bar in Figure 5 correctly reflects the 95% confidence interval calculated across
annual means. We have corrected this in the revised Figure 4 and updated the caption
to clarify the definition of the uncertainty range.
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Technical comments:

| noticed a few typos throughout and have highlighted them where | could, but it would
be worth a final proofread (including supplementary material) before the next
submission.

Figure 1: I very much like this figure. Could the caption indicate whether this is annual,
or austral summer?

Response: Thank you for bringing this up. Figure 1a shows simulations run over two
years, while Figure 2a shows along-flight-track simulations run for January-March 2018,
covering late austral summer into early autumn. We have clarified this point in the
caption of Figure 1.

Figure 1. Maps of SOCRATES mission flight tracks from the NSF G-V aircraft. (a) Location of the SOCRATES aircraft sampling and the

ratio of preindustrial to present day N4 shown in colors. The ratio is computed as f: gx,‘fi using the preindustrial and present-day simulations

run for two years configured with default CAM6 parameter setting. Ratios less than 1 indicate anthropogenically polluted regions. (b)
Comparison of sampling of aircraft measurements (black line) with CAM6 grid point centers (red dots). Along-flight-track simulations are

run for January—March 2018, covering late austral summer into early autumn.

Lines 354 - 358/Figure 1. Natural aerosols do indeed dominate the SO. But some of the
differences between the Pl and PD Nd could also be due to changes in non-aerosol



drivers (e.g. precipitation). This is discussed later, but the logic could be brought
forward earlier (in a brief sentence even), otherwise reading chronologically it might
seem that this hasn’t been considered.

Response: Thank you for the suggestion! We have now added a brief sentence in Line
379-381 to discussion the impact of non-aerosol drivers (i.e., precipitation scavenging)
on Nd budget.

pristine. In addition to aerosol availability acting as a source for the /N; budget, both /N; and natural or anthropogenic aerosols

share similar removal pathways through precipitation scavenging (Zheng et al., 2024; Wood et al., 2012; Kang et al., 2022)
making the processes sampled during SOCRATES relevant for understanding the /N; perturbations on a global scale.

380

Figure 2 were PPEs 010, 237, and 244 chosen at random as a demonstration of the
different outputs? Or do they represent PPEs that resulted in good agreement (010,
237) and poor agreement (244) between the observed and simulated Nd?

Response: Thank you for the question. These PPE members were chosen to represent
cases with both good and poor agreement between the simulated and observed CCN
and Nd. For instance, PPE 010 and 244 (Figure 2b and 2d) show relatively good
agreement in CCN but exhibit low-biased Nd. We have clarified this point in the revised
caption of Figure 2 the main text.

275 to 1 pm from UHSAS100.
Figure 2 shows a subsample of ensemble members with varying levels of agreement with observations, but a positive cor-

Figure 2. Relationships between SOCRATES CCN and in-cloud cloud droplet number concentration (/Ng) from in-situ measurements (red)

and CAM6 members (black)frem-, based on flight composites along individual flight tracks (scatters). Observations-Flight composite are
binned-constructed by binning observations into 50 m (altitude) by 2 min (time) bins for each flight. CAM6 PPE CCN and in-cloud Ny are

collocated to observation composites (50 m X 2 min bins) by linear interpolation for individual PPE members. Bin medians are taken for

comparison with CAM6 models following McCoy et al. (2021). CAM6 in-cloud N is computed as Ny divided by liquid cloud fraction (when

cloud fraction < 1%, we set Ny = 0). CAM6-PP N-and-V;are colocated to-observations(50-m

for-individual PPE-members-PDFs of number concentrations of CCN (top) and cloud droplets (right) for matched binned values occurring
for CAM6 (black) and observations (red) are shown. (a) Default CAM6 configuration (i.e., PPE simulation for ensemble member 000), (b)
PPE simulation for ensemble member 010, (c) PPE 237, (d) PPE 244. PPE members numbered 010, 237 and 244 are chosen to represent

cases with varying levels of agreement between the simulated and observed CCN and V4.
11

Figure 2: What each data point represents is not entirely clear. After reading further on
and looking at Figure S1, | think the data points are indeed averages for individual
flights, so | recommend changing “data are from individual flight tracks” to “data are
averaged for each individual flight track” to make it clearer. Ideally some measure of
spread/uncertainty would be expressed around those data points or stated where
applicable.



Response: Thanks for pointing this out! We agree it was not clear in the original
manuscript. The data points in Figure 2 represent flight composites along individual
flight tracks, illustrating relationships between SOCRATES CCN and in-cloud cloud
droplet number concentration (Nd) from in-situ measurements (red) and CAM6
members (black).

Flight composites are constructed by binning observations into 50 m (altitude) x 2 min
(time) intervals for each flight. CAM6 PPE CCN and in-cloud Nd are collocated to the
observational composites by linear interpolation for each PPE member. Bin medians
are then taken for comparison with CAM6 models following (McCoy et al., 2021).

We have clarified this in the caption in Figure 2 in the revised manuscript.

Figure 2. Relationships between SOCRATES CCN and in-cloud cloud droplet number concentration (Ng) from in-situ measurements (red)
and CAM6 members (black)frem-, based on flight composites along individual flight tracks (scatters). Observations-Flight composite are
binned-constructed by binning observations into 50 m (altitude) by 2 min (time) bins for each flight. CAM6 PPE CCN and in-cloud Ny are

collocated to observation composites (50 m x 2 min bins) by linear interpolation for individual PPE members. Bin medians are taken for
comparison with CAM6 models following McCoy et al. (2021). CAM6 in-cloud N is computed as Ny divided by liquid cloud fraction (when

cloud fraction < 1%, we set Ny = 0). CAM6-PPE N-and-Ngare collocated to-observation 0-m

for-individual- PPE-members-PDFs of number concentrations of CCN (top) and cloud droplets (right) for matched binned values occurring
for CAMG6 (black) and observations (red) are shown. (a) Default CAM6 configuration (i.e., PPE simulation for ensemble member 000), (b)
PPE simulation for ensemble member 010, (c) PPE 237, (d) PPE 244. PPE members numbered 010, 237 and 244 are chosen to represent

cases with varying levels of agreement between the simulated and observed CCN and N.
11

Line 288 “detail” should be “detailed”
Response: Corrected! (Line 307)

Confronting the PPE with observations of CCN constrains aerosol processes (e.g. sea salt emission) and precipitation pro-

cesses (e.g. autoconversion, accretion) (Figure 3a; the detail-detailed parameter explanation is in Table S1). The sea salt

Line 292 “process” should be “processes”

Response: Corrected! (311)

310 2021; Zhou et al., 2021).
Constraints on precipitation proeess-processes point to the importance of precipitation as an aerosol sink. One of the key

Line 378: redundant use of “can”.



Response: Deleted! (Line 401)

400 Ny sampled during SOCRATES contains information for globally-relevant processes (Figure 5), but do PD observations of

aerosol and cloud properties ean-constrain the anthropogenic perturbation in Nz? We find this to be the case in the context of

Line 415. The last sentence in this paragraph doesn't read properly. Maybe it should be
a comma before “we”".

Response: Thanks for pointing this out! We agree the connection between the two
sentences is not clear. We have corrected this in the revised manuscript (Line 441-445).

of CCN and N as discussed in secton 3.2. We-Inspired by this, we wanted to examine the effects of surface cloud base pre-

cipitation on the constraints on ANy, pp—pr - However, we found it difficult to make a direct comparison between CAM6 and

cloud radar-lidar—retrieved precipitation rates at cloud base. Therefore, our constraints on ANy, pp_. py focus on observations

of CCN and NV;. Nonetheless, we provide an illustration of what the constraints would behave if observed precipitation rates
445  were used, based on idealized sensitivity tests discussed in Section 3.3.3.

Figure 7 caption references (d) and (c ) but there’s only (a) and (b). Furthermore, ideally
the legend caption in the right panel would include the “,PD-PI". The range for the grey
shading indicating the observed Nd and UHSAS100 should be described in the figure
caption. The rainbow colour scale isn't colour blind or grayscale-printer friendly. | don't
know if editorial policy yet is to enforce colour-blind friendly colour scales, but if this
figure ends up being redone, I'd encourage a different continuous colour scale.

Response: Thank you for pointing this out! We have corrected the figure caption and
labels, and added descriptions for the grey shaded bars. All instances of “ANd” have
been updated to “ANd,PD-PI” for consistency. We have also replaced the rainbow color
scale with a color-blind-friendly alternative.
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Figure 7. (a) SOCRATES campaign-mean N, versus campaign-mean CCN and colored by present-day N4 from the CAM6 PPE members
(color dots) and 1M emulations from the PPE (color shading). Emulate density is shown in solid contours. (éb) The same with (ea) but colored
by ANg,pp—pr. The color shading shows 2D bin-averaged values of (a) global mean Ny and (b) ANg pp_— pr, computed using 60x60 bins
in SOCRATES CCN and SOCRATES Nd space. This smoothing highlights large-scale patterns while excluding sparsely sampled regions.
Colored points show individual PPE members without averaging. Observational SOCRATES campaign-mean CCN (i.e., UHSAS100) and

Ny from SOCRATES in-situ measurements is shown as the gray shaded bars with an uncertainty of +-20% from the campaign-mean.

Line 510: “(e.g. 262)" should be (“i.e. 262)"

Response: corrected! (Line 543)
- While a large number of ensemble members (e-g:i.e ., 262) were integrated

Figure S5: Figure title has typo (“verus”)

Response: corrected!
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Figure S5: Nd versus precipitation rate. Each dot represents one simulation time step averaged across
ensemble members.
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