
Response to R1 on: 
‘Antarctic ice sheet model comparison with uncurated geological constraints 
shows that higher spatial resolution improves deglacial reconstructions’ 

We thank the reviewer for the supportive comments and helpful suggestions. Below we 
respond to reviewer suggestions in detail; for typographical errors or small 
corrections, the * symbol indicates our intention to enact these corrections in a revised 
manuscript. We appreciate the reviewer’s time and insights towards improving the clarity 
and utility of our work. 
 

The authors present a new automated workflow for model-data comparison using the Penn  State 
University ice sheet model and the ICE-D surface exposure age database. The paper goes in 
depth about different approaches and metrics for comparing model simulations to spatially and 
temporally sparse data, with a thoughtful treatment of uncertainties (model, analytical, and 
geological). This work is impressive and well suited for publication in The Cryosphere after 
some revision. 

My largest concern with this manuscript is also the easiest to fix: the original sources of the data 
shown in figures need to be cited, not just the ICE-D database. The way this database is currently 
used means that Balco (2020) gets cited instead of the original data sources. For instance, the six 
sites shown in Fig 16 a–f span four publications, but only two of those publications are cited, and 
those not in relation to the data. Surely there is a way to easily compile the necessary citations 
when pulling data from ICE-D. 

We completely agree; this same concern also came up ‘offline’ of the review process within 
our community. We will include the relevant citations in figure captions in a revised 
manuscript.  

Because the paper is very long and dense, it would benefit from some significant revision for 
clarity. For instance, as you’ll see from my specific comments below, I was confused for a long 
time about the different metrics being described, how they were used, and how they did or did 
not interact with each other. It became more clear in the Results and Discussion sections, but it 
made the Methods section very difficult to get through. I suggest adding a more clear and 
thorough roadmap of that section before getting into the details. 

Following this suggestion, we will flesh out our summary paragraph in the Introduction 
section into a more complete ‘roadmap’. This paragraph will now read:  

“In this paper, we describe the development and deployment of our model-data comparison 
toolkit. We first discuss the modeling techniques that we apply towards this goal, including 
the underlying choices that shape the simulation and extraction of model deglacial history 
for comparison with geologic data (Section 2). In Section 3, we describe the geologic dataset 



used here – cosmogenic nuclide measurements – and the acquisition and processing of raw 
data. We then introduce our automated methodology for identifying youngest age-elevation 
bounding samples and discuss our treatment of sample uncertainty. Having extracted 
analogous thinning profiles from both geologic datasets and model simulations, we develop 
and present two key metrics that capture different aspects of model-data fit (Section 4.1). 
We investigate the impacts of our methodological choices, and describe our formulation of 
model data fit (Section 4.2). We also compile a secondary set of cosmogenic nuclide model 
constraints on the maximum ice thickness achieved during the last glacial cycle, comprised 
of sites where exposure age measurements bracket the local last-glacial-cycle ice thickness 
change; we correspondingly develop an independent model-data metric to evaluate the 
modeled amplitude of ice thickness changes (Section 4.3). 

With these scoring techniques in hand, we apply our model-data framework to the small 
ensemble of numerical ice-sheet model simulations (Section 5). Model scores using our 
uncurated and automated sample selection methods are compared to model scores using a 
recent comprehensive curated dataset (Section 5.1) to ensure that we have not introduced 
any systematic failures in our approach by eliminating manual curation. We also 
investigate the impact of model grid resolution on model-data fit by comparing results from 
continental simulations to nested high-resolution model domains (Section 5.2), showing that 
these high-resolution nested domains indeed improve model representation of ice thinning 
patterns across mountainous terrestrial regions where exposure-age data are often 
collected. In Section 6, we synthesize and interpret our multiple metrics for model-data fit 
across the deglacial model ensemble, providing scaffolding to leverage this suite of model-
data evaluation tools in various ways to address different questions about deglacial ice 
sheet behavior.”  

We will also make clarifying edits to many of the ‘roadmap’ paragraphs that can be found 
the start of each manuscript sections, that are intended to help signpost and summarize 
each section and guide the reader. 

We also make some adjustments to the headings and numbering organization, for 
additional clarity. 

I have also pointed out some places in the detailed comments below where aspects of the 
methodology seem arbitrary or not well supported by the data, or where such complete 
automation could be undesirable. Obviously it would be absurd to rely on careful manual 
curation of an ever-growing dataset forever, but the pitfalls of automation need to be clearly 
addressed. The manuscript does a fairly good job at this in various places, but I think it would 
benefit from a dedicated sub-section of the Discussion that goes further into these considerations 
beyond the comparison in Fig 11. 

We will add to the paragraph explicitly addressing the pitfalls of automation to the 
‘Comparison with a curated dataset’ section: 



“Our model-data evaluation approach is designed to incorporate all available geologic 
data, with two main aims: to easily assimilate new datasets as they are collected; and to 
avoid potential interpretation bias. As many studies rely on expert assessment to interpret 
individual samples and their geologic context, removing manual curation will also entail the 
loss of this expert judgment. It is likely, therefore, this uncurated approach entrains a 
number of spurious or erroneous data that might have been removed by manual curation 
but not by automated processing, or misses key elements at a complex site. (For example, 
the exposure-age record at Diamond Hill is complex, with multiple nuclides and sample 
types, and our automated methodology generates a greatly simplified thinning history (Fig. 
16a) compared to the in-depth analysis by Hillebrand et al., 2021)). Acknowledging the loss 
of site-specific geologic context, but balancing the previously described benefits of an 
uncurated approach, we endeavour to assess whether there is any significant effect of 
curation on model evaluation. Specifically, to assess the impact of data curation, we 
compare model-data misfit scores using our uncurated and inclusive ICE-D collection 
compared to a curated dataset of geologic constraints (Lecavalier et al., 2023).” 

 

Specific comments: 

In general, locations of sample sites shown in figures need to be marked on a map somewhere. 
For instance, site KRING in Fig 8 is not shown on any location map. 
Figure 1a now contains additional labels to denote sites discussed or shown in the 
manuscript. 

While automation and the use of uncurated data certainly has obvious benefits, the cosmogenic 
nuclide record is often ambiguous and frequently relies on expert assessment of individual 
samples and their geologic context. I worry that automating the model-data comparison process 
will come with a loss of expert judgment. For instance, the exposure-age record at Diamond 
Hill  is quite complex and uses multiple nuclides (Be-10 and C-14) and sample types (erratics 
and bedrock), but Fig 16a is missing a key in-situ C-14-saturated sample and shows a greatly 
simplified version of the history that does not agree with the preferred ice history suggested by 
flow-band modeling (Hillebrand et al., 2021). I’m not insisting that the preferred history must be 
correct but instead pointing out how much nuance is lost in the automated approach. 
Included in the added paragraph above (‘Comparison with a curated dataset’ section)  

L88–100. You could use the modern ice surface elevation at each site as a constraint, rather than 
a complete spatial map. This is worth considering adding to your analysis, especially given that 
many of the later figures in the paper show poor fit to present day ice thickness at the end of the 
model runs and this is essentially a free data point. And if one reason to compare model results 
with paleo-constraints is to calibrate a model for future projections, getting the modern state right 
is very important. 
Yes, we considered this approach, but decided that the uncertainties with respect to the 



measured/modeled modern ice surface were too intractable for our methodology – 
specifically, uncertainties associated with (1) establishing a modern surface elevation 
relative to exposure ages (the ice surface is heterogeneous so where do you register a 
mountain peak transect to as a baseline? The adjacent glacier surface? How far upstream?) 
and (2) the modern model snapshot (prone to various confounding resolution issues, 
discussed further in Sect. 3.2.2.), as well as (3) aligning the two quantities. This decision is 
outlined in Section 3.2.2. Model-data alignment with respect to a common ice surface 
baseline  

L102: Clarify that this ~10–20km resolution only holds for paleo simulations. Plenty of models 
use much higher resolution than this for shorter-term simulations.   * 

 L 163: Is “marine ice shelf instabilities” intentional phrasing? Yes; referring to MICI: Marine 
Ice Shelf Instability feedback. 

 L 167–170: All of these data sets (with the possible exception of Liu et al., 2009) are pretty 
seriously outdated at this point. Has any attempt been made to update these? Is there evidence 
that the model is insensitive to the choice of these datasets? 
Inaccuracies in model input climatology and forcing datasets do contribute significant 
uncertainty to any model simulation, especially, as noted, for older generation data 
products. However, we generally assume that any inaccuracies in older-generation model 
inputs are likely subsumed by much larger uncertainties associated with extrapolating 
modern datasets back in time, although future work will explore the impact of tweaking 
model input datasets on simulated deglacial behavior. However, that planned future 
endeavor is out of the scope of this particular work, which focuses on frameworks for 
model/data comparison. 
  

Section 2.2 needs more information: 

What data sets are used to define present day ice thickness and bed topography? * 

How does the basal friction inversion work?  * 

Is there also an optimized ice stiffness field?  

How is the present-day temperature state achieved and what geothermal flux product is used? 

What spatial resolution? Has any mesh convergence testing been done? 

What sub-shelf melt and calving schemes are used? * 

This ‘2.2 Initialization’ section has been expanded to include these details as relevant to the 
work presented in this manuscript (for example, the basal friction inversion treatment, bed 
topography, and sub-shelf melt scheme do impact our results and ought to be mentioned; 
but our model does not have an optimized ice stiffness field, and the input GHF flux dataset 



doesn’t impact deglaciation significantly; DeConto & Pollard 2012). Nor does present-day 
temperature / ice thickness impact our results, since we conduct a full-glacial-cycle paleo 
simulation to provide last-glacial-maximum (30ka) initial conditions.  

L 182: “The model basal inversion slipperiness input is downscaled at a correspondingly high 
resolution for each nested domain.” Does this just mean it is interpolated from the coarse 
resolution, or is the inversion done on the nested domain or some other high resolution 
continental domain? For most of the outlet glaciers, the coarse resolution inversion is probably 
meaningless, since even Byrd Glacier is at best going to be a few grid cells wide at best. 
“For most of the outlet glaciers, the coarse resolution inversion is probably meaningless" 
Exactly! Yes, we re-did the inversion across the nested domain; this has been re-phrased 
accordingly. 
  

“Nested simulations have been shown to be resolution-independent.” Numerically speaking, this 
cannot be true in general. The figure referenced from DeConto et al (2021) shows that the model 
is more or less converged with respect to resolution at 10km grid spacing for that particular 
domain and scenario. This will not necessarily hold for other applications. 
Rephrased to “DeConto et al. (2021) demonstrated resolution-independence of nested 
simulations (Extended Data 5g); here we additionally test different resolutions …” 

 

Is there some relaxation period used to let the model adjust to the nesting resolution? Going to 
higher resolution usually means the model needs time to adjust, which can take thousands of 
years. 
Yes; “At the beginning of each high-resolution nested simulation, initial conditions are 
provided by linearly downscaling the continental simulation across the preceding 2,000 
years (32-30ka) before branching off…” 

  

Fig 16 caption references Fig 0, which does not exist. * 

  

L261: Maybe this is made clear later on, but from this text it sounds like only ice thickness 
change (and not the actual value of ice thickness or surface elevation) is evaluated here. I 
understand that it’s often very tricky to get models to match absolute surface elevation, but you 
could have an excellent model agreement to observed ice thickness change and still be extremely 
far off in terms of the ice surface elevation. For many cases, this would make it seem like the 
model is doing a good job of explaining the data, when in fact it is biased extremely high or low. 
Update: Okay, I see that you also have this exceedance metric later on. It would be good to 



mention it here. 
Yes, this section introduces the exceedance metric. 

L330: What do you define as LGM age here? Depending on the production rate scaling scheme, 
even using 30ka would prevent C-14-saturated samples from being included. This also brings up 
another symptom of automation, which is that pre-exposed erratics can still provide a constraint 
on LGM surface elevation even if they do not provide a good constraint on the timing, but those 
are discounted here.. 
Yes, these pre-exposed erratics cannot constrain the timing of thinning so to construct our 
primary dataset (to reconstruct thinning profiles), our pre-processing step eliminates these 
old ages (greater than 40ka). 
However, as you mention here, we seek out these pre-exposed erratics for building our 
exceedance metric (in our secondary dataset). So they are not discounted, but leveraged for 
their strength (i.e., constraining LGM surface elevation, even though they cannot help us 
construct timing of thinning).  

L335: What data product do you use to define the modern ice surface? Also, do the sites have to 
be strictly within a model cell? Due to the low model resolution, I can imagine cases where the 
sample sites are in a cell that is always ice free, but could still provide constraints on an adjacent 
cell that contains ice. This could happen even at the 2km resolution for some of the smaller TAM 
outlets. 
A modern ice surface elevation for each sample is recorded in the ICE-D database, 
although is somewhat subjective based on the sample collection field campaign. 

What are the numbers of lumped sites for the different resolutions? 
This is included in the next section: “Note that these 58 sites are further reduced to 50 (44) 
locations for evaluating 2-km (40-km) model simulations because sites that fall into the 
same model grid cell are lumped together, as described above.” 

  

L375: Needs some example citations  * 
  

L 400: It is starting to occur to me that there should be a summary table or list at the beginning of 
section 3 that briefly covers all the different metrics used. 
From this and subsequent comments, we add a table (Table 1) at the end of Section 3 (in a 
new section named Description of terrestrial model-data comparison techniques):  

Table 1. Description of terms and misfits. 

Variable  Description ‘Float scoring’ approach:  
Model thinning curve at each 
site is ‘floated’ vertically (in 
elevation) to minimize site misfit  

‘Time offset’ approach 
Model thinning curve at each site 
is ‘floated’ horizontally (in time) 
to minimize site misfit 



𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Eq (1) Sample misfit 
(mean squared 
error) 

Recalculated for every model 
thinning curve with an applied 
vertical (elevation) shift 

Recalculated for every model 
thinning curve with an applied 
horizontal (time) shift 

𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Eq (4) Site misfit (sum of 
sample misfits) 

The ‘float misfit’ site score is the 
minimum 𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠   that can be 
produced by ‘floating’ the model 
thinning curve  

The minimum 𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is identified 
by applying horizontal shifts (time 
offsets) to the model thinning 
curve 

  Best time offset 
n/a 

The ‘best time offset’ is the value, 
in kyr, of the horizontal shift (time 
offset) that minimizes 𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  Eq (5) 
 

Model misfit with 
respect to thinning 
curve  

The ‘float misfit’ model score is 
computed by summing each 
‘float misfit’ site score 
(minimum 𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)  

n/a 

𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  Eq (7) 
 

Model misfit with 
respect to 
maximum ice 
thickness change 
(the ‘exceedance 
score’) 

n/a n/a 

 

S 3.1.6 Surely there is a more rigorous way to estimate the minimum geologic error? It seems 
strange to use this relatively sophisticated Monte Carlo analysis and then eyeball the dividing 
line for the tail of the distribution. Perhaps using the 95th percentile value as the cutoff? I know 
it’s unlikely to change the number much, but this would be preferable in terms of reducing 
interpretation bias and leaving the workflow flexible as new samples are added to the database. 
Yes; we originally used the 95th percentile value of 495, but rounded up to 500; however, we 
agree that maintaining precision would better fit with our goal of transparency and 
flexibility. Corrected. 

Also, is there a strong justification for making this a uniform value, rather than varying it 
spatially by sector, for instance? 
Our justification is primarily simplicity, to avoid adding yet another complicated workflow 
to an already extremely dense and technical workflow. Additionally, making it spatially 
variable would invite issues associated with large differences in data density across regions, 
and would necessitate a geological or glaciological reason to explain that regional 
variability. This geologic error is likely related to local topography or snow conditions. 

L423: needs references for “ Previous work has relied on continental-scale ice sheet models at 
20-40km”. In general, all of section 3 would benefit from more references.  * 

Fig 4 legend is missing the grey curve for the first 2km entry. The box on the continental map 
showing the location of b–e is hard to see. I suggest making it a bright color that contrasts better 
with the ice thickness map (or simply removing the ice thickness from this plot and just showing 
the grounding line or continental outline).  * 



L472–474: Possibly as (or maybe more) important than the ice-flow perturbation is the formation 
of blue ice areas and wind scoops on the down-wind side. See figure 4 in Bintanja (1999), for 
instance.   * 

L476: I’m not quite sure what is meant by “due to parameter variation” here. There are many 
factors aside from parameter uncertainty that play into this: forcing uncertainty, initial condition 
uncertainty, structural uncertainty, etc. You could probably just delete that phrase, as it’s fairly 
obvious why it is hard to match the modern state at the end of a simulation lasting tens of 
thousands of years. I would also change “may not” to “is very unlikely to” or even “will not”.  * 

L487: Does the float-scoring metric really account for time? If so, it seems that time is double 
counted when also applying the time-offset metric. 
Yes, a model will have a poor float score metric if it deglaciates at the wrong time, since no 
matter how much the model thinning curve ‘floats’ up or down in elevation space, it will 
still be far away from the data samples. The time offset metric is another way of 
characterizing model-data fit, by allowing the model thinning profile to shift in time and 
thus scoring the model only based on its thinning shape.   

  

L500: I don’t understand this sentence: “The timing of model thinning should be generally 
insensitive to model-data alignment issues.” Can you reword for clarity? By “alignment”, are 
you referring to the elevation misfit? It could also be interpreted as general alignment along 
space and/or time dimensions, which makes the sentence rather ambiguous.  
Sentence was removed for clarity and flow.   
 

L501: The parenthetical “horizontal” here is a bit strange, since horizontal by definition refers to 
space, not time. Specify that this is along the horizontal axis in the age-elevation space shown in 
Fig 6, for instance.  * 
 

L506: There could also be random errors in the forcing datasets accounting for this. Not all 
forcing uncertainty is going to be systematic. Conversely, model resolution issues could certainly 
impart a systematic bias. For instance, low resolution model simulations tend to exhibit marine-
ice-sheet-instability-style collapse more readily than high resolution simulations. If the model is 
not converged with respect to resolution (as I would bet is the case for 40km simulations), there 
would be a systematic bias across the entire West Antarctic Ice Sheet during a deglaciation event. 
Agreed; sentence rephased to allow for broader implications. 
 

Based on Figure 6, it looks like you apply a dozen or so equally spaced offset values and then 
score them to find the best of those user-defined values. Presumably there is a straightforward 
way to solve this as a minimization problem, which would be more accurate and robust and 



make the workflow more automated.  
Agreed; however, this would add another layer of workflow complexity. Technically we are 
already treating this as a minimization problem, just a fairly basic one. 
 
Also, panel b would make more sense if the axes were flipped, since the offset is the independent 
variable here.   * 
 

S3.2.3: Are these metrics weighted equally? Can you do some kind of L-curve analysis to 
determine the optimal weights? 
We don’t combine these metrics together into one total score, because our metrics are 
aimed towards answering different questions about model data fit. The ‘optimal’ weights 
for combining metrics into one total score would differ based on the user’s interest. 

L529: If I understand this correctly, using “the closest time of exposure of the data point” means 
that the interpretation of the exposure age is dependent on the model prediction, which doesn’t 
seem appropriate here. It also suggests that any age within the uncertainty bounds is equally 
likely, which is not the case. 
If the modeled age falls anywhere within the sample uncertainty range, we consider that 
model prediction correct. 

L~565: By this point, I’m fairly confused. What was the point of the metrics in 3.2.3 if you 
instead use this misfit metric in equation 1? I think this section needs to start with a more 
thorough roadmap that explains which metrics are needed and what they are used for. 
The new Table 1 (at the end of Sect 3) should clarify how the misfits all fit together. 
Basically, this site misfit is the value that the float scoring metric and time offset metric 
seek to minimize, by shifting the model thinning curve relative to the data thinning curve 
(which correspondingly changes the site misfit score).  

3.3.2 title: Presumably you want to score the model, not the samples?   * 

L583: Why not use a similar 10kyr value for this case? The way it is done here makes the two 
youngest samples in Fig 7 have significantly less weight than the oldest sample, even though the 
model fits them all very poorly. 
True; but conversely, a 10kyr ‘penalty’ would give these samples an oversize impact on the 
site misfit. So either choice propagates some interpretative bias into this workflow, despite 
our efforts to eliminate this bias through automation. However, we do allow users to adapt 
these ‘preset’ values in our user interface Ghub tool.  

Also, it seems like the choice of the 10% ice-thickness-change vertical window could have a 
very large impact on scoring. If that window was just a very tiny bit wider, both the oldest and 
the second-youngest samples in Fig 7 would be interpreted by the algorithm as having relatively 
small ∆t values. How was this 10% window determined? Instead of using a window of uniform 



height for each site, what if the algorithm could solve for the necessary window height and then 
account for that in the misfit calculation? 
Yes, this is another choice that could impact results, although the algorithm does 
individually solve for the vertical window height at every site (based on 10% of the 
modeled maximum ice thickness change, which varies site-by-site).  

Also, should this reference Fig 7 instead of Fig 5? Fig 7 correctly references Fig. 5’s best-fit 
curve. 

Fig 8: The top panel shows a misfit of 0 even though it underestimates modern ice thickness by 
50m (out of only 350m total thickness change) and is still thinning at a significant rate at the end 
of the simulation. See my comment above about including the modern ice thickness as a 
constraint. 
The motivating goal of the float-score approach is to avoid issues with the modern ice 
thickness constraint (see response above) 

This misfit cap of 50 seems quite arbitrary as well. How was this determined? Can you show at 
least two other sites to show that this value is representative? This figure doesn’t necessarily 
support the cap of 50. For instance, the difference between the misfits of 46 and 55 is not all that 
significant: they both thin too little, too late, and the difference is just a matter of degree. And 
more importantly, the run with misfit 55 thins at about the right time and is in fact significantly 
better than the run with misfit 120, which bears almost no resemblance to the data whatsoever. 
So I think the limit of 50 is actually a bit too restrictive here. One could also argue that the runs 
with misfits of 46 and 55 both explain the data better in some senses than the run with misfit of 
34, since that thins thousands of years too early (assuming that the assertion in L 487 that the 
float misfit score accounts for timing of thinning is true).  
We established a cutoff of 50 simply by interpreting many different plots like Fig 8 for a 
series of different sites, in the manner employed by the reviewer above. So, yes, this is 
another place where we were forced to establish some ad-hoc cutoff points. 

L607: How sensitive are the conclusions to this spatial weighting scheme? It seems like you 
could defensibly define this in multiple ways — for instance by using ice-flow catchment 
boundaries (either time-dependent or modern) — and those could possibly give different answers 
without a clear way to choose between them. 
We did not test different spatial weighting schemes; we simply follow the guidance of 
Briggs & Tarasov (2013) and Lecavalier & Tarasov (2025) who address the issue of variable 
data density by developing an inverse areal density weighting scheme which we adapt here.  
We plan to use (paleo)ice flow catchment boundaries in future work that will consider both 
terrestrial and marine geologic datasets; but for this project, we feel that the areal 
weighting scheme is appropriate. 

Eq 5: I’m still a bit lost at this point. Reading from the top of section 3 from top to here, I don’t 
understand how all the different metrics come together. You first define a float-scoring (i.e., 



thickness change) metric and a best-time-offset metric in S3.2.3. Then in 3.3.1 you define this 
sample misfit metric that appears to be more or less independent of either of those. That metric is 
used to calculate site misfit, which is then used to calculate model misfit. So where do the float-
scoring and best-time-offset metrics come in? As I’ve mentioned above, this section would 
greatly benefit from a very clear roadmap at the beginning that gives a very clear summary of the 
procedure before you dive into the details. The text at the beginning of Section 3 seems to 
attempt this, but doesn’t really help clarify the approach for me. 

From this and subsequent comments, we add a Table 1 to the end of Sect 3, to accompany 
our introduction of our three metrics (float scoring metric, time offset metric, and 
exceedance metric).  
This will clarify that the sample misfits are used to construct a site misfit. The site misfit 
statistic is what is minimized by either moving the model thinning profile up and down 
(floating in elevation) or side-to-side (allowed to shift in time, to identify the best-fit time 
offset).  

L 628–630: need example references   * 

 L705: Technically, saturated C-14 concentrations provide robust evidence for lack of LGM ice 
cover.  
Corrected. 
The scaling factor of 10 seems arbitrary as well. How sensitive are results to this assumption? 
Yes, this quantification of our confidence in this C-14 constraint, relative to our other 
methods of inferring LGM thicknesses, is indeed arbitrary. We don’t have any non-
arbitrary way of quantifying confidence between two different ways of indirectly inferring 
LGM elevations; we simply said, ‘We are an order of magnitude more confident that C14 
elevations constraints are robust” and designed our weight accordingly. However, we don’t 
think this is impacting results significantly since we only have three C14-based constraints 
currently; but with this scoring ‘weight’ we wanted to convey the increased utility of this 
type of measurement.   
   

L731: Here the float misfit score has come back. Is this in fact the same as the misfit defined in 
Eq 5? Why is the time-misfit score not mentioned here? 
Yes; the float misfit model score is simply the sum of the site scores that have been 
calculated by allowing the model curve at each site to ‘float’ in elevation; this is the ‘float 
misfit score’ approach. This should be clarified by our new Table 1 at the end of Sect 3.  

 
L788: “wrong more consistently” is rather ambiguous phrasing. Reword for clarity. Something 
like “exhibit a more consistent time-offset bias”. Refer to Fig 13 here to help illustrate.    * 



 
Fig 13: Median and interquartile range might be more meaningful than standard deviation for 
distributions like these. 
Prior to computing the mean and standard deviation, we remove the ‘pathologic’ outliers 
(e.g., sites where models do such a poor job of fitting to the dataset that an extreme best-
time-offset value of +/- 15kyr indicates that model/data alignment is meaningless at these 
sites). So, either mean/s.d. or median/IQR would, in our opinion, adequately represent the 
degree of clustering of our time offset values. 
  

L835: Are the 20- and 10-km results shown anywhere? If not, a figure should be added. 
Not at present; in a revised manuscript, we will weigh either adding a supplement with 
these figures (we are already at 16 figures in the main text), or simply removing this 
sentence. 

  

L898: delayed and more rapid compared with data, or with other model runs? 
Compared to other model simulations; this will be clarified. 

  

L896–904: My guess is that this is due to the power-law (Weertman-type) basal friction 
parameterization used in the PSU model, which uses a relatively large exponent and thus 
assumes a relatively hard ice-sheet bed. A more-plastic bed rheology would likely be more 
appropriate for much of the Antarctic Ice Sheet, though the appropriate rheology and thus the 
appropriate friction parameterization will vary widely in space. The power-law exponent has not 
been varied as a parameter for any study with this model that I am aware of, but it has a large 
impact on time-evolving behavior in other models (Parizek et al., 2013; Gillet-Chaulet et al., 
2016; Nias et al., 2018; Joughin et al., 2019; Brondex et al., 2019; Hillebrand et al., 2022; 
Schwans et al, 2023). It cannot be determine with a snap-shot inversion approach, but instead 
requires calibration in time-evolving simulations, or a transient inversion. I think using a more-
plastic bed rheology might tend to lower the maximum thickness (leading to better exceedance 
scores) and also lead to steadier, less abrupt thinning (potentially improving float misfit scores if 
I understood the previous text correctly). Obviously you don’t need to attempt this here, but it’s 
worth mentioning that this key assumption has never been tested with this model. 
Thank you for this context; we have not previously explored the idea of a plastic rheology 
vs power-law basal friction impact on our results. Our varied parameter ‘CSHELF’ 
represents that power law exponent, though only for modern ungrounded continental shelf 
(in other words, we are only changing the basal friction treatment for the outer shelf). It 
seems that using a plastic bed rheology would have a similar impact (lower LGM ice 
thickness and less abrupt thinning rates) as using a smaller power law exponent 



(CSHELF=5).   
  

L980: One explanation that occurs to me (although there are many many possible and 
complementary explanations) is that deposits in currently ice-free valleys alongside TAM outlet 
glaciers can be hundreds of meters lower in elevation than deposits of the same age that are on 
the glacier valley walls because the glacier margins extended several km into these valleys at the 
LGM (see, eg., the wide range of elevations of the mapped Britannia I limit at Lake Wellman in 
King et al., 2020). Those two populations would both be compared against very similar (or 
identical) modern-day surface elevations, so they record very different ice thickness changes 
despite recording the same event at almost the same location. Without some calculation that 
accounts for the very different elevation of these valley-floor deposits (e.g., using some 
estimated surface slope to project them back to the glacier centerline or nearest model grid-cell), 
it’s unlikely that they will be used accurately in this analysis. Recorded rates of thinning also 
vary widely (up to maybe a factor of 2) between valley-floor and nearby valley-wall samples. An 
automated approach will likely always miss the difference between these types of samples. To be 
fair, however, most expert curation would has also missed that distinction. 
This is a great example of why we developed our float scoring approach – allowing the 
model curve to ‘float’ vertically in elevation to best match the exposure age thinning profile 
– because the modern ‘reference’ ice elevation is difficult to constrain/align between models 
and data, as described. Using this float scoring approach, both valley-wall and glacier-
margin thinning curves would be compared to their respective model thinning curves 
independently of the modern ice surface elevation.  
The key part that we still need to get right, though, is making sure the model can resolve 
between a valley wall and a glacier margin – and we think this is why our high-resolution 
model domains do a better job of matching measured amplitudes of ice thickness change 
(for example Fig 12), although 2km is still coarse relative to the complex topography of the 
TAM. If the model is high enough resolution, in principle, it would capture both of these 
environments correctly.  

There’s also the issue that the small-scale meteorology of the glacier margins is a strong control 
on location of deposits, and is not going to be represented at all in the model. For instance, the 
presence of algae-hosting melt ponds at the LGM and even the deposition of erratics in valleys 
requires marginal ablation areas. 
Yes, this small-scale but impactful meteorology (especially in the TAM) is still very poorly 
represented in models, even with our 2km domains. 

L991: Resolution is just one of many important model choices that have a bearing on this, so it’s 
not necessarily resolution that is limiting accuracy at this point. The remaining discrepancies are 
more likely due to all the other sources of uncertainty (model structure, unrepresented physics, 
parameters that likely need to vary spatially, bed topography, forcing, etc). I would guess that 
you’re not going to see much further improvement at higher resolution at this point, although it 



would be interesting to test that for a few of these ensemble members. The nested domains are 
also still driven by the low-resolution simulations at the boundaries, so they cannot completely 
decouple from the inaccurate low-resolution ice dynamics occurring outside the high-resolution 
region. This might not be a big issue at the interior sites, but in the TAM it is probably important, 
since the grounding-line position in the Ross Embayment is likely to be resolution dependent. 
These important considerations are now added to the main text. 

  

The sign convention on time in the figures in the appendix is reversed relative to the main text. 
Please point this out in captions.     * 
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