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Abstract. There is an increasing need for reliable short-term sea ice forecasts that can support maritime operations in polar

regions. While numerous studies have shown the potential of machine learning for sea ice forecasting, there are currently only

a few operational data-driven sea ice prediction systems. Here, we introduce MET-AICE, a prediction system providing sea

ice concentration forecasts for the next 10 days in the European Arctic. To our knowledge, it is the first operational data-driven

prediction system designed for short-term sea ice forecasting. MET-AICE has been trained to predict sea ice concentration5

observations from the Advanced Microwave Scanning Radiometer 2 (AMSR2) at 5 km resolution. After one year of operation,

we show that MET-AICE considerably outperforms persistence of AMSR2 observations (root mean square error about 31 %

lower on average) and forecasts from the Barents-2.5km physically-based model (root mean square error about 50 % lower on

average).

1 Introduction10

There are growing economic and geopolitical interests in the Arctic affecting various sectors such as shipping, tourism, fishing,

and resource extraction (Stocker et al., 2020; Gunnarsson, 2021; Müller et al., 2023). This has resulted in a recent increase of

the maritime traffic of about 7 % per year over the past decade (Müller et al., 2023). However, sea ice still remains a source of

hazards, in particular due to the remoteness of the polar regions. In order to reduce the risk of accidents, seafarers going to ice

infested waters are required to get sea ice information before their journeys by the International Code for Ships Operating in15

Polar Waters since 2017 (Polar Code; Deggim, 2018). The primary source of sea ice information used by seafarers navigating

in the Arctic usually consists of sea ice charts produced by national ice services and satellite products (Wagner et al., 2020;

Copeland et al., 2024). While the current conditions can be assessed using such observations (though some of these data might

already be outdated in areas with fast changing conditions), they do not allow to anticipate the sea ice evolution during the next

few days. For route planning, skillful sea ice forecasts could be used (Veland et al., 2021), but dynamical sea ice prediction20

systems are often not able to outperform persistence of sea ice concentration (SIC) observations for short lead times (Melsom
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et al., 2019; Röhrs et al., 2023; Palerme et al., 2024; Kvanum et al., 2024). Furthermore, the need for accurate sea ice forecasts

is also growing due to increasing sea ice motion caused by sea ice thinning (Tandon et al., 2018; Tschudi et al., 2020).

Several studies have recently shown that data-driven sea ice forecasting systems trained on satellite observations can be

skillful (e.g. Grigoryev et al., 2022; Ren et al., 2022; Chen et al., 2023; Keller et al., 2023; Koo and Rahnemoonfar, 2024),25

and can provide more accurate forecasts than dynamical models (Andersson et al., 2021; Palerme et al., 2024; Kvanum et al.,

2024). However, most operational sea ice prediction systems are still based on dynamical models (e. g. Smith et al., 2016;

Barton et al., 2021; Williams et al., 2021; Ponsoni et al., 2023; Röhrs et al., 2023; Paquin et al., 2024), and there have only

been a few based on machine learning approaches. The first operational data-driven sea ice prediction system developed has

been IceNet (Andersson et al., 2021), which provides forecasts of the probability that SIC exceeds 15 % for the next 6 months.30

For lead times from 2 to 6 months, IceNet outperforms the forecasts from the European Centre for Medium-Range Weather

Forecasts (ECMWF) SEAS5 seasonal prediction system (Johnson et al., 2019), while running 2000 times faster on a laptop

than SEAS5 on a supercomputer. Furthermore, Palerme and Müller (2021) developed post-processed sea ice drift forecasts for

lead times up to 10 days using machine learning that have been delivered on the commercial application IcySea from 2020 to

2024 (https://driftnoise.com/icysea.html, von Schuckmann et al., 2021).35

Sea ice changes on short-time scales are primarily driven by the atmosphere, and in particular by the wind (Mohammadi-

Aragh et al., 2018; Yu et al., 2020). Hence, it is crucial to include predictors from weather forecasts when developing data-

driven sea ice prediction systems, as suggested by previous studies. Grigoryev et al. (2022) reported an improvement of 5 to

15 % when forecasts from the National Centers for Environmental Prediction (NCEP) operational Global Forecast System

(GFS) are used, whereas Palerme et al. (2024) assessed an error reduction of 7.7 % when using ECMWF weather forecasts40

in addition to sea ice predictors. In this paper, we introduce MET-AICE, a data-driven sea ice prediction system producing

10-day SIC forecasts with daily time steps in the European Arctic. The predictors used in MET-AICE are derived from SIC

observations provided by the Advanced Microwave Scanning Radiometer 2 (AMSR2), ECMWF weather forecasts, and a land

sea mask. The forecasts have been produced daily since March 2024 and are publicly available (see code and data availability

section). In section 2, the datasets used in MET-AICE and for verification are described. Then, the deep learning prediction45

system and the verification methods are presented in section 3. The performance of MET-AICE is evaluated and compared to

the Barents-2.5km Ensemble Prediction System (EPS) in section 4, followed by the discussion and conclusions in section 5.

2 Data

2.1 Datasets used for MET-AICE

MET-AICE has been trained to predict SIC observations at about 5 km resolution derived from AMSR2 data using a three-50

step algorithm called reSICCI3LF (Rusin et al., 2024). The first step combines the AMSR2 microwave imagery channels at

19 and 37 GHz to derive a SIC field at about 15 km resolution with relatively low uncertainties. It then computes a higher

resolution SIC field (about 5 km) using the two 89 GHz channels. This higher-resolution SIC has larger uncertainties due to

the atmosphere being less transparent at these higher frequencies. Finally, the high resolution details obtained from the 89
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Table 1. List of predictors used in MET-AICE.

Source Variable Time

AMSR2 SIC observations Day preceding the forecast start date

AMSR2 Land sea mask Constant predictor

ECMWF 2-meter temperature Mean value between the forecast start date and the predicted lead time

ECMWF 10-meter x wind component Mean value between the forecast start date and the predicted lead time

ECMWF 10-meter y wind component Mean value between the forecast start date and the predicted lead time

GHz channels are added to the coarser resolution field to produce a final SIC field at 5 km resolution with relatively low55

uncertainties. For more details about this algorithm and product, we refer to Rusin et al. (2024) and to Palerme et al. (2024)

where this product was shown to be more accurate for the ice edge position than the OSI-408-a product from the Ocean and

Sea Ice Satellite Application Facility (OSI SAF), also derived from AMSR2.

The AMSR2 SIC observations from the day preceding the forecast start date are used as a predictor in MET-AICE, and

can be considered as the initial SIC conditions of the prediction system (table 1). The land grid points in these observations60

are considered as ice-free ocean (0 % SIC) since only valid values can be provided to the neural networks. MET-AICE also

uses a land sea mask as a predictor, as well as ECMWF weather high-resolution forecasts (HRES, grid spacing of 9 km) in

3 predictors that are the 2-meter temperature and the 10-meter wind (x and y components on the MET-AICE grid). For the

predictors from ECMWF weather forecasts, the mean values between the forecast start date and the predicted lead time are

used. Due to this choice, 10 different models were developed for predicting the SIC evolution during the next 10 days. All the65

predictors are normalized using the statistics from the training dataset (values ranging between 0 and 1), and projected onto the

MET-AICE grid (Lambert azimuthal equal area at 5 km resolution) using nearest neighbor interpolation before providing them

to the neural networks. In Palerme et al. (2024) and Kvanum et al. (2024), the SIC trend from passive microwave observations

during the 5 days preceding the forecast start date was used as a predictor, but it was shown to have a negligible impact on the

predictions. Due to the limited importance of this predictor and the potential impact of missing data on the production of the70

forecasts, no SIC trend from satellite observations is used in MET-AICE.

2.2 Datasets used for verification

The AMSR2 SIC product from Rusin et al. (2024) is used as reference in this study since MET-AICE has been trained to

predict these observations. However, passive microwave products sometimes indicate some spurious sea ice along the coasts

due to the difference in brightness temperatures over open water and land, as well as the spatial resolution of several kilometers75

(Lavergne et al., 2019; Kern et al., 2020). In order to avoid this issue, the oceanic grid points closer than 20 km from the coasts

are not taken into account when the forecasts are evaluated using AMSR2 SIC observations as reference.

In addition, the ice charts produced by the ice service of the Norwegian Meteorological Institute (JCOMM Expert Team on

sea ice, 2017; Copeland et al., 2024) are used as an independent dataset for verification. The ice charts, which represent sea ice
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classes of concentration, are manually drawn by ice analysts during week days using several types of observations. Synthetic80

aperture radar (SAR) observations are used where they are available due to their high spatial resolution. In other areas, the

analysts prioritize visible and infrared data, whereas passive microwave observations are used where no higher resolution data

are available. Since the ice charts are not produced during weekends and public holidays, there are fewer data accessible for

verification than using AMSR2 observations.

Sea ice forecasts from the Barents-2.5km EPS (Röhrs et al., 2023) are used as a benchmark in this study. Barents-2.5km EPS85

(hereafter referred to as "Barents-2.5") is a regional ocean-sea ice dynamical model producing hourly forecasts with lead times

up to 96 hours. It consists of the Regional Ocean Modeling System (ROMS) version 3.7 (Shchepetkin and McWilliams, 2005)

coupled with the Los Alamos Sea Ice Model (CICE) version 5.1 (Hunke et al., 2017). Barents-2.5 has 42 vertical layers and a

spatial resolution of 2.5 km. The ensemble consists of 24 ensemble members with daily assimilation cycles (AMSR2 SIC from

Rusin et al. (2024), sea surface temperature, in-situ temperature and salinity observations) as well as updates of atmospheric90

files four times a day (six members are respectively updated at model hours 00:00, 06:00, 12:00, and 18:00 UTC). Only daily

means of members produced at 00:00 UTC are used in this study for a consistent comparison with MET-AICE. In five of the six

ensemble members produced at 00:00 UTC, the atmospheric forcing comes from ECMWF ensemble forecasts (ECMWF-ENS)

at 9 km resolution. The remaining member is forced by the regional weather prediction system AROME-Arctic (Müller et al.,

2017) developed at the Norwegian Meteorological Institute, which has the same domain and spatial resolution as Barents-2.5.95

We chose to compare MET-AICE to Barents-2.5 since the same AMSR2 SIC observations are used to initialize both prediction

systems. An ensemble Kalman filter is used to assimilate these observations in Barents-2.5, though the model’s ensemble is

underdispersed (lack of ensemble spread, see Idžanović et al. (2023)), which indicates an overly high confidence in the forecast

and thus limits the impact of the assimilation.

3 Methods100

3.1 Deep learning prediction system

MET-AICE is based on convolutional neural networks with a U-Net architecture (Ronneberger et al., 2015), including residual

connections (He et al., 2016) and spatial attention blocks (Oktay et al., 2018). This architecture was shown to outperform the

original U-Net model for short-term sea ice prediction (Palerme et al., 2024). While the residual connections are used in every

layer of the neural network, the spatial attention blocks are only present in the layers of the decoder. The residual connections105

are used to avoid vanishing issues and ease neural network training (He et al., 2016), whereas the spatial attention blocks

are designed to identify and give more attention to relevant areas during training (Oktay et al., 2018). The MET-AICE grid

(480 x 544 grid points) has a spatial resolution of 5 km, and the neural networks are composed of five downsampling and five

upsampling operations. 32 convolutional kernels are used in the first layer, and then the number of convolutional kernels is

doubled at every layer in the encoder (and divided by two in the decoder). The models were trained to minimize the mean110

squared error during 100 epochs with a batch size of 4. An initial learning rate of 0.005 was used with an Adam optimizer,
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which was then reduced by a factor of 2 every 25 epochs. In order to avoid overfitting, the model version with lowest validation

loss was selected during training for each lead time. The models contain about 39 million parameters.

The deep learning models were trained using weekly data during the period 2013 - 2020 (about 400 forecasts for each lead

time). While using weekly data decreases the size of the training dataset, this also reduces the overlap between the forecasts115

for long lead times, which improved the performances for lead times longer than 1 day during the tuning phase (probably due

to less overfitting). Nevertheless, all the forecasts available (daily data) produced in 2021 were used for validation (for tuning

the models), and all the forecasts from 2022 were used for the test dataset during the development of MET-AICE. However,

this study focuses on evaluating the forecasts that have been operationally produced since March 2024. Furthermore, ECMWF

weather forecasts produced by different model cycles were used for training the deep learning models due to the 8-year training120

period (https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model).

3.2 Verification

In this study, the SIC and the ice edge position (defined by the 10 % SIC contour and excluding coastlines) are evaluated using

two different verification scores. In order to assess the quality of SIC forecasts, the root mean square error (RMSE) of the SIC

is calculated over all oceanic grid points using AMSR2 observations as reference. Since the ice charts do not provide SIC as a125

continuous variable but as sea ice classes, the ice charts are only used for evaluating the ice edge position. The ice edge position

is evaluated using the ratio of the Integrated Ice Edge Error (IIEE, Goessling et al., 2016) over the length of the ice edge in

the observations used as reference (hereafter referred to as "ice edge distance error"). This metric was introduced by Melsom

et al. (2019) and provides the mean distance between the ice edges in the forecasts and in the observations. It is worth noting

that normalizing the IIEE by the ice edge length (calculated using the method described in Melsom et al. (2019)) allows to use130

a metric which is not seasonally dependent, contrary to using the IIEE without normalization (Goessling et al., 2016; Palerme

et al., 2019).

The forecasts are considered skillful if they outperform persistence of AMSR2 SIC observations from the day before the

forecast start date (hereafter referred to as "persistence of AMSR2 observations"). When the ice charts are used as reference,

persistence of the ice charts from the day before the forecast start date (hereafter referred to as "persistence of ice charts") is135

used as an additional benchmark forecast, though this reduces the number of days available for verification due to the lack of

ice charts during weekends and public holidays. In addition, we also developed a similar bias correction method for Barents-2.5

as the one used for TOPAZ4 in Palerme et al. (2024), where we calculate the difference between the first hourly time step from

Barents-2.5 and the AMSR2 observations from the day before. Then, we subtract this difference from Barents-2.5 forecasts

for longer lead times in order to produce a benchmark forecast called "Barents-2.5 bias corrected" (the values lower than 0140

% and higher than 100 % are then replaced by 0 % and 100 %, respectively). Due to the limitations of passive microwave

SIC observations along the coasts (where spurious sea ice can be reported), this bias correction was not applied to the grid

points that were closer than 20 km from the coasts. This improves the impact of the bias correction when the forecasts are

evaluated using the ice charts as reference, probably due to land contamination in the passive microwave observations. The

bias correction used in this study is slightly different from the one proposed by Palerme et al. (2024) since the bias is calculated145
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Figure 1. a) Domains of MET-AICE (gray) and Barents-2.5 (purple). Comparison between the MET-AICE forecasts initialized on the

01/02/2025 at 00:00 UTC (b to d) and the AMSR2 sea ice concentration observations for the corresponding days (f to h). e) The AMSR2

observations from the day preceding the forecast start date that are used as a predictor in the MET-AICE forecasts initialized on 01/02/2025.

using the first hourly time step from Barents-2.5 here whereas the first daily time step from TOPAZ4 was used in Palerme et al.

(2024), and because the bias correction was also applied to coastal grid points in Palerme et al. (2024).

The domain of Barents-2.5 does not cover the full domain of MET-AICE (Fig.1 a). Due to the difference in model domains,

the SIC forecasts are evaluated in the shared domain between Barents-2.5 and MET-AICE after projecting all the datasets on

the MET-AICE grid using nearest neighbor interpolation. It is also worth noting that a common land sea mask is used for all150

the datasets during verification (land if there is land in at least one of the dataset).

4 Results

Fig. 1 shows the MET-AICE forecasts initialized on 01/02/2025 for lead times of 1, 5, and 10 days. During the first five

days of February 2025, the surface of a polynya located around Franz Josef Land grew before closing between 05/02/2025 and

10/02/2025. MET-AICE was able to reproduce relatively well the growth and the closing of this polynya, though the magnitude155

of the closing was underestimated. The retreat of the ice edge north of Svalbard during the first five days of February 2025

was also predicted successfully. There was also a decrease of the sea ice extent around Novaya Zemlya which was predicted

by MET-AICE, though it was slightly underestimated. However, the sea ice patches located between Svalbard and Bjørnøya

remained longer than in MET-AICE predictions. Furthermore, the MET-AICE forecasts become smoother with increasing lead

times, which is expected for deterministic deep learning models, as well as due to the temporal averaging of the predictors160

from ECMWF weather forecasts.
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Figure 2. Performances of MET-AICE and Barents-2.5 during the period April 2024 - March 2025. a) Root mean square error (RMSE) of the

sea ice concentration over the shared domain between MET-AICE and Barents-2.5 using AMSR2 observations as reference. b) Evaluation

of the ice edge position (defined by the 10 % sea ice concentration contour) using AMSR2 observations as reference. c) Evaluation of the ice

edge position using the ice charts as reference.

The performances of MET-AICE and Barents-2.5 for the period April 2024 - March 2025 are shown in Fig. 2. MET-AICE

considerably outperforms persistence of AMSR2 observations for all lead times. When AMSR2 observations are used as

reference, the RMSE of SIC for MET-AICE is about 31 % lower than for persistence of AMSR2 observations on average

(between 25 % and 33 % depending on lead time). The ice edge position is also more accurate in MET-AICE, with errors165

about 32 % lower than for persistence of AMSR2 observations (between 25 % and 37 % depending on lead time). Barents-2.5

forecasts are less accurate than persistence of AMSR2 observations for all lead times. It is worth noting that the member forced

by the regional weather prediction system AROME-Arctic outperforms the members forced by ECMWF weather forecasts,

which is consistent with the findings of Idžanović et al. (2023) regarding surface currents. Nevertheless, the bias-corrected

forecasts from Barents-2.5 achieve considerably better performances, comparable to persistence of AMSR2 observations.170

When the ice edge position is evaluated using the ice charts as reference, MET-AICE is able to outperform persistence of

AMSR2 observations for all lead times (by 24 % on average), but not persistence of the ice charts for 1-day and 2-day lead times

due to the differences between the two observational products. However, MET-AICE outperforms persistence of ice charts for

longer lead times, with an ice edge distance error about 8 % lower on average for all lead times. Although Barents-2.5 forecasts

do not outperform persistence of ice charts for any lead time, they outperform persistence of AMSR2 observations from 3-day175

lead time with the member forced by AROME-Arctic, and from 4-day lead time with the members forced by ECMWF weather

forecasts. Nevertheless, the Barents-2.5 bias corrected forecasts outperform persistence of AMSR2 observations for all lead

times, while it is not the case when AMSR2 observations are used as reference. This is probably due to the coastal grid points

(distance from the coast shorter than 20 km) which are taken into account when the ice charts are used as reference, but which

are excluded when using AMSR2 observations as reference. Furthermore, the Barents-2.5 bias corrected forecasts achieve180

similar performances as MET-AICE for 1-day lead time, but have larger errors for longer lead times.
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Figure 3. Fraction of days during which the forecasts outperform persistence of AMSR2 observations for the root mean square error of the

sea ice concentration (a) and the ice edge position (b) using AMSR2 observations as reference during the period April 2024 - March 2025. c)

Fraction of days during which the forecasts outperform persistence of the ice charts for the ice edge position using the ice charts as reference.

In Fig. 3, the fraction of days during which the forecasts can be considered skillful are shown. MET-AICE outperforms

persistence of AMSR2 observations for the RMSE of the SIC between 96 % and 99.7 % of the days depending on lead time

(98 % on average), and between 86 % and 97 % of the days (92 % on average) for the ice edge position using AMSR2

observations as reference. When the ice edge position is evaluated using the ice charts as reference, MET-AICE outperforms185

persistence of the ice charts only 26 % of the days for 1-day lead time. Nevertheless, it outperforms persistence of the ice

charts 55 % of the time for 2-day lead time, and at least 68 % of the days for longer lead times. Despite the assimilation of

AMSR2 SIC observations, Barents-2.5 outperforms more often persistence of the ice charts using the ice charts as reference

than persistence of AMSR2 observations using AMSR2 observations as reference. This is consistent with Durán Moro et al.

(2024) who also reported a better agreement between Barents-2.5 and the ice charts than with AMSR2 observations due to a190

higher SIC in the ice charts than in the AMSR2 product, and an over-generation of ice by the Barents-2.5 model (in particular

in certain areas such as the Fram Strait).

The seasonal variability in the performances of MET-AICE and Barents-2.5 are shown in Fig. 4 and 5. When AMSR2

observations are used as reference (Fig. 4), MET-AICE considerably outperforms persistence of AMSR2 observations for

all months, while Barents-2.5 has larger errors than persistence for all months. However, there is a much stronger seasonal195

variability when ice charts are used as reference (Fig. 5) due to the differences between the two observational products (Palerme

et al., 2024). For 1-day lead time, MET-AICE never outperforms persistence of the ice charts, and has similar errors for the ice

edge position as persistence of AMSR2 observations in July and August. Nevertheless, MET-AICE outperforms persistence

of the ice charts most of the year for 3-day lead time, but has larger errors than persistence of the ice charts between July and

September.200

Fig. 6 shows the spatial variability in the performances of MET-AICE when AMSR2 observations are used as reference. It

is worth noting that this figure is the result of forecasts from different seasons, and that the location of the marginal ice zone

varies considerably depending on the season. In order to keep only meaningful information, the grid points with less than 50
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Figure 4. Seasonal variability of the performances of MET-AICE and Barents-2.5 for 1-day and 3-day lead times using AMSR2 observations

as reference during the period April 2024 - March 2025. a, b) Root mean square error (RMSE) of the sea ice concentration. c, d) Evaluation

of the ice edge position (defined by the 10 % sea ice concentration contour).

Figure 5. Seasonal variability of the performances of MET-AICE and Barents-2.5 for 1-day (a) and 3-day (b) lead times using the ice charts

as reference during the period April 2024 - March 2025.
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Figure 6. Spatial variability in the performances of MET-AICE using AMSR2 observations as reference. The top row shows the root mean

square error (RMSE) of the sea ice concentration in MET-AICE forecasts during the period April 2024 - March 2025. The bottom row

shows the relative improvement for the RMSE of the sea ice concentration of MET-AICE forecasts compared to persistence of AMSR2

observations. Positive values (blue) mean that MET-AICE outperforms persistence of AMSR2 observations. The grid points with less than

50 days during which AMSR2 observations indicate a sea ice concentration higher than 0 % are excluded from this analysis.

days during which sea ice is present (SIC higher than 0 %) are excluded from this figure. As expected, the largest errors occur

where the marginal ice zone is often located, with the errors growing with increasing lead times. Furthermore, MET-AICE is205

able to outperform persistence of AMSR2 observations almost everywhere and for all lead times. The relative improvement

compared to persistence of AMSR2 observations is larger for long lead times, in particular where the marginal ice zone is often

located.

5 Discussion and conclusion

While many studies have demonstrated that data-driven sea ice forecasts can be skillful and more accurate than dynamical210

models (e.g. Andersson et al., 2021; Grigoryev et al., 2022; Ren et al., 2022; Chen et al., 2023; Kvanum et al., 2024), there are

currently only a few of these systems running operationally. To our knowledge, MET-AICE is the first operational data-driven

sea ice forecasting system focused on short and intermediate time scales (1 to 10 days). The forecasts are produced daily and

are publicly available (see code and data availability section). MET-AICE is skillful for predicting AMSR2 SIC observations

(that were used for training the deep learning models), and produces more accurate forecasts than the Barents-2.5 prediction215

system, even after bias correction. It considerably outperforms persistence of AMSR2 observations for all lead times (the

RMSE of the SIC is about 31 % lower on average).

Nevertheless, passive microwave SIC observations have some limitations such as melt pond ambiguity and land contami-

nation (Kern et al., 2016, 2020; Lavergne et al., 2019). In particular, it was shown by Palerme et al. (2024) that the AMSR2

product used in MET-AICE has larger discrepancies with the ice charts close to the sea ice minimum (in August, September,220
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and October) compared to the rest of the year. Therefore, MET-AICE has lower skill when the ice charts are used as reference

and particularly close to the sea ice minimum. We also noticed that MET-AICE sometimes predict too much sea ice along the

coastlines, which is likely due to the land contamination of the passive microwave observations. It would be relevant to use

other types of satellite SIC observations along the coasts in order to mitigate this issue in the future.

Whereas many dynamical sea ice models produce sea ice forecasts with hourly time steps (e.g. Williams et al., 2021; Ponsoni225

et al., 2023; Röhrs et al., 2023; Paquin et al., 2024), it is challenging to develop data-driven sea ice forecasts with such a high

temporal resolution due to the limited number of observations available at this time scale. SIC and drift products with a pan-

Arctic coverage are typically made available as daily averaged products (e.g. Tonboe et al., 2016; Lavergne et al., 2019; Tschudi

et al., 2020; Wulf et al., 2024), limiting their usefulness for short lead times. One of the current limitations of dynamical sea

ice models seems to be their inaccuracy at the initial state despite using data assimilation. In the case of Barents-2.5, the large230

initial bias is likely due to the lack of ensemble spread, which mitigates the impact of data assimilation. A relatively simple

bias correction at the initial state can greatly improve the accuracy of the forecasts as it was already shown by Palerme et al.

(2024). Furthermore, this is also one of the main advantages of data-driven prediction systems which can have low biases if

they are trained on a period long enough that captures the vast majority of the situations encountered.

The development of MET-AICE will continue in the future. It is planned to add predictions of sea ice drift and sea ice235

thickness since several studies have already shown the potential of machine learning for predicting these variables (e.g. Palerme

and Müller, 2021; Hoffman et al., 2023; Durand et al., 2024; Koo and Rahnemoonfar, 2024; Zaatar et al., 2025). MET-AICE is

currently a deterministic prediction system that was developed using the mean squared error as loss function. As a consequence,

the forecasts become smoother with increasing lead times. In order to avoid this smoothing, generative artificial intelligence

could be used to increase the resolution of the forecasts and create a set of ensemble members. For example, Finn et al. (2024)240

recently showed that diffusion models can be used to produce probabilistic sea ice forecasts without reducing the effective

spatial resolution.

Code and data availability. The codes used for developing and running the MET-AICE prediction system, as well as those used for the

analysis are available through https://doi.org/10.5281/zenodo.15296870 (Palerme, 2025), and in the following GitHub repository (release

v1.0.0): https://github.com/cyrilpalerme/MET-AICE-v1.0/. The MET-AICE forecasts, the AMSR2 sea ice concentration observations, and245

the Barents-2.5 km EPS forecasts are available on the THREDDS server of the Norwegian Meteorological Institute (https://thredds.met.no/

thredds/catalog/aice_files/catalog.html, https://thredds.met.no/thredds/catalog/cosi/AMSR2_SIC/catalog.html, and https://thredds.met.no/thredds/

fou-hi/barents_eps.html). A license is needed to download the operational forecasts from the European Centre for Medium-Range Weather

Forecasts (ECMWF).
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