
Review of “ MET-AICE v1.0: an operational data-driven sea ice prediction system for the 
European Arctic” by Palerme et al. Submitted to Geoscientific Model Development. 
 
General comments 
 
MET-AICE v1.0 is the first operational, data-driven sea ice prediction system specifically 
designed for short-term forecasts (1-10 days) in the European Arctic. The system is 
optimised for operational utility and higher spatial resolution, making it suitable for 
day-to-day maritime applications. The development of the MET-AICE system is 
particularly timely given the increasing demand for reliable, short-term, high-resolution 
sea ice forecasts, driven by increased maritime activity and heightened navigational risks 
associated with changing sea ice cover.  
 
MET-AICE was trained on weekly AMSR2 weekly sea ice concentration data at 5-km 
resolution 2020 from the recently published reSICCI3LF algorithm, covering the period 
from 2013 to 2020. During training, the neural network models were iteratively updated 
over 100 epochs to minimize the mean squared error between the predicted SIC and the 
AMSR2 SIC observations. The system incorporates several predictors, including 9-km 
resolution ECMWF weather forecasts (2-m temperature and 10-m wind components), 
AMSR2 SIC observations from the day preceding the forecast start date, and a land-sea 
mask. MET-AICE uses a convolutional neural network with a U-Net architecture, designed 
specifically to capture spatial hierarchies in the input data. Operational forecasts have 
been generated since March 2024, with validation described in the manuscript covering a 
year-long period from April 2024 to March 2025. Despite demonstrated strengths in 
computational efficiency and accuracy compared to the Barents-2.5 km EPS model and 
other validation datasets, MET-AICE experiences reduced accuracy in coastal regions 
and diminished predictive skill during sea ice minimum periods, primarily related to 
inherent limitations in the input datasets. The current version of MET-AICE provides 
deterministic forecasts of sea ice concentration, which become smoother as the lead 
time increases. In future iterations, the authors plan to incorporate ensemble and 
probabilistic approaches to better quantify and represent the forecast uncertainty.  
 
The paper is generally well written and structured, providing an important contribution 
towards operational high-resolution sea ice forecasting. However, several points need 
clarification before I can recommend the manuscript for publication.  
 
I found the model description quite hard to follow. I wonder if you could include a flow 
diagram that shows the data inputs and preprocessing steps, a high level overview of the 
model architecture and key features (residual connections, spatial attention block and 
their purpose; downsampling and upsampling operations and progression of 
convolution kernels), and the outputs.  
 
Thank you for this comment. We have added the flow diagram shown below in the revised 
version of the paper. Note that this figure is shown on an entire page in the revised version of 



the paper. This describes what you mentioned. We agree that it helps to understand the 
architecture used in MET-AICE.  

 
 
Figure 1. Architecture used in MET-AICE. The big green rectangles represent multi-channel 
feature maps. The dimensions of the feature maps (y, x, number of channels) are written next to 
each convolutional block. 
 
The training period covers 7 years. Given the ongoing thinning and decline of sea ice 
cover, do you foresee a need for periodic retraining of the model? How might evolving 
sea ice conditions in the changing Arctic impact the model's forecasting accuracy over 
time? 
 
We have added a new figure (see below) showing the interannual variability in the performances 
of MET-AICE and ECMWF IFS between 2022 and 2024. MET-AICE has very similar 
performances during these three years, suggesting that re-training the system is not necessary 
every year. We plan to re-train the models every time there will be modifications in the 
MET-AICE prediction system. We have added the following sentence in the results section: 
 
“Furthermore, there is little interannual variability in the performances of MET-AICE, which 
suggests that re-training MET-AICE does not have to be done every year.” 
 



 
Figure 4. Performances of MET-AICE and ECMWF IFS during the years 2022, 2023, and 2024 
over the full MET-AICE domain using AMSR2 observations as reference. MET-AICE-roll-out 
corresponds to using the MET-AICE model for 1-day lead time auto-regressively to predict the 
sea ice concentration for lead times up to 10 days. a) Root mean square error (RMSE) of the 
sea ice concentration. b) Evaluation of the ice edge position (defined by the 10 % sea ice 
concentration contour). 
 
Training is based on weekly datasets, yet the forecasts are daily. I presume that using 
weekly training data enhances the model’s generalization capability and robustness 
against short-term noise? However, this choice may limit the model’s ability to capture 
rapid, short-term sea ice dynamics occurring at daily scales. How does this choice 
impact forecast accuracy during periods of rapid sea ice changes? Is the reduced 
forecast skill during sea ice minimum periods possibly related to a temporal limitation 
inherent in weekly training data? 
 
MET-AICE is trained on daily AMSR2 sea ice concentration observations. Since this was not 
clear in the preprint, we modified the following sentence:​
​
P2, line 50 “MET-AICE has been trained to predict SIC observations at about 5 km resolution 
derived from AMSR2 data using a three-step algorithm called reSICCI3LF (Rusin et al., 2024).” 
 
by: 
 
“MET-AICE has been trained to predict daily SIC observations at about 5 km resolution derived 
from AMSR2 data using a three-step algorithm called reSICCI3LF (Rusin et al., 2024).” 
 
And the following sentence: 
 
P5, line 114 “The deep learning models were trained using weekly data during the period 2013 - 
2020 (about 400 forecasts for each lead time)” 



 
was replaced by: 
 
“The deep learning models were trained using one forecast per week during the period 2013 - 
2020 (about 400 forecasts for each lead time).“ 
 
The evaluation spans a single year of operational forecasts. Although this period enables 
an analysis of seasonal performance and highlights the reduced skill during the summer, 
significant year-to-year variability in sea ice conditions may affect the robustness of the 
conclusions drawn. How confident are you in your findings after just one seasonal cycle, 
and could interannual variability impact where and when the model performs well? I am 
mostly thinking of how you might ultimately assign an uncertainty flag to the forecast 
data product.  
 
We have added a new figure (see below) showing the interannual variability in the performances 
of MET-AICE and ECMWF IFS between 2022 and 2024. MET-AICE has very similar 
performances during these three years.  
 

 
Figure 4. Performances of MET-AICE and ECMWF IFS during the years 2022, 2023, and 2024 
over the full MET-AICE domain using AMSR2 observations as reference. MET-AICE-roll-out 
corresponds to using the MET-AICE model for 1-day lead time auto-regressively to predict the 
sea ice concentration for lead times up to 10 days. a) Root mean square error (RMSE) of the 
sea ice concentration. b) Evaluation of the ice edge position (defined by the 10 % sea ice 
concentration contour). 
 
Furthermore we have added the following paragraph to describe this figure: 
 
“MET-AICE and ECMWF IFS forecasts are evaluated during the period 2022 - 2024 over the full 
domain of MET-AICE using AMSR2 observations as reference (Fig. 4). In addition, we 
evaluated the MET-AICE model developed for 1-day lead time in an auto-regressive mode to 



predict SIC up to 10 days ahead (hereafter referred to as "MET-AICE-roll-out"). In this 
configuration, the SIC prediction from the previous lead time is used as a predictor to predict the 
next time step. While this configuration allows to improve the consistency between the time 
steps, it results in poorer performances than the operational version of MET-AICE. On average 
over all lead times, the RMSE of the SIC is about 19 % larger for MET-AICE-roll-out than for the 
operational version of MET-AICE, and the error for the ice edge position is about 10 % larger for 
MET-AICE-roll-out. Therefore, we decided to only present the results for the operational version 
of MET-AICE for the rest of this study. For all lead times and all the years evaluated, MET-AICE 
considerably outperforms persistence of AMSR2 observations (RMSE of the SIC and ice edge 
distance error about 28 % smaller on average), ECMWF IFS forecasts (RMSE of the SIC and 
ice edge distance error about 25 % and 30 % smaller, respectively), as well as ECMWF IFS bias 
corrected (RMSE of the SIC and ice edge distance error about 18 % and 21 % smaller, 
respectively). Furthermore, there is little interannual variability in the performances of 
MET-AICE, which suggests that re-training MET-AICE does not have to be done every year. 
While ECMWF IFS does not outperform persistence of AMSR2 observations for lead times up to 
3 days, the bias correction allows a considerable improvement of the forecast skill for lead times 
up to 6 days” 
 
The authors compare MET-AICE primarily to a single dynamical model, the Barents-2.5 
km EPS. How does the performance of this dynamical model compare to other available 
dynamical models?  
 
We have added a comparison with the dynamical models TOPAZ5 distributed by the 
Copernicus Marine Service and the ECMWF Integrated Forecasting System in the revised 
version of the paper in order to provide more context. As an example, the figure below (which is 
in the revised version of the paper) shows the performances of MET-AICE compared to 
Barents-2.5km, ECMWF IFS, and TOPAZ5. 
 

 
Figure 5. Performances of MET-AICE, ECMWF IFS, TOPAZ5 and Barents-2.5 during the period 
April 2024 - March 2025 over the shared domain between MET-AICE and Barents-2.5. a) Root 
mean square error (RMSE) of the sea ice concentration using AMSR2 observations as 
reference. b) Evaluation of the ice edge position (defined by the 10 % sea ice concentration 
contour) using AMSR2 observations as reference. c) Evaluation of the ice edge position using 
the ice charts as reference. 



 
Specific comments 
 
Line 63: It seems sensible to use 2-m temperature and 10-m winds to drive the system 
and you mention in the introduction that sea ice changes on short-time scales are driven 
by the wind. But was there any assessment of the optimal variables to train and run the 
model? At the very least it would be helpful to include references to justify your use of 
these variables to drive sea ice variability.  
 
We think that this choice was already justified in the introduction of the preprint in lines 36 to 41: 
 
“Sea ice changes on short-time scales are primarily driven by the atmosphere, and in particular 
by the wind (Mohammadi-Aragh et al., 2018; Yu et al., 2020). Hence, it is crucial to include 
predictors from weather forecasts when developing data-driven sea ice prediction systems, as 
suggested by previous studies. Grigoryev et al. (2022) reported an improvement of 5 to 15 % 
when forecasts from the National Centers for Environmental Prediction (NCEP) operational 
Global Forecast System (GFS) are used, whereas Palerme et al. (2024) assessed an error 
reduction of 7.7 % when using ECMWF weather forecasts in addition to sea ice predictors.” 
 
Nevertheless, we modified this paragraph with adding details about the atmospheric variables 
used in the studies from Grigoryev et al. (2022) and Palerme et al., 2024. The new paragraph is: 
 
“Sea ice changes on short-time scales are primarily driven by the atmosphere, and in particular 
by the wind (Mohammadi-Aragh et al., 2018; Yu et al., 2020). Hence, it is crucial to include 
predictors from weather forecasts when developing data-driven sea ice prediction systems, as 
suggested by previous studies. Grigoryev et al. (2022) reported an improvement of 5 to 15 % 
when using forecasts of 2-meter temperature, surface pressure and wind from the National 
Centers for Environmental Prediction (NCEP) operational Global Forecast System (GFS). 
Moreover, Palerme et al. (2024) assessed an error reduction of 7.7 % when using ECMWF 
forecasts of 2-meter temperature and 10-meter wind in addition to sea ice predictors.” 
 
Line 65: I don’t understand how the 10 different models were developed. Are each of 
these models for the different lead times, i.e. a set of 10 distinct forecasts for lead times 
of 1 day, 2 days, 3 days, all the way up to 10 days? Could you clarify the description 
here? Also, why do you have these different lead times - was the aim to find an 
appropriate lead time? Which is the dataset released via THREDDS? Is this the daily 
forecast with a 10-day lead time? 
 
Yes, you are right. We developed a set of 10 distinct forecasts for lead times from 1 to 10 days. 
In the revised version of the paper, we added a comparison with a roll-out approach, in which 
the model for 1-day lead time is used to predict longer lead times auto-regressively (figure 
below). In this configuration, the sea ice concentration prediction from the previous lead time is 
used as a predictor to predict the next time step.The following sentences have been added to 
describe this comparison: 



 
“In addition, we evaluated the MET-AICE model developed for 1-day lead time in an 
auto-regressive mode to predict SIC up to 10 days ahead (hereafter referred to as 
"MET-AICE-roll-out"). In this configuration, the SIC prediction from the previous lead time is 
used as a predictor to predict the next time step. While this configuration allows to improve the 
consistency between the time steps, this results in poorer performances than the operational 
version of MET-AICE. On average over all lead times, the RMSE of the SIC is about 19 % larger 
for MET-AICE-roll-out than for the operational version of MET-AICE, and the error for the ice 
edge position is about 10 % larger for MET-AICE-roll-out. Therefore, we decided to only present 
the results for the operational version of MET-AICE for the rest of this study.” 
 
 

 
Figure 4. Performances of MET-AICE and ECMWF IFS during the years 2022, 2023, and 2024 
over the full MET-AICE domain using AMSR2 observations as reference. MET-AICE-roll-out 
corresponds to using the MET-AICE model for 1-day lead time auto-regressively to predict the 
sea ice concentration for lead times up to 10 days. a) Root mean square error (RMSE) of the 
sea ice concentration. b) Evaluation of the ice edge position (defined by the 10 % sea ice 
concentration contour). 
 
Line 74-75: Coastal grid points (within 20 km of the coast) are excluded from the model 
performance evaluation. I didn’t notice these points being masked out or flagged in some 
way in the forecasts released via the THREDDS server of the Norwegian Meteorological 
Institute. Might it be helpful to users if there is an indication of where you have 
confidence in the available forecast data and where users should take care. 
 
Coastal grid points (within 20 km from the coast) are only excluded when the forecasts are 
evaluated using AMSR2 observations as reference, but not when the ice charts are used as 
reference because the ice charts are primarily based on higher-resolution satellite observations. 
In order to clarify this point, we have added the following sentence in section 2.2.1 describing 
the observations used in this study: 



 
“Therefore, land contamination is much less present in the ice charts than in passive microwave 
observations, and we decided to take into account all oceanic grid points when the ice charts 
are used as reference (no coastal grid points excluded).” 
 
Furthermore, while land contamination can be present in passive microwave observations and 
in the MET-AICE forecasts, it is not always the case. We decided to keep the coastal grid points 
in the forecasts delivered on the THREDDS server of the Norwegian Meteorological Institute, 
similarly to what is usually done for passive microwave sea ice concentration products. We do 
not provide any uncertainty estimates yet in the MET-AICE forecasts, but we decided to 
describe this issue in the paper instead. 
 
Line 117:  It isn't particularly clear how you used the datasets from 2021-2023 and why 
you only produced the validation on the data from April 2024 onwards. Would having a 
few extra years of validation assessment have made the results more robust? 
 
We have added a new figure (see figure 4 above) showing the interannual variability in the 
performances of MET-AICE and ECMWF IFS between 2022 and 2024. MET-AICE has very 
similar performances during these three years. Furthermore we have added the following 
paragraph to describe this figure: 
 
“MET-AICE and ECMWF IFS forecasts are evaluated during the period 2022 - 2024 over the full 
domain of MET-AICE using AMSR2 observations as reference (Fig. 4). In addition, we 
evaluated the MET-AICE model developed for 1-day lead time in an auto-regressive mode to 
predict SIC up to 10 days ahead (hereafter referred to as "MET-AICE-roll-out"). In this 
configuration, the SIC prediction from the previous lead time is used as a predictor to predict the 
next time step. While this configuration allows to improve the consistency between the time 
steps, it results in poorer performances than the operational version of MET-AICE. On average 
over all lead times, the RMSE of the SIC is about 19 % larger for MET-AICE-roll-out than for the 
operational version of MET-AICE, and the error for the ice edge position is about 10 % larger for 
MET-AICE-roll-out. Therefore, we decided to only present the results for the operational version 
of MET-AICE for the rest of this study. For all lead times and all the years evaluated, MET-AICE 
considerably outperforms persistence of AMSR2 observations (RMSE of the SIC and ice edge 
distance error about 28 % smaller on average), ECMWF IFS forecasts (RMSE of the SIC and 
ice edge distance error about 25 % and 30 % smaller, respectively), as well as ECMWF IFS bias 
corrected (RMSE of the SIC and ice edge distance error about 18 % and 21 % smaller, 
respectively). Furthermore, there is little interannual variability in the performances of 
MET-AICE, which suggests that re-training MET-AICE does not have to be done every year. 
While ECMWF IFS does not outperform persistence of AMSR2 observations for lead times up to 
3 days, the bias correction allows a considerable improvement of the forecast skill for lead times 
up to 6 days” 
 
 
 



Technical corrections 
 
Line 22: change “predict” to “predicts” 
 
We suppose that you refer to line 222 here. We replaced “predict” by “predicts” in line 222. 
 
Line 203: I think “less than” should be “fewer than” in this case 
 
“less than” has been replaced by “fewer than” 


