Response Letter

For
Manuscript ID: egusphere-2025-1983
“Hybrid Lake Model (HyLake) v1.0: unifying deep learning and physical principles
for simulating lake-atmosphere interactions”

Editor:
This manuscript is overall of good quality. However, reviewers have essential concerns on the steps of methods and
robustness. For instance, the developed method relies on training data from a single site without cross-validation and
provides insufficient explanation of model development and validation. In addition, the writing is unclear and
inconsistent, with repetitive and confusing terminology, an inadequate abstract, and numerous sentences that are
misleading or difficult to understand. The reviewers have provided detailed feedback and recommendations. Please
carefully address all their concerns before resubmitting the manuscript.
Response: We thank the Editor and four anonymous reviewers for their comments and suggestions. We apologize for
resubmitting the response due to our misunderstanding of the Geoscientific Model Development submission process.
Changes have been made in the revised manuscript based on the comments provided by the four reviewers. The
manuscript has been improved to meet the standards of Geoscientific Model Development. The reviewer’s comments
are all accepted and Relisted in black, followed by our Replies in blue and Revisions in red (highlighted revisions in
bold). Before point-by-point responses, we would like to address the editorial thresholds as follows:
(1) Additional evidence on model validation and intercomparison

To show the model transferability, we intercompare the computational efficiency among all models, cross-validate
the performance of LSTM-based surrogates that were trained with different lake sites, and applied HyLake v1.0 to Lake
Chaohu, another inland lake with distinct characteristics.

(a) We applied the established HyLake v1.0 to Lake Chaohu, which is one of several large shallow lakes in the
middle and lower reaches of the Yangtze River in southeastern China, but with distinct characteristics than Lake
Taihu. Simulated results showed that HylLake v1.0 outperformed FLake in lake surface temperature,
demonstrating its potential in model transferability. Relevant revisions were listed in Materials and Methodology
(Section 2.3.1, Lines 286-289, Lines 308-314), Discussion (Section 4.1, Lines 560-567, Lines 609-611; Section
4.2, Lines 647-648), Table 3, and Figure S7-9.

(b) We compared the computational efficiency of all models and found that HyLake v1.0 has relatively higher costs,
although it has better performance than FLake. Supporting results can be found in Table 3.

(c) The cross-validation of LSTM-based surrogates was executed. Specifically, we used observations from 5 lake
sites in Lake Taihu to search for optimized BO-BSTM-based surrogates individually and embedded them into
physical principles. Results indicated that HyLake v1.0 and its adapted MLW-trained surrogate are more reliable
than others. The associated revisions were listed in Discussion (Section 4.2, Lines 660-666).

(2) Revising the abstract and selected misleading statements

9

We have revised specific terms, such as “evaluation” vs. “validation”, “experiments” vs. “models”. Here, we used
“validation” to assess the model accuracy (e.g., RMSE, MAE, R) while “evaluation” was used to assess models’ abilities
(e.g., transferability). In the current manuscript, “models” included FLake, PBBM, Baseline, TaihuScene, and HyLake
v1.0. “Experiments” represents the models used in different regions or forcing datasets, including MLW, Taihu-obs,
Taihu-ERAS and Chaohu experiment. The associated revisions were listed in the Abstract and Tables 2-3. In addition,

selected misleading statements have been revised according to the comments throughout the manuscript.



Reviewer #1:

The manuscript presents HyLake v1.0, a hard-coupled hybrid lake model in which an LSTM surrogate replaces the
implicit-Euler surface-temperature solver embedded within an in-house one-dimensional physical backbone. The
surrogate is trained at the MLW site on Lake Taihu and then applied to five other sites that differ in both biological
characteristics and meteorological forcing. Although the hybrid framework outperforms several process-based and deep-
learning-based benchmarks, its validation strategy and treatment of uncertainty require further refinement. Overall, the
paper is clearly written and could be suitable for publication after moderate revision.

Response: We thank Reviewer #1 for his/her positive feedback and constructive comments. The comments are all
accepted and Relisted in black, followed by our Replies in blue and Revisions in red (highlighted revisions in bold).
According to the comments, we modified the manuscript, particularly on the capacity of HyLake v1.0 from the aspects

of model transferability, computational efficiency, and future improvements. Major changes are summarized as follows:

No. | Major Revisions Important Messages

{ Applied HyLake v1.0 for Lake Chaohu and | HyLake v1.0 outperformed FLake using ERAS5 forcing
validated based on MYD11A1 imagery. dataset in Lake Chaohu (Discussion).
Intercompared computational efficiency | Computational efficiency depends on surrogate architecture.

2 between FLake, Baseline, TaihuScene, and | HyLake v1.0 costed fewer than Baseline and TaihuScene but
HyLake v1.0. much than FLake in all experiments (Discussion).

Cross-validated different BO-BLSTM-based | MLW observations are the most suitable site for training
3 surrogates that were individually trained with | BO-BLSTM-based surrogate, which achieved the best
five lake site observations. performance in cross-validation (Discussion).

Major comments

1. To address the model’s generality, the authors should apply HyLake to at least one morphologically distinct lake or
extend the simulation period to include additional years.

Response: Good point. We agree that the capacity of HyLake v1.0’s transferability is important. Therefore, we conducted
one additional experiment via FLake and HyLake v1.0, and then validated the lake surface temperature (LST) on a
morphologically distinct lake - Lake Chaohu, a large, shallow lake in southeastern China (Fig. R1). The average depth
and area of Lake Chaohu are 2.7 m and 768 km?, which is one of several large shallow lakes in the middle and lower
reaches of the Yangtze River, and is densely populated and strongly influenced by human activities (Wei et al., 2022;
Zhang et al., 2022). The observation was derived by MYD11A1 MODIS/aqua daily products with 1 km spatial resolution.
The ERAS dataset was used as the forcing dataset to drive the Chaohu experiment. ERAS forcing dataset used 4 black
grids to cover Lake Chaohu, while MODIS observations covered Lake Chaohu by red points in Figure S7.

Our assessments indicated that HyLake v1.0 performed better than the FLake model, showing the promise of
applying it to other lakes (Table 3, Figure S8-9). Changes can be found in Materials and Methodology (Section 2.3.1,
Lines 286-289, Lines 308-314), Discussion (Section 4.1, Lines 560-567, Lines 609-611; Section 4.2, Lines 647-648),
Table 3, and Figure S7-9.

References:

Wei, Z., Yu, Y., and Y1i, Y.: Spatial distribution of nutrient loads and thresholds in large shallow lakes: the case of Chaohu
Lake, China, J. Hydrol., 613, 128466, https://doi.org/10.1016/j.jhydrol.2022.128466, 2022.

Zhang, J., Gao, J., Zhu, Q., Qian, R., Zhang, Q., and Huang, J.: Coupling mountain and lowland watershed models to
characterize nutrient loading: An eight-year investigation in Lake Chaohu Basin, J. Hydrol, 612, 128258,
https://doi.org/10.1016/j.jhydrol.2022.128258, 2022.

Revision:

“To address the generalization and transferability of HyLake v1.0 in studied (MLW) and ungauged lake sites (DPK,
BFG, XLS and PTS) (Table 1), this study further conducted three numerical experiments, including MLW experiment,
Taihu-obs experiment, Taihu-ERAS5 experiment, and Chaohu experiment, using distinct models and forcing datasets
(Table 2 and 3), including FLake, Baseline, and TaihuScene for intercomparison.” (Section 2.3.1, Lines 286-289)




“Furthermore, this study implemented the HyLake v1.0 into Lake Chaohu, the 5™-largest shallow freshwater lake
in China, which has experienced heavy eutrophication and harmful algal blooms (Yang et al., 2020), to assess its
transferability to other lakes. A LST dataset in Lake Chaohu was obtained from MODIS/Terra Land Surface
Temperature/Emissivity ~ Daily L3 Global lkm  SIN  Grid V061 imageries  (MYDI11Al,
https://www.earthdata.nasa.gov/data/catalog/Ipcloud-mod11al-061), which were used to validate the performance of
LST derived from HyLake v1.0. The computational efficiency for each 1-time prediction was recorded using a 16G 10-
Core Apple M4 processor based on the established HyLake v1.0 model in this study. The training of the above-mentioned
surrogates was run using a 24G NVIDIA GeForce RTX 4090 GPU.” (Section 2.3.1, Lines 308-314)

References added:

Yang, C., Yang, P., Geng, J., Yin, H., and Chen, K.: Sediment internal nutrient loading in the most polluted area of a
shallow eutrophic lake (Lake Chaohu, China) and its contribution to lake eutrophication, Environ. Pollut., 262, 114292,
https://doi.org/10.1016/j.envpol.2020.114292, 2020.

“To address issues related to model performance, generalization, and transferability in ungauged locations, three
additional numerical experiments, including FLake, Baseline, and TaihuScene, were proposed for intercomparison and
a framework for applying HyLake v1.0 to another lake, such as Lake Chaohu, with a deeper lake depth of 3.06
m and lake area of 760 km? (Figure S6, Jiao et al., 2018), to validate the potential capacity of model application.
These experiments were compared using observed meteorological datasets and ERAS datasets, then validated for
both spatiotemporal patterns of LST at Lake Taihu and Lake Chaohu (Tables 2-3). Similarly, ERAS5 dataset-derived
HyLake v1.0 outperformed FLake in estimating LST (R=0.97, RMSE =2.07 °C, MAE = 1.57 °C) in Lake Chaohu,
compared to MYD11A1 datasets (Table 3 and Figures S7-9).” (Section 4.1, Lines 560-567)

References added:

Jiao, Y., Yang, C., He, W., Liu, W. X., and Xu, F. L.: The spatial distribution of phosphorus and their correlations in
surface sediments and pore water in Lake Chaohu, China, Environ. Sci. Pollut. Res., 25, 25906-25915,
https://doi.org/10.1007/s11356-018-2606-x, 2018.

“HyLake v1.0, developed based on in situ observations from Lake Taihu, has been proven to be reliable and
rigorously validated in Lake Chaohu (Table 3), demonstrating a faster and more accurate framework for enhancing the
understanding of hybrid hydrological modeling.” (Section 4.1, Lines 609-611)

“HyLake v1.0 has been applied to Lake Chaohu and achieved superior performance in comparison to the MYD11A1
LST observations, showing a promising way for more applications.” (Section 4.2, Lines 647-648)

“Table 3: Intercomparison of model performance across different experiments conducted in diverse regions
with different forcing datasets. Observations from all lake sites (MLW, DPK, BFG, XLS, and PTS) on Lake Taihu,
were used to drive models in the Taihu-obs experiment. Bold values in the table present the best-performing model
with each group of experiments. Computational efficiency is reported as the runtime for a single simulation.

R RMSE MAE Efficiency
Exp Model Forcing
LST LE HE LST LE HE LST LE HE (s)
PBBM MLW 098 085 0.89 1.78 3834 937 138 2354 6.22 189.49
FLake MLW 098 082 0.84 1.76 4273 724 135 2476 5.0l 16.40
MLW

Baseline MLW 096 074 0.75 271 51.77 14.63 2.11 33.52 9.30 151.46

HyLakevl.0 MLW 099 094 093 1.08 24.65 7.15 085 15.18 4.73 270.21

FLake Allsites 097 0.61 0.74 224 1546 69.11 1.69 4195 10.44 89.00
Taihu-obs TaihuScene  Allsites 0.99 0.82 0.89 1.52 1493 4349 123 29.53 10.63 6928.44
HyLake v1.0 Allsites 0.99 081 090 136 11.19 39.20 1.03 24.79 7.88 2693.23

FLake ERA5 098 0.63 0.69 1.82 1231 6724 146 5094 9.68 19.60

Taihu-ERAS5  TaihuScene ERA5 099 0.68 0.73 1.60 13.00 64.83 129 47.78 10.11 652.25
HyLake v1.00 ERAS5 099 0.71 0.78 1.12 11.05 4948 0.90 35.02 7.97 236.78

FLake ERAS 097 228 \ \ 1.76 \ \ 70.40

HyLake v1.0 ERAS5 0.97 \ \ 2,07 \ \ 1.57 \ \ 972.83

Chaohu
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Figure S7: The locations of Lake Chaohu overlaid on a true-color image from (a) Landsat 8 and daily land surface
temperature from (b) MYD11A1 product.” (Figure S7 in Supplementary materials)
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Figure S8: Time series of daily grid-average LST on Lake Chaohu derived from MYD11A1, FLake simulation,
and HyLake v1.0 from 2013 to 2015. HyLake v1.0 provides daily and hourly simulations.” (Figure S8 in
Supplementary materials)
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Figure S9: The intercomparison of daily LST between model simulations (FLake and HyLake v1.0) and
MYD11A1 observations on Lake Chaohu from 2013 to 2015.” (Figure S9 in Supplementary materials)

2. The study employs Bayesian optimization to optimize network depth, width, optimizer, and learning rate, but ignore
the critical information. Please provide the search ranges of hypermeters, objective function, stopping criterion, and
computational cost.

Response: We apologize for the missing hypermeters, which are being searched for in the space of Bayesian
Optimization and computational cost. In the revised manuscript, we have added information about surrogate training and
compared the computational efficiency of each model in all experiments. We also employed an EarlyStopping strategy
to optimize the best set of hyperparameters using Bayesian Optimization. The comparison results of computational
efficiency for each model indicated that the computational costs depended on the surrogate's architecture, suggesting
that the BO-BLSTM-based surrogate in TaihuScene, which has a larger network, required more computational resources
than HyLake v1.0 and the Baseline. The associated revisions can be found in Materials and Methodology (Section 2.2.3,
Lines 276-279) and Table 3.



Revision:

“The hyperparameter space included the number of hidden layers (ranging from 1 to 8), neurons per layer (ranged
from 16 to 1,024), optimizer (Adam, or RMSprop), batch size (ranging from 8 to 256), and learning rate (ranging from
1E-6 to 1E-2). The hyperparameters in BO-BLSTM-based surrogates were optimized using BO with a maximum of 100
iterations, 1000 epochs for each iteration, and 50 patience in an EarlyStopping strategy.” (Section 2.2.3, Lines 276-279)

“Table 3: Intercomparison of model performance across different experiments conducted in diverse regions
with different forcing datasets. Observations from all lake sites (MLW, DPK, BFG, XLS, and PTS) on Lake Taihu,
were used to drive models in the Taihu-obs experiment. Bold values in the table present the best-performing model
with each group of experiments. Computational efficiency is reported as the runtime for a single simulation.

R RMSE MAE Efficiency
Exp Model Forcing
LST LE HE LST LE HE LST LE HE (s)
PBBM MLW 098 0.85 0.89 1.78 3834 937 138 2354 6.22 189.49
MLW FLake MLW 098 0.82 084 1.76 4273 724 135 2476 5.01 16.40

Baseline MLW 096 0.74 0.75 271 51.77 1463 211 3352 9.30 151.46
HyLakev1.00 MLW 099 094 093 1.08 2465 7.15 085 1518 4.73 270.21

FLake Allsites 097 0.61 0.74 224 1546 69.11 1.69 4195 10.44 89.00

Talhu- - huScene  Allsites 0.9 0.82 0.89 152 1493 4349 123 2953 1063 692844
0 yLakev.0 Allsites 0.99 081 090 136 1119 3920 1.03 2479 788 269323
‘ FLake ERAS 098 063 069 182 1231 6724 146 5094 968  19.60
Taihu- o huScene  ERAS 099 068 073 160 13.00 6483 129 4778 1011 65225
ERAS  ivLakevi0 ERAS 099 071 078 112 1105 4948 090 3502 797 23678
o FLake ERAS 097 \ \ 228 \ 176\ \ 70.40
HyLakevl.0 ERAS 097 \ \ 207 \ N - \ 972.83

» (Table 3)

3. HyLake performed well at MLW, PTS, and XLS, whereas TaihuScene outperforms it at BFG and DPK. Discuss
possible causes and advise when multi-site versus single-site training is preferable.

Response: Good point. We were surprised to find that the BO-BLSTM-based surrogate, which used a larger training
dataset encompassing all lake sites in Lake Taihu, performed worse than one trained solely with MLW observations. The
references found two hypothesis that might explain this issue: (1) The scaling laws for deep learning models determined
that model performance will not continue to increase indefinitely with stacking of neurons and layers (Hestness et al.,
2017); (2) Training data with high representation samples helps improve model performance, while using all over
datasets would neglect heterogeneous functional samples and hinder the model’s performance gains (Wang et al., 2025).
We agreed that the surrogate in HyLake v1.0 meets the hypotheses. However, a comprehensive assessment of how many
samples should be adapted at different scales (e.g., individual-lake, regional, or global scale) needs to be discussed in
the future. The current manuscript provides additional explanations regarding these two hypotheses, although it does not
reach a definitive conclusion. The associated revisions are listed in Discussion (Section 4.1, Lines 654-670).
References:

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., et al.: Deep-learning scaling is predictable,
empirically, arXiv [preprint], arXiv:1712.00409, https://doi.org/10.48550/arXiv.1712.00409, 2017.

Wang, S., Yu, L., Gao, C., Zheng, C., Liu, S., Lu, R., et al.: Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for LLM reasoning, arXiv [preprint], arXiv:2506.01939, 2025.

Revision:

“Future development of HyLake v1.0 needs to collect more observations, including heat fluxes and water
temperature, and searching for more variables in datasets to train LSTM-based surrogates and acquire more general
models at a larger scale. However, it is important to note that the performance of HyLake may not always improve with
an increase in the training data size. The training datasets with higher representation of physical principles help



improve the model performance. Similar phenomenon has already been observed in many deep-learning-based
large models, demonstrating that directly training models using all datasets would neglect heterogeneous
functional samples and thereby hinder performance gains (Wang et al., 2025). Therefore, this study assumed that
an individual-site-trained LSTM-based surrogate would have better capacity in representing lake-atmosphere
interactions, which was collectively matched to the above-mentioned hypotheses. Due to insufficient observations
at other lake sites (DPK, PTS, and XLS), to some degree, the surrogates trained on their datasets performed
closely in estimating ALST except for XLW (Table S1). For the relatively complete observed datasets in BFG
(although its biological characteristics cannot represent the whole Lake Taihu), the surrogate performed poorer
than the proposed BO-BLSTM-based surrogate in terms of diurnal patterns of LST of HyLake v1.0 (Figure S10).
As HyLake is extended to larger scales or more lakes, the computational architecture will need to accommodate large
training datasets, which may limit performance for specific lakes. Specifically, the scaling laws for deep-learning models
indicate that model performance does not continue to increase indefinitely with the stacking of neurons and layers
(Hestness et al., 2017). Adapting more powerful deep-learning-based surrogates will further improve HyLake v1.0
performance, leading to a better representation of lake-atmosphere interactions in ungauged lakes.” (Section 4.1, Lines
654-670)

References added:

Wang, S., Yu, L., Gao, C., Zheng, C., Liu, S., Lu, R., et al.: Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for LLM reasoning, arXiv [preprint], arXiv:2506.01939, 2025.

4. The discussion regarding computational efficiency of HyLake is inadequate. Provide a detailed table comparing
training time and wall-clock simulation speed for HyLake, FLake, and any other relevant models.

Response: We have provided the computational efficiency of models in all numerical experiments, including PBBM,
Baseline, FLake, TaihuScene, and HyLake v1.0. As for the training time of LSTM-based surrogates, we do not compare
each other because it is evident that the BO-BLSTM-based surrogate in TaihuScene, which used larger datasets to train,
costs more than that in HyLake v1.0. Therefore, we discussed the computational efficiency of process-based models and
hybrid lake models in response to this comment. The results indicated that HyLake v1.0 required higher resources
compared to the traditional process-based models, including PBBM and FLake, in some cases, but cost less than
TaihuScene. We found that their computational efficiency depends on the architecture of their surrogates. It is undeniable
that the surrogate with deeper and broader networks requires more resources to train and predict. Therefore, we need to
develop more deep-learning-based approaches to simulate results accurately and rapidly in the future. The associated
revision can be found in Table 3 and Discussion (Section 4.1, Lines 615-624; Section 4.2, Lines 671-680).

Revision:

“However, we found that HyLake v1.0 required slightly higher computational costs compared to process-
based models, which depend on the hyperparameters of LSTM-based surrogates, despite achieving greater
performance (Table 3). In an individual case of MLW prediction, HyLake v1.0 took about 9 times longer to run
compared to FLake, with a cost of 151.46 seconds. To compare different experiments of hybrid lake models,
Baseline, coupled to an LSTM-based surrogate with 1 layer and 256 neurons per layer, indicated the lowest cost.
While TaihuScene, constructed by an LSTM-based surrogate with 7 layers and 836 neurons per layer, showed the
most expensive in predictions. Given the sophisticated architecture of LSTM-based surrogates, which inevitably
leads to higher costs in training and prediction, developing novel algorithms for approximating LSTMs is urgently
needed. Furthermore, the recent research progress demonstrated that LSTM-based surrogates are more suited for
short-term predictions compared to the prevalent Transformer-based family, which is suited for long-term predictions
and commonly used in global weather forecasting systems (K. F. Bi et al., 2023; L. Chen et al., 2023).” (Section 4.1,
Lines 615-624)

“BO-BLSTM-based surrogate exhibits superior performance in estimating LST for HyLake v1.0. This study
adapted BO and EarlyStopping strategies to ensure BLSTM provides accurate and reliable estimates in prediction but

increases the computational demands for training due to its ability to converge from its more complex Bayesian



architecture (Peng et al., 2025; Ferianc et al., 2021). In addition, the mere 1 Bayesian fully connected layer that was
adapted in this surrogate only captures limited data uncertainty, which may lose several aspects of probabilistic prediction
(Klotz et al., 2022). Given the importance of uncertainty quantification for BLSTM, it is worth noting that HyLake v1.0
has the potential to assess the variance of predictions and probabilities of lake extreme events occurrence by developing
its surrogate in future (Kar et al., 2024; Gawlikowski et al., 2023). Major limitations, including high computational
demands and insufficient model performance, should be addressed by developing a novel deep-learning-based surrogate
based on a more efficient architecture and larger datasets.” (Section 4.2, Lines 671-680)
References added:
Ferianc, M., Que, Z., Fan, H., Luk, W., and Rodrigues, M.: Optimizing Bayesian recurrent neural networks on an FPGA-
based accelerator, in: 2021 International Conference on Field-Programmable Technology (ICFPT), IEEE, December, 1-
10, 2021.
Klotz, D., Kratzert, F., Gauch, M., Keefe Sampson, A., Brandstetter, J., Klambauer, G., Hochreiter, S., and Nearing, G.:
Uncertainty estimation with deep learning for rainfall-runoft modeling, Hydrol. Earth Syst. Sci., 26, 1673—-1693,
https://doi.org/10.5194/hess-26-1673-2022, 2022.
Peng, Z., Mo, S., Sun, A. Y., Wu, J., Zeng, X., Lu, M., and Shi, X.: An explainable Bayesian TimesNet for probabilistic
groundwater level prediction, Water Resour. Res., 61, ¢2025WR040191, https://doi.org/10.1029/2025WR040191, 2025.
“Table 3: Intercomparison of model performance across different experiments conducted in diverse regions
with different forcing datasets. Observations from all lake sites (MLW, DPK, BFG, XLS, and PTS) on Lake Taihu,
were used to drive models in the Taihu-obs experiment. Bold values in the table present the best-performing model

with each group of experiments. Computational efficiency is reported as the runtime for a single simulation.

R RMSE MAE Efficiency
Exp Model Forcing
LST LE HE LST LE HE LST LE HE (s)
PBBM MLW 098 0.85 0.89 1.78 3834 937 138 2354 6.22 189.49
MLW FLake MLW 098 0.82 084 1.76 4273 724 135 2476 5.01 16.40

Baseline MLW 096 0.74 0.75 271 51.77 1463 211 3352 9.30 151.46
HyLakev1.00 MLW 099 094 093 1.08 2465 7.15 085 1518 4.73 270.21

FLake Allsites 097 0.61 0.74 224 1546 69.11 1.69 4195 10.44 89.00

Talhu- o huScene  Allsites 0.9 0.82 089 152 1493 4349 123 2953 1063 692844
0 yLakev.0 Allsites 0.99 081 090 136 1119 3920 1.03 2479 788 269323
‘ FLake ERAS 098 063 069 182 1231 6724 146 5094 968  19.60
Talhu- o huScene  ERAS 099 068 073 160 13.00 6483 129 4778 1011 65225
ERAS  yLakevi0 ERAS 099 071 078 112 1105 4948 090 3502 7.97 23678
o FLake ERAS 097 \ \ 228 \ 176\ \ 70.40
HyLakevl.0 ERAS 097 \ \ 207 \ N - \ 972.83

» (Table 3)

Minor comments

Line 164: Define the acronym LWT on first use.

Response: Corrected.

Revision: “T; (°C) accounts for LST solved by 1-D vertical lake water temperature (LWT) transport equation; ...”
(Section 2.2.1, Lines 176-177)

Figure 3: Text are crowded in d-f. Consider summarizing the model accuracy in a table.

Response: We have added Table 3 to summarize the model's performance. The citations to Table 3 have already been
added to the manuscript.

Revision:

“Table 3: Intercomparison of model performance across different experiments conducted in diverse regions



with different forcing datasets. Observations from all lake sites (MLW, DPK, BFG, XLS, and PTS) on Lake Taihu,
were used to drive models in the Taihu-obs experiment. Bold values in the table present the best-performing model

with each group of experiments. Computational efficiency is reported as the runtime for a single simulation.

R RMSE MAE Efficiency
Exp Model Forcing
LST LE HE LST LE HE LST LE HE (s)
PBBM MLW 098 0.85 0.89 1.78 3834 937 138 2354 6.22 189.49
MLW FLake MLW 098 0.82 084 1.76 4273 724 135 2476 5.01 16.40

Baseline MLW 096 0.74 0.75 271 51.77 1463 211 3352 9.30 151.46
HyLakevl1.00 MLW 099 094 093 1.08 2465 7.15 085 1518 4.73 270.21

FLake Allsites 097 0.61 0.74 224 1546 69.11 1.69 4195 10.44 89.00

Talhu- o huScene  Allsites 0.9 0.82 089 152 1493 4349 123 2953 1063 692844
0 yLakev.0 Allsites 0.99 081 090 136 1119 3920 1.03 2479 788 269323
‘ FLake ERAS 098 063 069 182 1231 6724 146 5094 968  19.60
Talhu- o huScene  ERAS 099 068 073 160 13.00 6483 129 4778 1011 65225
ERAS  yLakevi0 ERAS 099 071 078 112 1105 4948 090 3502 7.97 23678
o FLake ERAS 097 \ \ 228 \ 176\ \ 70.40
HyLakevl.0 ERAS 097 \ \ 207 \ N - \ 972.83

» (Table 3)

Figure 4-6: Add the relevant validation statistics directly to the LST, LE, and HE plots for clarity.
Response: We have added the Pearson coefficient in Figure 4-6 (now Figure 6-8 in the revised manuscript) due to the
aesthetic appeal of the figures. The detailed information about model validation can be found in Table 3.

Revision:
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Figure 6: Comparison of observations and predictions by FLake, Baseline, and HyLake v1.0 in temporal trends
of LST. Comparison of (a) the full time series and (b-c) partial time series of models derived LST and observations
from 2013 to 2015. All results in (a) were presented at a daily-average scale by resampling. Blue, red, and yellow
regions represent the period for the train, validation, and test datasets, respectively. Black solid, brown dashed,
red dashed, and blue solid lines represent LST from observations, FLake, Baseline, and HyLake v1.0, respectively.”
(Figure 6)
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Figure 7: Comparisons of observations and predictions by FLake, Baseline, and HyLake v1.0 in temporal trends
for LE. Comparison of (a) full and (b-c) partial time series of model derived LE and observations from 2013 to
2015.” (Figure 7)
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Figure 8: Comparisons of observations and predictions by FLake, Baseline, and HyLake v1.0 in temporal trends
for HE. Comparison of (a) full and (b-c) partial time series of model derived HE and observations from 2013 to

2015.” (Figure 8)

Figure 9: a-c and d-i represent distinct data types and should not share a single figure label.
Response: Corrected. Figure 9 was now spitted into Figure 10 and 11.

Revision:
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Figure 10: The statistical characteristics and spatial average of LST, LE and HE for observations, FLake, HyLake
v1.0 and TaihuScene in all sites using ERAS forcing datasets. Green, blue and yellow texts in figures represent the
MAE:s of LST, LE and HE for FLake, HyLake v1.0 and TaihuScene, respectively.” (Figure 10)
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Figure 11: The statistical characteristics and spatial average of predicted LST, LE and HE for HyLake v1.0 and
TaihuScene drove by ERAS forcing datasets. (a-c) represent LST, LE and HE for HyLake v1.0, respectively; (d-
f) represent LST, LE and HE for TaihuScene, respectively. The green stars noted in all figures are lake sites in
Lake Taihu.” (Figure 11)

Line 847: correct the citation format for code repositories with the rest of the reference list.

Response: Corrected as “He, Y.: Code and datasets of paper "Hybrid Lake Model (HyLake) v1.0: unifying deep learning
and physical principles for simulating lake-atmosphere interactions", Zenodo [code and data set],
https://doi.org/10.5281/zenodo.15289113, 2025.”



Reviewer #2:

The manuscript entitled “Hybrid Lake Model (HyLake) v1.0: unifying deep learning and physical principles for
simulating lake-atmosphere interactions” written by Yuan He and Xiaofan Yang (egusphere-2025-1983) presented the
HyLake v1.0 hybrid model, which performed better than other models. The manuscript is generally well-written, which
will be within the scope of GMD. Please clarify the following points before the possible publication.

Response: We thank Reviewer #2 for the positive and constructive comments. All the comments have been accepted
and Relisted in black, followed by our Replies in blue and Revisions in red (highlighted revisions in bold). According
to the comments, we particularly discussed the reasons of using individual-site observations to train LSTM-based
surrogates and explained the details of model development. Major changes are summarized in the following table:

No. | Major Revisions Key Messages

As one of the long-term monitored lake sites in Lake Taihu,
MLW has high-quality of observations and highly represents
. . . the eutrophic status of Lake Taihu. We cross-validated the
Discussed the selection of MLW observations to ) ) ) )
1 . . performance using different observations from lake sites to
train LSTM surrogate in HyLake v1.0. . .
train LSTM surrogate and confirmed that observations of the
MLW are reliable (Materials and methodology;

Discussion).

We used meteorological variables in ERAS dataset to fill the

. ) missing data in the lake site that existed missing in their time
Described how to fill the data gaps using ERAS

dataset

series. These observations were used to force lake models to
predict lake surface temperature and heat fluxes (Materials
and methodology).

Major comments:

Line 117-119 (and Table 1): This might be the trial and error in the authors and was not presented explicitly within the
manuscript, but why was only the MLW site used for training and other sites used for validation? I missed the information,
but why was the cross-validation not attempted in the process? I am wondering about the robustness of the developed
model based on the training data from one site.

Response: We apologize for the confusion regarding our use of MLW observations to train an LSTM-based surrogate.
Specific reasons are listed as follows:

(1) Reason for choosing MLW observations to train LSTM-based surrogate. There are five sites in Lake Taihu
where hydrometeorological variables are observed via the lake Eddy Flux Network, including air temperature, rainfall
rate, net longwave and shortwave radiation, wind speed, surface pressure, relative humidity, lake surface temperature,
and latent and sensible heat fluxes. Air temperature, rainfall rate, net longwave and shortwave radiation, wind speed,
surface pressure, and relative humidity were adapted to force lake models, while lake surface temperature, latent and
sensible heat fluxes were used to validate the model performance. Among these observations, we found there are data
gaps to different degrees in these sites. For example, about 475-time steps (~1.36%) of observed surface pressure were
found to be lacked in DPK site during 2012 and 2015; 7,959 time steps (~22.71%) of all observed variables were missing
in XLS site; 12,539 time steps (~35.78%) of all observed variables were missing in PTS site during 2013-2015. We think
these lake sites were not suitable for training the LSTM-based surrogates. Given the MLW and BFG sites, citations have
evidenced that Lake Taihu and its MLW site are quintessential examples of severe eutrophication in China (Yan et al.,
2024; Wang et al., 2019), which differs from BFG’s biological characteristics. The association descriptions can be found
in Material and methodology (Section 2.1, Lines 114-139).

(2) Cross-validation between each lake site in training LSTM-based surrogates: The MLW observations are
the most reliable among the 5 lake sites after our rigorous validation. We also used observations from 5 lake sites to
individually search for optimized BO-BSTM-based surrogates, respectively. The validation results are given in Figure
4,510, R1 and Table S1. The results indicated that, theoretically, the surrogates trained with MLW, BFG, DPK, and PTS



performed well in validation, while those trained with XLS performed poorer than the other surrogates (Figure 4, R1
and Table 1). Considering the absence of DPK and PTS observations, we only choose the surrogate trained with BFG to
couple to the PBBM backbone model (namely HyLake-BFG in this comment) and then compare its performance to
HyLake v1.0 in MLW and BFG site. Results indicated that HyLake v1.0 outperformed HyLake-BFG in both MLW and
BFGsite (Figure S10), indicating that using MLW observations to train surrogate helps hybrid lake models learn physical
knowledge and improve their accuracy. Therefore, we decided to developed HyLake v1.0 based on MLW observations
to according to the comprehensive validation. The associated revisions were listed in Discussion (Section 4.2, Lines 660-
666).

(a) Training Dataset 75 (b) Validation Dataset (c) Test Dataset
_ 4 RMSE = 0.1945 .~ " | RMSE = 0.3359 2] RMSE = 0.2271 .~
O MAE = 0.1307 5.0 MAE = 0.1925 MAE = 0.14 ¢
= 27 of ‘ . 2 o
’_ /
2 2.5 - ¢
a 0 : o
8 1 o
g -2 0.0 oo
8 (6] 7
T 4] ./‘“ —-2.51
§ , ,
-5 0 0 5 -2 0 2
Observed ALST [°C] Observed ALST [°C] Observed ALST [°C]

Figure 4: Validation of BO-BLSTM-based surrogate trained with MLW observations in HyLake v1.0 for (a)
training, (b) validation and (c) test datasets.
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(j) XLS: Train Dataset (k) XLS: Validation Dataset  (m) XLS: Test Dataset
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Figure R1: Validation of BO-BLSTM-based surrogates trained with (a-c) BFG, (d-f) DPK, (g-i) PTS, and (j-m)
XLS observations in train, validation and test datasets, respectively.

Table S1: Model specifications of BO-BLSTM-based surrogates that trained with BFG, DPK, PTS, and XLS
observations and performance in training sets, validation sets, and test sets of MLW. The RMSE for each
surrogate was calculated from the difference between their training datasets.

Model specifications RMSE (°C)
NO. Training dataset Number of Neurons Batch  Learning . Lo
. Train Validation Test
layers per layer size rate
1 MLW 4 467 64 9.6E-4 0.19 0.34 0.23
2 BFG 5 30 94 2.5E-3 0.20 0.26 0.18
3 DPK 5 94 124 3.0E-3 0.21 0.24 0.23
4 PTS 6 143 124 7.5E-4 0.20 0.22 0.23
5 XLS 5 170 29 1.0E-2 0.40 0.45 0.33
6 Whole 7 836 145 2.5E-2 0.24 0.33 0.23
References:

Wang, J., Fu, Z., Qiao, H., and Liu, F.: Assessment of eutrophication and water quality in the estuarine area of Lake Wuli,
Lake Taihu, China. Sci. Total Environ., 650, 1392-1402, https://doi.org/10.1016/j.scitotenv.2018.09.137, 2019.

Yan, X., Xia, Y. Q., Ti, C. P, Shan, J., Wu, Y. H., and Yan, X. Y.: Thirty years of experience in water-pollution control in
Taihu Lake: a review, Sci. Total Environ., 914, 169821, https://doi.org/10.1016/j.scitotenv.2023.169821, 2024.
Revision:

“The datasets included two parts: (1) hydrometeorological variables observed from the Taihu Lake Eddy
Flux Network to force and validate the models, and (2) meteorological variables from ERAS datasets to fill the
gaps of observations and force the models. Within the network, each site is equipped with an eddy covariance system
that continuously monitors LE and HE using sonic anemometers and thermometers (Model CSAT3A; Campbell
Scientific, Logan, UT, USA) positioned 3.5 to 9.4 m above the lake surface. Hydrometeorological variables, including
air humidity and temperature (Model HMP45D/HMP155A; Vaisala, Helsinki, Finland), wind speed (Model 03002; R.M.
Young Co., Traverse City, MI, USA), and net radiation components (Model CNR4; Kipp & Zonen, Delft, the
Netherlands), are also measured. These meteorological variables were used to force lake models while LE, HE and
LST from observations were used to validate the results of each numerical experiment, on top of which, the
inferred radiative LST were collected at 30-minute intervals that are publicly accessible via Harvard DataVerse (Lee,
2004; Zhang et al., 2020; https://doi.org/10.7910/DVN/HEWCWM). The dataset spans from 2012 to 2015 and contains
several data gaps across these lake sites. Specifically, 475 time steps (~1.36%) of observed surface pressure were
found missing at the DPK site during 2012 and 2015; 7,959 time steps (~22.71%) of all observed variables were
missing at the XLS site; 12,539 time steps (~35.78%) of all observed variables were missing at the PTS site.
Observations at the MLW and BFG sites were complete during the entire study periods. For the model evaluation
of Taihu-obs experiment, the data gaps of observed variables in these lake sites were directly filled by ERAS



datasets at the corresponding time steps, which were used to predict lake-atmosphere interactions. In this study,
observed meteorological variables from the MLW site, an eutrophic lake site that presents the trophic status of
Lake Taihu (Table 1, Wang et al., 2019), are used to train the Long Short-Term Memory (LSTM)-based surrogates
(Sect. 2.2); while data from the remaining sites serve to evaluate the generalization of HyLake v1.0 and train the LSTM-
based surrogates. To further address the generalization and transferability of HyLake v1.0 across different forcing
datasets, this study utilized 8 meteorological variables that obtained from hourly ERAS5 datasets from 2012 to 2015,
with a spatial resolution of 0.25° at a single level to force HyLake v1.0. These datasets, available from the Climate Data
Store (Hersbach et al., 2020; http://cds.climate.copernicus.eu), include variables such as air temperature, dew point
temperature, surface pressure, wind speed, and surface net longwave and shortwave radiation, which has similar
probability distribution to observations across Lake Taihu (Figure S1).The ERAS datasets are also individually
used to force FLake and TaihuScene for comparison and predict lake-atmosphere interactions in Lake Taihu,
providing insights into the model's generalization, transferability and performance using different climatic forcing
datasets.” (Section 2.1, Lines 114-139)
References added:
Wang, J., Fu, Z., Qiao, H., and Liu, F.: Assessment of eutrophication and water quality in the estuarine area of Lake Wuli,
Lake Taihu, China. Sci. Total Environ., 650, 1392-1402, https://doi.org/10.1016/j.scitotenv.2018.09.137, 2019.

“Therefore, this study assumed that an individual-site-trained LSTM-based surrogate would have better capacity in
representing lake-atmosphere interactions, which was collectively matched to the above-mentioned hypotheses. Due to
insufficient observations at other lake sites (DPK, PTS, and XLS), to some degree, the surrogates trained on their datasets
performed closely in estimating ALST except for XLW (Table S1). For the relatively complete observed datasets in BFG
(although its biological characteristics cannot represent the whole Lake Taihu), the surrogate performed poorer than the
proposed BO-BLSTM-based surrogate in terms of diurnal patterns of LST of HyLake v1.0 (Figure S10).” (Section 4.2,
Lines 660-666)

“Table S1: Model specifications of BO-BLSTM-based surrogates that trained with BFG, DPK, PTS, and XLS
observations and performance in training sets, validation sets, and test sets of MLW. The RMSE for each
surrogate was calculated from the difference between their training datasets.

Model specifications RMSE (°C)
NO. Training dataset ~ Number of Neurons Batch Learning ) o
. Train Validation Test
layers per layer size rate

1 MLW 4 467 64 9.6E-4 0.19 0.34 0.23
2 BFG 5 30 94 2.5E-3 0.20 0.26 0.18
3 DPK 5 94 124 3.0E-3 0.21 0.24 0.23
4 PTS 6 143 124 7.5E-4 0.20 0.22 0.23
5 XLS 5 170 29 1.0E-2 0.40 0.45 0.33
6 Whole 7 836 145 2.5E-2 0.24 0.33 0.23

” (Table S1 in Supplementary Materials)
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Figure S10: Comparison between HyLake v1.0 used MLW-train surrogate and BFG-trained surrogate in
temporal trends of LST. (a-c) and (d-f) present the time series comparison at MLW and BFG site, respectively.
Comparison of (a, and d) the full time series and (b-c, and e-f) partial time series of models derived LST and
observations from 2013 to 2015. Blue, red, and yellow regions represent the period for the training, validation,
and test datasets, respectively.” (Figure S10 in Supplementary Materials)

Specific comments:

Line 40-42: The reference for each process-based model will be better.

Response: Corrected.

Revision: “Process-based lake thermodynamics models, such as the Freshwater Lake model (FLake) (Mironov et al.,
2010), the General Lake Model (GLM) (Hipsey et al., 2019), and the lake thermodynamics model in Weather
Research & Forecasting Model (WRF-Lake) (Gu et al., 2015), are built on relationships between climate variables
and LST, often employing simplified assumptions based on empirical physical principles (Mironov et al., 2010;
Piccolroaz et al., 2024; L. J. Xu et al., 2016).” (Section 1, Lines 42-46)

References added:

Gu, H., Jin, J., Wu, Y., Ek, M. B., and Subin, Z. M.: Calibration and validation of lake surface temperature simulations
with the coupled WRF-lake model. Clim. Change, 129(3), 471-483, https://doi.org/10.1007/s10584-013-0978-y, 2015.
Hipsey, M. R., Bruce, L. C., Boon, C., Busch, B., Carey, C. C., Hamilton, D. P., Hanson, P. C., Read, J. S., de Sousa, E.,
Weber, M., and Winslow, L. A.: A General Lake Model (GLM 3.0) for linking with high-frequency sensor data from the



Global Lake Ecological Observatory Network (GLEON), Geosci. Model Dev.,, 12, 473-523,
https://doi.org/10.5194/gmd-12-473-2019, 2019.

Mironov, D., Heise, E., Kourzeneva, E., Ritter, B., Schneider, N., and Terzhevik, A.: Implementation of the lake-
parameterization scheme FLake into the numerical-weather-prediction model COSMO, Boreal Environ. Res., 15, 218—
230, 2010.

Line 116-117 and 120-125: How to fill the gap by the ERAS reanalysis dataset was ambiguous. For example, what was
the deficit rate from 2012 to 20157 Please rewrite this explanation.

Response: Sorry for missing this information. We first provided a conceptual figure to describe the way of using the
ERAS5 dataset to fill the observations (Figure R2). We used the most straightforward method, which involved checking
and replacing missing data in observations with ERAS datasets for each variable, as the two datasets share a similar
probability distribution in their meteorological variables (Figure S1). Then, we calculated the deficit rate (missing
length/length of time series) for observations at each lake site from 2012 to 2015. Specifically, 475 time steps (~1.36%)
of observed surface pressure were found to be lacking in the DPK site during 2012 and 2015; 7959 time steps (~22.71%)
of all observed variables were missing in the XLS site; 12539 time steps (~35.78%) of all observed variables were
missing in the PTS site; Observations at the MLW and BFG sites were complete during the study periods. More details
about using ERAS datasets in this study were provided in Materials and methodology (Section 2.1, Lines 114-139) and

Figure S1.
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Figure R2: Conceptual diagram for gap filling of the observations by using ERAS dataset.
Revision: “The datasets included two parts: (1) hydrometeorological variables observed from the Taihu Lake
Eddy Flux Network to force and validate the models, and (2) meteorological variables from ERAS datasets to fill
the gaps of observations and force the models. Within the network, cach site is equipped with an eddy covariance
system that continuously monitors LE and HE using sonic anemometers and thermometers (Model CSAT3A; Campbell
Scientific, Logan, UT, USA) positioned 3.5 to 9.4 m above the lake surface. Hydrometeorological variables, including
air humidity and temperature (Model HMP45D/HMP155A; Vaisala, Helsinki, Finland), wind speed (Model 03002; R.M.
Young Co., Traverse City, MI, USA), and net radiation components (Model CNR4; Kipp & Zonen, Delft, the
Netherlands), are also measured. These meteorological variables were used to force lake models while LE, HE and
LST from observations were used to validate the results of each numerical experiment, on top of which, the
inferred radiative LST were collected at 30-minute intervals that are publicly accessible via Harvard DataVerse (Lee,
2004; Zhang et al., 2020; https://doi.org/10.7910/DVN/HEWCWM). The dataset spans from 2012 to 2015 and contains
several data gaps across these lake sites. Specifically, 475 time steps (~1.36%) of observed surface pressure were
found missing at the DPK site during 2012 and 2015; 7,959 time steps (~22.71%) of all observed variables were
missing at the XLS site; 12,539 time steps (~35.78%) of all observed variables were missing at the PTS site.
Observations at the MLW and BFG sites were complete during the entire study periods. For the model evaluation



of Taihu-obs experiment, the data gaps of observed variables in these lake sites were directly filled by ERAS
datasets at the corresponding time steps, which were used to predict lake-atmosphere interactions. In this study,
observed meteorological variables from the MLW site, an eutrophic lake site that presents the trophic status of
Lake Taihu (Table 1, Wang et al., 2019), are used to train the Long Short-Term Memory (LSTM)-based surrogates
(Sect. 2.2); while data from the remaining sites serve to evaluate the generalization of HyLake v1.0 and train the LSTM-
based surrogates. To further address the generalization and transferability of HyLake v1.0 across different forcing
datasets, this study utilized 8 meteorological variables that obtained from hourly ERAS5 datasets from 2012 to 2015,
with a spatial resolution of 0.25° at a single level to force HyLake v1.0. These datasets, available from the Climate Data
Store (Hersbach et al., 2020; http://cds.climate.copernicus.eu), include variables such as air temperature, dew point
temperature, surface pressure, wind speed, and surface net longwave and shortwave radiation, which has similar
probability distribution to observations across Lake Taihu (Figure S1).The ERAS datasets are also individually
used to force FLake and TaihuScene for comparison and predict lake-atmosphere interactions in Lake Taihu,
providing insights into the model's generalization, transferability and performance using different climatic forcing
datasets.” (Section 2.1, Lines 114-139)
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Figure S1: The probability density distribution of meteorological variables from observation and ERAS reanalysis
datasets in MLW, BFG, DPK, PTS, and XLS site during 2012 to 2015. A normalized RMSE (nRMSE) was assigned
to assess the error between observation and ERAS reanalysis datasets.” (Figure S1 in Supplementary Materials)

Line 120-125: In addition to the above comment, when the ERAS reanalysis gaps the data at the MLW site, is this the
self-validation? Please clarify.

Response: The MLW site has complete observations for 2013 and 2015, which DOESN’T require any gap filling with
ERAS datasets. We only checked and filled the meteorological variables from observations, including air temperature,
relative humidity, surface pressure, wind speed, and surface net longwave and shortwave radiation, with ERAS5 datasets
to force HyLake v1.0 and other lake models in DPK, PTS, and XLS sites during the studied period if needed.
Revision: “In the evaluation of all observations-forced experiments, the data gaps of observed variables in these lake
sites were directly filled by ERAS datasets at the corresponding time steps to predict lake-atmosphere interactions.”
(Section 2.1, Lines 127-129)

Line 345: The legend “HyLake-baseline” will be confusing. I would like to recommend expressing “Baseline”.



Response: Corrected.

Revision:
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Figure 5: Comparison of predicted (a) LST, (b) LE and (c) HE by using FLake (red points), Baseline (blue points)

and HyLake v1.0 (green points) in MLW experiments.” (Figure 5)

Technical comments:

Line 29: “surface water temperature” will not match the abbreviation of “LST”. Is this “lake surface temperature”?

Please confirm.

Response: Thanks. Corrected to “lake surface temperature (LST)”.

Line 110: No need to repeat these abbreviations.
Response: Corrected.

Revision: “Within the network, each site is equipped with an eddy covariance system that continuously monitors LE
and HE using sonic anemometers and thermometers (Model CSAT3A; Campbell Scientific, Logan, UT, USA)

positioned 3.5 to 9.4 m above the lake surface.” (Lines 116-118)
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Reviewer #3:

This manuscript presents HyLake v1.0, a hybrid lake—atmosphere model that embeds a Bayesian-optimized bidirectional
LSTM surrogate within a process-based 1-D vertical transport framework to simulate lake surface temperature and
surface fluxes. The work addresses a key challenge in environmental modeling: integrating data-driven surrogates with
physical principles. The extensive validation on Lake Taihu (2012-2015) against FLake demonstrates clear performance
gains, and the hybrid approach represents a meaningful methodological advance for lake modeling. While the
methodology is sound and the Lake Taihu validation is comprehensive, the authors should more clearly discuss the
requirements and limitations for applying this approach to other lake systems. The current multi-site validation within
Lake Taihu provides good evidence of transferability, but broader applicability claims should be more cautiously framed.
Response: We sincerely thank Reviewer #3 for the constructive comments. In revision, we particularly discussed the
requirements and limitations for HyLake v1.0 and presented an example using another morphologically distinct lake to
show its transferability. All comments are accepted and Relisted in black, followed by our Replies in blue and Revisions
in red (highlighted revisions in bold). Before point-by-point response, we summarized major revisions followed by

Reviewer #3’s comments as:

No. | Major Revisions Important Messages

The revised manuscript employed HyLake v1.0 to simulate

. lake-atmosphere interactions in another morphologically
Presented a test case for applying HyLake v1.0 | = | ) .
1 . O distinct lake, Lake Chaohu, and discussed the potential
to another morphologically distinct lake. ) .. )
challenges in model application (Materials and

methodology; discussion).

. L . We discussed the cons and pros of computational
Discussed the limitations of deep-learning-based ) )
2 . requirements, BO-BLSTM-based surrogate, and the choice
surrogates.
£ of lake surface temperature module (Discussion).

We mainly discussed the uncertainty of Bayesian
algorithms. Future improvements should focus on
Provided future directions to improve HyLake | development of surrogates by using novel techniques. The
v1.0. employment of a Bayesian fully connected layer in
surrogates could also provide probabilistic predictions by

quantifying uncertainties in the future (Discussion).

Specific Comments

The multi-site validation within Lake Taihu is convincing but add discussion of what adaptations would be needed for
different lake types (e.g., deeper lakes, different climate zones, varying trophic states). Consider outlining a framework
for applying the methodology to new lake systems.

Response: Good point! We agree that applying HyLake v1.0 to other lakes is essential. Therefore, we utilized it to
another lake in the middle and lower reaches of the Yangtze River Plain—Lake Chaohu and discussed potential
limitations for model application.

(1) Applying HyLake v1.0 to another lake: Lake Chaohu is the 5"-largest shallow freshwater lake in China,
with a deeper lake depth of 3.06 m and smaller lake area of 760 km? than Lake Taihu (Jiao et al., 2018), which has
experienced heavy eutrophication and harmful algal blooms (Yang et al., 2020). Given the difficulty that Lake Chaohu
does not have sufficient observations, unlike Taihu, we outlined a framework that utilized ERAS datasets to force HyLake
v1.0 and the MODI11A1 land surface temperature dataset for validating lake surface temperature changes. The results
indicated that HyLake v1.0 performed well in Lake Chaohu, with an R? 0f0.97, RMSE 0f 2.07 °C, and MAE of 1.57 °C,
outperforming FLake compared to the MOD11AT1 datasets (Figure S7-9). The successful attempt of HyLake v1.0 in
Lake Chaohu demonstrated that HyLake v1.0 is promising to apply in ungauged lakes. The associated revisions can be
found in Materials and methodology (Section 2.3.1, Lines 286-289, Lines 308-314) and Discussion (Section 4.1, Lines



560-567, Lines 609-611; Figure S7-S9).

(2) Discussing potential challenges for model application: Although HyLake v1.0 succeeded in estimating lake-
atmosphere interactions in Lake Chaohu, it still has several limitations. Considering the diverse lake types worldwide, it
remains challenging to validate the performance of HyLake v1.0 in every case due to the limited observations and
simplified physical principles. The quantitative restriction on observations hampers our ability to improve the model’s
performance in regional cases by retraining or fine-tuning the LSTM-based surrogates for each lake type. Additionally,
the inaccurate relationships between lake surface conditions (e.g. friction velocity, surface roughness length) and climate
change pose a challenge to HyLake v1.0. Specifically, we found that there are biases in the surface roughness length (zo)
and friction velocity (u”) between observations and predictions (Figure S6). These potential differences were hard to
quantify due to data scarcity in the current process-based models, which impeded us to improve the understanding of
lake-atmosphere interactions. Therefore, the physical principles between lake surface conditions and climate change
should be focused in the future using novel process-based or data-driven techniques. The associated revisions are listed
in Discussion (Section 4.2, Lines 647-654).

To sum up, HyLake v1.0 provided a novel method for improving the understanding of lake-atmosphere interactions
on most lakes. However, the current limitations of data and physical principles restrict the generalization ability for all
unknown lake types. We aim to expand the modules and functions of HyLake v1.0 and validate it in additional lakes in

the future, to accurately predict lake-atmosphere interactions for a broader range of lake types.
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Figure S6: The comparison of friction velocity (u*) and surface roughness length (zom, m) in MLW lake site between
simulation derived from PBBM and HyLake v1.0 and observations.

References:

Jiao, Y., Yang, C., He, W., Liu, W. X., and Xu, F. L.: The spatial distribution of phosphorus and their correlations in

surface sediments and pore water in Lake Chaohu, China, Environ. Sci. Pollut. Res., 25, 25906-25915,

https://doi.org/10.1007/s11356-018-2606-x, 2018.

Yang, C., Yang, P., Geng, J., Yin, H., and Chen, K.: Sediment internal nutrient loading in the most polluted area of a

shallow eutrophic lake (Lake Chaohu, China) and its contribution to lake eutrophication, Environ. Pollut., 262, 114292,

https://doi.org/10.1016/j.envpol.2020.114292, 2020.

Revision:

“To address the generalization and transferability of HyLake v1.0 in studied (MLW) and ungauged lake sites (DPK,
BFG, XLS, and PTS) (Table 1), this study further conducted three numerical experiments, including MLW experiment,
Taihu-obs experiment, Taihu-ERAS5 experiment, and Chaohu experiment, using distinct models and forcing datasets
(Table 2 and 3), including FLake, Baseline, and TaihuScene to intercompare.” (Section 2.3.1, Lines 286-289)

“Furthermore, this study implemented the HyLake v1.0 into Lake Chaohu, the 5™-largest shallow freshwater lake
in China, which has experienced heavy eutrophication and harmful algal blooms (Yang et al., 2020), to assess its
transferability to other lakes. A LST dataset in Lake Chaohu was obtained from MODIS/Terra Land Surface
Temperature/Emissivity ~ Daily L3 Global lkm  SIN  Grid V061 imageries  (MODI11Al,



https://www.earthdata.nasa.gov/data/catalog/Ipcloud-mod11al-061), which were used to validate the performance of
LST derived from HyLake v1.0. The computational efficiency for each 1-time prediction was recorded using a 16G 10-
Core Apple M4 processor based on the established HyLake v1.0 model in this study. The training of the above-mentioned
surrogates was run using a 24G NVIDIA GeForce RTX 4090 GPU.” (Section 2.3.1, Lines 308-314)

“Table 3: Intercomparison of model performance across different experiments conducted in diverse regions
with different forcing datasets. Observations from all lake sites (MLW, DPK, BFG, XLS, and PTS) on Lake Taihu,
were used to drive models in the Taihu-obs experiment. Bold values in the table present the best-performing model
with each group of experiments. Computational efficiency is reported as the runtime for a single simulation.

R RMSE MAE Efficiency
LST LE HE LST LE HE LST LE HE (s)
PBBM MLW 098 085 0.89 1.78 3834 937 138 2354 6.22 189.49
FLake MLW 098 082 084 176 4273 7.24 135 2476 5.01 16.40
MLW Baseline MLW 096 0.74 0.75 271 51.77 14.63 2.11 33.52 930 151.46
HyLake
v1.0
FLake Allsites 097 0.61 0.74 224 1546 69.11 1.69 4195 10.44 89.00
Taihu- TaihuScene Allsites 0.99 0.82 0.89 1.52 1493 4349 1.23 29.53 10.63 6928.44
obs HyLake
v1.0
FLake ERA5 098 0.63 0.69 1.82 1231 6724 146 5094 9.68 19.60
Taihu- TaithuScene = ERAS5 0.99 0.68 0.73 1.60 13.00 64.83 129 47.78 10.11 652.25
ERAS HyLake

Exp Model Forcing

MLW 099 094 093 1.08 24.65 7.15 0.85 15.18 4.73 270.21

All'sites 099 0.81 0.90 1.36 11.19 39.20 1.03 24.79 7.88  2693.23

ERAS 099 071 0.78 1.12 11.05 49.48 0.90 35.02 7.97 236.78

v1.0
FLake  ERAS 097 1\ \ 228 | v 176\ \ 70.40
haoh HyLak
Chaohu yl’;e ERA5S 097 \ \ 207 \ \Ls7 \ 972.83
Vi.

” (Table 3)

“To address issues related to model performance, generalization, and transferability in ungauged locations, three
additional numerical experiments, including FLake, Baseline, and TaihuScene, were proposed for intercomparison and
a framework for applying HyLake v1.0 to another lake, such as Lake Chaohu, with a deeper depth of 3.06 m and
area of 760 km? (Figure S7, Jiao et al., 2018), to validate the potential capacity of transferability further. These
experiments were compared using observed meteorological datasets, and ERAS5 datasets and then validated for both
spatial and temporal patterns at Lake Taihu and Lake Chaohu (Tables 2-3). Similarly, ERAS5 dataset-derived HyLake
v1.0 outperformed FLake in estimating LST (R = 0.97, RMSE = 2.07 °C, MAE = 1.57 °C) in Lake Chaohu,
compared to MOD11A1 datasets (Table 3 and Figures S7-9).” (Section 4.1, Lines 560-567)

“HyLake v1.0, developed based on in situ observations from Lake Taihu, has been proven to be reliable and
rigorously validated in Lake Chaohu (Table 3), demonstrating a faster and more accurate framework for enhancing the
understanding of hybrid hydrological modeling.” (Section 4.1, Lines 609-611)

“HyLake v1.0 has been applied to Lake Chaohu and achieved superior performance in comparison to the
MYD11A1 LST observations, showing a promising way for more applications. Future improvements to HyLake
v1.0 should focus on investigating the scaling laws of datasets, development of surrogate architectures, and extension of
coupled modules. Currently, HyLake v1.0 has been validated primarily in Lake Taihu, utilizing high-quality training data
provided by the Lake Taihu Eddy Flux Network (Zhang et al., 2020). However, in some exceptional cases, the lake
may be influenced by regional inflows/outflows, or it may be covered by snow/ice for a long period, and the
processes at the lake-air interface may differ from those in our experiments (Woolway et al., 2020). As a result,
our model may not be quantifiable for these situations. Its surrogate will be required for more high-quality local
datasets to retrain or finetune.” (Section 4.2, Lines 647-654)
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Figure S7: The locations of Lake Chaohu overlaid on a true-color image from (a) Landsat 8 and daily land surface
temperature from (b) MYD11A1 product.” (Figure S7 in Supplementary materials)
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Figure S8: Time series of daily grid-average LST on Lake Chaohu derived from MYD11A1, FLake simulation,
and HyLake v1.0 from 2013 to 2015. HyLake v1.0 provides daily and hourly simulations.
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Figure S9: The intercomparison of daily LST between model simulations (FLake and HyLake v1.0) and
MYD11A1 observations on Lake Chaohu from 2013 to 2015.” (Figures S7-S9 in Supplementary Material)

Better justify the choice of BO-BLSTM over simpler alternatives. provide clearer explanation of why Bayesian
optimization and bidirectional LSTM architecture were chosen over deterministic alternatives.

Response: Thanks for the suggestions. Using the LSTM-based surrogate with the best group of hyperparameters based
on Bayesian Optimization (BO), integrated the abilities of LSTM for time series forecasting and the high computational
efficiency of Bayesian Optimization (BO) to represent the physical principles of lake surface temperature changes
significantly.

(1) The selection of BO-BLSTM over simpler alternatives: LSTM is one of Recurrent Neural Networks (RNNs)
that learn from past data by using several gates in their network architecture to remember the past data (Siami-Namini
et al., 2019). It becomes feasible for long-term time series forecasting due to the ability to learn many-step dependencies
and handle variable-length input sequences in fields such as hydrology (Liu et al., 2024). It outperformed traditional,
process-based, and machine learning models in many cases, including predictions of soil moisture, streamflow, water

temperature, and groundwater levels (Mao et al., 2021; Feng et al., 2020; Papacharalampous et al., 2018). Meanwhile,



previous studies have shown that LSTM-based models outperform other traditional deep-learning models in auto-
regressive predictions, supporting this study in predicting lake surface temperature changes robustly and reliably (Siami-
Namini et al., 2019). Bayesian LSTM (BLSTM), an improved version of LSTM, adapts probability-distributed weight
parameters, which reduce model overfitting and provide robust predictions in hydrology (Li et al., 2021; Lu et al., 2019).
In comparison to these models in BO, we ultimately selected BLSTM-based surrogates to address the challenges in this
autoregressive prediction task. Nevertheless, we agree that the surrogate should be improved due to its lower
computational efficiency, which will be discussed in the future. Here we explained the advantages of LSTM and BLSTM
in Materials and Methodology (Section 2.2.2, Lines 209-214) and discussed the limitations and potential improvements
in Discussion (Section 4.1, Lines 614-624; Section 4.2, Lines 671-680).

(2) Using Bayesian Optimization and Bayesian LSTM over deterministic alternatives: In this study, we
selected BO to search for the best group of hyperparameters in Bayesian LSTM (not Bidirectional LSTM) models. BO
is a hyperparameter tuning algorithm based on the Bayesian theorem, which can significantly improve the performance
and efficiency of deep learning models by building the relationships between model performance and their
hyperparameters (Victoria et al., 2021; Wu et al., 2019). Previous studies have established that deep learning models
often tune their hyperparameters using manual search or automatic search methods (Wu et al., 2019). Manual search
methods depend on expert knowledge and are hard to reproduce and find the optimized hyperparameters. Traditional
automatic search methods, such as grid search, train models with each combination of hyperparameters, which is
exhaustive searching (Wu et al., 2019; Bergstra et al., 2012). BO adapted a random search technique to fit the data and
update the posterior distribution of functions based on Gaussian processes and the Bayesian theorem (Victoria et al.,
2021; Wu et al., 2019). Wu et al. (2019) compared the accuracy and costs between BO and grid search methods, finding
that both methods performed almost equally well in the same case, while BO runs 12 times faster than grid search.

To summarize, given the large variability and complex relationships of the observations in this study, we would like
to employ a more computationally efficient method to help users identify the most robust surrogate within a large
hyperparameter space as soon as possible. Considering that the selection of optimization methods is not a focus of this
study, the current manuscript provides detailed information about the hyperparameter space for each surrogate to help
readers understand. The associated revisions are listed in Materials and Methodology (Section 2.2.3, Lines 276-279).
References:

Bergstra, J. and Bengio, Y.: Random search for hyper-parameter optimization, J. Mach. Learn. Res., 13, 281-305,
https://dl.acm.org/doi/10.5555/2188385.2188395, 2012.

Liu, J., Bian, Y., Lawson, K., and Shen, C.: Probing the limit of hydrologic predictability with the Transformer network,
J. Hydrol., 637, 131389, https://doi.org/10.1016/j.jhydrol.2024.131389, 2024.

Feng, D., Fang, K., and Shen, C.: Enhancing streamflow forecast and extracting insights using long-short term memory
networks with data integration at continental scales, Water Resour. Res., 56, e2019WR026793,
https://doi.org/10.1029/2019WR026793, 2020.

Mao, G., Wang, M., Liu, J., Wang, Z., Wang, K., Meng, Y., et al.: Comprehensive comparison of artificial neural networks
and long short-term memory networks for rainfall-runoff simulation, Phys. Chem. Earth, A/B/C, 123, 103026,
https://doi.org/10.1016/j.pce.2021.103026, 2021.

Papacharalampous, G., Tyralis, H., and Koutsoyiannis, D.: One-step ahead forecasting of geophysical processes within
a purely statistical framework, Geosci. Lett., 5, 12, https://doi.org/10.1186/s40562-018-0111-1, 2018.

Siami-Namini, S., Tavakoli, N., and Namin, A. S.: The performance of LSTM and BiLSTM in forecasting time series,
in: 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9-12 December 2019, 3285—
3292, https://doi.org/10.1109/BigData47090.2019.9006190, 2019.

Wu, J., Chen, X. Y., Zhang, H., Xiong, L. D., Lei, H., and Deng, S. H.: Hyperparameter optimization for machine learning
models based on Bayesian optimization, J. Electron. Sci. Technol., 17, 26-40, https://doi.org/10.11989/JEST.1674-
862X.80904120, 2019.

Victoria, A. H. and Maragatham, G.: Automatic tuning of hyperparameters using Bayesian optimization, Evol. Syst., 12,
217-223, https://doi.org/10.1007/s12530-020-09345-2, 2021.



Revision:

“It has been demonstrated that LSTM could capture historical time-step dependencies and handle variable-length
input sequences using gradient optimization combined with backpropagation in hydrological applications (J. Liu et al.,
2024). Bayesian LSTM (as an improved LSTM) adapts probability distributed weight parameters, which reduces the
model overfitting, thereby providing robust predictions in hydrology (D. Li et al., 2021; Lu et al.,, 2019). The
development of LSTM-based surrogates offers the possibility of accurate predictions in addressing the critical processes
in lake-atmosphere modeling systems.” (Section 2.2.2, Lines 209-214)

References:

Li, D., Marshall, L., Liang, Z., Sharma, A., and Zhou, Y.: Bayesian LSTM with stochastic variational inference for
estimating model uncertainty in process-based hydrological models. Water Resour. Res., 57(9), €2021WR029772,
https://doi.org/10.1029/2021WR 029772, 2021.

Liu, J., Bian, Y., Lawson, K., and Shen, C.: Probing the limit of hydrologic predictability with the transformer network,
J. Hydrol., 637, 131389, https://doi.org/10.1016/j.jhydrol.2024.131389, 2024.

Lu, D., Liu, S., and Ricciuto, D.: An efficient bayesian method for advancing the application of deep learning in earth
science, in: Proceedings of the 2019 International Conference on Data Mining Workshops (ICDMW), IEEE, November,
270-278, https://doi.org/ 10.1109/ICDMW.2019.00048, 2019.

“The hyperparameter space included the number of hidden layers (ranging from 1 to 8), neurons per layer (ranged
from 16 to 1,024), optimizer (Adam, or RMSprop), batch size (ranging from 8 to 256), and learning rate (ranging from
1E-6 to 1E-2). The hyperparameters in BO-BLSTM-based surrogates were optimized using BO with a maximum of 100
iterations, 1000 epochs for each iteration, and 50 patience in a EarlyStopping strategy.” (Section 2.2.3, Lines 276-279)

“However, we found that HyLake v1.0 required slightly higher computational costs compared to process-
based models, which depend on the hyperparameters of LSTM-based surrogates, despite achieving greater
performance (Table 3). In an individual case of MLW prediction, HyLake v1.0 took about 9 times longer to run
compared to FLake, with a cost of 151.46 seconds. To compare different experiments of hybrid lake models,
Baseline, coupled to an LSTM-based surrogate with 1 layer and 256 neurons per layer, indicated the lowest cost.
While TaihuScene, constructed by an LSTM-based surrogate with 7 layers and 836 neurons per layer, showed the
most expensive in predictions. Given the sophisticated architecture of LSTM-based surrogates, which inevitably
leads to higher costs in training and prediction, developing novel algorithms for approximating LSTMs is urgently
needed. Furthermore, the recent research progress demonstrated that LSTM-based surrogates are more suited for
short-term predictions compared to the prevalent Transformer-based family, which is suited for long-term predictions
and commonly used in global weather forecasting systems (K. F. Bi et al., 2023; L. Chen et al., 2023).” (Section 4.1,
Lines 614-624)

“BO-BLSTM-based surrogate exhibits superior performance in estimating LST for HyLake v1.0. This study
adapted BO and EarlyStopping strategies to ensure BLSTM provides accurate and reliable estimates in prediction but
increases the computational demands for training due to its ability to converge from its more complex Bayesian
architecture (Peng et al., 2025; Ferianc et al., 2021). In addition, the mere 1 Bayesian fully connected layer that was
adapted in this surrogate only captures limited data uncertainty, which may lose several important aspects of probabilistic
prediction (Klotz et al., 2022). Given the importance of uncertainty quantification for BLSTM, it is worth noting that
HyLake v1.0 has the potential to assess the variance of predictions and probabilities of lake extreme events occurrence
by developing its surrogate in future (Kar et al., 2024; Gawlikowski et al., 2023). Major limitations, including high
computational demands and insufficient model performance, should be addressed by developing a novel deep-learning-
based surrogate based on a more efficient architecture and larger datasets.” (Section 4.2, Lines 671-680)

References:

Ferianc, M., Que, Z., Fan, H., Luk, W., and Rodrigues, M.: Optimizing Bayesian recurrent neural networks on an FPGA-
based accelerator, in: 2021 International Conference on Field-Programmable Technology (ICFPT), IEEE, December, 1-
10, 2021.

Klotz, D., Kratzert, F., Gauch, M., Keefe Sampson, A., Brandstetter, J., Klambauer, G., Hochreiter, S., and Nearing, G.:



Uncertainty estimation with deep learning for rainfall-runoff modeling, Hydrol. Earth Syst. Sci., 26, 1673-1693,
https://doi.org/10.5194/hess-26-1673-2022, 2022.

Peng, Z., Mo, S., Sun, A. Y., Wu, J., Zeng, X., Lu, M., and Shi, X.: An explainable Bayesian TimesNet for probabilistic
groundwater level prediction, Water Resour. Res., 61, ¢2025WR040191, https://doi.org/10.1029/2025WR040191, 2025.

Discuss how the surrogate maintains physical consistency and whether energy balance is preserved through the hybrid
coupling. Consider briefly addressing this in the discussion section.
Response: Good point. Indeed, we considered which processes in the lake model can be replaced by a deep-learning-
based surrogate. Energy balance and lake water temperature approximations are two individual modules in process-
based models, which are difficult to replace with deep-learning-based models simultaneously, while also ensuring
numerical stability. There are two reasons to address this issue and listed in Discussion (Section 4.1, Lines 586-611):
(1) Inadequate observations to build relationships between surface conditions and heat fluxes. The energy
balance equations are integrated modeling systems based on the bulk aerodynamic method from the Monin—Obukhov
similarity theory, which covers the calculation of surface conditions (e.g., surface roughness length, friction velocity),
as well as water and heat fluxes (e.g., latent heat, sensible heat, evaporation, precipitation-induced heat). Specifically,
the latent and sensible heat fluxes are functions of transfer coefficients, which are iteratively updated using the Monin—
Obukhov length, surface roughness length, and friction velocity, based on bulk flux algorithms (Verburg and Antenucci,
2010; Woolway et al., 2015). They performed well in estimating heat fluxes from the evidence in previous studies, which
has been widely applied in process-based models (Woolway et al., 2020; Thiery et al., 2014). However, surface
conditions in current research were always obtained from calculation instead of direct observations. Fewer studies have
focused on monitoring surface conditions due to limited equipment, which hinders our ability to construct generalized
lake models that reflect their potential relationships. Moreover, there is a large difference between observed surface
conditions and predictions by Monin—Obukhov similarity theory, although the Lake Taihu Eddy Flux Network has
monitored these conditions for a long time (Figure S6). In the future, high-quality observations and physical principles

at the land-air interface should focus on addressing the significant discrepancies between observations and simulations.
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Figure S6: The comparison of friction velocity (u*) and surface roughness length (zom, m) in MLW lake site between
simulation derived from PBBM and HyLake v1.0 and observations.

(2) Lake surface temperature governing equations existed uncertainly. The lake water temperature module is
suitable for replacement by a deep-learning-based surrogate due to the rich and easily accessible observations and
simplified schemes. Until now, accurately predicting lake water temperature using a generalized framework has remained
a challenge due to the significant regional differences among lakes. Several researchers have attempted to approximate
lake water temperature changes using complex integrated neural networks, such as physics-informed neural networks
(PINNs), physics-guided neural networks (PGNNs), and modular networks (He et al., 2025; Ladwig et al., 2024; Read
et al., 2019). These models may exhibit superior performance in specific tasks but require high computational power for



pretraining or fine-tuning, and are challenging to predict untrained variables, such as latent heat, sensible heat fluxes,
and evaporation. Choose this module to replace in this study, which hopes to propose a generalized integrated framework
that combines physical principles and deep learning, and then improve the understanding of lake-atmosphere interactions
in finer resolutions.

References:

He, Y., and Yang, X.: A physics-informed deep learning framework for estimating thermal stratification in a large deep
reservoir, Water Resour. Res., 61, €2025WR040592, https://doi.org/10.1029/2025WR 040592, 2025.

Ladwig, R., Daw, A., Albright, E. A., Buelo, C., Karpatne, A., Meyer, M. F., et al.: Modular compositional learning
improves 1-D hydrodynamic lake-model performance by merging process-based modelling with deep learning, J. Adv.
Model. Earth Syst., 16, €2023MS003953, https://doi.org/10.1029/2023MS003953, 2024.

Read, J. S., Jia, X. W., Willard, J. D., Appling, A. P., Zwart, J. A., Oliver, S. K., et al.: Process-guided deep-learning
predictions of lake-water temperature, Water Resour. Res., 55, 9173-9190, https://doi.org/10.1029/2019WR024922,
2019.

Thiery, W. I. M., Stepanenko, V. M., Fang, X., Johnk, K. D., Li, Z., Martynov, A., et al.: LakeMIP Kivu: evaluating the
representation of a large, deep tropical lake by a set of one-dimensional lake models, Tellus A: Dyn. Meteorol. Oceanogr.,
66(1), 21390, https://doi.org/10.3402/tellusa.v66.21390, 2014.

Verburg, P., and Antenucci, J. P.: Persistent unstable atmospheric boundary layer enhances sensible- and latent-heat loss
in a tropical great lake: Lake Tanganyika, J. Geophys. Res.-Atmos., 115, D11109, https://doi.org/10.1029/2009JD012839,
2010.

Woolway, R. L., Kraemer, B. M., Lenters, J. D., Merchant, C. J., O’Reilly, C. M., and Sharma, S.: Global lake responses
to climate change, Nat. Rev. Earth Environ., 1, 388-403, https://doi.org/10.1038/s43017-020-0067-5, 2020.

Woolway, R. 1., Jones, 1. D., Hamilton, D. P., Maberly, S. C., Muraoka, K., Read, J. S., et al.: Automated calculation of
surface-energy fluxes with high-frequency lake-buoy data, Environ. Model. Sofiw., 70, 191-198,
https://doi.org/10.1016/j.envsoft.2015.04.013, 2015.

Revision:

“Moreover, simplified parameterizations in traditional process-based lake models are commonly adopted (Golub et
al., 2022; Mooij et al., 2010), which influence the coupling strategies in HyLake v1.0. The two critical components,
including energy balance equations and 1-D vertical lake water temperature transport equations, compose the
physical principles of lake-atmosphere interaction modeling systems, which also possess simplification to some
degrees. For example, the calculation of friction velocity (u*) and surface roughness length (z,,,) in surface flux
solutions has improved over time from constant empirical models to iterative routines (Hostetler et al., 1993; Woolway
et al., 2015), but substantial discrepancies still exist between simulation results and observations (Figure S6), which in
turn influence the physical principles between land surface conditions and LST. The current approaches for solving
energy balance equations uses bulk aerodynamic method based on the Monin—Obukhov similarity theory (Monin
and Obukhov, 1954), and is the vital module in process-based lake models (e.g., FLake (Mironov et al., 2010),
GLM (Hipsey et al., 2019), WRF-Lake (Gu et al., 2015)). However, it remains challenges to construct explainable
approaches to quantify the relationships between surface conditions and fluxes and LST due to inadequate
observations. These potential differences in physical processes lead to uncertainties in training deep-learning-based
surrogates, contributing to the insufficient/limited knowledge during model training and thereby introducing large
uncertainties in hybrid models. Furthermore, the long-term trends and diurnal variations in lake water temperature
profiles remain challenging to accurate approximate using the finite difference method (e.g., Crank-Nicholson solution,
implicit Euler scheme) (Piccolroaz et al., 2024; Sarovic et al., 2022; Subin et al., 2012). On top of the extensive
observations of water temperature, several hybrid models that integrate deep-learning-based and process-based
models have been constructed in previous studies, achieving improved performance in model comparisons (He et al.,
2025; Ladwig et al., 2024; Read et al., 2019). These models and their training strategies generally perform better on
training and test datasets due to their complex coupling strategies and higher computational requirements, while

their generalization and transferability need further validation. Lake Taihu, as one of typical shallow, eutrophic, and



large Chinese lakes with almost complete mixing throughout the year and subject to complex chemical and biological
influences in its aquatic ecosystem, requires a suitable model as part of the temperature-solving module in the water
column to predict lake water temperature and estimate other potential ecological implications under thermodynamic
changes. HyLake v1.0, developed based on in situ observations from Lake Taihu, has been proven to be reliable
and rigorously validated in Lake Chaohu (Table 3), demonstrating a faster and more accurate framework for
enhancing the understanding of hybrid hydrological modeling.” (Section 4.1, Lines 586-611)

References added:

He, Y., and Yang, X.: A physics-informed deep learning framework for estimating thermal stratification in a large deep
reservoir, Water Resour. Res., 61, e2025WR040592, https://doi.org/10.1029/2025WR040592, 2025.

Monin, A. S., and Obukhov, A. M.: Basic laws of turbulent mixing in the surface layer of the atmosphere, Contrib.
Geophys. Inst. Acad. Sci. USSR, 151(163), 187, 2954, 1954.

Mironov, D., Heise, E., Kourzeneva, E., Ritter, B., Schneider, N., and Terzhevik, A.: Implementation of the lake-
parameterization scheme FLake into the numerical-weather-prediction model COSMO, Boreal Environ. Res., 15, 218—
230, 2010.

Hipsey, M. R., Bruce, L. C., Boon, C., Busch, B., Carey, C. C., Hamilton, D. P., Hanson, P. C., Read, J. S., de Sousa, E.,
Weber, M., and Winslow, L. A.: A General Lake Model (GLM 3.0) for linking with high-frequency sensor data from the
Global Lake Ecological Observatory Network (GLEON), Geosci. Model Dev.,, 12, 473-523,
https://doi.org/10.5194/gmd-12-473-2019, 2019.

Gu, H., Jin, J., Wu, Y., Ek, M. B., and Subin, Z. M.: Calibration and validation of lake surface temperature simulations
with the coupled WRF-lake model. Clim. Change, 129(3), 471-483, https://doi.org/10.1007/s10584-013-0978-y, 2015.

While full uncertainty quantification may be beyond the current scope, briefly discuss the uncertainty implications of
the Bayesian surrogate and how this could be leveraged in future applications.

Response: The proposed Bayesian LSTM (BLSTM) in this study, an improved version of LSTM that replaces the last
fully connected layer with a Bayesian fully connected layer, provides robust predictions by utilizing probability-
distributed weight parameters in networks (D. Li et al., 2021; Lu et al., 2019). However, it inevitably causes uncertainties
from challenging data sources and network architecture (Gawlikowski et al., 2023) and increases the computational
requirements due to the complex architecture (Peng et al., 2025; Ferianc et al., 2021). The uncertainties caused by
BLSTM’s probability-distributed parameters, which have been widely used for assessing the variance of predictions and
the probability of extreme events occurring when using out-of-bag samples, thereby improving the accuracy of decision-
making for users (Kar et al., 2024; Gawlikowski et al., 2023). We are expected to improve the surrogate in HyLake v1.0
and quantify its uncertainties to further enhance our understanding of the occurrence and frequency of lake extreme
events in the future. The associated revisions can be found in Materials and Methodology (Section 2.2.2, Lines 209-214),
and Discussion (Section 4.2, Lines 671-680).

References:

Ferianc, M., Que, Z., Fan, H., Luk, W., and Rodrigues, M.: Optimizing Bayesian recurrent neural networks on an FPGA-
based accelerator, in: 2021 International Conference on Field-Programmable Technology (ICFPT), IEEE, December, 1-
10, 2021.

Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., et al.: A survey of uncertainty in deep neural
networks. Artif. Intell. Rev., 56, 1513-1589, https://doi.org/10.1007/s10462-023-10562-9, 2023.

Kar, S., McKenna, J. R., Sunkara, V., Coniglione, R., Stanic, S., and Bernard, L.: XWaveNet: enabling uncertainty
quantification in short-term ocean wave height forecasts and extreme event prediction. Appl. Ocean Res., 148, 103994,
https://doi.org/10.1016/j.apor.2024.103994, 2024.

Li, D., Marshall, L., Liang, Z., Sharma, A., and Zhou, Y.: Bayesian LSTM with stochastic variational inference for
estimating model uncertainty in process-based hydrological models. Water Resour. Res., 57(9), €2021WR029772,
https://doi.org/10.1029/2021WR029772, 2021.

Lu, D., Liu, S., and Ricciuto, D.: An efficient bayesian method for advancing the application of deep learning in earth



science, in: Proceedings of the 2019 International Conference on Data Mining Workshops (ICDMW), IEEE, November,
270-278, https://doi.org/ 10.1109/ICDMW.2019.00048, 2019.

Peng, Z., Mo, S., Sun, A. Y., Wu, J., Zeng, X., Lu, M., and Shi, X.: An explainable Bayesian TimesNet for probabilistic
groundwater level prediction, Water Resour. Res., 61, ¢2025WR040191, https://doi.org/10.1029/2025WR040191, 2025.
Revision:

“It has been demonstrated that LSTM could capture historical time-step dependencies and handle variable-length
input sequences using gradient optimization combined with backpropagation in hydrological applications (J. Liu et al.,
2024). Bayesian LSTM (as an improved LSTM) adapts probability distributed weight parameters, which reduce the
model overfitting, thereby providing robust predictions in hydrology (D. Li et al., 2021; Lu et al.,, 2019). The
development of LSTM-based surrogates offers the possibility of accurate predictions in addressing the critical processes
in lake-atmosphere modeling systems.” (Section 2.2.2, Lines 209-214)

“BO-BLSTM-based surrogate exhibits superior performance in estimating LST for HyLake v1.0. This study
adapted BO and EarlyStopping strategies to ensure BLSTM provides accurate and reliable estimates in prediction but
increases the computational demands for training due to its ability to converge from its more complex Bayesian
architecture (Peng et al., 2025; Ferianc et al., 2021). In addition, the mere 1 Bayesian fully connected layer that was
adapted in this surrogate only captures limited data uncertainty, which may lose several important aspects of probabilistic
prediction (Klotz et al., 2022). Given the importance of uncertainty quantification for BLSTM, it is worth noting that
HyLake v1.0 has the potential to assess the variance of predictions and probabilities of lake extreme events occurrence
by developing its surrogate in future (Kar et al., 2024; Gawlikowski et al., 2023). Major limitations, including high
computational demands and insufficient model performance, should be addressed by developing a novel deep-learning-
based surrogate based on a more efficient architecture and larger datasets.” (Section 4.2, Lines 671-680)

References added:

Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., et al.: A survey of uncertainty in deep neural
networks. Artif. Intell. Rev., 56, 1513-1589, https://doi.org/10.1007/s10462-023-10562-9, 2023.

Kar, S., McKenna, J. R., Sunkara, V., Coniglione, R., Stanic, S., and Bernard, L.: XWaveNet: enabling uncertainty
quantification in short-term ocean wave height forecasts and extreme event prediction. Appl. Ocean Res., 148, 103994,
https://doi.org/10.1016/j.apor.2024.103994, 2024.

Minor Comments

Terminology: Define LE (latent heat) and HE (sensible heat) at first mention.

Response: We have defined LE and HE in the Introduction.

Revision: “Lake-atmosphere interactions represent a tightly coupled system (B. B. Wang et al., 2019), where process-
based models traditionally approximate the interdependence between LST, latent heat (LE) and sensible heat (HE)
fluxes.” (Section 1, Lines 77-79)

References: Standardize citation formats (e.g., “Hersbach et al. (2020)” vs. “Hersbach et al., 2020”).
Response: We have checked the manuscript. We adopted “Hersbach et al. (2020)” when discussing their contributions
and used “Hersbach et al., 2020” to cite their conclusions.

Section Organization: Consider moving deep implementation details (e.g., GUI remarks) into a Supplement or Code &
Data Availability section.

Response: We now provided example bash scripts to run HyLake v1.0 and other models (e.g., Baseline, TaihuScene) in
Taihu and Chaohu experiments. The example script for run these models was given by Figure R1. The information of
data and code availability was given in Lines 728-732.



# -—— Example 1: Run PBBM in MLW experiment ——-———————m—mmmmmmmmee

1

2 python HyLake.py \

3 --data_source MLW \

4 --model "PB"

5 # --- Example 2: Run Baseline in MLW experiment ——————————memmmma———
6 python HyLake.py \

7 --data_source MLW \

8 --model “Baseline"

9 # --- Example 3: Run HylLake v1.0 in MLW experiment ———————————eaaa——
10 python HyLake.py \

11 --data_source MLW \

12 --model "LSTM"

13 # -—— Example 4: Run TaihuScene in MLW experiment —-——-——--——=———————
14 python HyLake.py \

15 --data_source MLW \

16 --model “Taihu_LSTM"

17 # --- Example 5: Run HylLake v1.@ in Taihu-ERAS experiment—-—-———===——
18 python HyLake.py \

19 -~data_source ERA5 \

20 ~--model "LSTM"

21 # --- Example 5: Run TaihuScene in Taihu-ERAS experiment————————————
22 python HyLake.py \

23 -~data_source ERA5S \

24 --model “Taihu_LSTM"

25  # -—- Example 6: Run HylLake v1.0 in 1 grid of Chaohu experiment --—-
26 python HyLake.py \

27 --Lake_Name Chaohu \

28 --Lake_Lat 31.53 \

29 --Lake_Lon 117.31 \

30 --Lake_altitude -4 \

31 --Lake_depth 4 \

32 --SimLength 35040 \

33 --initial_temp 5.0 \

34 —-model “LSTM" \

35 --data_source custom \

36 --csv_path "./data/chaohu/ERA5_forcings/forcing_csv/Chaohu_forcing_lat31.53_lon117.31.csv" \
37 —--exp "Chaohu_Lake_lat31.53_1lon117.31" \
38 --col_indices 1,2,3,4,5,6,7

Figure R1: The example scripts for run HyLake v1.0 for MLW, Taihu-Obs and Taihu-ERAS experiments.
Revision: “Code and data availability. The datasets, codes and scripts of HyLake v1.0 and other models (e.g., Baseline,
TaihuScene) used in this study are available at https://doi.org/10.5281/zenodo.15289113 (He et al., 2025). FLake model
was run via LakeEmsemblIR tool (https://aemon-j.github.io/LakeEnsemblR/). The ERAS reanalysis datasets can be
downloaded from the Climate Data Store (https://cds.climate.copernicus.eu/). Observations of lake surface water
temperature, latent and sensible heat fluxes at Lake Taihu are available at Harvard Dataverse
(https://doi.org/10.7910/DVN/HEWCWM; Zhang et al., 2020).” (Code and data availability, Lines 728-732)

Caption Detail: Enhance figure captions to specify whether plotted values are observed or simulated and note dataset
origins (real vs. semi-synthetic).
Response: We have improved the captions to clearly describe the datasets in Figures 5 to 11.



Reviewer #4:

He and Yang present a new model, the Hybrid Lake Model v1.0. With this model He et al. want to approximate LST
changes which are a crucial indicator of climate change in the Earth system. Their model combines process-based with
deep learning methods. Their results show that HyLake outperforms other models. The study is interesting and may be
published, but the manuscript needs major revisions before it can be considered for publication. It is essential that the
content of the study and presented results become more clear and the study understandable for a broader readership.
Without that it is quite tough to assess the quality of the here presented results.

Response: We thank Reviewer #4 for the careful review and constructive comments. We have reorganized this
manuscript and provided a point-by-point response. All comments are accepted and Relisted in black, followed by our
Replies in blue and Revisions in red (highlighted revisions in bold). The following table summarizes the major

changes addressing the reviewer’s comments.

No. | Major Revisions Important messages

(1) This study inter-compared 5 lake thermodynamics models,
including PBBM, FLake, Baseline, TaihuScene and HyLake v1.0,
via 4 suites of numerical experiments against observations (MLW,
Taihu-obs, Taihu-ERAS and Chaohu) to assess the models’
performance (Materials and Methodology).

Clarified the usage of words, including | (2) We considered about the usage of words in the full text.
1 model vs. experiments, evaluation vs. | Specifically, this study used “validation” to assess the model
validation, and etc. accuracy (e.g., RMSE, MAE, R), while “evaluation” was used to
assess models’ abilities (e.g., transferability). The “model”
included FLake, PBBM, Baseline, TaihuScene, and HyLake v1.0,
“experiments” means the models using in different regions or
forcing datasets, including MLW, Taihu-obs, Taihu-ERAS5 and
Chaohu experiment.

There are 2 datasets used in this study, including
hydrometeorological variables from 5 lake sites in Lake Taihu
eddy flux network, and meteorological variables from ERAS5
. o datasets. Specifically, meteorological variables in these two
2 Explained the datasets used in this study o .
datasets were used to force models in different experiments,
hydrometeorological variables, such as lake surface temperature,
latent and sensible heat fluxes, were used to validate the models

for each experiment (Materials and Methodology).

Improved language and presentation | We have one-by-one improved and rephrased the sentences in the

throughout the manuscript manuscript according to comments.

General comments:

There are many weird sentences in the text which do not make sense or are misleading. I will provide several examples
in the specific comments.

Response: Sorry for the confusion. We have carefully revised the statements based on the comments, provided more
details to explain methods and results, and improved the language and presentation throughout the manuscript.

The abstract should be significantly improved and clearly state what has been done in this study and what are the major
results.

Response: Thanks for the careful review. We have revised the Abstract to clearly describe what has been done and the
key findings of this study.

Revision: “Abstract: Lake-atmosphere interactions, which significantly modulate the impacts of climate change




on land-air water and heat exchange, play a critical role in Earth system dynamics. However, modeling key
indicators of these interactions, lake surface temperature (LST) and latent heat (LE) and sensible heat (HE) fluxes,
remains challenging. This stems from oversimplified physics in traditional process-based models and the limited
interpretability of purely data-driven “black-box” structure. Hybrid models unifying physical principles with sparse
observations offer a promising solution for simultaneously predicting lake-atmosphere interactions.

This study presents the Hybrid Lake Model v1.0 (HyLake v1.0), which integrates a Bayesian Optimized Bidirectional
Long Short-Term Memory-based (BO-BLSTM-based) surrogate trained on data from Meiliangwan (MLW) site in Lake
Taihu to approximate LST dynamics. LE and HE are subsequently derived using surface energy balance equations.
We intercompare HyLake v1.0 against the Freshwater Lake (FLake) model and hybrid lake models using different
surrogates (Baseline and TaihuScene) across multiple Lake Taihu sites. Forcing datasets include eddy flux
covariance observations and ECMWF Reanalysis v5 (ERAS) datasets.

Results demonstrate HyLake v1.0’s capability to predict lake-atmosphere interactions with satisfactory
performance. At MLW, HyLake v1.0 outperformed all models, achieving R and RMSE 0f 0.99 and 1.08 °C for LST,
R and RMSE of 0.94 and 24.65 W/m? for LE and R and RMSE of 0.93 and 7.15 W/m? for HE, respectively. To assess
model generalization and transferability in ungauged lake sites, HyLake v1.0 exhibited superior performance across all
lake sites compared to FLake, with MAEs of 0.85 °C (LST), 21.56 W/m? (LE) and 6.63 W/m? (HE). When forced
by ERAS datasets, HyLake v1.0 outperformed benchmarks for 14 of 15 variables (including LST, LE, and HE across
5 lake sites), yielding MAEs of 0.90 °C (LST), 35.02 W/m? (LE) and 7.97 W/m? (HE). It indicates strong capacity
for application with unlearned forcing data. HyLake v1.0 exhibits excellent skill in estimating interactions for
untrained lake sites, supporting its potential for extending applications to other ungauged lakes. This
advancement promotes hybrid modeling techniques in Earth system science, enhancing understanding of land-
atmosphere interaction dynamics.” (Abstract, Lines 9-30)

The entire manuscript needs are clear writing and thus needs to be rewritten. There are many repetitions on one hand,
but on the other hand a mixed terminology is used as e.g. evaluation and validation; model, model results and model
experiments; surrogates so that it does not become clear to the reader what has been used and what exactly has been
done and which models/data sets are compared.

Response: We have double-checked and improved the terminology of the manuscript, making sure that the terms are
consistent and precise. The usage of terminology was listed as follows:

(1) Evaluation vs. Validation: After careful consideration of the usage of “Evaluation” and “Validation”, we believe
that “evaluation” is used to assess the model’s ability, such as its generalization and transferability; while “validation” is
used to validate the model’s accuracy, which is represented by R, RMSE, and MAE. In the current manuscript, we have
revised the usage of these two terms to help readers understand.

(2) Model vs. Experiment: We are sorry for the incorrect usage of “model” and “experiment”. Now, we reorganized
this manuscript and corrected the usage of these two terms. This study inter-compared 5 lake thermodynamics models,
including PBBM, FLake, Baseline, TaihuScene and HyLake v1.0, via 4 suites of numerical experiments against
observations (MLW, Taihu-obs, Taihu-ERAS and Chaohu) to assess the models’ performance. Specific information is
relisted in Table 2 and 3.

(3) Surrogate for models: Surrogates are deep-learning-based models used to replace the Euler Scheme in traditional
process-based models. They are individual modules for different hybrid lake models. For example, Baseline was coupled
to an LSTM-based surrogate that was trained on the outputs of PBBM; HyLake v1.0 was coupled to a BO-BLSTM-
based surrogate that was trained on the MLW observations.

Revision: “Table 2. Specification of each model for intercomparison.

Model Forcing datasets Surrogate Training datasets  Description

PBBM \ \ \ Backbone for HyLake v1.0

FLake ERAS; observations \ \ A process-based freshwater lake




model for intercomparison

. A baseline experiment using PBBM
Baseline MLW LSTM PBBM outputs ) ]
outputs for model intercomparison

. ) . A numerical experiment using large
TaihuScene ERAS; observations BO-BLSTM All observations ) )
train dataset to train surrogate

Proposed hybrid lake model in this

HyLake v1.0 ERAS; observations BO-BLSTM MLW observations rud
study

” (Table 2)

“Table 3: Intercomparison of model performance across different experiments conducted in diverse regions
with different forcing datasets. Observations from all lake sites (MLW, DPK, BFG, XLS, and PTS) on Lake Taihu,
were used to drive models in the Taihu-obs experiment. Bold values in the table present the best-performing model
with each group of experiments. Computational efficiency is reported as the runtime for a single simulation.

R RMSE MAE Efficiency
Exp Model Forcing
LST LE HE LST LE HE LST LE HE (s)
PBBM MLW 098 0.85 0.89 1.78 3834 937 138 2354 6.22 189.49
MLW FLake MLW 098 0.82 0.84 176 4273 724 135 2476 5.01 16.40

Baseline MLW 096 0.74 0.75 271 51.77 14.63 211 3352 930 151.46
HyLakevl1.00 MLW 099 094 093 1.08 24.65 7.15 0.85 15.18 4.73 270.21
FLake Allsites 097 0.61 0.74 224 1546 69.11 1.69 4195 10.44 89.00

Taihu- o huScene  All'sites 0.9 0.82 089 152 1493 4349 123 29.53 1063  6928.44
O yLakevi0 Allsites 0.99 081 090 136 1119 3920 103 2479 7.88 269323
_ FLake ERA5 098 063 069 182 1231 6724 146 5094 968  19.60
Talhu- o huScene  ERAS 099 068 073 160 1300 6483 129 4778 1011  652.25
ERAS  yLakev.0  ERAS 099 071 078 112 1105 4948 090 3502 7.97  236.78
choop | FLAke ERAS 097 \ \ 228 \ V176 \ 70.40
HyLakevl.0 ERA5S 097 \ \ 207 \ V157 \ 972.83

» (Table 3)

Specific comments:

P1, L13: What exactly do you mean with “has yet to fully benefit from the integration of process-based and deep learning
based models.”? Do you mean these processes need to be still integrated in these models? Please rephrase the sentence
to be more clear.

Response: This sentence describes the advantages of developing hybrid models by integrating process-based and deep-
learning-based models. We have rephrased this sentence to be clearer.

Revision: “Hybrid models that unifying physical principles with sparse observations offer a promising solution for
simultaneously predicting lake-atmosphere interactions.” (Abstract, Lines 13-14)

P1, L16: What is “FLake”? Is this a ML model or a process-based model?

Response: FLake is a traditional process-based lake model (Mironov et al., 2010). It has been widely coupled to land
surface models and applied in many lakes. The associated information has been added to the Abstract.

References:

Mironov, D., Heise, E., Kourzeneva, E., Ritter, B., Schneider, N., and Terzhevik, A.: Implementation of the lake-
parameterization scheme FLake into the numerical-weather-prediction model COSMO, Boreal Environ. Res., 15, 218—
230, 2010.

Revision: “We intercompare HylLake v1.0 against the Freshwater Lake (FLake) model and hybrid lake models
using different surrogates (Baseline and TaihuScene) across multiple Lake Taihu sites. Forcing datasets include
eddy flux covariance observations and ECMWF Reanalysis v5 (ERAS) datasets.” (Abstract, Lines 17-20)



P1, L17-19: Compared to what does HyLake outperform other models? What has been used as reference?

Response: HyLake v1.0 outperformed other models in lake surface temperature, latent heat and sensible heat fluxes
compared to the observations. This sentence has been rephrased.

Revision: “Results demonstrate HyLake v1.0’s capability to predict lake-atmosphere interactions with
satisfactory performance. At MLW, HyLake v1.0 outperformed the best among all models, achieving R and RMSE
0f0.99 and 1.08 °C for LST, R and RMSE of 0.94 and 24.65 W/m’ for LE and R and RMSE of 0.93 and 7.15 W/m? for
HE, respectively.” (Abstract, Lines 21-23)

P1, L21: What do you mean with “Under ERAS5 reanalysis datasets”? This does not make any sense and needs to be
rephrased.

Response: In the Taihu-ERAS experiment, we used meteorological variables obtained from ERAS datasets to force
FLake, TaihuScene, and HyLake v1.0. The results indicated that HyLake v1.0 performed the best, demonstrating that
HyLake v1.0 has a strong capability to apply to the unlearned forcing datasets. We have rephrased this sentence in
Abstract (Lines 25-28). The detailed information can be found in Materials and Methodology (Section 2.1, Lines 114-
139), which will be given in the following response.

Revision: “When forced by ERAS datasets, HyLake v1.0 outperformed benchmarks for 14 of 15 variables
(including LST, LE, and HE across 5 lake sites), yielding MAEs of 0.90 °C (LST), 35.02 W/m? (LE) and 7.97 W/m?
(HE). It indicates strong capacity for application with unlearned forcing datasets.” (Abstract, Lines 25-28)

P1, L21-23: What is meant with “generalization and transferability”? Concerning what is HyLake indicating a strong
generalization and transferability?

Response: Generalization and transferability are the most important features and functions of deep learning. Specifically,
the generalization ability of deep-learning-based models presents test-time performance. Successful deep artificial neural
networks can exhibit a remarkably small gap between training and test performance (Zhang et al., 2021). Transferability
of deep-learning-based models means the ability of models to be applied to cross-domain tasks (Long et al., 2016). Here,
we assess the generalization and transferability of HyLake v1.0 using four groups of experiments. In the Abstract, we
rephrased these sentences to help readers understand what we have done in this study. The specific information about
model evaluation of generalization and transferability will be explained in the following comments.

References:

Long, M., Cao, Y., Wang, J., and Jordan, M.: Learning transferable features with deep adaptation networks.
In International conference on machine learning. June, PMLR, 97-105, 2015.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.: Understanding deep learning (still) requires rethinking
generalization. Commun. ACM, 64(3), 107-115, 2021.

Revision: “When forced by ERAS datasets, HyLake v1.0 outperformed benchmarks for 14 of 15 variables
(including LST, LE, and HE across 5 lake sites), yielding MAEs of 0.90 °C (LST), 35.02 W/m? (LE) and 7.97 W/m?
(HE). It indicates strong capacity for application with unlearned forcing datasets.” (Abstract, Lines 25-28)

P1, L26-27: The last sentence is in my opinion a repetition of what has been said before and is thus obsolete.
Response: This sentence has been rephrased to highlight the contribution and potential of HyLake v1.0 proposed in this
study.

Revision: “This advancement promotes hybrid modeling techniques in Earth system science, enhancing understanding
of land-atmosphere interaction dynamics” (Abstract, Lines 29-30)

P3, L76-77: The abbreviations HE and LE should be introduced here once again.
Response: Corrected.

Revision: “Lake-atmosphere interactions represent a tightly coupled system (B. B. Wang et al., 2019), where process-



based models traditionally approximate the interdependence between LST, latent heat (LE) and sensible heat (HE)
fluxes.” (Introduction, Lines 77-79)

P3, L82-82: “where differ significantly in its biological characteristics” is not clear and the sentence should be rephrased.
Response: It has been rephrased.

Revision: “Traditional lake models seem challenging to be generalized in ungauged lake or even regions in a large lake.
Lake Taihu, the third largest freshwater lake in China, which indicates a significant regional difference in its biological
characteristics (Table 1), has experienced severe deterioration in water quality, thereby significantly threatening
drinking water security (Zhang et al., 2020; Yan et al., 2024).” (Introduction, Lines 83-86)

P3, L88-89: What is the difference here between “validate” and “evaluate”. To which data sets has HyLake been
evaluated or validated?

Response: “Validate” was used to assess the model accuracy (e.g., R, RMSE, MAE) in this study, while “evaluate” was
used to assess the models’ abilities (e.g., transferability). The models’ generalization and transferability are both assessed
by statistical metrics that are calculated from observations and predictions. ERAS datasets were used as forcing datasets
to fill the data gaps of observations and individually force the models. Here we improved these sentences to describe the
research objectives in this study clearly.

Revision: “To improve novel hybrid modeling techniques and enhance the understanding of lake-atmosphere
interactions, the objectives of this study are to (1) develop a novel hybrid lake model HyLake v1.0 by embedding
LSTM-based surrogate into process-based model; (2) validate the performance of HyLake v1.0 in LST, LE, and HE
based on observations from Taihu Lake Eddy Flux Network; and (3) evaluate the transferability of HyLake v1.0 in
ungauged lake sites with different biological characteristics using ECMWF Reanalysis v5 (ERAS) forcing datasets.”
(Introduction, Lines 89-95)

P3, L90: What do you mean with “under ERAS reanalysis datasets”? This does not make any sense. Please rephrase the
sentence.

Response: ERAS datasets provided meteorological variables, including air temperature, dew point temperature, wind
speed, net radiation fluxes, surface pressure, and precipitation, which were used to force the lake models in the Taihu-
ERAS5 and Chaohu experiments and to fill data gaps at some lake sites in the Lake Taihu eddy flux network. This sentence
has been rephrased to describe the functions of ERAS datasets clearly.

Revision: “To improve novel hybrid modeling techniques and enhance the understanding of lake-atmosphere
interactions, the objectives of this study are to (1) develop a novel hybrid lake model HyLake v1.0 by embedding
LSTM-based surrogate into process-based model; (2) validate the performance of HyLake v1.0 in LST, LE, and HE
based on observations from Taihu Lake Eddy Flux Network; and (3) evaluate the transferability of HyLake v1.0 in
ungauged lake sites with different biological characteristics using ECMWF Reanalysis v5 (ERAS) forcing datasets.”
(Introduction, Lines 89-95)

P3,1.90-91: Why? Is this a result from your validation/evaluation?

Response: We have reorganized this sentence to show the promising of the development of HyLake v1.0.

Revision: “The results will provide reliable evidence for improving lake-atmosphere interactions modeling by
unifying physical principles and deep learning in ungauged regions.” (Introduction, Lines 95-96)

P3, L95: rapid increase of what? The water temperature? Please be more clear. Additional questions I have are if this
increase is based on observations and if these are climate change induced increases or increases due to other reasons.

Response: Sorry for the missing information. Zhang et al. (2018) indicated that lake water temperature would increase
at a rate of ~0.37 °C per decade based on the observations, which has been corrected in Materials and Methodology
(Section 2.1, Lines 98-100). There are no conclusions about the attribution of lake warming; however, its trends are
consistent with the increase in air temperature, with a rate of 0.36 °C per decade. Therefore, we preferred that climate



change is the primary factor influencing lake thermodynamics. We hope to further elucidate the potential causes of lake
warming in the future by utilizing more advanced tools.

References:

Zhang, Y. L., Qin, B. Q., Zhu, G. W., Shi, K., and Zhou, Y. Q.: Profound changes in the physical environment of Lake
Taihu from 25 years of long-term observations: implications for algal-bloom outbreaks and aquatic-macrophyte loss,
Water Resour. Res., 54, 4319-4331, https://doi.org/10.1029/2017WR022401, 2018.

Revision: “Lake Taihu (30.12-32.22°N, 119.03-121.91°E), located in the Yangtze Delta, is the third-largest freshwater
lake in China, covering an area of 2,400 km? with an average depth of 1.9 m, with a rapid increasing rate of
~0.37 °C/decade in LST (Yan et al., 2024; Zhang et al., 2020; Zhang et al., 2018).” (Section 2.1, Lines 98-100)

P3,1.96-97: Sentence grammatically not correct, please improve.

Response: Corrected.

Revision: “As a typical urban lake, Lake Taihu is situated in one of the most densely populated regions of China. It has
experienced significant eutrophication, characterized by recurrent algae blooms that threaten local drinking water
security (Yan et al., 2024).” (Section 2.1, Lines 100-102)

P4, L.110: The introduction of the abbreviations LE and HE should be done already in L76 (see my comment above).
Response: Corrected.

Revision: “Within the network, each site is equipped with an eddy covariance system that continuously monitors LE
and HE using sonic anemometers and thermometers (Model CSAT3A; Campbell Scientific, Logan, UT, USA)
positioned 3.5 to 9.4 m above the lake surface.” (Section 2.1, Lines 116-118)

P4, L117: “using ERAS reanalysis data sets”. Which parameters are used from ERAS5? HE and LE? How accurate is the
data?

Response: We used meteorological variables from ERAS datasets, including air temperature, wind speed, net radiation
fluxes, surface pressure, dew point temperature, and precipitation. These data were used to (1) force lake models in
Taihu-ERAS and Chaohu experiments, and (2) fill data gaps in the observations in the Lake Taihu eddy flux network.
The LE and HE are obtained from the Lake Taihu eddy flux network, which is observed to validate the model accuracy
in lake sites. The meteorological variables from ERAS are in great agreement with the observations, as shown in Figure
S1. The associated revisions can be found in Materials and Methodology (Section 2.1, Lines 114-137).

Revision: “The datasets included two parts: (1) hydrometeorological variables observed from the Taihu Lake
Eddy Flux Network to force and validate the models, and (2) meteorological variables from ERAS datasets to fill
the gaps of observations and force the models. Within the network, each site is equipped with an eddy covariance
system that continuously monitors LE and HE using sonic anemometers and thermometers (Model CSAT3A; Campbell
Scientific, Logan, UT, USA) positioned 3.5 to 9.4 m above the lake surface. Hydrometeorological variables, including
air humidity and temperature (Model HMP45D/HMP155A; Vaisala, Helsinki, Finland), wind speed (Model 03002; R.M.
Young Co., Traverse City, MI, USA), and net radiation components (Model CNR4; Kipp & Zonen, Delft, the
Netherlands), are also measured. These meteorological variables were used to force lake models while LE, HE and
LST from observations were used to validate the results of each numerical experiment, on top of which, the
inferred radiative LST were collected at 30-minute intervals that are publicly accessible via Harvard DataVerse (Lee,
2004; Zhang et al., 2020; https://doi.org/10.7910/DVN/HEWCWM). The dataset spans from 2012 to 2015 and contains
several data gaps across these lake sites. Specifically, 475 time steps (~1.36%) of observed surface pressure were
found missing at the DPK site during 2012 and 2015; 7,959 time steps (~22.71%) of all observed variables were
missing at the XLS site; 12,539 time steps (~35.78%) of all observed variables were missing at the PTS site.
Observations at the MLW and BFG sites were complete during the entire study periods. For the model evaluation
of Taihu-obs experiment, the data gaps of observed variables in these lake sites were directly filled by ERAS
datasets at the corresponding time steps, which were used to predict lake-atmosphere interactions. In this study,



observed meteorological variables from the MLW site, an eutrophic lake site that presents the trophic status of
Lake Taihu (Table 1, Wang et al., 2019), are used to train the Long Short-Term Memory (LSTM)-based surrogates
(Sect. 2.2); while data from the remaining sites serve to evaluate the generalization of HyLake v1.0 and train the LSTM-
based surrogates. To further address the generalization and transferability of HyLake v1.0 across different forcing
datasets, this study utilized 8 meteorological variables that obtained from hourly ERAS5 datasets from 2012 to 2015,
with a spatial resolution of 0.25° at a single level to force HyLake v1.0. These datasets, available from the Climate Data
Store (Hersbach et al., 2020; http://cds.climate.copernicus.eu), include variables such as air temperature, dew point
temperature, surface pressure, wind speed, and surface net longwave and shortwave radiation, which has similar
probability distribution to observations across Lake Taihu (Figure S1).” (Section 2.1, Lines 114-137)
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Figure S1: The probability density distribution of meteorological variables from observation and ERAS reanalysis
datasets in MLW, BFG, DPK, PTS, and XLS site during 2012 to 2015. A normalized RMSE (nRMSE) was assigned
to assess the error between observation and ERAS reanalysis datasets.” (Figure S1 in Supplementary Materials)

P4, 1.124-125: If ERAS is used to fill up data gaps , it should not be used for evaluation.

Response: ERAS5 datasets were not only used for gap filling but also forcing models. This sentence has been rephrased.
Revision: “The ERAS datasets are also individually used to force FLake and TaihuScene for comparison and predict
lake-atmosphere interactions in Lake Taihu, providing insights into the model's generalization, transferability and
performance using different climatic forcing datasets.” (Section 2.1, Lines 137-139)

PS5, L134: What is meant with “variants”? Do you mean variables? What exactly are you doing here? Are you using
different set-ups, thus performing sensitivity simulations?

Response: We have deleted this sentence. The variants of HyLake v1.0 refer to the hybrid lake models coupled to
different surrogates. Specifically, Baseline and TaihuScene are variants of HyLake v1.0. Baseline used an LSTM-based
surrogate that was trained on the outputs of PBBM; TaihuScene used a BO-BLSTM-based surrogate that was trained on
observations from 5 lake sites in the Lake Taihu eddy flux network. Both of these surrogates are different from the BO-
BLSTM-based surrogate in HyLake v1.0, which was trained on MLW observations.



P6, L143-148: Hasn’t the same you have written here been written in slightly different wording already in the previous
paragraph? Please avoid repetitions.

Response: We have reorganized this paragraph to avoid the repetitions. The associated revisions can be found in
Materials and Methodology (Section 2.2.1, Lines 155-160).

Revision: “A process-based backbone lake model (PBBM) is separately constructed to serve as the backbone of
HyLake v1.0, which referred to the process-based lake models based on the governing equations and parameterization
schemes of previously validated lake physical processes (Sarovic et al., 2022). The conceptual model of PBBM is
depicted in Figure 2 and Table 2. Specifically, the lake-atmosphere modeling system in PBBM primarily involves energy
balance equations for solving LE and HE at the lake-atmosphere interface and the 1-D vertical lake water temperature
transport equations within the water column for solving LST (Piccolroaz et al., 2024).” (Section 2.2.1, Lines 155-160)

P8, L.197-198: This sentence does not make sense. “LST” is a parameter while the “Euler scheme” is a method.
Response: This constructed several LSTM-based surrogates to solve ALST (changes in LST) for each time step, instead
of using the Euler scheme in traditional process-based models. The LST for each time step (t) can be calculated from the
LST at the previous time step (t-1) plus ALST derived from surrogates. We have been reorganized this sentence in
Materials and Methodology (Section 2.2.2, Lines 214-218).

Revision: “HyLake v1.0 and other hybrid lake models, including Baseline and TaihuScene, employed LSTM-based
surrogates rather than the implicit Euler scheme in process-based models to solve LST for each time step (Figure 3a).
Specifically, several sequence-to-one LSTM-based surrogates are adapted to be trained to approximate ALST (the
difference of LST between two time steps) based on dynamic inputs, including time series of historical 24-step
variables of LST, friction velocity (u®, m/s), surface roughness length (zom, m), and G(0).” (Section 2.2.2, Lines 214-218)

P8, L199: What is meant with “increments in LST”? Do you mean components that affect LST?

Response: Corrected. It means ALST, which is the difference between LST in current (t) and previous time step (t-1).
Revision: “Specifically, several sequence-to-one LSTM-based surrogates are adapted to be trained to approximate ALST
(the difference of LST between two time steps) based on dynamic inputs, including time series of historical 24-step
variables of LST, friction velocity (u®, m/s), surface roughness length (zom, m), and G(0).” (Section 2.2.2, Lines 215-218)

P8, L200: What is G(0)?
Response: It is the net heat flux, which was defined in Section 2.2.1 and Eq. (1) (Lines 161-170):

The changes in LST are primarily driven by the net heat fluxes entering the lake surface. Therefore, the net heat
flux is imposed as a Neumann boundary condition at the upper boundary of the water column. Following Piccolroaz et
al. (2024), the net heat flux G(0) (W/m?) into the lake surface can be expressed by the energy balance equation:
G0)=1-r)H;+ (1 —1)H, +H. + H, + H, (1)
where H, (W/m?) and H, (W/m?) represent net downward shortwave and longwave radiation (also referred to the net
solar and thermal radiation in ERAS), respectively; 7, and r, account for the shortwave and longwave albedos of water;
the HE and LE are denoted by H, (W/m?) and H, (W/m?); H, represent the heat flux (W/m?) brought from precipitation,
often calculated via an empirical equation to quantify (Sarovic et al., 2022). All heat fluxes are considered positive in
downward direction. The net shortwave and longwave radiation are derived from observation in Lake Taihu eddy flux
network and ERAS reanalysis datasets.

P8, L204-205: The sentence is not clear and needs to be rephrased. What do you mean with different models? To my
understanding you are not using different models, these are rather different model runs.

Response: NN(:) donates different LSTM-based surrogates within HyLake v1.0, Baseline and TaihuScene. This study
constructed the above-mentioned 3 hybrid lake models, which have different LSTM-based surrogates. Specifically,
Baseline is coupled to an LSTM-based surrogate trained on the outputs of PBBM. TaihuScene is another hybrid lake



model that is coupled to a BO-BLSTM-based surrogate trained on observations from all sites (MLW, BFG, DPK, PTS,
and XLS) in Lake Taihu, which differs from HyLake v1.0. This sentence has been corrected.

Revision: “where NN(*) donates different LSTM-based surrogates within HyLake v1.0, Baseline and TaihuScene,
which will activate to approximate the increment of lake surface temperature for each time step. ” (Section 2.2.2, Lines
222-223)

P10, L225: For non LSTM users it should be explained what the “forget gate” is.

Response: The LSTM unit comprises three gates: the forget gate, the input gate, and the output gate, which control
whether information should be retained or updated (Figure R1). Specifically, the forget gate decides what information
we’re going to throw away from the cell state; the input gate, as the second gate, decides what new information we’re
going to store in the cell state; the output gate decides what we’re going to output. These 3 gates control the data in and
out. Considering we did not improve the LSTM architecture, we don’t think that we should explain more about the
fundamental concept of LSTM.
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Figure R1: The architecture LSTM unit and 3 gates inside the unit.

P11, L250: What is an “Adam optimizer”?

Response: It is one of the common Adaptive optimization algorithms that are used to help LSTM-based surrogates
minimize the loss. These algorithms aim to automatically adapt the learning rate to different parameters based on the
statistics of the gradient. In this study, it was found that using the Adam Optimizer in LSTM-based surrogates of the
Baseline is the best through manual adjustment of the optimizers.

References:

Zhang, Z.: Improved adam optimizer for deep neural networks. In: 2018 IEEE/ACM 26th international symposium on
quality of service (IWQoS), IEEE, June, 1-2, 2018.

Adam, K. D. B. J.: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 1412(6), 2014.

P11, L259-261: 10% and 10% correct? I think it would be easier for the reader if the information listed here would be
put into a table.

Response: It is correct. This study divided the studied period (2013-2015) into three parts, including the training period
(2013-01-01 00:00:00 to 2015-05-26 04:00:00), the validation period (2015-05-26 04:00:00 to 2015-09-12 14:00:00),
and the test period (2015-09-12 14:00:00 to 2015-12-30 23:00:00), according to 80%, 10% and 10%. The associated



information was updated in Materials and Methodology (Section 2.2.3, Lines 280-283).

Revision: “Training, validation, and test datasets for each lake site were divided by 80%, 10% and 10% of the length
of time series (2013-2015), respectively. They are divided into 2013-01-01 00:00:00 to 2015-05-26 04:00:00, 2015-
05-26 04:00:00 to 2015-09-12 14:00:00, and 2015-09-12 14:00:00 to 2015-12-30 23:00:00.” (Section 2.2.3, Lines 280-
283)

P11, L266-267: Rephrase/Improve sentence “The briefly introduction......
Response: We have deleted the unclear description and reorganized this paragraph (Section 2.3.1, Lines 286-291).
Revision: “To address the generalization and transferability of HyLake v1.0 in studied (MLW) and ungauged lake sites
(DPK, BFG, XLS, and PTS) (Table 1), this study further conducted three numerical experiments, including MLW
experiment, Taihu-obs experiment, Taihu-ERAS5 experiment, and Chaohu experiment, using distinct models and
forcing datasets (Table 2 and 3), including FLake, Baseline, and TaihuScene to intercompare. Baseline and
TaihuScene serve as extended models of HyLake v1.0 that are composed of the same physical principles and
distinct LSTM-based surrogates using different training strategies were used to intercompare with HyLake v1.0.
The descriptions of these models are described as follows:” (Section 2.3.1, Lines 286-291)

P11, L275: Rather “used” than “proposed”. Compared to what is the improvement of HyLake compared?

Response: Baseline used a surrogate than trained on the outputs of PBBM, which is different from HyLake v1.0. This
sentence has been corrected.

Revision: “e Baseline is a hybrid lake model that is coupled to an LSTM-based surrogate trained on outputs of PBBM,
which is used to intercompare the performance with HyLake v1.0.” (Section 2.3.1, Lines 298-299)

P12, L278: For me it is not clear what the difference to HyLake v1.0 is. Please clarify and improve the text.

Response: TaihuScene used a BO-BLSTM-based surrogate that was trained on observations from 5 sites in the Lake
Taihu eddy flux network, which is different from HyLake v1.0. The proposal of TaihuScene aims to intercompare the
performance in Taihu-obs and Taihu-ERAS5 experiments because the magnitude of the training datasets is larger. We
think it is worth revealing that the difference between the same hybrid models used with surrogates trained on different
observations. This sentence clearly describes the difference.

Revision: “e TaihuScene is another hybrid lake model that is coupled to a BO-BLSTM-based surrogate trained on
observations from all sites (MLW, BFG, DPK, PTS, and XLS) in Lake Taihu, which is different from the HyLake v1.0.
The purpose of TaihuScene is to compare the performance by using a larger training dataset to train a surrogate
model with that of using a small dataset from HyLake v1.0.” (Section 2.3.1, Lines 300-303)

P12, L282: What exactly has been intercompared? For me it is still not clear for what ERAS has been used.

Response: LST, LE and HE that were calculated from FLake, Baseline, HyLake v1.0 and TaihuScene in all experiments
were intercompared. ERAS was used to force these models to evaluate the generalization and transferability in Lake
Taihu and Chaohu. The associated revisions were given in Materials and Methodology (Section 2.3.1, Lines 304-307).
Revision: “The PBBM performed like FLake in MLW site, indicating a high reliability and accuracy (Figure S2). Except
for PBBM, the LST, LE and HE calculated from models in all experiments were initially intercompared in each lake
site from Lake Taihu. FLake and TaihuScene was additionally intercompared using the forcing datasets from ERAS
datasets in Taihu-ERAS experiment.” (Section 2.3.1, Lines 304-307)

P12, 1.283: “almost validated” does not make any sense. Either you have validated your experiments or not. Additionally
to this unclear phrasing, this sentence is a repetition of what has been said at the begin of the paragraph.

Response: This sentence has been deleted.

P12, L284: The specification of what can be found in Table 2?



Response: Corrected.
Revision: “The specification of the datasets used, surrogate, and the descriptions for each model can be found in
Table 2.” (Section 2.3.1, Line 307)

“Table 2. Specification of each model for intercomparison.

Model Forcing datasets Surrogate Training datasets  Description

PBBM \ \ \ Backbone for HyLake v1.0

. A process-based freshwater lake
FLake ERAS; observations \ \ ) )
model for intercomparison

. A baseline experiment using PBBM
Baseline MLW LSTM PBBM outputs ) ]
outputs for model intercomparison

. ) . A numerical experiment using large
TaihuScene ERAS; observations BO-BLSTM All observations ) )
train dataset to train surrogate

Proposed hybrid lake model in this

HyLake v1.0 ERAS; observations BO-BLSTM MLW observations oud
study

» (Table 2)

P12,Table 2: It is still not clear if these are different “models” or “model experiments” since throughout the manuscript
different wording is used and what exactly has been done has not properly been explained.

Response: It has been corrected. Models included PBBL, FLake, Baseline, TaihuScene, and HyLake v1.0. Experiments
covered different models using different forcing datasets. For example, in the MLW experiment, models used forcing
meteorological variables from MLW observations; in the Taihu-obs experiment, models used forcing meteorological
variables from observations for each lake site; in the Taihu-ERAS and Chaohu experiments, models used ERAS forcing
datasets. This information was summarized in Table 2 and 3.

Revision: “Table 2. Specification of each model for intercomparison.

Model Forcing datasets Surrogate Training datasets  Description
PBBM \ \ \ Backbone for HyLake v1.0
. A process-based freshwater lake
FLake ERAS; observations \ \ . .
model for intercomparison
. A baseline experiment using PBBM
Baseline MLW LSTM PBBM outputs

outputs for model intercomparison

. . . A numerical experiment using large
TaihuScene ERAS5; observations BO-BLSTM All observations . .
train dataset to train surrogate

Proposed hybrid lake model in this

HyLake v1.0 ERAS; observations BO-BLSTM MLW observations oud
study

” (Table 2)

“Table 3: Intercomparison of model performance across different experiments conducted in diverse regions
with different forcing datasets. Observations from all lake sites (MLW, DPK, BFG, XLS, and PTS) on Lake Taihu,
were used to drive models in the Taihu-obs experiment. Bold values in the table present the best-performing model
with each group of experiments. Computational efficiency is reported as the runtime for a single simulation.

. R RMSE MAE Efficiency
Exp Model Forcing
LST LE HE LST LE HE LST LE HE (s)
PBBM MLW 098 0.85 0.89 1.78 3834 937 138 2354 6.22 189.49
MLW FLake MLW 098 082 0.84 176 4273 724 135 2476 5.01 16.40

Baseline MLW 096 0.74 0.75 271 51.77 14.63 211 3352 930 151.46
HyLakevl1.00 MLW 099 094 093 1.08 24.65 7.15 0.85 15.18 4.73 270.21




FLake Allsites 097 0.61 0.74 224 1546 69.11 1.69 4195 10.44 89.00

Taihu- o huScene  All'sites 0.99 0.82 089 152 1493 4349 123 29.53 1063 692844
O yLakevi0 Allsites 0.99 081 090 136 1119 3920 103 2479 7.88 269323
_ FLake ERAS 098 063 069 182 1231 6724 146 5094 9.68  19.60
Talhu- o huScene  ERAS 099 068 073 160 1300 6483 129 4778 1011  652.25
ERAS  yLakev.0  ERAS 099 071 078 112 1105 4948 090 3502 7.97  236.78
FLake ERA5 097 \ \ 228 \ V176 \ 70.40

Chaohu
HyLakevl.0 ERA5S 097 \ \ 207 \ V157 \ 972.83

» (Table 3)

P12, L286-287: “validation” or “evaluation”? Only one of the terms should be used. Since you assess the quality of
models (or model experiments) “evaluate” would be the correct term.

Response: We agreed that there should use “evaluation”. It has been corrected.

Revision: “2.3.2 Metrics for model evaluation and intercomparison” (Section 2.3.2, Line 316)

P12, L290; It should rather read “assess if the models over or underestimate the observations”

Response: Corrected.

Revision: “Specifically, the R is proposed to measure the linear correlation of the observed and modeled values, RMSE
and MAE assess if the models over or underestimate the observations with the same data units (Piccolroaz et al.,
2024).” (Section 2.3.2, Lines 319-321)

P12, 1.292-294: If you calculate the difference between model and observations it should also read in the equations for
RMSE and ME x_i-y i. Please check and correct.

Response: Corrected.

Revision: “The calculation of R, RMSE, and MAE can be expressed by:

2xi—x%)vi—yi)
R = 17
VEi—%)2 X (yi-7:)? an

RMSE = [=50 (i = 7)* (18)

MAE = =37, ly; - 3 (19)

where x; and X; are the observations and its average; while y; and y; are the results of model and its average; n
represents the length of time series.
” (Section 2.3.2, Lines 321-326)

P13, L305-307: Improve sentence and make clear if these are different models or model experiments.

Response: In Section 3.1 of Results (Lines 335-336), we first compared the validation results of surrogates in Baseline,
TaihuScene and HyLake v1.0 because their surrogates are modules of models, which should be individually validated.
We have rephrased these sentences and reorganized the number of figures to make it clear.

Revision: “This study separately validated Baseline, TaihuScene, HyLake v1.0 and their adapted LSTM-based
surrogates using MLW observations to address the performance of integrated models (Figure 4, 5 and Figure S3).”
(Section 3.1, Lines 335-336)

P13, L313: Here it is still not clear to what the comparisons are done. Are you comparing these to observations or to
other models/model experiments?

Response: BO-BLSTM-based Surrogate in HyLake v1.0 was compared its performance to the surrogates of Baseline
and TaihuScene, which are the other hybrid models, based on MLW observations in MLW experiments. These statements



have been improved (Section 3.1, Lines 336-337, Lines 341-344). Furthermore, the subtitle of Section 3.1 (Line 328)
has been improved.
Revision: “3.1 Validation of HyLake v1.0 in MLW experiment” (Section 3.1, Line 328)

“Firstly, the results from HyLake v1.0 and its BO-BLSTM-based surrogate was individually validated based on
MLW observations.” (Section 3.1, Lines 336-337)

“Specifically, the ALST results for the BO-BLSTM-based surrogate showed RMSE values of 0.1945 °C and MAE
0f 0.1306 °C in the training dataset, RMSE of 0.3359 °C and MAE of 0.1925 °C in the validation dataset, and RMSE
0f'0.2271 °C and MAE of 0.1461 °C in the test dataset, respectively.” (Section 3.1, Lines 341-344)

P13, L324: What is meant with “feasible” and “reasonable and robust way”? This terminology does not make any sense
here and the text should be rewritten.
Response: This sentence has been deleted.

P13, L328-329: Which are the surrogates? I still cannot follow. Here it sounds like that Flake and HyLake have been
integrated to Baseline and HyLake 1.0? However, aren’t Baseline and HyLake 1.0 model experiments?

Response: We have rephrased this sentence. Surrogates are individual modules of lake models. For example, an LSTM-
based surrogate was coupled to Baseline, a BO-BLSTM-based surrogate was coupled to HyLake v1.0, while another
BO-BLSTM-based surrogate was coupled to TaihuScene. These surrogates were only used to predict ALST. The
backbone of hybrid models was used to process the outputs of surrogates from ALST to LST, LE, and HE. Therefore,
Baseline, TaihuScene, and HyLake can predict LST, LE, and HE, while their surrogates can only predict ALST, which
has been validated in the above paragraphs. FLake provided simulations of LST, LE, and HE, which are used to
intercompare with outputs of hybrid models. Baseline and HyLake 1.0 are models in MLW experiment in this section.
Revision: “After validating the accuracy of all LSTM-based surrogates in Baseline, TaihuScene and HyLake v1.0,
this study conducted MLW experiments to predict the LST, LE and HE by using Baseline and HyLake v1.0 that
integrated these surrogates, then compared with the outputs of traditional process-based FLake model using MLW
observations (Figure 5 and Table 3).” (Section 3.1, Lines 357-359)

“Table 3: Intercomparison of model performance across different experiments conducted in diverse regions
with different forcing datasets. Observations from all lake sites (MLW, DPK, BFG, XLS, and PTS) on Lake Taihu,
were used to drive models in the Taihu-obs experiment. Bold values in the table present the best-performing model
with each group of experiments. Computational efficiency is reported as the runtime for a single simulation.

R RMSE MAE Efficiency
Exp Model Forcing
LST LE HE LST LE HE LST LE HE (s)
PBBM MLW 098 0.85 0.89 178 3834 937 138 2354 6.22 189.49
MLW FLake MLW 098 0.82 0.84 176 4273 724 135 2476 5.01 16.40

Baseline MLW 096 0.74 0.75 271 51.77 14.63 211 3352 930 151.46
HyLakevl1.00 MLW 099 094 093 1.08 24.65 7.15 0.85 15.18 4.73 270.21
FLake Allsites 097 0.61 0.74 224 1546 69.11 1.69 4195 10.44 89.00

Taihu- o huScene  All'sites 0.99 0.82 0.89 152 1493 4349 123 29.53 1063  6928.44
0 HyLakevL0 Allsites 099 081 090 136 1119 3920 1.03 2479 7.88 269323
_ FLake ERAS 098 063 069 182 1231 6724 146 5094 9.68  19.60
Talhu- o huScene  ERAS 099 068 073 160 13.00 6483 129 4778 1011  652.25
ERAS - yLakev.0  ERAS 099 071 078 112 1105 4948 090 3502 7.97  236.78
choop | FLAke ERAS 097 \ \ 228 \ 176\ \ 70.40
HyLakevl.0 ERA5S 097 \ \ 207 \ V157 \ 972.83

» (Table 3)

P14, L330-341: It still did not become clear to me to which data set the model has been compared.



Response: Sorry for the missing. In this section, we compared the outputs (LST, LE and HE) of all models (FLake,
Baseline, and HyLake v1.0) to MLW observations from the Lake Taihu eddy flux network.

P14, Figure 4: I would suggest to make two figures instead of one figure.
Response: Corrected. The captions of these figures were reorganized.

Revision:
(a) Training Dataset 78 (b) Validation Dataset (c) Test Dataset
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Figure 4: The validation of BO-BLSTM-based surrogate in HyLake v1.0 for (a) training, (b) validation and (c)
test datasets.” (Figure 4)
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Figure 5: Comparison of predicted (a) LST, (b) LE and (¢) HE by using FLake (red points), Baseline (blue points),
HyLake v1.0 (green points) and observations in MLW experiments.” (Figure 5)

P15, 349: Which experiments? Model experiments? Are Flake, Baselin and HyLakev1.0 model experiments or models?
Response: Corrected. Here, we used models instead of experiments. Models included FLake, Baseline, and HyLake
v1.0 were included in MLW experiments that were forced by meteorological variables derived from the MLW site.
Revision: “This study conducted a comprehensive intercomparison of daily and hourly trends in LST, LE and HE from
MLW experiment in the MLW site during the period from 2013 to 2015, including FLake, Baseline, and HyLake v1.0
(Figures 6-8).” (Section 3.2, Lines 382-383)

P15, L351: Are you referring here to one period or several periods? Which period exactly is considered?

Response: These periods were mentioned in Materials and Methodology (Section 2.2.3, Lines 280-283) that divided by
the training, validation and test datasets. Here we highlighted it again in Results (Section 3.2, Lines 384-386).
Revision: “Training, validation, and test datasets for each lake site were divided by 80%, 10% and 10% of the length



of time series (2013-2015), respectively. They are divided into 2013-01-01 00:00:00 to 2015-05-26 04:00:00, 2015-
05-26 04:00:00 to 2015-09-12 14:00:00, and 2015-09-12 14:00:00 to 2015-12-30 23:00:00.” (Section 2.2.3, Lines 280-
283)

“As shown in Figure 6, the temporal changes in LST for the period of surrogates training (2013-01-01 00:00:00 to
2015-05-26 04:00:00), validation (2015-05-26 04:00:00 to 2015-09-12 14:00:00), and test datasets (2015-09-12
14:00:00 to 2015-12-30 23:00:00) were compared.” (Section 3.2, Lines 384-386)

P15, L356: What is meant with daily scale? On a daily basis or the daily cycle? What exactly is hwon in Figure 4 needs
to be better explained.

Response: Daily scale means resampling to an average of 24 hours of outputs every day. Here, it has been corrected to
“daily-average scale” to help readers understand. Figure 4 has been reorganized to Figure 5; the results in the legends
before have been moved to Table 3.

Revision: “Specifically, FLake provided a good match to observations at a daily-average scale, which, however, showed
poorer performance in capturing diurnal variations of LST (R = 0.98, RMSE = 1.76 °C, Figure 5a).” (Section 3.2, Lines
390-391)
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Figure 5: Comparison of predicted (a) LST, (b) LE and (¢) HE by using FLake (red points), Baseline (blue points),
HyLake v1.0 (green points) and observations in MLW experiments.” (Figure 5)

“Table 3: Intercomparison of model performance across different experiments conducted in diverse regions
with different forcing datasets. Observations from all lake sites (MLW, DPK, BFG, XLS, and PTS) on Lake Taihu,
were used to drive models in the Taihu-obs experiment. Bold values in the table present the best-performing model
with each group of experiments. Computational efficiency is reported as the runtime for a single simulation.

R RMSE MAE Efficiency
Exp Model Forcing
LST LE HE LST LE HE LST LE HE (s)
PBBM MLW 098 0.85 0.89 1.78 3834 937 138 2354 6.22 189.49
MLW FLake MLW 098 082 0.84 176 4273 724 135 2476 5.01 16.40

Baseline MLW 096 0.74 0.75 271 51.77 14.63 211 3352 930 151.46
HyLakevl1.00 MLW 099 094 093 1.08 24.65 7.15 0.85 15.18 4.73 270.21
FLake Allsites 097 0.61 0.74 224 1546 69.11 1.69 4195 10.44 89.00

Taihu- o huScene  All'sites 0.9 0.82 0.89 152 1493 4349 123 29.53 1063  6928.44
0 HyLakevL0 Allsites 099 081 090 136 1119 3920 1.03 2479 7.88 269323
, FLake ERAS 098 063 069 182 1231 6724 146 5094 9.68  19.60
Eﬁ; TaihuScene ~ ERA5 099 068 073 1.60 13.00 6483 129 4778 10.11 65225

HyLakevl.0 ERAS 099 0.71 0.78 1.12 11.05 49.48 0.90 35.02 7.97 236.78
Chaohu FLake ERAS 097 \ 228 \ \ 1.76 \ \ 70.40




HyLakevl.0 ERA5 097 \ Vo207 V157 \ 972.83
» (Table 3)

P15, L374: What is meant with “peak and valley values”? Please rephrase.

Response: Sorry for the confusion. The “peak and valley values” mentioned in the manuscript present higher and lower
values among the near-time steps. This sentence has been corrected.

Revision: “The LE predicted by HyLake v1.0 reproduces both the peak and trough magnitudes more closely to
the MLW observations than FLake and Baseline models (Figure 7b-c), indicating its overall superior capacity for
describing the diurnal variations. Still, some biases persisted in the validation and test periods.” (Section 3.2, Lines 407-
411)

P15, L376-377: Also this sentence needs to be revised.

Response: Rephrased.

Revision: “For example, HyLake v1.0 overestimated to the observations during 2015-08-20 and 2015-08-23 (Figure
7¢).” (Section 3.2, Lines 410-411)

P18, L403: developed? Isnt’ that a model experiment?

Response: Sorry for the mistakes. TaihuScene is a model rather than an experiment.

Revision: “To address these challenges with HyLake v1.0, this study specially developed a TaihuScene (Table 2),
another hybrid lake model which enlarges the size of training datasets by incorporating data from 5 lake sites in Lake
Taihu to train its BO-BLSTM-based surrogates and evaluate the potential difference from HyLake v1.0.” (Section 3.3,
Lines 440-443)

P18, L410ff: It would be much more concise if these ME and RMSE values would be listed in a table.

Response: A table was given to show the results of model intercomparison for all experiments (Table 3). The bolded
numbers in the table represent the best-performing results among all the models in their respective experiments.
Revision: “Table 3: Intercomparison of model performance across different experiments conducted in diverse
regions with different forcing datasets. Observations from all lake sites (MLW, DPK, BFG, XLS, and PTS) on
Lake Taihu, were used to drive models in the Taihu-obs experiment. Bold values in the table present the best-
performing model with each group of experiments. Computational efficiency is reported as the runtime for a
single simulation.

R RMSE MAE Efficiency
Exp Model Forcing
LST LE HE LST LE HE LST LE HE (s)
PBBM MLW 098 0.85 0.89 178 3834 937 138 2354 6.22 189.49
MLW FLake MLW 098 0.82 0.84 176 4273 724 135 2476 5.01 16.40

Baseline MLW 096 0.74 0.75 271 51.77 14.63 211 3352 930 151.46
HyLakevl1.00 MLW 099 094 093 1.08 24.65 7.15 0.85 15.18 4.73 270.21
FLake Allsites 097 0.61 0.74 224 1546 69.11 1.69 4195 10.44 89.00

Taihu-
albu TaihuScene  Allsites 0.99 0.82 089 152 1493 4349 123 2953 10.63 6928.44
oDS
HyLakev1.0 Allsites 0.99 081 090 136 1119 3920 1.03 2479 7.88  2693.23
- FLake ERAS 098 063 069 182 1231 6724 146 5094 968  19.60
al -
ERAuS TaihuScene ~ ERAS 099 068 073 1.60 13.00 6483 129 4778 1011 65225
HyLakevi.0  ERAS 099 071 078 1.12 11.05 4948 090 3502 7.97 23678
FLake ERA5S 097 \ \ 228 \ v 176\ \ 70.40
Chaohu
HyLakevl.0 ERAS 097 \ \ 207 \ V157 \ 972.83

» (Table 3)



P19, 442: The transferability and generalization is too often mentioned without explaining what actually is meant with
that.

Response: Generalization and transferability are both important abilities for deep-learning-based models when applied
to general or specific tasks. Successful deep artificial neural networks can exhibit a remarkably small gap between
training and test performance (Zhang et al., 2021). Transferability of deep-learning-based models means the ability of
models to be applied to cross-domain tasks (Long et al., 2016). Here, we found that HyLake v1.0 performed well in other
lake sites where the data was not included in the training datasets of its surrogate, which demonstrates strong
transferability for HyLake v1.0 in ungauged regions. Other reviewers strongly affirmed our study and emphasized the
importance of generalization and transferability, and suggested that we extend the application to other lakes. According
to their comments, we additionally conducted a Chaohu experiment and implemented ERAS datasets forced HyLake
v1.0 into Lake Chaohu, an eutrophic lake in the middle and lower reaches of the Yangtze River basin, then used MODIS
imagery to validate the predicted LST. Results demonstrated that HyLake v1.0 in Lake Chaohu, which is an unknown
region for the model, outperforms the FLake model with ~10% accuracy improvements. We reorganized this sentence
to highlight the results in this paragraph.

References:

Long, M., Cao, Y., Wang, J., and Jordan, M.: Learning transferable features with deep adaptation networks. In
International conference on machine learning. June, PMLR, 97-105, 2015.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.: Understanding deep learning (still) requires rethinking
generalization. Commun. ACM, 64(3), 107-115, 2021.

Revision: “It is clear that HyLake v1.0 demonstrated outstanding capacity to apply for ungauged regions, surpassing
traditional lake-atmosphere interaction models such as FLake in prediction accuracy for each variable, which
demonstrated a strong transferability for future applications.” (Section 3.3, Lines 480-482)

P19, Figure 8 caption: Which overall datasets? What is meant with each variable? HE, LE and LST. If yes, then please
clearly write this.
Response: We deleted the wrong expression and corrected captions of Figure 8 (now is Figure 9).

Revision:
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Figure 9: Comparisons of (a) LST, (b) LE, and (c) HE between observations, FLake, HyLake v1.0 and TaihuScene
in five sites (MLW, BFG, DPK, PTS, and XLS) of Lake Taihu based on the Taihu-obs experiment. Dashed lines
in boxplot represent median biases between observations and predictions simulated by FLake, HyLake v1.0, and
TaihuScene, respectively. The scatterplots and probability distribution curves illustrate the data distribution of
LST, LE and HE. The Numbers at the top or bottom right of subfigures with same color to boxes indicate the
MAE of outputs for FLake, HyLake v1.0, and TaihuScene, respectively.” (Figure 9)

P19, Figure 8 caption: There seem to be some repetitions. Please check and improve the figure caption.
Response: It has been corrected (see our response and revision to the previous comment).



P19, L455: This is mentioned to often. Please avoid to many repetitions.

Response: The repetitions has deleted. These sentences have been reorganized to clearly describe what we have done in
Section 3.4 of Results (Lines 492-494).

Revision: “3.4 Performance comparison of models in Lake Taihu based on ERAS datasets

This study additionally conducted Taihu-ERAS experiment to demonstrate transferability of HyLake v1.0, which
proves its superior capability to apply for the ungauged locations based on different forcing datasets.” (Section 3.4,
Lines 492-494)

P19, L459: using ERAS for what? As forcing data set? If yes, what has then been used in the other results presented?
Response: ERAS datasets are used as forcing datasets to force models in the Taihu-ERAS experiment. ERAS datasets
have always been merely forced datasets.

Revision: “The meteorological variables from ERAS5 dataset, which are widely used as forcing datasets for process-
based models (Albergel et al., 2018; Hersbach et al., 2020), were selected to force FLake, TaihuScene and HyLake
v1.0 and then compared their performance on LST, LE and HE observations from the Lake Taihu Eddy Flux
Network.” (Section 3.4, Lines 494-497)

P20, L479: Repetition -> sentence obsolete.

Response: It is an important conclusion in Section 3.4, which should not be obsoleted. We have rephrased this sentence.
Revision: “HyLake v1.0 in Taihu-ERAS experiments exhibited superior performance for each lake site, showing
a strong transferability using ERAS datasets (Figure S5).” (Section 3.4, Lines 519-520)

P20, L486: Same as for L479.

Response: Rephrased.

Revision: “HyLake v1.0 still performed considerable well in ungauged sites by learning physical principles from MLW
observations (Figure S4d-0).” (Section 3.4, Lines 525-526)

P21, L502: Same here.

Response: Corrected.

Revision: “Overall, both HyLake v1.0 and TaihuScene showed reliable performance across lake sites in Lake Taihu.
Specifically, HyLake v1.0 performed the best in 14 of 15 variables (included LST, LE and HE for 5 lake sites) in Lake
Taihu among these 3 models; ...” (Section 3.4, Lines 540-541)

P22, 1.528: Which are the different forcing data sets? Only ERAS is mentioned.

Response: The Lake Taihu eddy flux network also provided forcing datasets. In our experiments, the MLW experiment
utilized MLW observations from the network to force FLake, Baseline, and HyLake v1.0, whereas the Taihu-ERAS and
Chaohu experiments used ERAS datasets to force FLake, TaihuScene, and HyLake v1.0. This sentence has been
rephrased to highlight our contributions.

Revision: “These experiments were compared using observed meteorological datasets and ERAS datasets, then
validated for both spatial and temporal patterns at Lake Taihu and Lake Chaohu (Tables 2-3).” (Section 4.1, Lines 564-
566)

P24, 578: Not clear, before it was always stated that HyLake v1.0 outperformed the other models. Now, here the opposite
is stated.

Response: Sorry for the confusion. This sentence is to express that the explainability of HyLake v1.0 is weaker than
process-based models due to their deep-learning-based surrogates. This sentence has been corrected.

Revision: “While the interpretability of HyLake v1.0 is better than that of purely data-driven models due to its hard-
coupling structure, which retains the energy balance equations and utilizes a BO-BLSTM-based surrogate to solve



LST, it still lags behind process-based models.” (Section 4.1, Lines 635-637)

P25, L624: Are these forcing data sets observations or model simulations?

Response: Corrected.

Revision: “Additionally, this study used different forcing datasets, including observations from 5 lake sites in Lake
Taihu and the ERAS datasets, to evaluate the and transferability of HyLake v1.0 in ungauged regions and unlearned
datasets.” (Conclusion, Lines 704-706)

P26, L640: Which 15 variables have been used? These have nowhere been mentioned.

Response: There are 3 variables for 5 lakes sites, a total of 15 variables.

Revision: “Regarding the capability of spatial transferability using ERAS forcing datasets, results indicated HyLake
v1.0 performed the most closely matched the observations in Lake Taihu compared to FLake and TaihuScene in 14 of
15 variables (LST, LE and HE in 5 lake sites).” (Conclusion, Lines 719-721)

Technical corrections:

P1, L13: proposed -> proposes

Response: To highlight what we have done in this study, we have reorganized this sentences.

Revision: “This study presents the Hybrid Lake Model v1.0 (HyLake v1.0), which integrates a Bayesian Optimized

Bidirectional Long Short-Term Memory-based (BO-BLSTM-based) surrogate trained on data from Meiliangwan (MLW)
site in Lake Taihu to approximate LST dynamics. LE and HE are subsequently derived using surface energy balance

equations.” (Abstract, Lines 15-17)

P4, L104: with -> has
Response: Corrected to “has”.

PS5, Figure 1 caption: valid -> validate
Response: Corrected.
Revision:
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Figure 1: The locations of Lake Taihu and the five eddy covariance lake sites (MLW, DPK, BFG, XLS, and PTS)
are shown in cyan and red bubbles, overlaid on a true-color image from Landsat 8. MLW as a training site was
used to train BO-BLSTM-based surrogate, while the other validation sites were adapted as ungauged sites to



validate the HyLake v1.0 performance.” (Figure 1)

PS5, L133: couple a LSTM-based -> coupled to a LSTM-based
Response: Added an “a” in this sentence.

PS5, L133: which is shown -> as schematically shown

Response: Corrected.

Revision: “HyLake v1.0 is constructed in this study based on the backbone of physical principles from process-based
lake models and then couple to a LSTM-based surrogate for LST approximation to further solve the untrained variables
(e.g., LE, HE), as schematically shown in Figure 2.” (Section 2.2, Lines 146-148)

P8, L184 and L208: Equation -> Eq.
Response: Checked and corrected the full text.

P10, L233: same here as for L184 and 1.208.
Response: Corrected.

P11, L262: designment -> design
Response: Title was corrected to “2.3 Numerical experiments design and evaluation metric”.

P12, L279: using larger train datasets against -> using a larger training dataset compared to a

Response: Corrected.

Revision: “e The purpose of TaihuScene is to compare the performance of using a larger training dataset to train a
surrogate model with that of using a small dataset from HyLake v1.0.” (Section 2.2, Lines 301-303)

P12, 1.287: a -> the
Response: Corrected.

P13, L305: Delete “After that” and start sentence with “To evaluate”.

Response: This sentence has been rephrased.

P13, L308: train -> training
Response: Checked and corrected all.

P13, L313: train set -> training data set
Response: Corrected to training dataset.

P13, L313: validation set -> validation data set
Response: Corrected to validation dataset.

P13, L323: relatively -> somewhat (?). Check wording and improve.

Response: This sentence has been corrected.

Revision: “These results were somewhat lower than HyLake v1.0 due to the larger dataset size in training for ALST.”
(Section 3.1, Lines 353-354)

P14, Figure 4 caption: train -> training

Response: The caption of Figure 4 has been corrected.

Revision:



(a) Training Dataset 75 (b) Validation Dataset (c) Test Dataset
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Figure 4: The validation of BO-BLSTM-based surrogate in HyLake v1.0 for (a) training, (b) validation and (c)
test datasets.” (Figure 4)

P18, L420: it is worthy -> it is worthy to note (?)
Response: Corrected.
Revision: “But it is worthy to note that TaihuScene still far outperformed FLake, ...” (Section 3.3, Line 458)

P18, L404: train -> training
Response: Checked and corrected all.

P18, L429: appeared -> apparent
Response: Corrected.

P22, L527: proposed to intercompare -> proposed for intercomparison
Response: Corrected.



