
Response Letter 

For 

Manuscript ID: egusphere-2025-1983 

“Hybrid Lake Model (HyLake) v1.0: unifying deep learning and physical principles 

for simulating lake-atmosphere interactions” 

 

Reviewer #3: 
This manuscript presents HyLake v1.0, a hybrid lake–atmosphere model that embeds a Bayesian-optimized bidirectional 
LSTM surrogate within a process‐based 1-D vertical transport framework to simulate lake surface temperature and 
surface fluxes. The work addresses a key challenge in environmental modeling: integrating data‐driven surrogates with 
physical principles. The extensive validation on Lake Taihu (2012–2015) against FLake demonstrates clear performance 
gains, and the hybrid approach represents a meaningful methodological advance for lake modeling. While the 
methodology is sound and the Lake Taihu validation is comprehensive, the authors should more clearly discuss the 
requirements and limitations for applying this approach to other lake systems. The current multi-site validation within 
Lake Taihu provides good evidence of transferability, but broader applicability claims should be more cautiously framed. 
Response: We sincerely thank Reviewer #3 for the constructive comments. In revision, we particularly discussed the 
requirements and limitations for HyLake v1.0 and presented an example using another morphologically distinct lake to 
show its transferability. All comments are accepted and Relisted in black, followed by our Replies in blue and Revisions 
in red (highlighted revisions in bold). Before point-by-point response, we summarized major revisions followed by 
Reviewer #3’s comments as:  
 

No. Major Revisions Important Messages 

1 
Presented a test case for applying HyLake v1.0 
to another morphologically distinct lake. 

The revised manuscript employed HyLake v1.0 to simulate 
lake-atmosphere interactions in another morphologically 
distinct lake, Lake Chaohu, and discussed the potential 
challenges in model application (Materials and 
methodology; discussion). 

2 
Discussed the limitations of deep-learning-based 
surrogates. 

We discussed the cons and pros of computational 
requirements, BO-BLSTM-based surrogate, and the choice 
of lake surface temperature module (Discussion). 

3 
Provided future directions to improve HyLake 
v1.0. 

We mainly discussed the uncertainty of Bayesian 
algorithms. Future improvements should focus on 
development of surrogates by using novel techniques. The 
employment of a Bayesian fully connected layer in 
surrogates could also provide probabilistic predictions by 
quantifying uncertainties in the future (Discussion).  

 
Specific Comments 
The multi-site validation within Lake Taihu is convincing but add discussion of what adaptations would be needed for 
different lake types (e.g., deeper lakes, different climate zones, varying trophic states). Consider outlining a framework 
for applying the methodology to new lake systems. 



Response: Good point! We agree that applying HyLake v1.0 to other lakes is essential. Therefore, we utilized it to 
another lake in the middle and lower reaches of the Yangtze River Plain—Lake Chaohu and discussed potential 
limitations for model application. 

(1) Applying HyLake v1.0 to another lake: Lake Chaohu is the 5th-largest shallow freshwater lake in China, 
with a deeper lake depth of 3.06 m and smaller lake area of 760 km2 than Lake Taihu (Jiao et al., 2018), which has 
experienced heavy eutrophication and harmful algal blooms (Yang et al., 2020). Given the difficulty that Lake Chaohu 
does not have sufficient observations, unlike Taihu, we outlined a framework that utilized ERA5 datasets to force HyLake 
v1.0 and the MOD11A1 land surface temperature dataset for validating lake surface temperature changes. The results 
indicated that HyLake v1.0 performed well in Lake Chaohu, with an R2 of 0.97, RMSE of 2.07 °C, and MAE of 1.57 °C, 
outperforming FLake compared to the MOD11A1 datasets (Figure S7-9). The successful attempt of HyLake v1.0 in 
Lake Chaohu demonstrated that HyLake v1.0 is promising to apply in ungauged lakes. The associated revisions can be 
found in Materials and methodology (Section 2.3.1, Lines 286-289, Lines 308-314) and Discussion (Section 4.1, Lines 
560-567, Lines 609-611; Figure S7-S9). 

(2) Discussing potential challenges for model application: Although HyLake v1.0 succeeded in estimating lake-
atmosphere interactions in Lake Chaohu, it still has several limitations. Considering the diverse lake types worldwide, it 
remains challenging to validate the performance of HyLake v1.0 in every case due to the limited observations and 
simplified physical principles. The quantitative restriction on observations hampers our ability to improve the model’s 
performance in regional cases by retraining or fine-tuning the LSTM-based surrogates for each lake type. Additionally, 
the inaccurate relationships between lake surface conditions (e.g. friction velocity, surface roughness length) and climate 
change pose a challenge to HyLake v1.0. Specifically, we found that there are biases in the surface roughness length (z0) 
and friction velocity (u*) between observations and predictions (Figure S6). These potential differences were hard to 
quantify due to data scarcity in the current process-based models, which impeded us to improve the understanding of 
lake-atmosphere interactions. Therefore, the physical principles between lake surface conditions and climate change 
should be focused in the future using novel process-based or data-driven techniques. The associated revisions are listed 
in Discussion (Section 4.2, Lines 647-654). 

To sum up, HyLake v1.0 provided a novel method for improving the understanding of lake-atmosphere interactions 
on most lakes. However, the current limitations of data and physical principles restrict the generalization ability for all 
unknown lake types. We aim to expand the modules and functions of HyLake v1.0 and validate it in additional lakes in 
the future, to accurately predict lake-atmosphere interactions for a broader range of lake types. 

 
Figure S6: The comparison of friction velocity (u*) and surface roughness length (z0m, m) in MLW lake site between 

simulation derived from PBBM and HyLake v1.0 and observations.  
References: 
Jiao, Y., Yang, C., He, W., Liu, W. X., and Xu, F. L.: The spatial distribution of phosphorus and their correlations in 
surface sediments and pore water in Lake Chaohu, China, Environ. Sci. Pollut. Res., 25, 25906-25915, 
https://doi.org/10.1007/s11356-018-2606-x, 2018. 



Yang, C., Yang, P., Geng, J., Yin, H., and Chen, K.: Sediment internal nutrient loading in the most polluted area of a 
shallow eutrophic lake (Lake Chaohu, China) and its contribution to lake eutrophication, Environ. Pollut., 262, 114292, 
https://doi.org/10.1016/j.envpol.2020.114292, 2020. 
Revision:  

“To address the generalization and transferability of HyLake v1.0 in studied (MLW) and ungauged lake sites (DPK, 
BFG, XLS, and PTS) (Table 1), this study further conducted three numerical experiments, including MLW experiment, 
Taihu-obs experiment, Taihu-ERA5 experiment, and Chaohu experiment, using distinct models and forcing datasets 
(Table 2 and 3), including FLake, Baseline, and TaihuScene to intercompare.” (Section 2.3.1, Lines 286-289) 

“Furthermore, this study implemented the HyLake v1.0 into Lake Chaohu, the 5th-largest shallow freshwater lake 
in China, which has experienced heavy eutrophication and harmful algal blooms (Yang et al., 2020), to assess its 
transferability to other lakes. A LST dataset in Lake Chaohu was obtained from MODIS/Terra Land Surface 
Temperature/Emissivity Daily L3 Global 1km SIN Grid V061 imageries (MOD11A1, 
https://www.earthdata.nasa.gov/data/catalog/lpcloud-mod11a1-061), which were used to validate the performance of 
LST derived from HyLake v1.0. The computational efficiency for each 1-time prediction was recorded using a 16G 10-
Core Apple M4 processor based on the established HyLake v1.0 model in this study. The training of the above-mentioned 
surrogates was run using a 24G NVIDIA GeForce RTX 4090 GPU.” (Section 2.3.1, Lines 308-314)  

“Table 3: Intercomparison of model performance across different experiments conducted in diverse regions 
with different forcing datasets. Observations from all lake sites (MLW, DPK, BFG, XLS, and PTS) on Lake Taihu, 
were used to drive models in the Taihu-obs experiment. Bold values in the table present the best-performing model 
with each group of experiments. Computational efficiency is reported as the runtime for a single simulation. 

Exp Model Forcing 
R RMSE MAE Efficiency 

(s) LST LE HE LST LE HE LST LE HE 

MLW 

PBBM MLW 0.98 0.85 0.89 1.78 38.34 9.37 1.38 23.54 6.22 189.49 
FLake MLW 0.98 0.82 0.84 1.76 42.73 7.24 1.35 24.76 5.01 16.40 

Baseline MLW 0.96 0.74 0.75 2.71 51.77 14.63 2.11 33.52 9.30 151.46 
HyLake 

v1.0 
MLW 0.99 0.94 0.93 1.08 24.65 7.15 0.85 15.18 4.73 270.21 

Taihu-
obs 

FLake All sites 0.97 0.61 0.74 2.24 15.46 69.11 1.69 41.95 10.44 89.00 
TaihuScene All sites 0.99 0.82 0.89 1.52 14.93 43.49 1.23 29.53 10.63 6928.44 

HyLake 
v1.0 

All sites 0.99 0.81 0.90 1.36 11.19 39.20 1.03 24.79 7.88 2693.23 

Taihu-
ERA5 

FLake ERA5 0.98 0.63 0.69 1.82 12.31 67.24 1.46 50.94 9.68 19.60 
TaihuScene ERA5 0.99 0.68 0.73 1.60 13.00 64.83 1.29 47.78 10.11 652.25 

HyLake 
v1.0 

ERA5 0.99 0.71 0.78 1.12 11.05 49.48 0.90 35.02 7.97 236.78 

Chaohu 
FLake ERA5 0.97 \ \ 2.28 \ \ 1.76 \ \ 70.40 

HyLake 
v1.0 

ERA5 0.97 \ \ 2.07 \ \ 1.57 \ \ 972.83 

” (Table 3) 
“To address issues related to model performance, generalization, and transferability in ungauged locations, three 

additional numerical experiments, including FLake, Baseline, and TaihuScene, were proposed for intercomparison and 
a framework for applying HyLake v1.0 to another lake, such as Lake Chaohu, with a deeper depth of 3.06 m and 
area of 760 km2 (Figure S7, Jiao et al., 2018), to validate the potential capacity of transferability further. These 
experiments were compared using observed meteorological datasets, and ERA5 datasets and then validated for both 
spatial and temporal patterns at Lake Taihu and Lake Chaohu (Tables 2-3). Similarly, ERA5 dataset-derived HyLake 
v1.0 outperformed FLake in estimating LST (R = 0.97, RMSE = 2.07 °C, MAE = 1.57 °C) in Lake Chaohu, 
compared to MOD11A1 datasets (Table 3 and Figures S7-9).” (Section 4.1, Lines 560-567) 



“HyLake v1.0, developed based on in situ observations from Lake Taihu, has been proven to be reliable and 
rigorously validated in Lake Chaohu (Table 3), demonstrating a faster and more accurate framework for enhancing the 
understanding of hybrid hydrological modeling.” (Section 4.1, Lines 609-611) 

“HyLake v1.0 has been applied to Lake Chaohu and achieved superior performance in comparison to the 
MYD11A1 LST observations, showing a promising way for more applications. Future improvements to HyLake 
v1.0 should focus on investigating the scaling laws of datasets, development of surrogate architectures, and extension of 
coupled modules. Currently, HyLake v1.0 has been validated primarily in Lake Taihu, utilizing high-quality training data 
provided by the Lake Taihu Eddy Flux Network (Zhang et al., 2020). However, in some exceptional cases, the lake 
may be influenced by regional inflows/outflows, or it may be covered by snow/ice for a long period, and the 
processes at the lake-air interface may differ from those in our experiments (Woolway et al., 2020). As a result, 
our model may not be quantifiable for these situations. Its surrogate will be required for more high-quality local 
datasets to retrain or finetune.” (Section 4.2, Lines 647-654)  

“  
Figure S7: The locations of Lake Chaohu overlaid on a true-color image from (a) Landsat 8 and daily land surface 
temperature from (b) MYD11A1 product.” (Figure S7 in Supplementary materials) 

 

Figure S8: Time series of daily grid-average LST on Lake Chaohu derived from MYD11A1, FLake simulation, 
and HyLake v1.0 from 2013 to 2015. HyLake v1.0 provides daily and hourly simulations.  

 
Figure S9: The intercomparison of daily LST between model simulations (FLake and HyLake v1.0) and 
MYD11A1 observations on Lake Chaohu from 2013 to 2015.” (Figures S7-S9 in Supplementary Material) 



Better justify the choice of BO-BLSTM over simpler alternatives. provide clearer explanation of why Bayesian 
optimization and bidirectional LSTM architecture were chosen over deterministic alternatives. 
Response: Thanks for the suggestions. Using the LSTM-based surrogate with the best group of hyperparameters based 
on Bayesian Optimization (BO), integrated the abilities of LSTM for time series forecasting and the high computational 
efficiency of Bayesian Optimization (BO) to represent the physical principles of lake surface temperature changes 
significantly. 

(1) The selection of BO-BLSTM over simpler alternatives: LSTM is one of Recurrent Neural Networks (RNNs) 
that learn from past data by using several gates in their network architecture to remember the past data (Siami-Namini 
et al., 2019). It becomes feasible for long-term time series forecasting due to the ability to learn many-step dependencies 
and handle variable-length input sequences in fields such as hydrology (Liu et al., 2024). It outperformed traditional, 
process-based, and machine learning models in many cases, including predictions of soil moisture, streamflow, water 
temperature, and groundwater levels (Mao et al., 2021; Feng et al., 2020; Papacharalampous et al., 2018). Meanwhile, 
previous studies have shown that LSTM-based models outperform other traditional deep-learning models in auto-
regressive predictions, supporting this study in predicting lake surface temperature changes robustly and reliably (Siami-
Namini et al., 2019). Bayesian LSTM (BLSTM), an improved version of LSTM, adapts probability-distributed weight 
parameters, which reduce model overfitting and provide robust predictions in hydrology (Li et al., 2021; Lu et al., 2019). 
In comparison to these models in BO, we ultimately selected BLSTM-based surrogates to address the challenges in this 
autoregressive prediction task. Nevertheless, we agree that the surrogate should be improved due to its lower 
computational efficiency, which will be discussed in the future. Here we explained the advantages of LSTM and BLSTM 
in Materials and Methodology (Section 2.2.2, Lines 209-214) and discussed the limitations and potential improvements 
in Discussion (Section 4.1, Lines 614-624; Section 4.2, Lines 671-680). 

(2) Using Bayesian Optimization and Bayesian LSTM over deterministic alternatives: In this study, we 
selected BO to search for the best group of hyperparameters in Bayesian LSTM (not Bidirectional LSTM) models. BO 
is a hyperparameter tuning algorithm based on the Bayesian theorem, which can significantly improve the performance 
and efficiency of deep learning models by building the relationships between model performance and their 
hyperparameters (Victoria et al., 2021; Wu et al., 2019). Previous studies have established that deep learning models 
often tune their hyperparameters using manual search or automatic search methods (Wu et al., 2019). Manual search 
methods depend on expert knowledge and are hard to reproduce and find the optimized hyperparameters. Traditional 
automatic search methods, such as grid search, train models with each combination of hyperparameters, which is 
exhaustive searching (Wu et al., 2019; Bergstra et al., 2012). BO adapted a random search technique to fit the data and 
update the posterior distribution of functions based on Gaussian processes and the Bayesian theorem (Victoria et al., 
2021; Wu et al., 2019). Wu et al. (2019) compared the accuracy and costs between BO and grid search methods, finding 
that both methods performed almost equally well in the same case, while BO runs 12 times faster than grid search.  

To summarize, given the large variability and complex relationships of the observations in this study, we would like 
to employ a more computationally efficient method to help users identify the most robust surrogate within a large 
hyperparameter space as soon as possible. Considering that the selection of optimization methods is not a focus of this 
study, the current manuscript provides detailed information about the hyperparameter space for each surrogate to help 
readers understand. The associated revisions are listed in Materials and Methodology (Section 2.2.3, Lines 276-279). 
References: 
Bergstra, J. and Bengio, Y.: Random search for hyper‐parameter optimization, J. Mach. Learn. Res., 13, 281–305, 
https://dl.acm.org/doi/10.5555/2188385.2188395, 2012. 
Liu, J., Bian, Y., Lawson, K., and Shen, C.: Probing the limit of hydrologic predictability with the Transformer network, 
J. Hydrol., 637, 131389, https://doi.org/10.1016/j.jhydrol.2024.131389, 2024.  
Feng, D., Fang, K., and Shen, C.: Enhancing streamflow forecast and extracting insights using long‐short term memory 
networks with data integration at continental scales, Water Resour. Res., 56, e2019WR026793, 
https://doi.org/10.1029/2019WR026793, 2020.  
Mao, G., Wang, M., Liu, J., Wang, Z., Wang, K., Meng, Y., et al.: Comprehensive comparison of artificial neural networks 



and long short‐term memory networks for rainfall–runoff simulation, Phys. Chem. Earth, A/B/C, 123, 103026, 
https://doi.org/10.1016/j.pce.2021.103026, 2021. 
Papacharalampous, G., Tyralis, H., and Koutsoyiannis, D.: One‐step ahead forecasting of geophysical processes within 
a purely statistical framework, Geosci. Lett., 5, 12, https://doi.org/10.1186/s40562-018-0111-1, 2018. 
Siami‑Namini, S., Tavakoli, N., and Namin, A. S.: The performance of LSTM and BiLSTM in forecasting time series, 
in: 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019, 3285–
3292, https://doi.org/10.1109/BigData47090.2019.9006190, 2019.  
Wu, J., Chen, X. Y., Zhang, H., Xiong, L. D., Lei, H., and Deng, S. H.: Hyperparameter optimization for machine learning 
models based on Bayesian optimization, J. Electron. Sci. Technol., 17, 26–40, https://doi.org/10.11989/JEST.1674-
862X.80904120, 2019. 
Victoria, A. H. and Maragatham, G.: Automatic tuning of hyperparameters using Bayesian optimization, Evol. Syst., 12, 
217–223, https://doi.org/10.1007/s12530-020-09345-2, 2021. 
Revision:  

“It has been demonstrated that LSTM could capture historical time-step dependencies and handle variable-length 
input sequences using gradient optimization combined with backpropagation in hydrological applications (J. Liu et al., 
2024). Bayesian LSTM (as an improved LSTM) adapts probability distributed weight parameters, which reduces the 
model overfitting, thereby providing robust predictions in hydrology (D. Li et al., 2021; Lu et al., 2019). The 
development of LSTM-based surrogates offers the possibility of accurate predictions in addressing the critical processes 
in lake-atmosphere modeling systems.” (Section 2.2.2, Lines 209-214) 
References: 
Li, D., Marshall, L., Liang, Z., Sharma, A., and Zhou, Y.: Bayesian LSTM with stochastic variational inference for 
estimating model uncertainty in process‐based hydrological models. Water Resour. Res., 57(9), e2021WR029772, 
https://doi.org/10.1029/2021WR029772, 2021. 
Liu, J., Bian, Y., Lawson, K., and Shen, C.: Probing the limit of hydrologic predictability with the transformer network, 
J. Hydrol., 637, 131389, https://doi.org/10.1016/j.jhydrol.2024.131389, 2024. 
Lu, D., Liu, S., and Ricciuto, D.: An efficient bayesian method for advancing the application of deep learning in earth 
science, in: Proceedings of the 2019 International Conference on Data Mining Workshops (ICDMW), IEEE, November, 
270-278, https://doi.org/ 10.1109/ICDMW.2019.00048, 2019. 

“The hyperparameter space included the number of hidden layers (ranging from 1 to 8), neurons per layer (ranged 
from 16 to 1,024), optimizer (Adam, or RMSprop), batch size (ranging from 8 to 256), and learning rate (ranging from 
1E-6 to 1E-2). The hyperparameters in BO-BLSTM-based surrogates were optimized using BO with a maximum of 100 
iterations, 1000 epochs for each iteration, and 50 patience in a EarlyStopping strategy.” (Section 2.2.3, Lines 276-279) 

“However, we found that HyLake v1.0 required slightly higher computational costs compared to process-
based models, which depend on the hyperparameters of LSTM-based surrogates, despite achieving greater 
performance (Table 3). In an individual case of MLW prediction, HyLake v1.0 took about 9 times longer to run 
compared to FLake, with a cost of 151.46 seconds. To compare different experiments of hybrid lake models, 
Baseline, coupled to an LSTM-based surrogate with 1 layer and 256 neurons per layer, indicated the lowest cost. 
While TaihuScene, constructed by an LSTM-based surrogate with 7 layers and 836 neurons per layer, showed the 
most expensive in predictions. Given the sophisticated architecture of LSTM-based surrogates, which inevitably 
leads to higher costs in training and prediction, developing novel algorithms for approximating LSTMs is urgently 
needed. Furthermore, the recent research progress demonstrated that LSTM-based surrogates are more suited for 
short-term predictions compared to the prevalent Transformer-based family, which is suited for long-term predictions 
and commonly used in global weather forecasting systems (K. F. Bi et al., 2023; L. Chen et al., 2023).” (Section 4.1, 
Lines 614-624) 

“BO-BLSTM-based surrogate exhibits superior performance in estimating LST for HyLake v1.0. This study 
adapted BO and EarlyStopping strategies to ensure BLSTM provides accurate and reliable estimates in prediction but 
increases the computational demands for training due to its ability to converge from its more complex Bayesian 



architecture (Peng et al., 2025; Ferianc et al., 2021). In addition, the mere 1 Bayesian fully connected layer that was 
adapted in this surrogate only captures limited data uncertainty, which may lose several important aspects of probabilistic 
prediction (Klotz et al., 2022). Given the importance of uncertainty quantification for BLSTM, it is worth noting that 
HyLake v1.0 has the potential to assess the variance of predictions and probabilities of lake extreme events occurrence 
by developing its surrogate in future (Kar et al., 2024; Gawlikowski et al., 2023). Major limitations, including high 
computational demands and insufficient model performance, should be addressed by developing a novel deep-learning-
based surrogate based on a more efficient architecture and larger datasets.” (Section 4.2, Lines 671-680)  
References: 
Ferianc, M., Que, Z., Fan, H., Luk, W., and Rodrigues, M.: Optimizing Bayesian recurrent neural networks on an FPGA-
based accelerator, in: 2021 International Conference on Field-Programmable Technology (ICFPT), IEEE, December, 1-
10, 2021. 
Klotz, D., Kratzert, F., Gauch, M., Keefe Sampson, A., Brandstetter, J., Klambauer, G., Hochreiter, S., and Nearing, G.: 
Uncertainty estimation with deep learning for rainfall–runoff modeling, Hydrol. Earth Syst. Sci., 26, 1673–1693, 
https://doi.org/10.5194/hess-26-1673-2022, 2022. 
Peng, Z., Mo, S., Sun, A. Y., Wu, J., Zeng, X., Lu, M., and Shi, X.: An explainable Bayesian TimesNet for probabilistic 
groundwater level prediction, Water Resour. Res., 61, e2025WR040191, https://doi.org/10.1029/2025WR040191, 2025. 
 
Discuss how the surrogate maintains physical consistency and whether energy balance is preserved through the hybrid 
coupling. Consider briefly addressing this in the discussion section. 
Response: Good point. Indeed, we considered which processes in the lake model can be replaced by a deep-learning-
based surrogate. Energy balance and lake water temperature approximations are two individual modules in process-
based models, which are difficult to replace with deep-learning-based models simultaneously, while also ensuring 
numerical stability. There are two reasons to address this issue and listed in Discussion (Section 4.1, Lines 586-611): 

(1) Inadequate observations to build relationships between surface conditions and heat fluxes. The energy 
balance equations are integrated modeling systems based on the bulk aerodynamic method from the Monin–Obukhov 
similarity theory, which covers the calculation of surface conditions (e.g., surface roughness length, friction velocity), 
as well as water and heat fluxes (e.g., latent heat, sensible heat, evaporation, precipitation-induced heat). Specifically, 
the latent and sensible heat fluxes are functions of transfer coefficients, which are iteratively updated using the Monin–
Obukhov length, surface roughness length, and friction velocity, based on bulk flux algorithms (Verburg and Antenucci, 
2010; Woolway et al., 2015). They performed well in estimating heat fluxes from the evidence in previous studies, which 
has been widely applied in process-based models (Woolway et al., 2020; Thiery et al., 2014). However, surface 
conditions in current research were always obtained from calculation instead of direct observations. Fewer studies have 
focused on monitoring surface conditions due to limited equipment, which hinders our ability to construct generalized 
lake models that reflect their potential relationships. Moreover, there is a large difference between observed surface 
conditions and predictions by Monin–Obukhov similarity theory, although the Lake Taihu Eddy Flux Network has 
monitored these conditions for a long time (Figure S6). In the future, high-quality observations and physical principles 
at the land-air interface should focus on addressing the significant discrepancies between observations and simulations. 

 
Figure S6: The comparison of friction velocity (u*) and surface roughness length (z0m, m) in MLW lake site between 

simulation derived from PBBM and HyLake v1.0 and observations. 



(2) Lake surface temperature governing equations existed uncertainly. The lake water temperature module is 
suitable for replacement by a deep-learning-based surrogate due to the rich and easily accessible observations and 
simplified schemes. Until now, accurately predicting lake water temperature using a generalized framework has remained 
a challenge due to the significant regional differences among lakes. Several researchers have attempted to approximate 
lake water temperature changes using complex integrated neural networks, such as physics-informed neural networks 
(PINNs), physics-guided neural networks (PGNNs), and modular networks (He et al., 2025; Ladwig et al., 2024; Read 
et al., 2019). These models may exhibit superior performance in specific tasks but require high computational power for 
pretraining or fine-tuning, and are challenging to predict untrained variables, such as latent heat, sensible heat fluxes, 
and evaporation. Choose this module to replace in this study, which hopes to propose a generalized integrated framework 
that combines physical principles and deep learning, and then improve the understanding of lake-atmosphere interactions 
in finer resolutions. 
References: 
He, Y., and Yang, X.: A physics-informed deep learning framework for estimating thermal stratification in a large deep 
reservoir, Water Resour. Res., 61, e2025WR040592, https://doi.org/10.1029/2025WR040592, 2025. 
Ladwig, R., Daw, A., Albright, E. A., Buelo, C., Karpatne, A., Meyer, M. F., et al.: Modular compositional learning 
improves 1-D hydrodynamic lake-model performance by merging process-based modelling with deep learning, J. Adv. 
Model. Earth Syst., 16, e2023MS003953, https://doi.org/10.1029/2023MS003953, 2024. 
Read, J. S., Jia, X. W., Willard, J. D., Appling, A. P., Zwart, J. A., Oliver, S. K., et al.: Process-guided deep-learning 
predictions of lake-water temperature, Water Resour. Res., 55, 9173–9190, https://doi.org/10.1029/2019WR024922, 
2019. 
Thiery, W. I. M., Stepanenko, V. M., Fang, X., Jöhnk, K. D., Li, Z., Martynov, A., et al.: LakeMIP Kivu: evaluating the 
representation of a large, deep tropical lake by a set of one-dimensional lake models, Tellus A: Dyn. Meteorol. Oceanogr., 
66(1), 21390, https://doi.org/10.3402/tellusa.v66.21390, 2014. 
Verburg, P., and Antenucci, J. P.: Persistent unstable atmospheric boundary layer enhances sensible- and latent-heat loss 
in a tropical great lake: Lake Tanganyika, J. Geophys. Res.-Atmos., 115, D11109, https://doi.org/10.1029/2009JD012839, 
2010. 
Woolway, R. I., Kraemer, B. M., Lenters, J. D., Merchant, C. J., O’Reilly, C. M., and Sharma, S.: Global lake responses 
to climate change, Nat. Rev. Earth Environ., 1, 388–403, https://doi.org/10.1038/s43017-020-0067-5, 2020. 
Woolway, R. I., Jones, I. D., Hamilton, D. P., Maberly, S. C., Muraoka, K., Read, J. S., et al.: Automated calculation of 
surface-energy fluxes with high-frequency lake-buoy data, Environ. Model. Softw., 70, 191–198, 
https://doi.org/10.1016/j.envsoft.2015.04.013, 2015. 
Revision:  

“Moreover, simplified parameterizations in traditional process-based lake models are commonly adopted (Golub et 
al., 2022; Mooij et al., 2010), which influence the coupling strategies in HyLake v1.0. The two critical components, 
including energy balance equations and 1-D vertical lake water temperature transport equations, compose the 
physical principles of lake-atmosphere interaction modeling systems, which also possess simplification to some 
degrees. For example, the calculation of friction velocity (𝑢∗) and surface roughness length (𝑧"# ) in surface flux 
solutions has improved over time from constant empirical models to iterative routines (Hostetler et al., 1993; Woolway 
et al., 2015), but substantial discrepancies still exist between simulation results and observations (Figure S6), which in 
turn influence the physical principles between land surface conditions and LST. The current approaches for solving 
energy balance equations uses bulk aerodynamic method based on the Monin–Obukhov similarity theory (Monin 
and Obukhov, 1954), and is the vital module in process-based lake models (e.g., FLake (Mironov et al., 2010), 
GLM (Hipsey et al., 2019), WRF-Lake (Gu et al., 2015)). However, it remains challenges to construct explainable 
approaches to quantify the relationships between surface conditions and fluxes and LST due to inadequate 
observations. These potential differences in physical processes lead to uncertainties in training deep-learning-based 
surrogates, contributing to the insufficient/limited knowledge during model training and thereby introducing large 
uncertainties in hybrid models. Furthermore, the long-term trends and diurnal variations in lake water temperature 



profiles remain challenging to accurate approximate using the finite difference method (e.g., Crank-Nicholson solution, 
implicit Euler scheme) (Piccolroaz et al., 2024; Sarovic et al., 2022; Subin et al., 2012). On top of the extensive 
observations of water temperature, several hybrid models that integrate deep-learning-based and process-based 
models have been constructed in previous studies, achieving improved performance in model comparisons (He et al., 
2025; Ladwig et al., 2024; Read et al., 2019). These models and their training strategies generally perform better on 
training and test datasets due to their complex coupling strategies and higher computational requirements, while 
their generalization and transferability need further validation. Lake Taihu, as one of typical shallow, eutrophic, and 
large Chinese lakes with almost complete mixing throughout the year and subject to complex chemical and biological 
influences in its aquatic ecosystem, requires a suitable model as part of the temperature-solving module in the water 
column to predict lake water temperature and estimate other potential ecological implications under thermodynamic 
changes. HyLake v1.0, developed based on in situ observations from Lake Taihu, has been proven to be reliable 
and rigorously validated in Lake Chaohu (Table 3), demonstrating a faster and more accurate framework for 
enhancing the understanding of hybrid hydrological modeling.” (Section 4.1, Lines 586-611) 
References added: 
He, Y., and Yang, X.: A physics-informed deep learning framework for estimating thermal stratification in a large deep 
reservoir, Water Resour. Res., 61, e2025WR040592, https://doi.org/10.1029/2025WR040592, 2025. 
Monin, A. S., and Obukhov, A. M.: Basic laws of turbulent mixing in the surface layer of the atmosphere, Contrib. 
Geophys. Inst. Acad. Sci. USSR, 151(163), e187, 2954, 1954. 
Mironov, D., Heise, E., Kourzeneva, E., Ritter, B., Schneider, N., and Terzhevik, A.: Implementation of the lake-
parameterization scheme FLake into the numerical-weather-prediction model COSMO, Boreal Environ. Res., 15, 218–
230, 2010. 
Hipsey, M. R., Bruce, L. C., Boon, C., Busch, B., Carey, C. C., Hamilton, D. P., Hanson, P. C., Read, J. S., de Sousa, E., 
Weber, M., and Winslow, L. A.: A General Lake Model (GLM 3.0) for linking with high-frequency sensor data from the 
Global Lake Ecological Observatory Network (GLEON), Geosci. Model Dev., 12, 473–523, 
https://doi.org/10.5194/gmd-12-473-2019, 2019. 
Gu, H., Jin, J., Wu, Y., Ek, M. B., and Subin, Z. M.: Calibration and validation of lake surface temperature simulations 
with the coupled WRF-lake model. Clim. Change, 129(3), 471-483, https://doi.org/10.1007/s10584-013-0978-y, 2015. 
 
While full uncertainty quantification may be beyond the current scope, briefly discuss the uncertainty implications of 
the Bayesian surrogate and how this could be leveraged in future applications. 
Response: The proposed Bayesian LSTM (BLSTM) in this study, an improved version of LSTM that replaces the last 
fully connected layer with a Bayesian fully connected layer, provides robust predictions by utilizing probability-
distributed weight parameters in networks (D. Li et al., 2021; Lu et al., 2019). However, it inevitably causes uncertainties 
from challenging data sources and network architecture (Gawlikowski et al., 2023) and increases the computational 
requirements due to the complex architecture (Peng et al., 2025; Ferianc et al., 2021). The uncertainties caused by 
BLSTM’s probability-distributed parameters, which have been widely used for assessing the variance of predictions and 
the probability of extreme events occurring when using out-of-bag samples, thereby improving the accuracy of decision-
making for users (Kar et al., 2024; Gawlikowski et al., 2023). We are expected to improve the surrogate in HyLake v1.0 
and quantify its uncertainties to further enhance our understanding of the occurrence and frequency of lake extreme 
events in the future. The associated revisions can be found in Materials and Methodology (Section 2.2.2, Lines 209-214), 
and Discussion (Section 4.2, Lines 671-680). 
References: 
Ferianc, M., Que, Z., Fan, H., Luk, W., and Rodrigues, M.: Optimizing Bayesian recurrent neural networks on an FPGA-
based accelerator, in: 2021 International Conference on Field-Programmable Technology (ICFPT), IEEE, December, 1-
10, 2021. 
Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., et al.: A survey of uncertainty in deep neural 
networks. Artif. Intell. Rev., 56, 1513-1589, https://doi.org/10.1007/s10462-023-10562-9, 2023. 



Kar, S., McKenna, J. R., Sunkara, V., Coniglione, R., Stanic, S., and Bernard, L.: XWaveNet: enabling uncertainty 
quantification in short-term ocean wave height forecasts and extreme event prediction. Appl. Ocean Res., 148, 103994, 
https://doi.org/10.1016/j.apor.2024.103994, 2024. 
Li, D., Marshall, L., Liang, Z., Sharma, A., and Zhou, Y.: Bayesian LSTM with stochastic variational inference for 
estimating model uncertainty in process‐based hydrological models. Water Resour. Res., 57(9), e2021WR029772, 
https://doi.org/10.1029/2021WR029772, 2021. 
Lu, D., Liu, S., and Ricciuto, D.: An efficient bayesian method for advancing the application of deep learning in earth 
science, in: Proceedings of the 2019 International Conference on Data Mining Workshops (ICDMW), IEEE, November, 
270-278, https://doi.org/ 10.1109/ICDMW.2019.00048, 2019. 
Peng, Z., Mo, S., Sun, A. Y., Wu, J., Zeng, X., Lu, M., and Shi, X.: An explainable Bayesian TimesNet for probabilistic 
groundwater level prediction, Water Resour. Res., 61, e2025WR040191, https://doi.org/10.1029/2025WR040191, 2025. 
Revision:  

“It has been demonstrated that LSTM could capture historical time-step dependencies and handle variable-length 
input sequences using gradient optimization combined with backpropagation in hydrological applications (J. Liu et al., 
2024). Bayesian LSTM (as an improved LSTM) adapts probability distributed weight parameters, which reduce the 
model overfitting, thereby providing robust predictions in hydrology (D. Li et al., 2021; Lu et al., 2019). The 
development of LSTM-based surrogates offers the possibility of accurate predictions in addressing the critical processes 
in lake-atmosphere modeling systems.” (Section 2.2.2, Lines 209-214) 

“BO-BLSTM-based surrogate exhibits superior performance in estimating LST for HyLake v1.0. This study 
adapted BO and EarlyStopping strategies to ensure BLSTM provides accurate and reliable estimates in prediction but 
increases the computational demands for training due to its ability to converge from its more complex Bayesian 
architecture (Peng et al., 2025; Ferianc et al., 2021). In addition, the mere 1 Bayesian fully connected layer that was 
adapted in this surrogate only captures limited data uncertainty, which may lose several important aspects of probabilistic 
prediction (Klotz et al., 2022). Given the importance of uncertainty quantification for BLSTM, it is worth noting that 
HyLake v1.0 has the potential to assess the variance of predictions and probabilities of lake extreme events occurrence 
by developing its surrogate in future (Kar et al., 2024; Gawlikowski et al., 2023). Major limitations, including high 
computational demands and insufficient model performance, should be addressed by developing a novel deep-learning-
based surrogate based on a more efficient architecture and larger datasets.” (Section 4.2, Lines 671-680) 
References added: 
Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., et al.: A survey of uncertainty in deep neural 
networks. Artif. Intell. Rev., 56, 1513-1589, https://doi.org/10.1007/s10462-023-10562-9, 2023. 
Kar, S., McKenna, J. R., Sunkara, V., Coniglione, R., Stanic, S., and Bernard, L.: XWaveNet: enabling uncertainty 
quantification in short-term ocean wave height forecasts and extreme event prediction. Appl. Ocean Res., 148, 103994, 
https://doi.org/10.1016/j.apor.2024.103994, 2024. 
 
Minor Comments 
Terminology: Define LE (latent heat) and HE (sensible heat) at first mention. 
Response: We have defined LE and HE in the Introduction. 
Revision: “Lake-atmosphere interactions represent a tightly coupled system (B. B. Wang et al., 2019), where process-
based models traditionally approximate the interdependence between LST, latent heat (LE) and sensible heat (HE) 
fluxes.” (Section 1, Lines 77-79) 
 
References: Standardize citation formats (e.g., “Hersbach et al. (2020)” vs. “Hersbach et al., 2020”). 
Response: We have checked the manuscript. We adopted “Hersbach et al. (2020)” when discussing their contributions 
and used “Hersbach et al., 2020” to cite their conclusions. 
 
Section Organization: Consider moving deep implementation details (e.g., GUI remarks) into a Supplement or Code & 



Data Availability section. 
Response: We now provided example bash scripts to run HyLake v1.0 and other models (e.g., Baseline, TaihuScene) in 
Taihu and Chaohu experiments. The example script for run these models was given by Figure R1. The information of 
data and code availability was given in Lines 728-732.  

 

Figure R1: The example scripts for run HyLake v1.0 for MLW, Taihu-Obs and Taihu-ERA5 experiments. 
Revision: “Code and data availability. The datasets, codes and scripts of HyLake v1.0 and other models (e.g., Baseline, 
TaihuScene) used in this study are available at https://doi.org/10.5281/zenodo.15289113 (He et al., 2025). FLake model 
was run via LakeEmsemblR tool (https://aemon-j.github.io/LakeEnsemblR/). The ERA5 reanalysis datasets can be 
downloaded from the Climate Data Store (https://cds.climate.copernicus.eu/). Observations of lake surface water 
temperature, latent and sensible heat fluxes at Lake Taihu are available at Harvard Dataverse 
(https://doi.org/10.7910/DVN/HEWCWM; Zhang et al., 2020).” (Code and data availability, Lines 728-732) 
 
Caption Detail: Enhance figure captions to specify whether plotted values are observed or simulated and note dataset 
origins (real vs. semi-synthetic). 
Response: We have improved the captions to clearly describe the datasets in Figures 5 to 11. 


