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Reviewer #2: 
The manuscript entitled “Hybrid Lake Model (HyLake) v1.0: unifying deep learning and physical principles for 
simulating lake-atmosphere interactions” written by Yuan He and Xiaofan Yang (egusphere-2025-1983) presented the 
HyLake v1.0 hybrid model, which performed better than other models. The manuscript is generally well-written, which 
will be within the scope of GMD. Please clarify the following points before the possible publication. 
Response: We thank Reviewer #2 for the positive and constructive comments. All the comments have been accepted 
and Relisted in black, followed by our Replies in blue and Revisions in red (highlighted revisions in bold). According 
to the comments, we particularly discussed the reasons of using individual-site observations to train LSTM-based 
surrogates and explained the details of model development. Major changes are summarized in the following table: 

No. Major Revisions Key Messages 

1 
Discussed the selection of MLW observations to 
train LSTM surrogate in HyLake v1.0. 

As one of the long-term monitored lake sites in Lake Taihu, 
MLW has high-quality of observations and highly represents 
the eutrophic status of Lake Taihu. We cross-validated the 
performance using different observations from lake sites to 
train LSTM surrogate and confirmed that observations of the 
MLW are reliable (Materials and methodology; 
Discussion). 

2 
Described how to fill the data gaps using ERA5 
dataset 

We used meteorological variables in ERA5 dataset to fill the 
missing data in the lake site that existed missing in their time 
series. These observations were used to force lake models to 
predict lake surface temperature and heat fluxes (Materials 
and methodology). 

 
Major comments: 
Line 117-119 (and Table 1): This might be the trial and error in the authors and was not presented explicitly within the 
manuscript, but why was only the MLW site used for training and other sites used for validation? I missed the information, 
but why was the cross-validation not attempted in the process? I am wondering about the robustness of the developed 
model based on the training data from one site. 
Response: We apologize for the confusion regarding our use of MLW observations to train an LSTM-based surrogate. 
Specific reasons are listed as follows: 

(1) Reason for choosing MLW observations to train LSTM-based surrogate. There are five sites in Lake Taihu 
where hydrometeorological variables are observed via the lake Eddy Flux Network, including air temperature, rainfall 
rate, net longwave and shortwave radiation, wind speed, surface pressure, relative humidity, lake surface temperature, 
and latent and sensible heat fluxes. Air temperature, rainfall rate, net longwave and shortwave radiation, wind speed, 
surface pressure, and relative humidity were adapted to force lake models, while lake surface temperature, latent and 
sensible heat fluxes were used to validate the model performance. Among these observations, we found there are data 



gaps to different degrees in these sites. For example, about 475-time steps (~1.36%) of observed surface pressure were 
found to be lacked in DPK site during 2012 and 2015; 7,959 time steps (~22.71%) of all observed variables were missing 
in XLS site; 12,539 time steps (~35.78%) of all observed variables were missing in PTS site during 2013-2015. We think 
these lake sites were not suitable for training the LSTM-based surrogates. Given the MLW and BFG sites, citations have 
evidenced that Lake Taihu and its MLW site are quintessential examples of severe eutrophication in China (Yan et al., 
2024; Wang et al., 2019), which differs from BFG’s biological characteristics. The association descriptions can be found 
in Material and methodology (Section 2.1, Lines 114-139). 

(2) Cross-validation between each lake site in training LSTM-based surrogates: The MLW observations are 
the most reliable among the 5 lake sites after our rigorous validation. We also used observations from 5 lake sites to 
individually search for optimized BO-BSTM-based surrogates, respectively. The validation results are given in Figure 
4, S10, R1 and Table S1. The results indicated that, theoretically, the surrogates trained with MLW, BFG, DPK, and PTS 
performed well in validation, while those trained with XLS performed poorer than the other surrogates (Figure 4, R1 
and Table 1). Considering the absence of DPK and PTS observations, we only choose the surrogate trained with BFG to 
couple to the PBBM backbone model (namely HyLake-BFG in this comment) and then compare its performance to 
HyLake v1.0 in MLW and BFG site. Results indicated that HyLake v1.0 outperformed HyLake-BFG in both MLW and 
BFG site (Figure S10), indicating that using MLW observations to train surrogate helps hybrid lake models learn physical 
knowledge and improve their accuracy. Therefore, we decided to developed HyLake v1.0 based on MLW observations 
to according to the comprehensive validation. The associated revisions were listed in Discussion (Section 4.2, Lines 660-
666). 

 

Figure 1: Validation of BO-BLSTM-based surrogate trained with MLW observations in HyLake v1.0 for (a) 
training, (b) validation and (c) test datasets. 



 
Figure R1: Validation of BO-BLSTM-based surrogates trained with (a-c) BFG, (d-f) DPK, (g-i) PTS, and (j-m) 

XLS observations in train, validation and test datasets, respectively. 
 

Table S1: Model specifications of BO-BLSTM-based surrogates that trained with BFG, DPK, PTS, and XLS 
observations and performance in training sets, validation sets, and test sets of MLW. The RMSE for each 
surrogate was calculated from the difference between their training datasets. 

NO. Training dataset 

Model specifications RMSE (℃) 

Number of 
layers 

Neurons 
per layer 

Batch 
size 

Learning 
rate 

Train Validation Test 

1 MLW 4 467 64 9.6E-4 0.19 0.34 0.23 
2 BFG 5 30 94 2.5E-3 0.20 0.26 0.18 
3 DPK 5 94 124 3.0E-3 0.21 0.24 0.23 
4 PTS 6 143 124 7.5E-4 0.20 0.22 0.23 
5 XLS 5 170 29 1.0E-2 0.40 0.45 0.33 
6 Whole 7 836 145 2.5E-2 0.24 0.33 0.23 

 
References: 
Wang, J., Fu, Z., Qiao, H., and Liu, F.: Assessment of eutrophication and water quality in the estuarine area of Lake Wuli, 
Lake Taihu, China. Sci. Total Environ., 650, 1392-1402, https://doi.org/10.1016/j.scitotenv.2018.09.137, 2019. 
Yan, X., Xia, Y. Q., Ti, C. P., Shan, J., Wu, Y. H., and Yan, X. Y.: Thirty years of experience in water-pollution control in 
Taihu Lake: a review, Sci. Total Environ., 914, 169821, https://doi.org/10.1016/j.scitotenv.2023.169821, 2024. 
Revision:  

“The datasets included two parts: (1) hydrometeorological variables observed from the Taihu Lake Eddy 
Flux Network to force and validate the models, and (2) meteorological variables from ERA5 datasets to fill the 
gaps of observations and force the models. Within the network, each site is equipped with an eddy covariance system 
that continuously monitors LE and HE using sonic anemometers and thermometers (Model CSAT3A; Campbell 
Scientific, Logan, UT, USA) positioned 3.5 to 9.4 m above the lake surface. Hydrometeorological variables, including 
air humidity and temperature (Model HMP45D/HMP155A; Vaisala, Helsinki, Finland), wind speed (Model 03002; R.M. 
Young Co., Traverse City, MI, USA), and net radiation components (Model CNR4; Kipp & Zonen, Delft, the 



Netherlands), are also measured. These meteorological variables were used to force lake models while LE, HE and 
LST from observations were used to validate the results of each numerical experiment, on top of which, the 
inferred radiative LST were collected at 30-minute intervals that are publicly accessible via Harvard DataVerse (Lee, 
2004; Zhang et al., 2020; https://doi.org/10.7910/DVN/HEWCWM). The dataset spans from 2012 to 2015 and contains 
several data gaps across these lake sites. Specifically, 475 time steps (~1.36%) of observed surface pressure were 
found missing at the DPK site during 2012 and 2015; 7,959 time steps (~22.71%) of all observed variables were 
missing at the XLS site; 12,539 time steps (~35.78%) of all observed variables were missing at the PTS site. 
Observations at the MLW and BFG sites were complete during the entire study periods. For the model evaluation 
of Taihu-obs experiment, the data gaps of observed variables in these lake sites were directly filled by ERA5 
datasets at the corresponding time steps, which were used to predict lake-atmosphere interactions. In this study, 
observed meteorological variables from the MLW site, an eutrophic lake site that presents the trophic status of 
Lake Taihu (Table 1, Wang et al., 2019), are used to train the Long Short-Term Memory (LSTM)-based surrogates 
(Sect. 2.2); while data from the remaining sites serve to evaluate the generalization of HyLake v1.0 and train the LSTM-
based surrogates. To further address the generalization and transferability of HyLake v1.0 across different forcing 
datasets, this study utilized 8 meteorological variables that obtained from hourly ERA5 datasets from 2012 to 2015, 
with a spatial resolution of 0.25° at a single level to force HyLake v1.0. These datasets, available from the Climate Data 
Store (Hersbach et al., 2020; http://cds.climate.copernicus.eu), include variables such as air temperature, dew point 
temperature, surface pressure, wind speed, and surface net longwave and shortwave radiation, which has similar 
probability distribution to observations across Lake Taihu (Figure S1).The ERA5 datasets are also individually 
used to force FLake and TaihuScene for comparison and predict lake-atmosphere interactions in Lake Taihu, 
providing insights into the model's generalization, transferability and performance using different climatic forcing 
datasets.” (Section 2.1, Lines 114-139) 
References added: 
Wang, J., Fu, Z., Qiao, H., and Liu, F.: Assessment of eutrophication and water quality in the estuarine area of Lake Wuli, 
Lake Taihu, China. Sci. Total Environ., 650, 1392-1402, https://doi.org/10.1016/j.scitotenv.2018.09.137, 2019. 

“Therefore, this study assumed that an individual-site-trained LSTM-based surrogate would have better capacity in 
representing lake-atmosphere interactions, which was collectively matched to the above-mentioned hypotheses. Due to 
insufficient observations at other lake sites (DPK, PTS, and XLS), to some degree, the surrogates trained on their datasets 
performed closely in estimating ΔLST except for XLW (Table S1). For the relatively complete observed datasets in BFG 
(although its biological characteristics cannot represent the whole Lake Taihu), the surrogate performed poorer than the 
proposed BO-BLSTM-based surrogate in terms of diurnal patterns of LST of HyLake v1.0 (Figure S10).” (Section 4.2, 
Lines 660-666) 

“  



 
Figure S10: Comparison between HyLake v1.0 used MLW-train surrogate and BFG-trained surrogate in 
temporal trends of LST. (a-c) and (d-f) present the time series comparison at MLW and BFG site, respectively. 
Comparison of (a, and d) the full time series and (b-c, and e-f) partial time series of models derived LST and 
observations from 2013 to 2015. Blue, red, and yellow regions represent the period for the training, validation, 
and test datasets, respectively.” (Figure S10 in Supplementary Materials) 

“Table S1: Model specifications of BO-BLSTM-based surrogates that trained with BFG, DPK, PTS, and XLS 
observations and performance in training sets, validation sets, and test sets of MLW. The RMSE for each 
surrogate was calculated from the difference between their training datasets. 

NO. Training dataset 

Model specifications RMSE (℃) 

Number of 
layers 

Neurons 
per layer 

Batch 
size 

Learning 
rate 

Train Validation Test 

1 MLW 4 467 64 9.6E-4 0.19 0.34 0.23 
2 BFG 5 30 94 2.5E-3 0.20 0.26 0.18 
3 DPK 5 94 124 3.0E-3 0.21 0.24 0.23 
4 PTS 6 143 124 7.5E-4 0.20 0.22 0.23 
5 XLS 5 170 29 1.0E-2 0.40 0.45 0.33 
6 Whole 7 836 145 2.5E-2 0.24 0.33 0.23 

” (Table S1 in Supplementary Materials) 
 
Specific comments: 
Line 40-42: The reference for each process-based model will be better. 
Response: Corrected. 
Revision: “Process-based lake thermodynamics models, such as the Freshwater Lake model (FLake) (Mironov et al., 
2010), the General Lake Model (GLM) (Hipsey et al., 2019), and the lake thermodynamics model in Weather 
Research & Forecasting Model (WRF-Lake) (Gu et al., 2015), are built on relationships between climate variables 
and LST, often employing simplified assumptions based on empirical physical principles (Mironov et al., 2010; 
Piccolroaz et al., 2024; L. J. Xu et al., 2016).” (Section 1, Lines 42-46) 
References added: 
Gu, H., Jin, J., Wu, Y., Ek, M. B., and Subin, Z. M.: Calibration and validation of lake surface temperature simulations 
with the coupled WRF-lake model. Clim. Change, 129(3), 471-483, https://doi.org/10.1007/s10584-013-0978-y, 2015. 
Hipsey, M. R., Bruce, L. C., Boon, C., Busch, B., Carey, C. C., Hamilton, D. P., Hanson, P. C., Read, J. S., de Sousa, E., 
Weber, M., and Winslow, L. A.: A General Lake Model (GLM 3.0) for linking with high-frequency sensor data from the 
Global Lake Ecological Observatory Network (GLEON), Geosci. Model Dev., 12, 473–523, 
https://doi.org/10.5194/gmd-12-473-2019, 2019. 



Mironov, D., Heise, E., Kourzeneva, E., Ritter, B., Schneider, N., and Terzhevik, A.: Implementation of the lake-
parameterization scheme FLake into the numerical-weather-prediction model COSMO, Boreal Environ. Res., 15, 218–
230, 2010. 
 
Line 116-117 and 120-125: How to fill the gap by the ERA5 reanalysis dataset was ambiguous. For example, what was 
the deficit rate from 2012 to 2015? Please rewrite this explanation. 
Response: Sorry for missing this information. We first provided a conceptual figure to describe the way of using the 
ERA5 dataset to fill the observations (Figure R2). We used the most straightforward method, which involved checking 
and replacing missing data in observations with ERA5 datasets for each variable, as the two datasets share a similar 
probability distribution in their meteorological variables (Figure S1). Then, we calculated the deficit rate (missing 
length/length of time series) for observations at each lake site from 2012 to 2015. Specifically, 475 time steps (~1.36%) 
of observed surface pressure were found to be lacking in the DPK site during 2012 and 2015; 7959 time steps (~22.71%) 
of all observed variables were missing in the XLS site; 12539 time steps (~35.78%) of all observed variables were 
missing in the PTS site; Observations at the MLW and BFG sites were complete during the study periods. More details 
about using ERA5 datasets in this study were provided in Materials and methodology (Section 2.1, Lines 114-139) and 
Figure S1. 

 
Figure R2: Conceptual diagram for gap filling of the observations by using ERA5 dataset. 

Revision: “The datasets included two parts: (1) hydrometeorological variables observed from the Taihu Lake 
Eddy Flux Network to force and validate the models, and (2) meteorological variables from ERA5 datasets to fill 
the gaps of observations and force the models. Within the network, each site is equipped with an eddy covariance 
system that continuously monitors LE and HE using sonic anemometers and thermometers (Model CSAT3A; Campbell 
Scientific, Logan, UT, USA) positioned 3.5 to 9.4 m above the lake surface. Hydrometeorological variables, including 
air humidity and temperature (Model HMP45D/HMP155A; Vaisala, Helsinki, Finland), wind speed (Model 03002; R.M. 
Young Co., Traverse City, MI, USA), and net radiation components (Model CNR4; Kipp & Zonen, Delft, the 
Netherlands), are also measured. These meteorological variables were used to force lake models while LE, HE and 
LST from observations were used to validate the results of each numerical experiment, on top of which, the 
inferred radiative LST were collected at 30-minute intervals that are publicly accessible via Harvard DataVerse (Lee, 
2004; Zhang et al., 2020; https://doi.org/10.7910/DVN/HEWCWM). The dataset spans from 2012 to 2015 and contains 
several data gaps across these lake sites. Specifically, 475 time steps (~1.36%) of observed surface pressure were 
found missing at the DPK site during 2012 and 2015; 7,959 time steps (~22.71%) of all observed variables were 
missing at the XLS site; 12,539 time steps (~35.78%) of all observed variables were missing at the PTS site. 
Observations at the MLW and BFG sites were complete during the entire study periods. For the model evaluation 
of Taihu-obs experiment, the data gaps of observed variables in these lake sites were directly filled by ERA5 
datasets at the corresponding time steps, which were used to predict lake-atmosphere interactions. In this study, 



observed meteorological variables from the MLW site, an eutrophic lake site that presents the trophic status of 
Lake Taihu (Table 1, Wang et al., 2019), are used to train the Long Short-Term Memory (LSTM)-based surrogates 
(Sect. 2.2); while data from the remaining sites serve to evaluate the generalization of HyLake v1.0 and train the LSTM-
based surrogates. To further address the generalization and transferability of HyLake v1.0 across different forcing 
datasets, this study utilized 8 meteorological variables that obtained from hourly ERA5 datasets from 2012 to 2015, 
with a spatial resolution of 0.25° at a single level to force HyLake v1.0. These datasets, available from the Climate Data 
Store (Hersbach et al., 2020; http://cds.climate.copernicus.eu), include variables such as air temperature, dew point 
temperature, surface pressure, wind speed, and surface net longwave and shortwave radiation, which has similar 
probability distribution to observations across Lake Taihu (Figure S1).The ERA5 datasets are also individually 
used to force FLake and TaihuScene for comparison and predict lake-atmosphere interactions in Lake Taihu, 
providing insights into the model's generalization, transferability and performance using different climatic forcing 
datasets.” (Section 2.1, Lines 114-139) 

“   
Figure S1: The probability density distribution of meteorological variables from observation and ERA5 reanalysis 
datasets in MLW, BFG, DPK, PTS, and XLS site during 2012 to 2015. A normalized RMSE (nRMSE) was assigned 
to assess the error between observation and ERA5 reanalysis datasets.” (Figure S1 in Supplementary Materials) 
 
Line 120-125: In addition to the above comment, when the ERA5 reanalysis gaps the data at the MLW site, is this the 
self-validation? Please clarify. 
Response: The MLW site has complete observations for 2013 and 2015, which DOESN’T require any gap filling with 
ERA5 datasets. We only checked and filled the meteorological variables from observations, including air temperature, 
relative humidity, surface pressure, wind speed, and surface net longwave and shortwave radiation, with ERA5 datasets 
to force HyLake v1.0 and other lake models in DPK, PTS, and XLS sites during the studied period if needed.  
Revision: “In the evaluation of all observations-forced experiments, the data gaps of observed variables in these lake 
sites were directly filled by ERA5 datasets at the corresponding time steps to predict lake-atmosphere interactions.” 
(Section 2.1, Lines 127-129) 
 
Line 345: The legend “HyLake-baseline” will be confusing. I would like to recommend expressing “Baseline”. 
Response: Corrected. 
Revision:  



“  

Figure 2: Comparison of predicted (a) LST, (b) LE and (c) HE by using FLake (red points), Baseline (blue points) 
and HyLake v1.0 (green points) in MLW experiments.” (Figure 5) 
 
Technical comments: 
Line 29: “surface water temperature” will not match the abbreviation of “LST”. Is this “lake surface temperature”? 
Please confirm. 
Response: Thanks. Corrected to “lake surface temperature (LST)”. 
 
Line 110: No need to repeat these abbreviations. 
Response: Corrected. 
Revision: “Within the network, each site is equipped with an eddy covariance system that continuously monitors LE 
and HE using sonic anemometers and thermometers (Model CSAT3A; Campbell Scientific, Logan, UT, USA) 
positioned 3.5 to 9.4 m above the lake surface.” (Lines 116-118) 


