# Short communication: Estimating radiocarbon reservoir effects in Bolivian Amazon freshwater lakes

Asier García-Escárzaga<sup>1,2,3</sup>, Umberto Lombardo<sup>1,2</sup>, Patricia M. Bello-Alonso<sup>4,5</sup>, José M. Capriles<sup>6</sup>, André Colonose<sup>1,2</sup>, Kate Dudgeon<sup>2</sup>, Carlos D. Simoes<sup>7</sup>, Ricardo Fernandes<sup>8,9,10</sup>

- <sup>1</sup>Department of Prehistory, Universitat Autònoma de Barcelona, Bellaterra, Spain.
  - <sup>2</sup>Institute of Environmental Science and Technology (ICTA-UAB), Universitat Autònoma de Barcelona, Bellaterra, Spain.

    <sup>3</sup>Laboratory of Human Evolution-IsoTOPIK Lab, Department of History, Geography and Communication, Faculty of Humanities and Communication, University of Burgos, Spain.
  - <sup>4</sup>GEAAT, Group for Archaeology, Antiquity and Territory Studies (GEAAT), Universidade de Vigo, Campus As Lagoas, Ourense. Spain.
  - <sup>5</sup>TraCEr, Monrepos Archaeological Research Centre and Museum for Human Behavioural Evolution, Leibniz Zentrum für Archäologie (LEIZA), RGZM, Mainz, Germany.
  - <sup>6</sup>Department of Anthropology, The Pennsylvania State University, University Park, PA 16802, USA.
  - <sup>7</sup>Interdisciplinary Center for Archaeology and Evolution of Human Behaviour (ICArEHB), Universidade do Algarve, Faro, Portugal.
  - <sup>8</sup>Max Planck Institute of Geoantropology, Department of Archaeology, Jena, Germany.
  - <sup>9</sup>Department of Bioarchaeology, Faculty of Archaeology, University of Warsaw, Warsaw, Poland.
  - <sup>10</sup>Princeton University, Climate Change and History Research Initiative, Princeton, USA.
  - Correspondence to: Asier García-Escárzaga (asier.garcia@uab.cat) and Ricardo Fernandes (fernandes@gea.mpg.de)
- Abstract. The Llanos de Moxos, in the Bolivian Amazon, preserves a remarkable archaeological record, featuring thousands of forest islands. These anthropogenic sites emerged as a result of activities of the earliest inhabitants of Amazonia during the Early and Middle Holocene. Excavations conducted to date on the forest islands have revealed that many assemblages contain a high number of ancient freshwater snail remains. In these shell middens, the most represented mollusc taxon, and in most cases the sole one, is *Pomacea* spp., a genus that inhabits inland shallow lakes and wetlands. Although human burials and faunal remains are typically recovered from these sites, their collagen is often not preserved or is of poor quality, and shell carbonates from *Pomacea* shells, along with carbonised plant remains, are often used for <sup>14</sup>C measurements. However, it remains undetermined if these measurements are subject to radiocarbon reservoir effect (RRE). To determine if a freshwater RRE could affect the age estimations of Amazonian archaeological and other paleoecological deposits, we collected modern coeval *Pomacea* shells and tree leaves from four locations across the Llanos de Moxos area for AMS radiocarbon dating. The radiocarbon results combined with the environmental history of Llanos de Moxos during the Holocene, do not reveal any significant RREs, and support the continued use of freshwater molluscs as viable material for radiocarbon dating in the region.

### 1 Introduction

Although archaeological research on the earliest human occupations in South America had traditionally prioritised coastal environments (Armesto et al., 2010; Bueno et al., 2013), recent studies have increasingly provided evidence that these

35 populations expanded into the central regions of the continent during the Early Holocene (Lombardo et al., 2013, 2020). Archaeological research conducted in the Llanos de Moxos, a seasonally inundated tropical savannah in the Bolivian Amazon (Fig. 1A-B), has revealed that pre-Columbian communities formed artificial mounds known as forest islands since the Early Holocene (Lombardo et al., 2013). These were small forested earthen mounds for which <sup>14</sup>C radiocarbon dates constrain human occupation from approximately 11 ka to 2 ka cal BP (Capriles et al., 2019; Lombardo et al., 2020). Some of these forest islands are composed of shell midden stratigraphic deposits, although not exclusively, and contain a heterogeneous assemblage of archaeological remains (Capriles et al., 2019). Among them, the most common are mollusc shells of the *Pomacea* genus (Perry, 1810) (Fig. 1C). These were collected by past Amazon populations from freshwater bodies (shallow lakes and wetlands) unrelated to carbonate dissolution processes occurred in shell middens. Human burials are also frequently found in these sites, along with animal bones and ceramic remains, which are helpful particularly for building relative chronologies. Other evidence, such as wood charcoal or carbonised seeds, may also be encountered at the forest islands, but can be rare in many depositional contexts (Capriles, 2023; Capriles et al., 2019; Lombardo et al., 2013).

The poor preservation of bone collagen (Capriles et al., 2019), along with challenges in dating bioapatite in tropical environments including the difficulties of removing contaminants and diagenesis involving isotopic exchange of dissolved carbon from shells (Cherkinsky, 2009; Fernandes et al., 2013b; Inomata et al., 2022; Zazzo and Saliège, 2011), complicates the radiocarbon dating of bones. Moreover, extensive archaeological excavations are resource-intensive, and much of the available dating evidence comes from coring and auger soil sampling. This methodological limitation significantly restricts the availability of suitable datable materials, except for *Pomacea* remains, which are abundant, particularly easy to identify and are relatively well preserved. This frequently makes the shells the most viable option for radiocarbon dating of human activities in southwestern Amazonia and other tropical settings (Lombardo et al., 2013). However, as observed in marine mollusc shells, freshwater specimens may yield radiocarbon ages older than those from coeval terrestrial organic materials (Alves et al., 2025; Culleton, 2006; Fernandes et al., 2012, 2013a; Geyh et al., 1997; Inomata et al., 2022; Philippsen, 2013). This <sup>14</sup>C offset results from the presence of <sup>14</sup>C depleted carbon in water when compared to the contemporaneous atmosphere. This carbon is assimilated by molluscs and incorporated into their shell carbonate structure (Fernandes and Dreves, 2017). Such radiocarbon reservoir effects (RRE) in lacustrine systems, also known as freshwater reservoir effects (FRE), are driven by multiple factors. Of particular relevance in our study, is the influx of water enriched with dissolved ancient carbonates (also knowns as hard-water), transported to lakes via groundwater and runoff (Yu et al., 2007) and carbon contributions from old organic matter (Fernandes et al., 2012, 2013a). Therefore, determining the magnitude of RREs across time is crucial for the accurate calibration of radiocarbon dates from subfossil shells.

55

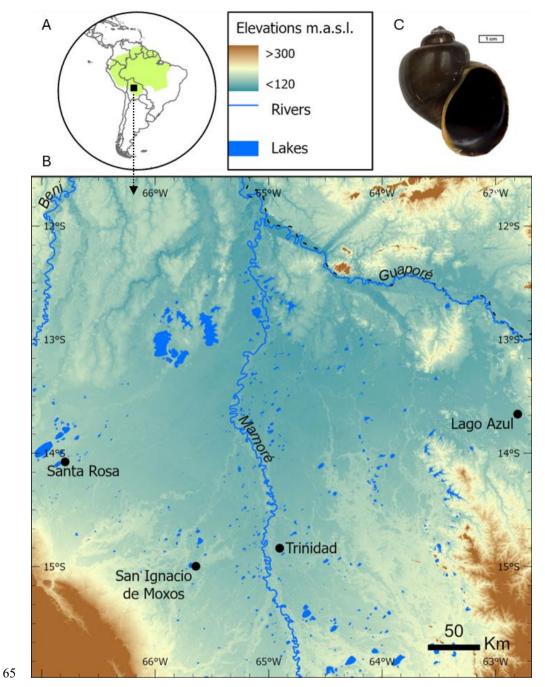



Figure 1: A) Location of the study area in South America. B) Llanos de Moxos in the Bolivian Amazon and the four lakes from which samples were collected. C) A modern specimen of the freshwater *Pomacea* genus from Lago Azul. Maps were created by UL using ArcGIS software, and the photograph of the *Pomacea* shell was taken by AGE.

Llanos de Moxos is a noncalcareous region and the river catchment basin in the Andes drains almost exclusively through siliciclastic rock (Gómez Tapias et al., 2019). This has led to a widespread practice of radiocarbon dating lake sediments palaeosols and shells from the Bolivian Amazon without RRE corrections (Carson et al., 2014; Lombardo et al., 2013, 2018; Whitney et al., 2014). However, RREs may originate also from oxidation of old organic matter (Fernandes et al., 2012, 2013a, 2016). Thus, testing for an absence of freshwater RREs in the Bolivian Amazon remains necessary. Here, we report nine accelerator mass spectrometry (AMS) radiocarbon dates from *in vivo* collections of *Pomacea* shells and coeval terrestrial plant samples from four different locations across the Llanos de Moxos area.

### 2 Material and methods

The freshwater golden apple snail genus *Pomacea* (Fig. 1C) is native to South America and has rapidly spread worldwide (Céspedes et al., 2024; Hayes et al., 2008; Seuffert and Martín, 2024). Apple snails of the *Pomacea* genus are part of the *Ampullariidae* family, which includes the largest freshwater snails, reaching up to 17 cm in length (Azmi et al., 2022). Previous research on this genus showed that it has high growth rates, which are primarily dependent of temperature and mollusc ontogeny (Seuffert and Martín, 2013; Sutton et al., 2017). *Pomacea* specimens are primarily macrophytophagous, thus preferring floating or submersed plants over emergent ones, although some species, such as *P. canaliculata* also feed on animal matter (Estebenet and Martín, 2002).

85

90

In this study, modern *Pomacea* spp. specimens were collected alive from four freshwater continental systems located across the Llanos de Moxos region (Fig. 1B). The molluscs were immediately sacrificed to prevent additional calcium carbonate deposition. This was done by immersion in boiling water for up to three minutes, which facilitated the removal of the edible portion of the mollusc. We obtained a sample from the shell edge (or lip), which represents the most recent shell growth, in order to analyse the carbonate deposited during the last few weeks or months prior to collection. The shell periostracum was manually removed using a dental microdrill equipped with a 1 mm tungsten bit. Additionally, tree leaves of terrestrial trees, which are replaced in less than one year, were collected near where molluscs were collected and at the same time. This allows for a comparison of coeval <sup>14</sup>C values for the atmosphere and precipitated shell carbonate.

A total of five mollusc shells and four tree leaves were subject to sample pre-treatment, combustion, and graphitization at the CIRAM laboratory (Martillac, France) while AMS measurements were carried out at BARNAS mass spectrometry (Vilnius, Lithuania). To remove surface contamination, mollusc shells were treated with hydrochloric acid (HCl, 1M) at room temperature. Plant leaves were placed in HCl (1M) at 80 °C for one hour and then treated with sodium hydroxide (NaOH, 0.1M) at room temperature for 10 minutes. Subsequently, they were placed again in HCl (1M) at 80 °C to remove absorbed atmospheric CO<sub>2</sub>. Following chemical pre-treatments, both shell and leaf samples (weights ranging from 3.5 and 15.4 mg) were combusted at 920 °C using an elemental analyser (EA) (Elementar, Vario ISOTOPE Select) at the CIRAM laboratory.

Samples were weighted into tin capsules and combusted in the EA using oxygen mixed with helium carrier gas (O<sub>2</sub> dosing time: 100 seconds). The carbonates were combusted following a similar procedure, but these were ground into powder before being weighted into tin capsules and subject to a longer combustion time (O<sub>2</sub> dosing time: 120 seconds). The CO<sub>2</sub> emerging from the EA was split with c. 90% of this captured by a zeolite trap in an Automated Graphitization Equipment (AGE) (IonPlus AG, AGE 3) and underwent catalytic conversion into graphite, using the hydrogen reduction method based on Vogel et al. (1984).

Radiocarbon content of both shell and leaf samples was measured using a 50 kV accelerator mass spectrometer Low-Energy Accelerator (LEA, IonPlus AG) at the BARNAS laboratory. Corrections for isotopic fractionation were applied following Stuiver and Polach (1977), based on the comparison of <sup>13</sup>C/<sup>12</sup>C and <sup>14</sup>C/<sup>12</sup>C AMS measurements. The analytical precision of the Fraction Modern (F<sup>14</sup>C), which expresses <sup>14</sup>C concentration normalised to the standard <sup>14</sup>C atmospheric level in 1950 (Reimer et al., 2004) is reported here at 1σ. Measurements of stable carbon isotope ratios for leaf and shell samples were carried out at the CIRAM laboratory using c. 10% of the EA produced CO<sub>2</sub> (see previous paragraph) which flowed into a coupled isotope ratio mass spectrometry (IRMS) (Elementar, isoprime precisION). Raw isotope data were normalised against international standards (caffein USGS61 [δ<sup>13</sup>C = -35.05±0.04% VPDB, Schimmelmann et al., 2016] and glucose BCR-657 [δ<sup>13</sup>C = -10.76±0.04% VPDB, European Commission certificate EUR 20064 EN]) and δ<sup>13</sup>C results expressed in per mil (‰) relative to the VPDB (Vienna Pee Dee Belemnite) standard.

## 3 Results and discussion

105

110

115

120 The radiocarbon activity of modern *Pomacea* shells, collected in vivo from four lakes, ranged from 1.0001±0.0037 to 1.0303±0.0036 F<sup>14</sup>C, while the terrestrial leaves from neighbouring locations ranged from 1.0018±0.0037 to 1.0155±0.0036 F<sup>14</sup>C (Table 1). Significant differences in F<sup>14</sup>C values for terrestrial plant samples collected in 2023 and 2024 partly reflect the decline in atmospheric <sup>14</sup>C levels following nuclear weapons testing during the 1950s-1960s (Hua et al., 2022). No statistically significant differences were observed between the F<sup>14</sup>C values obtained from coeval lacustrine and terrestrial samples, except 125 for molluse LA.1 (Table 1). This specimen exhibited a radiocarbon activity higher than that the reference terrestrial leaf LA.2 and shell LA.3 retrieved from the same lake. The F14C values for LA.2 and LA.3 were not statistically different (Table 1). The reason for the discrepancy observed for LA.1 is presently indetermined. Although the results could arise statistically (F<sup>14</sup>C values for LA.1 and LA.2 overlap at a 3-sigma range) we cannot fully exclude local variations in <sup>14</sup>C carbon sources available to the two molluscs or  $^{14}$ C differences arising from differences in mollusc carbon metabolism. The higher  $\delta^{13}$ C value in LA.3, when compared to LA.1, may be related to a higher incorporation of carbon sourced from organic matter by LA.1 (mollusc 130 shell LA.1 also showed the lowest  $\delta^{13}$ C value of all shell samples) (Fernandes and Dreves, 2017). In this case, carbon from older organic matter present at the lake would have to have a higher F14C value than inorganic carbon resulting from the incorporation of a bomb signal.

| Collection site         | Collection date | ID Code | Lab Code    | Material  | F <sup>14</sup> C | χ2 test results<br>df = 1 (5%, 3.8) | δ <sup>13</sup> C (‰)<br>(by IRMS) |
|-------------------------|-----------------|---------|-------------|-----------|-------------------|-------------------------------------|------------------------------------|
| Trinidad                | Autumn 2023     | CHU.100 | CIRAM-8348  | Shell     | 1.0154±0.0036     | T = 0.8                             | -7.8                               |
|                         |                 | CHU.101 | CIRAM-8349  | Tree leaf | 1.0108±0.0035     |                                     | -32.4                              |
| Lago Azul               | Autumn 2023     | LA.1    | CIRAM-10931 | Shell     | 1.0303±0.0036     | T = 8.5                             | -17.5                              |
|                         |                 | LA.3    | CIRAM-13341 | Shell     | 1.0137±0.0035     | T = 0.1                             | -14.6                              |
|                         |                 | LA.2    | CIRAM-10932 | Tree leaf | 1.0155±0.0036     |                                     | -30.2                              |
| San Ignacio             | Autumn 2024     | SI.1    | CIRAM-12310 | Shell     | 1.0001±0.0037     | T = 0.0                             | -14.9                              |
|                         |                 | SI.2    | CIRAM-12311 | Tree leaf | 1.0004±0.0034     |                                     | -29.6                              |
| Santa Rosa de<br>Yacuma | Autumn 2024     | SRO.100 | CIRAM-12312 | Shell     | 1.0024±0.0034     | T = 0.0                             | -14.1                              |
|                         |                 | SRO.101 | CIRAM-12313 | Tree leaf | 1.0018±0.0035     |                                     | -32.4                              |

Table 1: Radiocarbon and stable isotope results for modern mollusc and plant samples measured using AMS and IRMS, respectively. Chi-square tests compare mollusc radiocarbon results with paired plant samples.

135

140

145

150

155

Our results are overall consistent with the hypothesis that no significant RRE is expected for modern freshwater *Pomacea* shells within the Bolivian Amazon. However, we must also consider potential temporal variations in RRE values, as a result of climate change, hydrological dynamics, and human impacts (Geyh et al., 1997; Philippsen, 2013). Variations in lake sediment sodium bicarbonate have been linked to evaporation rates (Geyh et al., 1997). However, the absence of carbonate sources in investigated lakes and climatic stability observed for Llanos de Moxos via palaeoecological records likely exclude climate as a potential source for RRE temporal variations (Brugger et al., 2016; Mayle et al., 2000). RREs may also reflect geothermal activity (Ascough et al., 2010), which has not been reported for Llanos de Moxos. Fluvial dynamics in Llanos de Moxos did change significantly during the Holocene, particularly between 4 ka and 2 ka cal BP, when heightened river activity is recorded (Lombardo et al., 2018). Nevertheless, the Bolivian lowlands and their river catchment areas, with the exception of a carbonate outcrop in the region of Torotoro (Apaéstegui et al., 2018) within the catchment of the Rio Grande river, are mostly devoid of limestone rocks. This allows us to suggest that changes in hydrological dynamics are unlikely to have impacted temporal variations in RRE values for most of the Llanos de Moxos. As for the Rio Grande river, it deposits its sediments in the Santa Cruz region, where its discharge is significantly reduced as water flows underground (Lombardo, 2016). Rio Grande feeds into the Mamoré river, south of the Llanos de Moxos. However, until approximately 4,000 years ago, the Rio Grande flowed northward, depositing a large sedimentary lobe in southern Llanos de Moxos and likely contributed significantly to sediments that now cover the northeastern part of the region (Lombardo, 2014; Lombardo et al., 2012). Although the carbonate section of the Rio Grande catchment is extremely small compared with non-carbonate rocks, we cannot fully exclude a negligible RRE value in shells dating older than 4,000 years in the eastern part of the Llanos de Moxos.

Humans have impacted the landscapes within our study region to some extent and could have, in theory, locally influenced RRE values. Different studies show that pre-Columbian populations actively managed their surroundings; modifying hydrological conditions to retain water longer into the dry season or drain water more effectively during the wet season (Lombardo et al., 2025), increasing fire activity (Brugger et al., 2016; Duncan et al., 2021), and constructing geometric earthworks (Carson et al., 2014), among others landscape modifications. However, these human activities primarily took place during the Late Holocene (Erickson, 2000; de Souza et al., 2018; Whitney et al., 2013), following the formation of forest island shell middens, suggesting that their impact during the Early and Middle Holocene, if any, was minimal. Regarding the Late Holocene, these pre-Columbian earthworks influenced the runoff of rain waters, either by speeding up the drainage or via water retention, on clayish and impermeable soils, with little to no exchange with underground water, as attested by the oxidative patterns of the subsoil (Lombardo et al., 2015). We therefore exclude a notable impact of pre-Columbian human activities on RREs.

In conclusion, while our sample size is still relatively modest, our radiocarbon results, together with an assessment of the stability of the conditions impacting RRE values, are consistent with the hypothesis that there is an absence of significant freshwater RREs in the Llanos de Moxos area. This adds support for the reliability of existing radiocarbon chronologies based on <sup>14</sup>C measurements from *Pomacea* shells and incentivises wider use of freshwater molluses in future radiocarbon dating projects. Nevertheless, evaluating potential reservoir effects using archaeological indicators should still be considered in further studies, for example by analysing paired shell carbonates and carbonised plant remains, or other materials of well-constrained chronological age (e.g., Alves et al., 2025). We also note that our results are based on modern molluse shells. Ancient shells deposited in soils could be subject to diagenetic processes that may produce erroneous radiocarbon results. Thus, radiocarbon dating of ancient molluse shells requires the application of appropriate pre-screening protocols to assess shell preservation and of pre-treatment protocols to remove contaminant carbon (Douka et al., 2010).

## 180 Author contribution

160

165

AGE and UL designed the experiment. AGE, UL, KD, and CDS collected the samples radiocarbon dated in this experiment. PMBA and AC provided scientific support. RF verified the results, experiments, and other research outputs. AGE prepared the manuscript with contributions from UL, JMC, and RF. All co-authors have reviewed and edited the final version of the manuscript.

### 185 Acknowledgements

We would like to thank Maicol Apomaita for collecting the modern mollusc shells used for radiocarbon dating in this research and to Juan Pablo Llapiz for his invaluable support during our stay at Lago Azul.

## **Funding sources**

This research was carried out as part of the I+D+i project code PID2022-138350OA-I00, which has been funded by 190 MICIU/AEI/10.13039/501100011033 and by ERDF/EU. This work was also supported by the ERC Consolidator project DEMODRIVERS funded by the European Research Council (ERC) (ID: 101043738; doi: 10.3030/101043738). During the development of this research AGE was funded by European Commission through a Marie Skłodowska Curie Action (NEARCOAST. https://doi.org/10.3030/101064225) and he currently funded MICIU/AEI/10.13039/501100011033 and by ESF+ through a Ramón v Caial Fellowship (RYC2023-044279-I). PBA is 195 currently supported by Post-Doc Xunta de Galicia Grant (ID: ED481B-2022/079). This work also contributes to the ICTA-UAB "María de Maeztu" Programme for Units of Excellence of the Spanish Ministry of Science, Innovation and Universities (CEX2024-001506-M) and to the EarlyFoods project, which has received funding from the Agència de Gestió d'Ajuts Universitaris i de Recerca de Catalunya (SGR-Cat-2021, 00527). Finally, we also thank the anonymous reviewers and editor for their insightful comments and constructive suggestions, which significantly improved the quality and clarity of this 200 manuscript.

#### References

- Alves, E. Q., Guédron, S., Delaere, C., Boudin, M., Chevalier, A., van den Brande, T., Ligovich, G., Souza, R., Eeckhout, P., and Macario, K.: Updated multi-method estimates of Lake Titicaca's radiocarbon reservoir offset, Quat. Sci. Rev., 366, 109463, https://doi.org/10.1016/j.quascirev.2025.109463, 2025.
- Apaéstegui, J., Cruz, F. W., Vuille, M., Fohlmeister, J., Espinoza, J. C., Sifeddine, A., Strikis, N., Guyot, J. L., Ventura, R., Cheng, H., and Edwards, R. L.: Precipitation changes over the eastern Bolivian Andes inferred from speleothem (δ¹8O) records for the last 1400 years, Earth Planet. Sci. Lett., 494, 124–134, https://doi.org/10.1016/j.epsl.2018.04.048, 2018.
- Armesto, J. J., Manuschevich, D., Mora, A., Smith-Ramirez, C., Rozzi, R., Abarzúa, A. M., and Marquet, P. A.: From the Holocene to the Anthropocene: A historical framework for land cover change in southwestern South America in the past 15,000 years, Land Use Policy, 27, 148–160, https://doi.org/10.1016/j.landusepol.2009.07.006, 2010.
  - Ascough, P. L., Cook, G. T., Church, M. J., Dunbar, E., Einarsson, Á., McGovern, T. H., Dugmore, A. J., Perdikaris, S., Hastie, H., Friðriksson, A., and Gestsdóttir, H.: Temporal and spatial variations in freshwater 14C reservoir effects: Lake Mývatn, northern Iceland, Radiocarbon, 52, 1098–1112, https://doi.org/10.1017/s003382220004618x, 2010.
- Azmi, W. A., Khoo, S. C., Ng, L. C., Baharuddin, N., Aziz, A. A., and Ma, N. L.: The current trend in biological control approaches in the mitigation of golden apple snail Pomacea spp, Biol. Control, 175, 105060, https://doi.org/10.1016/j.biocontrol.2022.105060, 2022.
- Brugger, S. O., Gobet, E., van Leeuwen, J. F. N., Ledru, M.-P., Colombaroli, D., van der Knaap, W. O., Lombardo, U., Escobar-Torrez, K., Finsinger, W., Rodrigues, L., Giesche, A., Zarate, M., Veit, H., and Tinner, W.: Long-term man–environment interactions in the Bolivian Amazon: 8000 years of vegetation dynamics, Quat. Sci. Rev., 132, 114–128, https://doi.org/10.1016/j.quascirev.2015.11.001, 2016.
  - Bueno, L., Dias, A. S., and Steele, J.: The Late Pleistocene/Early Holocene archaeological record in Brazil: A geo-referenced database, Quat. Int., 301, 74–93, https://doi.org/10.1016/j.quaint.2013.03.042, 2013.
  - Capriles, J. M.: The Bolivian radiocarbon database: A countrywide compilation of radiocarbon dates, J. Open Archaeol. Data, 11, https://doi.org/10.5334/joad.104, 2023.
- Capriles, J. M., Lombardo, U., Maley, B., Zuna, C., Veit, H., and Kennett, D. J.: Persistent Early to Middle Holocene tropical foraging in southwestern Amazonia, Sci. Adv., 5, eaav5449, https://doi.org/10.1126/sciadv.aav5449, 2019.

- Carson, J. F., Whitney, B. S., Mayle, F. E., Iriarte, J., Prümers, H., Soto, J. D., and Watling, J.: Environmental impact of geometric earthwork construction in pre-Columbian Amazonia, Proc. Natl. Acad. Sci. U. S. A., 111, 10497–10502, https://doi.org/10.1073/pnas.1321770111, 2014.
- Céspedes, V., Bernardo-Madrid, R., Picazo, F., Vilà, M., Rubio, C., García, M., Sanz, I., and Gallardo, B.: Massive decline of invasive apple snail populations after blue crab invasion in the Ebro River, Spain, Biol. Invasions, 26, 2387–2395, https://doi.org/10.1007/s10530-024-03334-1, 2024.
  - Cherkinsky, A.: Can we get a good radiocarbon age from "bad bone"? Determining the reliability of radiocarbon age from bioapatite, Radiocarbon, 51, 647–655, https://doi.org/10.1017/s0033822200055995, 2009.
- Culleton, B. J.: Implications of a freshwater radiocarbon reservoir correction for the timing of late Holocene settlement of the Elk Hills, Kern County, California, J. Archaeol. Sci., 33, 1331–1339, https://doi.org/10.1016/j.jas.2006.01.013, 2006.
  - Douka, K., Higham, T. G. F., and Hedges, R. E. M.: Radiocarbon dating of shell carbonates: old problems and new solution, Munibe Suplemento, 31, 18–27, 2010.
- Duncan, N. A., Loughlin, N. J. D., Walker, J. H., Hocking, E. P., and Whitney, B. S.: Pre-Columbian fire management and control of climate-driven floodwaters over 3,500 years in southwestern Amazonia, Proc. Natl. Acad. Sci. U. S. A., 118, e2022206118, https://doi.org/10.1073/pnas.2022206118, 2021.
  - Erickson, C. L.: An artificial landscape-scale fishery in the Bolivian Amazon, Nature, 408, 190–193, https://doi.org/10.1038/35041555, 2000.
- Estebenet, A. L. and Martín, P. R.: Pomacea canaliculata (Gastropoda: Ampullariidae): life-history traits and their plasticity, Biocell, 26, 83–89, 2002.
  - Fernandes, R. and Dreves, A.: Bivalves and radiocarbon, in: Molluscs in Archaeology: Methods, Approaches and Applications, edited by: Allen, M. J., Oxbow Books, Oxford, 364–380, 2017.
- Fernandes, R., Bergemann, S., Hartz, S., Grootes, P. M., Nadeau, M.-J., Melzner, F., Rakowski, A., and Hüls, M.: Mussels with meat: Bivalve tissue-shell radiocarbon age differences and archaeological implications, Radiocarbon, 54, 953–965, https://doi.org/10.1017/s0033822200047597, 2012.
  - Fernandes, R., Dreves, A., Nadeau, M.-J., and Grootes, P. M.: A freshwater lake saga: Carbon routing within the aquatic food web of Lake Schwerin, Radiocarbon, 55, 1102–1113, https://doi.org/10.1017/s0033822200048013, 2013a.
- Fernandes, R., Hüls, M., Nadeau, M.-J., Grootes, P. M., Garbe-Schönberg, C.-D., Hollund, H. I., Lotnyk, A., and Kienle, L.: Assessing screening criteria for the radiocarbon dating of bone mineral, Nucl. Instrum. Methods Phys. Res. B, 294, 226–232, https://doi.org/10.1016/j.nimb.2012.03.032, 2013b.
  - Fernandes, R., Rinne, C., Nadeau, M.-J., and Grootes, P.: Towards the use of radiocarbon as a dietary proxy: Establishing a first wide-ranging radiocarbon reservoir effects baseline for Germany, Environ. Archaeol., 21, 285–294, https://doi.org/10.1179/1749631414y.0000000034, 2016.
- Geyh, M. A., Schotterer, U., and Grosjean, M.: Temporal changes of the <sup>14</sup>C reservoir effect in lakes, Radiocarbon, 40, 921–931, https://doi.org/10.1017/s0033822200018890, 1997.
  - Gómez Tapias, J., Montes Ramírez, N. E., and Schobbenhaus, C.: Geological Map of South America 2019. Scale 1:5 000 000, Commission for the Geological Map of the World (CGMW), Colombian Geological Survey, and Geological Survey of Brazil, Paris, https://doi.org/10.32685/10.143.2019.929, 2019.

- Hayes, K. A., Joshi, R. C., Thiengo, S. C., and Cowie, R. H.: Out of South America: multiple origins of non-native apple snails in Asia, Divers. Distrib., 14, 701–712, https://doi.org/10.1111/j.1472-4642.2008.00483.x, 2008.
  - Hua, Q., Turnbull, J. C., Santos, G. M., Rakowski, A. Z., Ancapichún, S., De Pol-Holz, R., Hammer, S., Lehman, S. J., Levin, I., Miller, J. B., Palmer, J. G., and Turney, C. S. M.: Atmospheric radiocarbon for the period 1950–2019, Radiocarbon, 64, 723–745, https://doi.org/10.1017/rdc.2021.95, 2022.
- Inomata, T., Sharpe, A., Palomo, J. M., Pinzón, F., Nasu, H., Triadan, D., Culleton, B. J., and Kennett, D. J.: Radiocarbon dates of burials from Ceibal and other Pasión Maya sites, Guatemala, and the examination of freshwater reservoir effect through diet reconstruction, J. Archaeol. Sci. Rep., 44, 103506, https://doi.org/10.1016/j.jasrep.2022.103506, 2022.
  - Lombardo, U.: Neotectonics, flooding patterns and landscape evolution in southern Amazonia, Earth Surf. Dyn., 2, 493–511, https://doi.org/10.5194/esurf-2-493-2014, 2014.
- Lombardo, U.: Alluvial plain dynamics in the southern Amazonian foreland basin, Earth Syst. Dyn., 7, 453–467, https://doi.org/10.5194/esd-7-453-2016, 2016.
  - Lombardo, U., May, J.-H., and Veit, H.: Mid- to late-Holocene fluvial activity behind pre-Columbian social complexity in the southwestern Amazon basin, Holocene, 22, 1035–1045, https://doi.org/10.1177/0959683612437872, 2012.
- Lombardo, U., Szabo, K., Capriles, J. M., May, J.-H., Amelung, W., Hutterer, R., Lehndorff, E., Plotzki, A., and Veit, H.: Early and middle holocene hunter-gatherer occupations in western Amazonia: the hidden shell middens, PLoS One, 8, e72746, https://doi.org/10.1371/journal.pone.0072746, 2013.
  - Lombardo, U., Denier, S., and Veit, H.: Soil properties and pre-Columbian settlement patterns in the Monumental Mounds Region of the Llanos de Moxos, Bolivian Amazon, SOIL, 1, 65–81, https://doi.org/10.5194/soil-1-65-2015, 2015.
- Lombardo, U., Rodrigues, L., and Veit, H.: Alluvial plain dynamics and human occupation in SW Amazonia during the Holocene: A paleosol-based reconstruction, Quat. Sci. Rev., 180, 30–41, https://doi.org/10.1016/j.quascirev.2017.11.026, 2018.
  - Lombardo, U., Iriarte, J., Hilbert, L., Ruiz-Pérez, J., Capriles, J. M., and Veit, H.: Early Holocene crop cultivation and landscape modification in Amazonia, Nature, 581, 190–193, https://doi.org/10.1038/s41586-020-2162-7, 2020.
- Lombardo, U., Hilbert, L., Bentley, M., Bronk Ramsey, C., Dudgeon, K., Gaitan-Roca, A., Iriarte, J., Mejía Ramón, A. G., Quezada, S., Raczka, M., Watling, J. G., Neves, E., and Mayle, F.: Maize monoculture supported pre-Columbian urbanism in southwestern Amazonia, Nature, 639, 119–123, https://doi.org/10.1038/s41586-024-08473-y, 2025.
  - Mayle, F. E., Burbridge, R., and Killeen, T. J.: Millennial-scale dynamics of southern Amazonian rain forests, Science, 290, 2291–2294, https://doi.org/10.1126/science.290.5500.2291, 2000.
  - Philippsen, B.: The freshwater reservoir effect in radiocarbon dating, Herit. Sci., 1, 24, https://doi.org/10.1186/2050-7445-1-24, 2013.
- Reimer, P. J., Brown, T. A., and Reimer, R. W.: Discussion: Reporting and calibration of post-bomb 14C data, Radiocarbon, 46, 1299–1304, https://doi.org/10.1017/s0033822200033154, 2004.
- Schimmelmann, A., Qi, H., Coplen, T. B., Brand, W. A., Fong, J., Meier-Augenstein, W., Kemp, H. F., Toman, B., Ackermann, A., Assonov, S., Aerts-Bijma, A. T., Brejcha, R., Chikaraishi, Y., Darwish, T., Elsner, M., Gehre, M., Geilmann, H., Gröning, M., Hélie, J.-F., Herrero-Martín, S., Meijer, H. A. J., Sauer, P. E., Sessions, A. L., and Werner, R. A.: Organic reference materials for hydrogen, carbon, and nitrogen stable isotope-ratio measurements: Caffeines, n-alkanes, fatty acid methyl esters,

- glycines, L-valines, polyethylenes, and oils, Anal. Chem., 88, 4294–4302, https://doi.org/10.1021/acs.analchem.5b04392, 2016.
- Seuffert, M. E. and Martín, P. R.: Juvenile growth and survival of the apple snail Pomacea canaliculata (Caenogastropoda: Ampullariidae) reared at different constant temperatures, Springerplus, 2, 312, https://doi.org/10.1186/2193-1801-2-312, 305 2013.
  - Seuffert, M. E. and Martín, P. R.: Global distribution of the invasive apple snail Pomacea canaliculata: analyzing possible shifts in climatic niche between native and invaded ranges and future spread, Aquat. Sci., 86, https://doi.org/10.1007/s00027-023-01036-9, 2024.
- de Souza, J. G., Schaan, D. P., Robinson, M., Barbosa, A. D., Aragão, L. E. O. C., Marimon, B. H., Jr, Marimon, B. S., da Silva, I. B., Khan, S. S., Nakahara, F. R., and Iriarte, J.: Pre-Columbian earth-builders settled along the entire southern rim of the Amazon, Nat. Commun., 9, 1125, https://doi.org/10.1038/s41467-018-03510-7, 2018.
  - Stuiver, M. and Polach, H. A.: Discussion reporting of 14C data, Radiocarbon, 19, 355–363, https://doi.org/10.1017/s0033822200003672, 1977.
- Sutton, K. L., Zhao, L., and Carter, J.: The estimation of growth dynamics for Pomacea maculata from hatchling to adult, Ecosphere, 8, e01840, https://doi.org/10.1002/ecs2.1840, 2017.
  - Vogel, J. S., Southon, J. R., Nelson, D. E., and Brown, T. A.: Performance of catalytically condensed carbon for use in accelerator mass spectrometry, Nucl. Instrum. Methods Phys. Res. B, 5, 289–293, https://doi.org/10.1016/0168-583x(84)90529-9, 1984.
- Whitney, B. S., Dickau, R., Mayle, F. E., Soto, J. D., and Iriarte, J.: Pre-Columbian landscape impact and agriculture in the 320 Monumental Mound region of the *Llanos de Moxos*, lowland Bolivia, Quat. Res., 80, 207–217, https://doi.org/10.1016/j.yqres.2013.06.005, 2013.
  - Whitney, B. S., Dickau, R., Mayle, F. E., Walker, J. H., Soto, J. D., and Iriarte, J.: Pre-Columbian raised-field agriculture and land use in the Bolivian Amazon, Holocene, 24, 231–241, https://doi.org/10.1177/0959683613517401, 2014.
- Yu, S.-Y., Shen, J., and Colman, S. M.: Modeling the radiocarbon reservoir effect in lacustrine systems, Radiocarbon, 49, 1241–1254, https://doi.org/10.1017/s0033822200043150, 2007.
  - Zazzo, A. and Saliège, J.-F.: Radiocarbon dating of biological apatites: A review, Palaeogeogr. Palaeoclimatol. Palaeoecol., 310, 52–61, https://doi.org/10.1016/j.palaeo.2010.12.004, 2011.