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Abstract. Because of the computational costs of computing storm surges with hydrodynamic models, projections of changes

in extreme storm surges are often based on small ensembles of climate model simulations. This may be resolved by using data-

driven storm-surge models instead, which are computationally much cheaper to apply than hydrodynamic models. However, the

potential performance of data-driven models at predicting extreme storm surges, which are underrepresented in observations,

is unclear because previous studies did not train their models to specifically predict the extremes. Here, we investigate the5

performance of neural networks at predicting extreme storm surges at 9 tide-gauge stations in Europe when trained with a

cost-sensitive learning approach based on the density of the observed storm surges. We find that density-based weighting

improves both the error and timing of predictions of exceedances of the 99th percentile made with Long-Short-Term-Memory

(LSTM) models, with the optimal degree of weighting depending on the location. At most locations, the performance of the

neural networks also improves by exploiting spatiotemporal patterns in the input data with a convolutional LSTM (ConvLSTM)10

layer. The neural networks generally outperform an existing multi-linear regression model, and at the majority of locations,

the performance of especially the ConvLSTM models approximates that of the hydrodynamic Global Tide and Surge Model.

While the neural networks still predominantly underestimate the highest extreme storm surges, we conclude that addressing

the imbalance in the training data through density-based weighting helps to improve the performance of neural networks at

predicting the extremes and forms a step forward towards their use for climate projections.15



1 Introduction

Through strong winds and low atmospheric pressure, storms can cause abnormally high coastal water levels called storm

surges. In Europe and elsewhere, storm surges have led to numerous coastal floods, some resulting in many casualties and

substantial socioeconomic losses (Paprotny et al., 2018). Due to climate change, the frequency and height of extreme sea levels

are expected to increase globally, primarily due to sea-level rise (Hermans et al., 2023; Jevrejeva et al., 2023; Vousdoukas et al.,20

2018). Although likely to a smaller extent, extreme sea levels may also change due to changes in atmospheric conditions driving

storm surges (Muis et al., 2020; Vousdoukas et al., 2018; Muis et al., 2023; Shimura et al., 2022). However, projections of

atmospherically driven changes in extreme storm surges are typically based on small ensembles of climate model simulations.

Consequently, the uncertainties of these projections due to differences between climate models and internal climate variability

are large (Muis et al., 2023; Hermans et al., 2024)25

An important reason why projections of extreme storm surges are often based on only a few climate model simulations is that

global climate models do not simulate storm surges reliably, if at all. Instead, the atmospheric changes simulated by climate

models need to be translated to changes in storm surges with another model. Typically, computationally expensive, high-

resolution hydrodynamic models are used for this (e.g. Muis et al., 2020; Vousdoukas et al., 2018; Muis et al., 2023; Shimura

et al., 2022). However, data-driven storm-surge models based on regression, gradient boosting, neural networks and other30

machine learning techniques are emerging (see Qin et al., 2023, for a review) that, once trained, may be used as computationally

cheaper alternatives to hydrodynamic models to translate climate model simulations to changes in storm surges.

So far, data-driven storm-surge models have primarily been used to predict short time series of local water levels or peak

heights during specific events, using the characteristics of tropical cyclones traveling over the region as predictors (Ayyad et al.,

2022; Lockwood et al., 2022; Ramos-Valle et al., 2021; Ian et al., 2023; Sun and Pan, 2023; Naeini and Snaiki, 2024, among35

others). Other studies have applied data-driven models to gridded atmospheric reanalysis data to reconstruct continuous time

series of storm surges (Tausia et al., 2023; Cid et al., 2018, 2017; Tiggeloven et al., 2021; Bruneau et al., 2020; Tadesse et al.,

2020; Tadesse and Wahl, 2021; Harter et al., 2024). In principle, these reconstructions can then be used for extreme-value

analysis (Cid et al., 2018; Tiggeloven et al., 2021). However, previous studies did not specifically train their models to predict

the extremes.40

Compared to moderate storm surges, extreme storm surges are underrepresented in the training data. Without addressing this

data imbalance during training, data-driven models may be biased toward more common events (Krawczyk, 2016). This could

explain why existing data-driven models typically underestimate extreme storm surges (e.g., Tadesse et al., 2020; Tiggeloven

et al., 2021; Harter et al., 2024), although limitations of the input data and the selection of predictor variables also play a

role (Harter et al., 2024). Therefore, the potential performance of data-driven models at predicting extreme storm surges is45

still unclear. Furthermore, how neural networks compare to state-of-the-art hydrodynamic models in this regard also remains

unclear, because most previous studies either did not specifically evaluate the extremes or considered extremes exceeding

relatively low thresholds (e.g., Bruneau et al., 2020; Tadesse et al., 2020; Tiggeloven et al., 2021).
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A second hurdle toward using data-driven models to project changes in extreme storm surges is their application to climate

model simulations, which are typically provided at a lower resolution than the atmospheric reanalyses used by previous studies.50

For instance, the climate-model simulations from the High Resolution Model Intercomparison Project (Haarsma et al., 2016)

that were used by Muis et al. (2023) to force their Global Tide and Surge Model (GTSM) have a spatial resolution comparable

to the ERA5 atmospheric reanalysis (Hersbach et al., 2020), but are provided at a temporal frequency of 3 hours at best. The

simulations of other models participating in the Coupled Model Intercomparison Project 6 (Eyring et al., 2016) are typically

also provided at a relatively low temporal resolution. Optimal model architectures and hyperparameter combinations that were55

found using hourly or more frequent observational training data may therefore not apply in the context of projecting changes

in extreme storm surge.

In this study, we investigate how well neural networks can compute extreme storm surges based on atmospheric reanalysis

data when the imbalance of moderate vs. extreme storm surges is addressed during model training. To address the imbalance,

we use the cost-sensitive learning approach DenseLoss (Steininger et al., 2021) that weights the contribution of prediction errors60

to the training loss according to the rarity of their target observations, derived with kernel density estimation. Additionally, we

trained the neural networks with 3-hourly observational data because of the underlying aim to eventually apply them to climate

model simulations.

We analyzed 9 tide-gauge locations in western Europe, which are all subject to mainly extratropical cyclones, but vary in

their oceanographic setting. We show how the performance of the neural networks at predicting extreme storm surges at these65

locations depends on how much additional weight rare data points are given, and whether the neural networks are designed to

exploit only temporal or also spatiotemporal patterns in the input data. Additionally, we compare the performance of neural

networks trained with and without density-based weighting to that of the multi-linear regression (MLR) model of Tadesse et al.

(2020) and the hydrodynamic model GTSM (Muis et al., 2020, 2023).

2 Methodology70

2.1 Data preparation

We trained neural networks to predict storm surges at multiple tide-gauge locations in western Europe, selected based on

data availability and geographical coverage (see Figure 1). Due to computational constraints, we limited our experiments to 9

tide gauges. While these may not be representative of all European coasts, they allow us to compare results across locations

that are diverse in terms of shoreline orientation, dynamics, tidal regime and the magnitude and distribution of extremes.75

We limited our analysis to 1979-2017 because for that period, GTSM simulations are available for comparison (Muis et al.,

2020). As predictands, we used hourly, quality-controlled tide-gauge observations from the GESLA3 database (Haigh et al.,

2021). To derive non-tidal residuals (hereon referred to as storm surges) from the tide-gauge observations, we first subtracted

annual means and then tides predicted through harmonic analysis performed with the T-Tide MATLAB package (Pawlowicz

et al., 2002). Following Tadesse et al. (2020), we used 67 tidal constituents for the harmonic analysis, including only years80

of observations with at least 75% data availability. While we verified the tidal amplitudes and phases that we estimated by
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comparing them with the estimates of Piccioni et al. (2019), the tide predictions are not perfect and residual tidal signals may

remain despite our correction (Tiggeloven et al., 2021). However, to avoid smoothing out high-frequency surge variability, we

did not attempt to remove potential residual tidal signals further by low-pass filtering.

As predictors, we used hourly data from the atmospheric reanalysis ERA5 (Hersbach et al., 2020). The explanatory variables85

we used are zonal, meridional and absolute wind speed at 10m above the surface and atmospheric pressure at sea level.

Absolute wind speed was included based on previous research that showed that including derived but physically meaningful

predictor variables can provide added value (Tiggeloven et al., 2021). Our sensitivity tests at the tide gauge in Esbjerg, however,

suggest only a minor influence (see Appendix A). To improve model efficiency, future work could therefore investigate whether

absolute wind speed could be left out without substantially impacting model performance at other locations as well.90

The predictor data was used in a box of 5 by 5 degrees (20 by 20 grid cells) around each tide gauge (Figure 1). This domain

size was chosen as a compromise between computational costs and the approximate spatial scales at which we expect remote

winds and sea-level pressure to be relevant. The predictor data includes grid cells over land, which do not directly affect water

levels, but, as part of a certain weather pattern over a location, may contain features relevant for predicting storm surges.

Furthermore, as shown by Figure 1, the storm surge at time t was predicted using predictors at time t and up to 24 hours prior,95

which was based on the assumption of a typical storm surge duration of approximately 48 hours. Because of the look-back

window, the predictor data used for predictions at consecutive 3-hourly time steps partially overlap. Sensitivity tests at Esbjerg

suggest that these parameter choices are generally appropriate (see Appendix A), although we acknowledge that the optimal

configuration of the predictor data may vary by location. As shown in Appendix A, using a look-back window, which several

previous studies did not do (Bruneau et al., 2020; Tiggeloven et al., 2021; Harter et al., 2024), clearly provides added value.100

Before training and evaluating the neural networks, we subtracted the annual means and mean seasonal cycle from both

the predictand and predictor variables at each time step to avoid these signals from dominating what the models will learn.

Additionally, we subsampled the hourly predictand and predictor data every 3 hours to mimic the highest temporal frequency

at which climate model simulations are typically provided (see Section 1). The time series were then split into non-overlapping

train, validation and test portions containing 60%, 20% and 20% of the available data, respectively (see Figure 1). We used the105

train split to train the models, the validation split to evaluate training convergence and tune the hyperparameters of the models

(further explained in Section 2.3), and the test split to evaluate model generalization to unseen data.

Because we observed that at some locations, chronological splitting led to a particularly uneven distribution of extreme storm

surges over the different splits, we applied a simple stratified sampling scheme. This involved splitting the timeseries into years

from July to June, stratifying the years based on the magnitude of the 99th percentile of storm surges (P99) in each year, and110

randomly assigning years from each stratum to the splits according to the aforementioned split-size ratios. Due to differences

in tide-gauge data coverage between splits, the true split-size ratios can deviate from the nominal ones by up to a few percent

(see Table B1). The randomness of the stratification was controlled with a seed. Finally, both the predictand and predictor data

in each split were standardized by subtracting the mean and dividing by the standard deviation of the data in the train split. The

predictions obtained with the standardized predictor data were back-transformed accordingly before evaluation.115
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Fig. 1. Data availability (percentage of 3-hourly time steps with processable observations during 1979-2017) at European tide gauges with

at least 20 years of observations, the 9 selected tide-gauge locations, and an example of the prediction of a non-tidal residual (referred to as

storm surge) at at an arbitrary time step t at location 5 (Den Helder, NL). The abbreviations u10, v10, and w10 stand for zonal, meridional

and absolute wind speed at 10m above the surface, respectively, and psl for the atmospheric pressure at sea level. The different colors of grey

indicate how the full time series of storm surges is divided up into splits, and Psplit
99 denotes the 99th percentile of all observed storm surges

in a given split.

2.2 LSTM and ConvLSTM models

For each location, we tested two neural network architectures: one with a long short-term memory (LSTM) layer and one with

a convolutional LSTM (ConvLSTM) layer, both followed by three densely connected layers (see Figure C1). An LSTM layer

is a type of recurrent neural network that can capture temporal dependencies in sequential data (Hochreiter and Schmidhuber,

1997). A ConvLSTM layer is an LSTM layer in which internal operations are convolutional (Shi et al., 2015), and can therefore120

also capture spatiotemporal dependencies. These models are therefore well suited for the data described in Section 2.1. Our

choice for these models is additionally motivated by the results of Tiggeloven et al. (2021), who found that LSTM models

generally predict storm surges better than basic artificial neural networks, convolutional neural networks and ConvLSTM

models. Since Tiggeloven et al. (2021) used predictors in a region of only 1.25 by 1.25 degrees around each tide gauge, we
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additionally used the ConvLSTM model to test whether an LSTM model also outperforms a ConvLSTM model when using125

predictors in a 5 by 5 degree region. To develop the models, we largely followed the designs of Tiggeloven et al. (2021) but

made a few tweaks that we found were beneficial for either model performance or efficiency. Both models were developed

with the python-package TensorFlow (TensorFlowDevelopers, 2024). The software that we developed to train and evaluate

the models is publicly available (Hermans, 2025b). Further details and flowcharts of the model architectures are provided in

Appendix C.130

2.3 Model training & hyperparameter tuning

Following previous studies (e.g., Bruneau et al., 2020; Tiggeloven et al., 2021), we trained our models separately at each tide

gauge, with the commonly used mean square error (MSE) loss function. The MSE loss minimizes the mean of the squared

differences between all predictions and observations, and while it therefore penalizes larger errors more than smaller errors,

it does not directly address the underrepresentation of extremes in the training data. Therefore, we implemented the cost-135

sensitive learning approach DenseLoss (Steininger et al., 2021), which is an algorithm-level method that reweights the loss

function based on the rarity of target values. In contrast to resampling methods such as Synthetic Minority Oversampling with

Gaussian Noise (SMOGN; Branco et al., 2017), DenseLoss does not alter the training data through synthetic oversampling,

and therefore retains the physical consistency of the high-dimensional training data that we use. Furthermore, with DenseLoss,

the additional emphasis placed on rare samples can be controlled through a single interpretable hyperparameter and does not140

require an a-priori relevance definition. The DenseLoss scheme was implemented by multiplying each squared error between

a prediction and an observation by a weight inversely proportional to the density of the observation obtained through kernel

density estimation. The density-based weights are given by fw:

fw(α,y) =
max(1−αp(y), ϵ)

1
N

∑N
i=1max(1−αp(yi), ϵ)

, (1)

in which y is the observation, p(y) is the normalized density function of the observations, ϵ is a positive, real-valued constant145

(10−6) that clips the weights of observations with the highest densities to a non-zero value, and α is a hyperparameter con-

trolling the strength of the density-based weighting (the higher α, the stronger the weighting). Here, we test α values of 0 (no

weighting), 1, 3 and 5. Figure D1 shows an example of the corresponding density-based weights of standardized observations

in the train split at Den Helder (NL). We refer to (Steininger et al., 2021) for further details of the DenseLoss method and their

benchmark of its performance against SMOGN.150

Like Bruneau et al. (2020), Tiggeloven et al. (2021) and Harter et al. (2024), we trained our models using Adam optimization

(Kingma and Ba, 2017). We used a maximum of 100 training epochs and stopped training if the loss of the validation split

did not further decrease during 10 consecutive epochs. The maximum number of epochs was reached for only 5 to 6% of all

LSTM and ConvLSTM models, and based on the small decrements in the validation loss near the end of the training of these

models, we do not expect that using a maximum of more than 100 training epochs would substantially improve our results.155
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The network weights corresponding to the epoch with the lowest validation loss were stored. Based on preliminary tests, we

used a batch size of 128 time steps (16 days).

Due to the dimensions of the training data, extensive tuning of all hyperparameters was too computationally costly, espe-

cially for the ConvLSTM model. Therefore, we kept most hyperparameters of the model architectures defined in Appendix

C constant, excepted for the learning and dropout rates, which influenced the evolution of the training and validation loss the160

most. We varied the learning rate between 1e−5, 5e−5 and 1e−4 and the dropout rate between 0.1 and 0.2. As a dropout rate

of 0.2 did not lead to a structurally better generalization of the models to the independent test split than a dropout rate of 0.1,

we did not increase the dropout rate beyond 0.2. Combined with the 4 different values of α, this resulted in 24 unique sets

of hyperparameters. To save computation time, we trained the LSTM models with all 24 settings, but the ConvLSTM model

only with α=5, informed by the results for the LSTM models (see Section 3.1). Additionally, to account for variance in the165

results due to randomness in the initialization and optimization of model weights, we trained the models 5 times with each set

of hyperparameters.

2.4 Performance evaluation

As discussed in Section 2.1, we evaluated the LSTM and ConvLSTM models using their predictions in the validation and test

splits. For each split, we computed the root mean square error (RMSE) between the predictions and observations, considering170

only the time steps in that split at which the observed storm surges are extreme. We defined extremes using the 99th percentile

in each split (Psplit
99 ) as a threshold (see Table B1 for their magnitudes). Additionally, we only included exceedances of these

thresholds if they were part of an event consisting of at least two exceedances within a time span of 12 hours. This was done

to avoid including exceedances potentially primarily arising from dominant semi-diurnal tidal signals that may not have been

fully removed with the harmonic analysis explained in Section 2.1. We treated remaining threshold exceedances independently175

regardless of whether they occurred during the same event, because this allows the neural networks to learn about the temporal

evolution of storm surges, and uniquely capturing storm surges through declustering would reduce the available sample size

unless more moderate events would be considered. The numbers of filtered exceedances in each split are shown in Table B1.

We refer to the resulting root mean square error as RMSEsplit
P99 .

The RMSEsplit
P99 conveys the error of predictions of observed extremes in a split regardless of whether the predictions are180

extreme. As falsely predicted extremes would also be included in an extreme-value analysis of the predictions, we additionally

evaluated whether extremes are predicted at the right time. To do so, we used Psplit
99 as a threshold to count the number of

false positive (#FPs), false negative (#FNs), true positive (#TPs) and true negative (#TNs) predictions in each split. We then

computed the corresponding F1 score, which ranges from 0 to 1, by taking the harmonic mean of the precision (= #TPs
#TPs+#FPs )

and recall (= #TPs
#TPs+#FNs ):185

F1splitP99 =
2 ∗ precisionsplit

P99 ∗ recallsplitP99

precisionsplit
P99 + recallsplitP99

. (2)
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To place the performance of the neural networks in perspective, we also computed the error metrics introduced above for the

predictions of the MLR model of Tadesse et al. (2020), which uses empirical orthogonal functions (EOFs) of gridded sea-level

pressure and zonal and meridional near-surface winds as predictors. We trained the MLR model with the same ERA5 data

used to train the neural networks except that we had to reduce the size of the predictor data from 5 by 5 to 4.5 by 4.5 degrees190

around each tide gauge to manage the dimension constraints of the principal-component analysis of SciPy. This may lead to a

moderately lower performance (Tadesse and Wahl, 2021).

Additionally, we compared the performance of the data-driven models to that of GTSMv3.0 (Muis et al., 2020, 2023),

which is a global, state-of-the-art hydrodynamic model that was also foced with sea-level pressure and surface winds from

ERA5. We derived the error metrics for GTSM from the separately provided surge component of its simulations. We used the195

simulations of Muis et al. (2020) instead of Muis et al. (2023) because these consistently agreed better with the observations.

A limitation of the comparison with GTSM is that we trained the data-driven models with 3-hourly ERA5 data (see Section

2.1), but simulations of GTSM are only available forced with hourly instead of 3-hourly ERA5 data. As atmospheric forcing

with a lower temporal resolution reduces the accuracy of storm surge models (Agulles et al., 2024), our comparison is biased

towards GTSM in this regard. We will consider this for the interpretation of our results in the following sections.200

3 Performance of the neural networks

3.1 Effect of density-based weighting on LSTM models

Figure 2 shows the RMSE of the predictions of extreme observations versus the F1 score in the validation split (RMSEval
P99

versus F1val
P99), for each tide-gauge location. Each circle denotes these error metrics for an individual LSTM model. The

RMSEval
P99 is displayed relative to the magnitude of the 99th percentile (Pval

99 ) at each location so that it can directly be compared205

between locations. Depending on the location, the minimum RMSEval
P99 among the LSTM models trained without density-

based weighting (α=0, dark blue) ranges from 0.29 to 0.62 times Pval
99 . Immingham stands out as a location at which the LSTM

models have a relatively high RMSEval
P99. Density-based weighting clearly reduces the RMSEval

P99 of the LSTM models at all

locations (Figure 2). Furthermore, LSTM models trained with a higher α value (higher degree of weighting) tend to have a

lower RMSEval
P99, as seen by the gradient of dark blue circles (α=0) on the right to red circles (α=5) on the left of each plot.210

While among all tested values, α=5 leads to the lowest RMSEval
P99 at each location, the improvement obtained through

density-based weighting differs between locations (e.g., compare Stavanger to Den Helder). On average, increasing α from 0

to 5 reduces the minimum RMSEval
P99 by 29%. The minimum RMSEval

P99 for α=5 ranges from 0.22 to 0.34 times P val
99 at all

locations except Immingham, where the minimum RMSEval
99 equals 0.49 times P val

99 . As seen by the bars at the bottom of each

panel in Figure 2, the spread in the RMSEval
P99 among LSTM models with the same α is typically between 0.07-0.15 times215

P val
99 , depending on the location and on α.

Density-based weighting also influences the F1valP99 score of the LSTMs models. The maximum F1val
P99 score of models

trained without density-based weighting (α=0) ranges from 0.29 at Alicante to 0.70 at Den Helder (Figure 2). Increasing α

from 0 (dark blue) to 1 (light blue) improves the median F1valP99 at all locations and the maximum F1val
P99 somewhat at most
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locations. However, increasing α further has a mixed effect. For instance, at Esbjerg and Alicante, training with α=5 leads to220

the highest F1valP99, while at other locations, α=1 or 3 leads to the highest F1valP99 (Figure 2).

In general, the effect of density-based weighting on F1val
P99 is moderate: on average, the maximum F1valP99 score of LSTM

models trained with density-based weighting (α=1, 3 or 5) is 9% higher than the maximum F1val
P99 score obtained without

density-based weighting (α=0). The effect of α on the F1 score results from the partial compensation between the precision

and the recall of the LSTM models, which depend on α oppositely (see Figure D2). Namely, increasing the density-based225

weights generally leads to a higher recall but a lower precision (i.e., less false negatives but more false positives), similar to

the forecaster’s dilemma (Lerch et al., 2017). While Figure 2 suggests that increasing α beyond 5 may reduce the RMSEval
P99

even further, this will therefore likely lead to less precise predictions of extreme storm surges, which may negatively influence

subsequent extreme-value analyses.

In conclusion, density-based weighting improves the performance of the LSTM models at predicting extremes at all loca-230

tions, at least with an α value of 1. Our finding that using DenseLoss can improve both RMSEval
P99 and F1valP99 suggests that

reweighting the loss function does not simply reduce prediction errors of a few specific outliers but improves to the models’

overall representation of extremes. However, the optimal α value depends on both the location and the metric to optimize, and

therefore needs to be tuned. Finally, we note that while density-based weighting may improve the performance of the LSTM

models at predicting extremes, it reduces their performance at predicting moderate observations by construction. Depending235

on the intended application of the neural networks, this may also need to be considered.
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Fig. 2. Scatter plots of the root mean square error of predictions of the extreme storm surges observed in the validation split, relative to the

99th percentile of all observations in the validation split ( 1
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evaluated using Pval
99 (F1val

P99) [-], for each tide-gauge location. Each circle denotes these error metrics for an individual LSTM model. The

colors indicate the different values of α (0, 1, 3 or 5) used to train each LSTM model (30 LSTM models per α per location, as explained in

Section 2.3). The bars on the bottom and left sides of each panel denote the minimum, median and maximum relative RMSEval
P99 and F1val

P99

of the LSTM models for each α, respectively. The value of Pval
99 is shown in the upper right corners.
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3.2 Comparison between models

Next, we compare the performance of the LSTM models with that of (1) the ConvLSTM model, (2) the MLR model of Tadesse

et al. (2020), and (3) the hydrodynamic model GTSM (Muis et al., 2020). To this end, Figure 3 shows the same error metrics

as Figure 2, but only for the best LSTM models for each α (colored circles). These were selected based on the highest sum of240

the model’s rankings for RMSEval
P99 and F1valP99, separately for each location. The best ConvLSTM models were selected in the

same way (trained only with α=5; black-edged red squares).

First, we find that the selected LSTM models have a higher RMSEval
P99 than the selected ConvLSTM models at all locations

except at Vigo and Alicante (Figure 3a), and a lower F1val
P99 at all locations (Figure 3b), at least for α=5. Using a ConvLSTM

layer instead of an LSTM layer leads to an average improvement in the RMSEval
P99 and F1valP99 of 5 and 12%, respectively. The245

finding that the ConvLSTM model outperforms the LSTM model at most locations indicates that exploiting spatiotemporal

patterns in the input data is generally beneficial for predicting extreme storm surges.

Second, Figure 3a shows that at all locations, the LSTM models trained with density-based weights have a lower RMSEval
P99

than the MLR model of Tadesse et al. (2020) (white triangles). The LSTM models trained without density-based weights

(α=0; dark blue circles) also have an RMSEval
P99 similar to or lower than the MLR model, except at Vigo. Furthermore, the250

F1val
P99 score of the LSTM models is higher than that of the MLR model at all locations, regardless of α (Figure 3b). These

results suggest that the non-linear relations between extreme storm surges and atmospheric predictors that the LSTM models

capture, but the MLR model cannot, are important to consider. The difference in the performance between the LSTM- and

MLR models may partially be reduced by using wind stress instead of wind speed as a predictor because wind stress is related

to surge more linearly (Harter et al., 2024). Like for the LSTM models, the performance of the MLR model may also be255

improved by incorporating density-based weighting in its optimization, but we did not test this.

Third, the selected LSTM models have a higher RMSEval
P99 than the hydrodynamic model GTSM (white diamonds) at all

locations except Wick, Vigo and Alicante, and a lower F1val
P99 at all locations except Brest and Vigo, regardless of α (Figures 3a

& b). On average, GTSM has an approximately 9% lower RMSEval
P99 than the minimum RMSEval

P99 and a 9% higher F1val
P99 than

the maximum F1valP99 of the LSTM models. Hence, we conclude that at the majority of locations, a state-of-the-art numerical260

model like GTSM outperforms relatively simple neural networks like the LSTM models, although the hourly instead of 3-

hourly atmospheric forcing that was used to drive GTSM (see Section 2.4) may also help. Especially at Immingham, GTSM

performs relatively well while the LSTM models perform relatively poorly (Figure 3), indicating that the LSTM models have

poorly learned the existing relationship between the predictors and the extreme storm surges at that location.

Finally, since the ConvLSTM models outperformed the LSTM models at most locations, we find that the ConvLSTM models265

perform more similarly to GTSM than the LSTM models (Figure 3). Except at Stavanger and Immingham, the performance of

the ConvLSTM models trained with α=5 closely approaches or even exceeds that of GTSM. The average relative differences

in the RMSEval
P99 and F1valP99 between the best ConvLSTM models and GTSM at these 7 locations are marginal. Hence, based

on these evaluation metrics, the ConvLSTM model may be a viable alternative to state-of-the-art hydrodynamic models.
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Fig. 3. (a) RMSEval
P99 relative to Pval

99 [-] and (b) F1val
P99 [-], for the best overall performing LSTM models for each α (colored circles), the

best overall performing ConvLSTM model for α=5 (black-edged red squares), the MLR model of Tadesse et al. (2020) (white triangles) and

the hydrodynamic model GTSM (Muis et al., 2020) (white diamonds), at every tide-gauge location.

3.3 Model generalization270

So far, we only considered how well the different models perform in the validation split. In this section, we also evaluate how

well the models generalize. To do so, we compare the error metrics in the validation and test splits (Figure 4), the latter of which

was completely held back during model training. Figure 4a shows that the relative RMSEval
P99 and RMSEtest

P99 of the LSTM-

and ConvLSTM models (colored circles and squares, respectively) lie close to the 1:1 line at all locations except Alicante

(lightblue). This suggests that except at Alicante, the neural networks apply to unseen data relatively well in terms of their275

error, which is further corroborated by high correlations between the RMSEval
P99 and RMSEtest

P99 across models at individual

locations. Additionally, we find that increasing α leads to a lower RMSEP99 in both the validation and test splits (Figure D3).

The MLR model and GTSM show similar behavior, as shown by the colored triangles and diamonds in Figure 4a, respectively.

The F1valP99 and F1testP99 scores of all models also lie relatively close to the 1:1 line at most locations (Figure 4b), again

suggesting that the models generalize reasonably well. However, the spread in the F1 scores is larger (as also seen in Figure280

2) and the correlation between F1valP99 and F1test
P99 across the neural networks at each location is, although still visible and

significant, lower than between RMSEval
P99 and RMSEtest

P99. With a few exceptions, increasing α has an approximately similar

effect on F1testP99 as it has on F1valP99 (Figure D3).
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To some extent, differences between RMSEval
P99 and RMSEtest

P99, and F1valP99 and F1test
P99, are expected because these error

metrics depend on a relatively small number of extreme events (see Table 1) that are not identically distributed in the relatively285

short validation and test splits (<8 years each). For optimal model generalization, we therefore recommend tuning α along-

side other important (hyper)parameters using k-fold cross-validation. The differences between the splits also affect how the

performances of the different models compare. For instance, at Fishguard (pink) and Brest (grey), the minimum RMSEval
P99

of the ConvLSTM models is slightly higher than that of GTSM, while the minimum RMSEtest
P99 is slightly lower (Figure 4a).

However, the discrepancy between RMSEval
P99 and RMSEtest

P99 is exceptionally large at Alicante. Strikingly, this is the case for290

both the data-driven models and GTSM (Figure 4a). Given that the same atmospheric forcing was used for all models, this

suggests that at Alicante, the extent to which the observed extremes can be explained by wind- and pressure-driven surges

differs substantially between the validation and test splits. Potential reasons for this will be discussed in Section 4.
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Fig. 4. Scatter plots of (a) RMSEP99 relative to P99 [-] in the validation split vs. in the test split and (b) F1P99 [-] in the validation split vs. in

the test split, for the LSTM models (circles), ConvLSTM models (black-edged squares), the MLR model of Tadesse et al. (2020) (triangles),

and GTSM (Muis et al., 2020) (diamonds). Each marker denotes the error metrics of an individual model, and the colors represent the

different tide-gauge locations. The diagonal lines indicate equal error metrics in the validation and test splits.
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3.4 Underestimation of the highest extremes in the test split

To further investigate the performance of the neural networks at predicting extremes in the test split, we zoom in on the 6295

locations at which the RMSEval
P99 and F1valP99 of the ConvLSTM models and GTSM are comparable (Section 3.2) and the

models generalize well (Section 3.3): Wick, Esbjerg, Den Helder, Fishguard, Brest and Vigo. We find that like in the validation

split, the ConvLSTM models (orange) and GTSM (grey) have similar errors in the test split overall (average difference of 0.01

in the RMSEtest
P99 relative to Ptest

99 ), whereas the LSTM models (blue) consistently have a higher error (Figure 5a). However,

despite their similar RMSEtest
P99, the ConvLSTM models and GTSM have a different error distribution. Namely, the ConvLSTM300

models predominantly underestimate the observed extremes at all locations, while GTSM overestimates more than half of the

observed extremes at Wick, Fishguard and Brest (Figure 5b).

The predictions from which the error distributions in Figure 5b were derived are shown in Figure D4. Because Figure D4

shows that the underestimation of extreme storm surges by the neural networks is more pronounced higher up the tail of the

distributions of observed storm surges, we also computed the RMSE of predictions of exceedances of a higher threshold,305

namely Ptest
99.9 (Figure 5c). Whereas the RMSEtest

P99 of the ConvLSTM models and GTSM are comparable, the RMSEtest
P99.9 of

GTSM is lower than that of the ConvLSTM models at all locations (average difference of 0.08 in the RMSEtest
P99.9 relative

to Ptest
99.9). Comparing the error distributions in Figures 5b & d, we indeed find that the underestimation of extremes by the

ConvLSTM models is more severe when using Ptest
99.9 as a threshold. This contributes to a larger error compared to that of

GTSM, which has predictions errors centered closer to 0 (Figure 5d). Nevertheless, the improvement by the ConvLSTM310

models relative to the LSTM models is still significant. Although these results are sensitive because the RMSEtest
P99.9 is based

on only a small number of extremes (see Table B1), they suggest that the performance of the neural networks falls off in

comparison to GTSM when considering extremes above very high percentiles.
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Fig. 5. (a) RMSEtest
P99 relative to Ptest

P99, and (b) box plots of the distribution of the relative errors of the predictions of storm surges in the

test split exceeding Ptest
P99, at Wick (UK), Esbjerg (DK), Den Helder (NL), Fishguard (UK), Brest (FR) and Vigo (PT). Panels (c) and (d)

show the same, but using Ptest
P99.9 as a threshold for evaluating the prediction of observed extremes. Blue and orange colors are used to denote

these metrics and distributions for the LSTM- and ConvLSTM models selected in Section 3.2 for α=5, respectively, and grey colors for the

hydrodynamic model GTSM.

15



4 Discussion

We found that training LSTM models with the density-based weighting devised by Steininger et al. (2021) improves both the315

error and timing of predicting extreme storm surge at 9 diverse tide-gauge locations in Europe. This suggests that existing

data-driven storm-surge models used for similar applications (e.g., Bruneau et al., 2020; Tiggeloven et al., 2021; Harter et al.,

2024; Tadesse et al., 2020) could also be improved by addressing the underrepresentation of extremes in the training data in

this way. How much additional weight more extreme events should be given through the hyperparameter α depends on the

location and the evaluation metrics to optimize (see Sections 3.1 & 3.3), and therefore needs to be tuned in relation to the320

problem context. For instance, a higher α value may be better for applications in which recall is more important than precision

(see Fig. C2).

The optimal α value for reweighting the loss function value varies by location likely because the distribution of the training

data also varies by location. To apply the DenseLoss method to a larger number of locations in the future, the location-dependent

tuning of α could be automated (e.g., Feurer and Hutter, 2019) or informed by the distributional features of the training data,325

such as target skewness and tail heaviness. More practically, α could be tuned for a limited number of clusters of locations with

similar characteristics and distributions (e.g., Calafat and Marcos, 2020; Morim et al., 2025), either by training cluster-specific

models or by training a single model incorporating cluster-specific attributes and weights (e.g., Kratzert et al., 2019). Our

results suggest that even for a diverse set of locations, a common value for α>0 can be found that improves the performance of

the data-driven models at predicting extremes at all locations, even though it may not lead to the most optimal performance at330

every location individually.

Additionally, we found that at most locations, using a ConvLSTM- instead of an LSTM model improves the predictions

of the extreme storm surges. This conflicts with the results of Tiggeloven et al. (2021), who found that ConvLSTM models

generally do not outperform LSTM models in Europe, nor globally. Most likely, the reason is that Tiggeloven et al. (2021) used

atmospheric predictors in a region of 1.25 by 1.25 degrees instead of 5 by 5 degrees around each tide-gauge location as a default.335

Given that extratropical cyclones occur at scales of hundreds of kilometers (Catto, 2016), more meaningful spatiotemporal

features can likely be extracted from the predictor data when using a larger region. This is supported by our sensitivity tests

at Esbjerg (see Appendix A), which indicate that the LSTM- and ConvLSTM models indeed perform more similarly when

trained with predictor data in a smaller region, as well as by sensitivity tests of Tiggeloven et al. (2021) with larger predictor

regions.340

Especially the ConvLSTM models perform relatively well at predicting extreme storm surges exceeding the 99th percentile,

and their performance approximates that of the high-resolution, hydrodynamic model GTSM at the majority of locations (see

Figures 3 & 5). This is promising, especially since GTSM was forced with ERA5 data at a higher frequency than the neural

networks (see Section 2.1) and we did not tune hyperparameters other than the learning rate, the dropout rate, and α (see Section

2.3). Furthermore, depending on the application, a somewhat lower performance may be acceptable in exchange for the much345

lower computational cost of applying the neural networks once trained. Follow-up research could therefore investigate the

application of our neural networks to climate model simulations. This will introduce additional complexity because simulated
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distributions of predictor variables may differ from observed ones used for training due to climate-model biases and potential

non-stationarity due to future changes (Lockwood et al., 2022). In this context, hydrodynamic model simulations forced with

the same climate model simulations (e.g., Muis et al., 2023) could serve as a valuable benchmark.350

At one location (Alicante), both the neural networks and GTSM performed reasonably in the validation split but poorly

in the test split (Section 3.3), suggesting that the observed extremes in the test split can be explained by atmospherically-

driven surges less well (see Section 3.3). Previous studies have also reported a lower performance of both data-driven and

hydrodynamic models in southern Europe (e.g., Muis et al., 2020, 2023; Tadesse et al., 2020; Bruneau et al., 2020; Tiggeloven

et al., 2021). A complicating factor is that storm surges in this area are small and the effect of other processes such as ocean355

dynamic sea-level variability, freshwater forcing and waves are therefore relatively more important. Adding other predictors

like temperature, precipitation, river discharge or waves, may help to represent these processes (Tadesse et al., 2020; Tiggeloven

et al., 2021; Bruneau et al., 2020; Harter et al., 2024), but not all of these predictors are directly available from climate models.

We trained and evaluated the models using tide-gauge observations outside the harbor of Alicante because they are more

complete, but tide-gauge observations inside the harbor are also available (Marcos et al., 2021; Haigh et al., 2021). Upon360

comparison, we found that the two tide-gauge records have large differences in their extremes especially in the test split, and

that both the predictions of the neural networks and the simulations of GTSM agree better with the observations inside the

harbor. This signals the importance of waves, which affect the tide gauge inside the harbor less and are not (well) captured by

the models. Another reason for the difference could be observational errors. To train the neural networks with less noisy data,

hydrodynamic simulations could be used as the predictand instead of tide-gauge observations. The downside, however, is that365

the neural networks will then inherit the biases of the hydrodynamic model and will not learn any indirect dependencies of

observed extreme water levels on surface winds and sea-level pressure.

At two locations (Stavanger & Immingham), GTSM performed significantly better than the neural networks (Figure 3).

Given that the models are forced by the same atmospheric variables, this suggests that the neural networks at especially

Stavanger and Immingham may be improved by further optimizing the neural networks. Like α, the optimal hyperparameters370

of neural networks appear to be location-dependent (Tiggeloven et al., 2021). Therefore, more extensive hyperparameter tuning

than we did here may help to reduce both the performance differences between locations and between the neural networks and

GTSM, including at predicting the highest extremes. This could also involve optimizing the variables, domain size and look-

back window of the predictor data used at each tide-gauge location (see Appendix A).

Similarly to Harter et al. (2024), we find that the neural networks predominantly underestimate exceedances of very high375

percentiles (e.g., the 99.9th). While this indicates that by density-based weighting, the neural networks are not overcompen-

sating by forcing good scores on only a few high-weighted outliers, the models do perform worse than GTSM in this regard

(Section 3.4). Agulles et al. (2024) found that by using daily instead of hourly atmospheric forcing, their hydrodynamic model

underestimated the 99.9th percentile of non-tidal residuals by approximately 30-50%. While the underestimation with 3-hourly

instead of hourly forcing would likely be less severe, their results suggest that the difference in the temporal frequency of the380

forcing of the neural networks and GTSM explains the differences in their tail behaviour at least partially. Future work could

investigate this further by running a hydrodynamic model with 3-hourly forcing.
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Another reason for the predominant underestimation of exceedances of the 99.9th percentile could be the limited ability of

the neural networks to extrapolate to the highest extremes, despite our use of DenseLoss. Smaller errors may be obtained by

increasing the density-based weights beyond the values that we tested, but likely at the cost of reduced precision (Section 3.1).385

We therefore suggest several other avenues that follow-up research could explore to reduce the underestimation. First, to reduce

the degree of extrapolation required, it could be helpful to train the models with more data. This could be obtained from the

backward extension of ERA5 to 1950 (Bell et al., 2021), depending on the length of the tide-gauge records. In the same spirit,

the added value of complementing density-based weighting with synthetic oversampling of the extremes (e.g., Branco et al.,

2017), and transfer learning across both different storm-surge datasets and different locations (e.g., Xu et al., 2023), would be390

useful to explore.

Second, while we chose to use LSTMs and ConvLSTMs (see Section 2.2), follow-up research could investigate whether

the predictions of the extreme storm surges can be improved with other, emerging model architectures. For instance, graph

neural networks, hierarchical deep neural networks and gaussian process models have been found beneficial for short-term

forecasting (Kyprioti et al., 2023; Jiang et al., 2024; Naeini et al., 2025), and may also be in our context. Graph neural networks395

in particular could help to predict storm surges at multiple related locations, capturing spatial dependencies by representing

different locations as nodes of a graph. Furthermore, path signatures, which encode features from time series through tensors

of iterated path integrals, have shown promise as feature maps in machine learning tasks concerning irregular time series and

the detections of extreme events (Riess et al., 2024; Lyons and McLeod, 2024; Akyildirim et al., 2022; Arrubarrena et al.,

2024). Additionally, implementing self-attention mechanisms could help the neural networks to dynamically focus on those400

features of the input data that are most relevant to the extremes (Ian et al., 2023; Wang et al., 2022). Finally, accuracy may

be improved by incorporating the shallow-water equations into the models, using so-called physics-informed neural networks

(e.g. Zhu et al., 2025; Donnelly et al., 2024).

5 Conclusions

We conclude that through density-based weighting, the cost-sensitive learning approach DenseLoss (Steininger et al., 2021)405

improves the performance of neural networks at predicting extreme storm surges at all 9 selected tide-gauge locations in

Europe. Furthermore, at most locations, exploiting spatiotemporal dependencies using a ConvLSTM- instead of LSTM layer

also improves the performance, if a sufficiently large region of atmospheric predictor data is used. At 7 out of the 9 tide-gauge

locations that we used, the performance of especially the ConvLSTM models closely approximates that of the state-of-the-art,

hydrodynamic Global Tide and Surge Model (GTSM), based on performance metrics evaluated using the 99th percentile as410

a threshold for extremes. This is a positive sign for the potential application of neural networks to climate model simulations

to project changes in extreme storm surges, especially since we trained the neural networks with 3-hourly data (the highest

frequency at which climate model simulations are typically provided) whereas GTSM was forced with hourly data. However,

the neural networks still predominantly underestimate the highest extreme storm surges (those exceeding the 99.9th percentile).

Follow-up research may improve this by further optimizing the neural networks and the data used to train them.415
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Appendix A: Sensitivity to predictor data parameters

To test the sensitivity of the performance of the neural networks to the configuration of the predictor data, we performed several

additional tests at the tide gauge in Esbjerg (Denmark). For these tests, we separately varied the predictor variables, the domain

size and the length of the look-back window for a combination of LSTM and ConvLSTM models (see Figure A1). The models

were trained 10 times each to account for random variance, using a fixed dropout and learning rate (0.1 and 5e−5, respectively),565

and α values of 0, 1, 3 and 5. Figure A1 shows the average error metrics (relative RMSEP99 and F1P99) for each sensitivity

test, in both the validation and test splits.

Based on these tests, we find that using the zonal and meridional wind components in addition to sea-level pressure clearly

improves the performance of the LSTM models, especially with regard to their generalization to the test split (see Figure A1,

top row). Additionally using the absolute wind speed does not substantially affect model performance. Therefore, the absolute570

wind speed could potentially be left out as a predictor variable in the future to increase training efficiency.

Second, the LSTM models trained with a predictor region of 3 by 3 or 5 by 5 degrees tend to outperform LSTM models

trained with a domain size of 1 by 1 degrees (see Figure A1, second row), but not by much. Comparatively, the ConvLSTM

models benefit from a larger domain size more (see Figure A1, third row). As a consequence, the ConvLSTM models outper-

form the LSTM models when using a predictor region of 3 by 3 and 5 by 5 degrees, but not (clearly) when using a predictor575

region of only 1 by 1 degrees.

Third we find that using a look-back window for the predictor data is clearly better for the performance of the LSTM models

than using no look-back window (see Figure A1, bottom row). A look-back window of 24 hours, which we use in the main

manuscript, seems to be approximately optimal. Namely, increasing the look-back window from 24 to 36 hours did not further

improve the performance of the models.580

Finally, while the results in Figure A1 provide useful insights into the sensitivity of the neural networks to the predictor

variables, region size and look-back window, we varied these parameters separately and did not test different combinations.

Additionally, the optimal configuration of the predictor data may vary by location. Follow-up research could further investigate

fine-tuning the predictor data at specific locations.
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Fig. A 1. Sensitivity of the average RMSEP99 relative to P99 [-] and F1P99 [-] of the LSTM and ConvLSTM models at Esbjerg (DK) to the

predictor variables (mean sea-level pressure msl, zonal and meridional wind u10 & v10, and absolute wind speed w10), domain size of the

predictor data (1 by 1, 3 by 3 or 5 by 5 degrees), and the length of the look-back window (0, 12, 24 or 36 hours), for different values of α.

The error metrics are shown for both the validation (1st and 3rd columns) and the test splits (2nd and 4th columns). The bold text on the left

of the figure indicates the default settings used for the results in the main manuscript.
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Appendix B: Training and evaluation samples585

Table B 1. Number of samples, the magnitude of the 99th and 99.9th percentiles (P99 and P99.9) [m], and the number of filtered (see Section

2.4) extremes exceeding P99 and P99.9, per split and per tide gauge.

Samples [#] Psplit
99 [m] ≥ Psplit

99 [#] Psplit
99.9 [m] ≥ Psplit

99.9 [#]

Tide gauge Train Val Test Train Val Test Train Val Test Train Val Test Train Val Test

1 Stavanger 65094 23178 21697 0.35 0.35 0.35 586 199 190 0.53 0.51 0.55 66 24 22

2 Wick 57832 21538 16200 0.43 0.43 0.41 516 192 138 0.63 0.63 0.61 59 22 16

3 Esbjerg 62889 20249 21364 1.07 1.09 1.10 572 187 192 1.85 1.69 1.72 63 21 22

4 Immingham 52939 20280 20164 0.56 0.57 0.56 403 153 159 1.01 0.93 1.00 51 20 20

5 Den Helder 66485 23368 23376 0.81 0.80 0.80 593 206 200 1.40 1.26 1.39 67 24 24

6 Fishguard 57995 18361 19284 0.38 0.39 0.39 475 153 156 0.59 0.64 0.65 55 19 18

7 Brest 67810 21748 23304 0.35 0.35 0.36 577 168 195 0.55 0.53 0.59 65 19 23

8 Vigo 59772 22775 22663 0.29 0.29 0.30 487 168 207 0.45 0.42 0.45 53 16 23

9 Alicante 53578 16692 19681 0.20 0.20 0.20 493 154 182 0.29 0.28 0.31 56 16 19
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Appendix C: Neural network architectures

The LSTM model consists of an LSTM layer followed by 3 densely connected layers (Figure C1). For the LSTM layer, we

specified 32 units and otherwise used the default TensorFlow options. The first two densely connected layers have 32 neurons,

the commonly used rectified linear unit (ReLu) activation and L2 regularization (l2=0.02), and are followed by a dropout layer

with a dropout rate that we lightly tuned (see Section 2.3). Regularization and dropout help to avoid overfitting the model to590

the training data. The last dense layer has 1 neuron and a linear activation to predict a single storm surge at each time step. The

ConvLSTM model consists of a ConvLSTM instead of regular LSTM layer, with 32 kernels of 3 by 3 grid cells, even padding

and also a ReLu activation. The ConvLSTM layer is followed by batch normalization and a max-pooling layer that reduces the

spatial dimensions of identified features. The remainder of the ConvLSTM model is the same as in the LSTM model.

For each prediction, predictors at time steps up to 24 hours prior were used (see Section 2.1), resulting in a total of nine595

3-hourly time steps per prediction. The predictor data at each of the 20 by 20 grid cells and for each of the 4 predictor variables

shown in Figure 1 were stacked for the LSTM model, resulting in input data with the shape (nobs,9,1600). Here, nobs refers

to the number of observations. For the ConvLSTM model, the grid cells were not stacked and the 4 predictor variables were

inputted as channels. The input to the ConvLSTM model therefore has the shape (nobs,9,20,20,4).

LSTM (32)
tanh, sigmoid

Dense (1)
linearDense (32)

ReLu, 0.02

(nobs,32) (nobs,32) (nobs,32)

(nobs,1)

 Predictions
(nobs) 

Dropout
rd

Dropout
rd

Dense (32)
ReLu, 0.02

Predictors 
(nobs,9,1600)

ConvLSTM2D (32)
ReLu, 3x3,

even padding

MaxPool2D
2x2

Dense (1)
linearDense (32)

ReLu, 0.02

(nobs,20,20,32) (nobs,10,10,32) (nobs,32) (nobs,32)

(nobs,1)

Predictions
(nobs)

Dropout
rd

Dropout
rd

Dense (32)
ReLu, 0.02

Predictors
(nobs,9,20,20,4)

LSTM Model

ConvLSTM Model

Batch
Normalization

Fig. C 1. Flowchart of the architectures of the LSTM- and ConvLSTM models used. The blue rectangles represent the LSTM and ConvLSTM

layers, the orange rectangles the densely connected layers, the white rectangles the dropout layers and the grey layers the batch normalization

and max-pooling layers. The labels above the rectangles show how the shape of the data after passing through that layer. rd refers to the

tunable dropout rate.
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Appendix D: Supplementary results600

Fig. D 1. Density-based weights [-] of standardized observations [standard deviation (s.d.)] at Den Helder (NL) for α values of 0, 1, 3 and 5.

Weights lower than 1e−6 were clipped to 1e−6 (see Section 2.3).
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Fig. D 2. Scatter plots of the recallvalP99 [-] versus the precisionval
P99 [-], for each tide-gauge location. Each circle denotes these error metrics for

an individual LSTM model. The colors indicate the different values of α (0, 1, 3 or 5) used to train each LSTM model (30 LSTM models per

α per location, as explained in Section 2.3). The bars on the bottom and left sides of each panel denote the minimum, median and maximum

relative recallvalP99 and precisionval
P99 of the LSTM models for each α, respectively.
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Fig. D 3. Scatter plots of RMSEP99 relative to P99 [-] and F1P99 [-] in the validation vs. in the test split, displayed per tide gauge. The

colored circles represent the LSTM models for different values of α, the black-edged red squares the ConvLSTM models for α=5, and the

white triangles and diamonds the MLR model of Tadesse et al. (2020), and GTSM (Muis et al., 2020), respectively. The diagonal line in each

panel indicates equal error metrics in the validation and test splits.
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Fig. D 4. Scatter plots of predictions vs. observed extremes (≥Ptest
99 ) in the test split [m] at (a) Wick (UK), (b) Esbjerg (DK), (c) Den

Helder (NL), (d) Fishguard (UK), (e) Brest (FR) and (f) Vigo (PT). The blue and orange circles represent the predictions of the LSTM- and

ConvLSTM models selected in Section 3.2 for α=5, respectively. The grey circles represent the storm surges simulated with the hydrodynamic

model GTSM. The vertical dashed line indicates the observed 99.9th percentile in the test split (Ptest
99.9), and the diagonal 1:1 line denotes

equal predictions and observations.
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