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Abstract. Because of the computational costs of computing storm surges with hydrodynamic models, projections of changes
in extreme storm surges are often based on small ensembles of climate model simulations. This may be resolved by using data-
driven storm-surge models instead, which are computationally much cheaper to apply than hydrodynamic models. However, the
potential performance of data-driven models at predicting extreme storm surges, which are underrepresented in observations,
is unclear because previous studies did not train their models to specifically predict the extremes;which-are-underrepresented
in-observations. Here, we investigate the performance of neural networks at predicting extreme storm surges at 9 tide-gauge
stations in Europe when trained with a cost-sensitive learning approach based on the density of the observed storm surges.
We find that density-based weighting improves both the error and timing of predictions of exceedances of the 99th percentile
made with Long-Short-Term-Memory (LSTM) models, with the optimal degree of weighting depending on the location. At
most locations, the performance of the neural networks also improves by exploiting spatiotemporal patterns in the input data
with a convolutional LSTM (ConvLSTM) layer. The neural networks generally outperform an existing multi-linear regression
model, and at the majority of locations, the performance of especially the ConvLSTM models approximates that of the hydro-
dynamic Global Tide and Surge Model. While the neural networks still predominantly underestimate the highest extreme storm
surges, we conclude that addressing the imbalance in the training data through density-based weighting helps to improve the

performance of neural networks at predicting the extremes and forms a step forward towards their use for climate projections.
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1 Introduction

Through strong winds and low atmospheric pressure, storms can cause abnormally high coastal water levels called storm
surges. In Europe and elsewhere, storm surges have led to numerous coastal floods, some resulting in many casualties and
substantial socioeconomic losses (Paprotny et al., 2018). Due to climate change, the frequency and height of extreme sea levels
are expected to increase globally, primarily due to sea-level rise (Hermans et al., 2023; Jevrejeva et al., 2023; Vousdoukas et al.,
2018). Although likely to a smaller extent, extreme sea levels may also change due to changes in atmospheric conditions driving
storm surges (Muis et al., 2020; Vousdoukas et al., 2018; Muis et al., 2023; Shimura et al., 2022). However, projections of
atmospherically driven changes in extreme storm surges are typically based on small ensembles of climate model simulations.
Consequently, the uncertainties of these projections due to differences between climate models and internal climate variability
are large (Muis et al., 2023; Hermans et al., 2024)

An important reason why projections of extreme storm surges are often based on only a few climate model simulations is that
global climate models do not simulate storm surges reliably, if at all. Instead, the atmospheric changes simulated by climate
models need to be translated to changes in storm surges with another model. Typically, computationally expensive, high-
resolution hydrodynamic models are used for this (e.g. Muis et al., 2020; Vousdoukas et al., 2018; Muis et al., 2023; Shimura
et al., 2022). However, data-driven storm-surge models based on regression, gradient boosting, neural networks and other
machine learning techniques are emerging (see Qin et al., 2023, for areview) that, once trained, may be used as computationally
cheaper alternatives to hydrodynamic models to translate climate model simulations to changes in storm surges.

So far, data-driven storm-surge models have primarily been used to predict short time series of local water levels or peak
heights during specific events, using the characteristics of tropical cyclones traveling over the region as predictors (Ayyad et al.,
2022; Lockwood et al., 2022; Ramos-Valle et al., 2021; Ian et al., 2023; Sun and Pan, 2023; Naeini and Snaiki, 2024, among
others). Other studies have applied data-driven models to gridded atmospheric reanalysis data to reconstruct continuous time
series of storm surges (Tausia et al., 2023; Cid et al., 2018, 2017; Tiggeloven et al., 2021; Bruneau et al., 2020; Tadesse et al.,
2020; Tadesse and Wahl, 2021; Harter et al., 2024). In principle, these reconstructions can then be used for extreme—value
analysis (Cid et al., 2018; Tiggeloven et al., 2021). However, previous studies did not specifically train their models to predict
the extremes.

Compared to mere-moderate storm surges, extreme storm surges are underrepresented in the training data. Without address-
ing this data imbalance during training, data-driven models may be biased toward more common events (Krawczyk, 2016).
This could explain why existing data-driven models typically underestimate extreme storm surges (e.g., Tadesse et al., 2020;
Tiggeloven et al., 2021; Harter et al., 2024), although limitations of the input data and the selection of predictor variables
also play a role (Harter et al., 2024). Therefore, the potential performance of data-driven models at predicting extreme storm
surges is still unclear. Furthermore, how neural networks compare to state-of-the-art hydrodynamic models in this regard also
remains unclear, because mostseveral previous studies either did not feeus-on—evaluating-specifically evaluate the extremes
andfor considered extremes exceeding relatively low thresholds (e.g., Bruneau et al., 2020; Tadesse et al., 2020; Tiggeloven
etal., 2021
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A second hurdle toward using data-driven models to project changes in extreme storm surges is their application to climate
model simulations, which are typically provided at a lower resolution than the atmospheric reanalyses used by previous studies.
For instance, the climate-model simulations from the High Resolution Model Intercomparison Project (Haarsma et al., 2016)
that were used by Muis et al. (2023) to force their Global Tide and Surge Model (GTSM) have a spatial resolution comparable
to the ERAS5 atmospheric reanalysis (Hersbach et al., 2020), but are provided at a temporal frequency of 3 hours at best. The
simulations of other models participating in the Coupled Model Intercomparison Project 6 (Eyring et al., 2016) are typically
also provided at a relatively low temporal resolution. Optimal model architectures and hyperparameter combinations that were
found using hourly or more frequent observational training data may therefore not apply in the context of projecting changes
in extreme storm surge.

In this study, we investigate how well neural networks can compute extreme storm surges based on atmospheric reanalysis
data when the imbalance of moderate v-s. extreme storm surges is addressed during model training. To address the imbalance,
we use the cost-sensitive learning approach DenseLoss (Steininger et al., 2021) that weights the contribution of prediction errors
to the training loss according to the rarity of their target observations, derived with kernel density estimation. Additionally, we
trained the neural networks with 3-hourly observational data because of the underlying aim to eventually apply them to climate
model simulations.

We analyzed 9 tide-gauge locations in western Europe, which are all subject to mainly extratropical cyclones, but vary in
their oceanographic setting. We show how the performance of the neural networks at predicting extreme storm surges at these
locations depends on how much additional weight rare data points are given, and whether the neural networks are designed to
exploit only temporal or also spatiotemporal patterns in the input data. Additionally, we compare the performance of neural
networks trained with and without density-based weighting to that of the multi-linear regression (MLR) model of Tadesse et al.

(2020) and the hydrodynamic model GTSM (Muis et al., 2020, 2023).

2 Methodology
2.1 Data preparation

We trained neural networks to predict storm surges at multiple9 tide-gauge locations in western Europe, selected based on
data availability and geographical coverage (see Figure 1). Due to computational constraints, we limited our experiments to 9
tide gauges. While these may not be representative of all European coasts, they allow us to compare results across locations
that are diverse in terms of shoreline orientation, dynamics, tidal regime and the magnitude and distribution of extremes.
We limited our analysis to 1979-2017 because for that period, GTSM simulations are available for comparison (Muis et al.,
2020). As predictands, we used hourly, quality-controlled tide-gauge observations from the GESLA3 database (Haigh et al.,
2021). To derive non-tidal residuals (hereon referred to as storm surges) from the tide-gauge observations, we first subtracted
annual means and then tides predicted through harmonic analysis performed with the T-Tide MATLAB package (Pawlowicz
et al., 2002). Following Tadesse et al. (2020), we used 67 tidal constituents for the harmonic analysis, including only years

of observations with at least 75% data availability. While we verified the tidal amplitudes and phases that we estimated by
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comparing them with the estimates of Piccioni et al. (2019), the tide predictions are not perfect and residual tidal signals may
remain despite our correction (Tiggeloven et al., 2021). However, to avoid smoothing out high-frequency surge variability, we
did not attempt to remove potential residual tidal signals further by low-pass filtering.

As predictors, we used hourly data from the atmospheric reanalysis ERAS (Hersbach et al., 2020). The explanatory variables
we used are zonal, meridional and absolute wind speed at 10m above the surface and atmospheric pressure at sea level.
Absolute wind speed was included based on previous research that showed that including derived but physically meaningful
predictor variables can provide added value (Tiggeloven et al., 2021). Our sensitivity tests at the tide gauge in Esbjerg, however,
suggest only a minor influence (see Appendix A). To improve model efficiency, future work could therefore investigate whether
absolute wind speed could be left out without substantially impacting model performance at other locations as well.

;The predictor data was used in a box of 5 by 5 degrees (20 by 20 grid cells) around each tide gauge (Figure 1). This
domain size was chosen as a compromise between computational costs and the approximate spatial scales at which we expect
remote winds and sea-level pressure to be relevant. The predictor data includes grid cells over land, which do not directly
affect water levels, but, as part of a certain weather pattern over a location, may contain features relevant for predicting storm
surges. Furthermore, aAs shown by Figure 1, the storm surge at time ¢ was predicted using predictors at time ¢ and up to 24
hours prior-, which was based on the assumption of a typical storm surge duration of approximately 48 hours. Because of the
look-back window, the predictor data used for predictions at consecutive 3-hourly time steps partially overlap. Sensitivity tests
at Esbjerg suggest that these parameter choices are generally appropriate (see Appendix A), although we acknowledge that the
optimal configuration of the predictor data may vary by location. As shown in Appendix A, using a look-back window, which
several previous studies did not do (Bruneau et al., 2020; Tiggeloven et al., 2021; Harter et al., 2024), clearly provides added
value.

Before training and evaluating the neural networks, we subtracted the annual means and mean seasonal cycle from both
the predictand and predictor variables at each time step to avoid these signals from dominating what the models will learn.
Additionally, we subsampled the hourly predictand and predictor data every 3 hours to mimic the highest temporal frequency
at which climate model simulations are typically provided (see Section 1). The time series were then split into non-overlapping
train, validation and test portions containing 60%, 20% and 20% of the available data, respectively (see Figure 1). We used the
train split to train the models, the validation split to evaluate training convergence and tune the hyperparameters of the models
(further explained in Section 2.3), and the test split to evaluate model generalization to unseen data.

Because we observed that at some locations, chronological splitting led to a particularly uneven distribution of extreme
storm surges over the different splits, we applied a simple stratified sampling scheme. This involved splitting the timeseries
into years from July to June, stratifying the years based on the magnitudeheight of the 99th percentile of storm surges (Pgg) in
each year, and randomly assigning years from each stratum to the splits according to the aforementioned split-size ratios. Due
to differences in tide-gauge data coverage between splits, the true split-size ratios can deviate from the nominal ones by up to
a few percent (see Table B1). The randomness of the stratification was controlled with a seed. Finally, both the predictand and
predictor data in each split were standardized by subtracting the mean and dividing by the standard deviation of the data in the

train split. The predictions obtained with the standardized predictor data were back-transformed accordingly before evaluation.
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Fig. 1. Data availability (percentage of 3-hourly time steps with processable observations during 1979-2017) at European tide gauges with
at least 20 years of observations, the 9 selected tide-gauge locations, and an example of the prediction of a non-tidal residual (referred to as
storm surge) at at an arbitrary time step ¢ at location 5 (Den Helder, NL). The abbreviations 10, v10, and w10 stand for zonal, meridional
and absolute wind speed at 10m above the surface, respectively, and ps! for the atmospheric pressure at sea level. The different colors of grey
indicate how the full time series of storm surges is divided up into splits, and Pg5 ' denotes the 99th percentile of all observed storm surges

in a given split.

2.2 LSTM and ConvLSTM models

For each location, we tested two neural network architectures: one with a long short-term memory (LSTM) layer and one with
a convolutional LSTM (ConvLSTM) layer, both followed by three densely connected layers (see Figure CAl). An LSTM layer
is a type of recurrent neural network that can capture temporal dependencies in sequential data (Hochreiter and Schmidhuber,
1997). A ConvLSTM layer is an LSTM layer in which internal operations are convolutional (Shi et al., 2015), and can therefore
also capture spatiotemporal dependencies. These models are therefore well suited for the data described in Section 2.1. Our
The choice for thesean1=STM models is additionally motivated by the results of Tiggeloven et al. (2021), who found that
LSTM models generally predict storm surges better than basic artificial neural networks, convolutional neural networks and

ConvLSTM models. Since Tiggeloven et al. (2021) used predictors in a region of only 1.25 by 1.25 degrees around each tide
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gauge, we additionally used the ConvLSTM model to test whether an LSTM model also outperforms a ConvLSTM model when
using predictors in a 5 by 5 degree region. To develop the models, we largely followed the designs of Tiggeloven et al. (2021)
but made a few tweaks that we found were beneficial for either model performance or efficiency. Both models were developed
with the python-package TensorFlow (TensorFlowDevelopers, 2024). The software that we developed to train and evaluate
the models is publicly available (Hermans, 2025b). Further details and flowcharts of the model architectures are provided in

Appendix CA.
2.3 Model training & hyperparameter tuning

Following previous studies (e.g., Bruneau et al., 2020; Tiggeloven et al., 2021), we trained our models separately at each tide
gauge, with the commonly used mean square error (MSE) loss function. The MSE loss minimizes the mean of the squared
differences between all predictions and observations, and while it therefore penalizes larger errors more than smaller errors,
it does not directly address the underrepresentation of extremes in the training data. Therefore, we implemented the cost-
sensitive learning approach DenseLoss (Steininger et al., 2021), which is an algorithm-level method that reweights the loss
function based on the rarity of target values. In contrast to resampling methods such as Synthetic Minority Oversampling with
Gaussian Noise (SMOGN; Branco et al., 2017), DenseLoss does not alter the training data through synthetic oversampling,
and therefore retains the physical consistency of the high-dimensional training data that we use. Furthermore, with DenseLoss,
the additional emphasis placed on rare samples can be controlled through a single interpretable hyperparameter and does not
require an a-priori relevance definition. The DenseLoss scheme was implemented by multiplying each squared error between
a prediction and an observation by a weight inversely proportional to the density of the observation obtained through kernel

density estimation. The density-based weights are given by f,:

mazx(1— ap(y),e)
L3N maz(1—ap(y;).€)

fu}(aay): (1)

in which y is the observation, p(y) is the normalized density function of the observations, € is a positive, real-valued constant
(107°) that clips the weights of observations with the highest densities to a non-zero value, and « is a hyperparameter con-
trolling the strength of the density-based weighting (the higher «, the stronger the weighting). Here, we test v values of 0 (no
weighting), 1, 3 and 5. Figure DB1 shows an example of the corresponding density-based weights of standardized observations
in the train split at Den Helder (NL). We refer to (Steininger et al., 2021) for further details of the DenseLoss method and their
benchmark of its performance against SMOGN.

Like Bruneau et al. (2020), Tiggeloven et al. (2021) and Harter et al. (2024), we trained our models using Adam optimization
(Kingma and Ba, 2017). We used a maximum of 100 training epochs and stopped training if the loss of the validation split
did not further decrease during 10 consecutive epochs. The maximum number of epochs was reached for only 5 to 6% of all
LSTM and ConvLSTM models, and based on the small decrements in the validation loss near the end of the training of these

models, we do not expect that using a maximum of more than 100 training epochs would substantially improve our results.
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The network weights corresponding to the epoch with the lowest validation loss were stored. Based on preliminary tests, we
used a batch size of 128 time steps (16 days).
Due to the dimensions of the training data, extensive tuning of all hyperparameters was too computationally costly, especially

for the ConvLSTM model. Therefore, we kept most hyperparameters of the model architectures defined in Appendix CA

constant, excepted for the learning and dropout rates, which influenced—Hewever,-because-we-observed-that-the learning-and
dropeutrates-had-arelatively-strong-influenee-on the evolution of the training and validation loss the most. Ws—we varied the

learning rate between le 2, 5e~° and le~* and the dropout rate between 0.1 and 0.2. As a dropout rate of 0.2 did not lead to
a structurally better generalization of the models to the independent test split than a dropout rate of 0.1, we did not increase
the dropout rate beyond 0.2. Combined with the 4 different values of «, this resulted in 24 unique sets of hyperparameters. To
save computation time, we trained the LSTM models with all 24 settings, but the ConvLSTM model only with a=5, informed
by the results for the LSTM models (see Section 3.1). Additionally, to account for variance in the results due to randomness in

the initialization and optimization of model weights, we trained the models 5 times with each set of hyperparameters.
2.4 Performance evaluation

As discussed in Section 2.1, we evaluated the LSTM and ConvLSTM models using their predictions in the validation and test
splits. For each split, we computed the root mean square error (RMSE) between the predictions and observations, considering
only the time steps in that split at which the observed storm surges are extreme. We defined extremes using the 99th percentile

in each split (P8

) as a threshold (see Table B1 for their magnitudes). Additionally, we only included exceedances of these
thresholds if they were part of an event consisting of at least two exceedances within a time span of 12 hours. This was done
to avoid including exceedances potentially primarily arising from dominant semi-diurnal tidal signals that may not have been
fully removed with the harmonic analysis explained in Section 2.1. We treated remaining threshold exceedances independently
regardless of whether they occurred during the same event, because this allows the neural networks to learn about the temporal
evolution of storm surges, and uniquely capturing storm surges through declustering would reduce the available sample size
unless more moderate events would be considered. The numbers of filtered exceedances in each split are shown in Table B1.
We refer to the resulting root mean square error as RMSE;”;?.

The RMSE%? conveys the error of predictions of observed extremes in a split regardless of whether the predictions are
extreme. As falsely predicted extremes would also be included in an extreme--value analysis of the predictions, we additionally

splzt

evaluated whether extremes are predicted at the right time. To do so, we used Pgg ~ as a threshold to count the number of

false positive (#FPs), false negative (#FNs), true positive (#TPs) and true negative (#TNs) predictions in each split. We then

computed the corresponding F1 score, which ranges from O to 1, by taking the harmonic mean of the precision (:%)
_ #TPs .
and recall (—m)
y lit lit
it _ 2% precisionpyg * recallpyg )
P99 — split

. . split
Precision pgg + recall pgg
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To place the performance of the neural networks in perspective, we also computed the error metrics introduced above for the
predictions of the MLR model of Tadesse et al. (2020), which uses empirical orthogonal functions (EOFs) of gridded sea-level
pressure and zonal and meridional near-surface winds as predictors. We trained the MLR model with the same ERAS5 data
used to train the neural networks except that we had to reduce the size of the predictor data from 5 by 5 to 4.5 by 4.5 degrees
around each tide gauge to manage the dimension constraints of the principal-component analysis of SciPy. This may lead to a
moderately lower performance (Tadesse and Wahl, 2021).

Additionally, we compared the performance of the data-driven models to that of GTSMv3.0 (Muis et al., 2020, 2023),; which
is a global, state-of-the-art hydrodynamic model that was also foced with sea-level pressure and surface winds from ERAS.
We derived the error metrics for GTSM from the separately provided surge component of its GFSMw3-0-simulationsfereed
with-sea-level-pressure-and-surface-winds{fromERAS. We used the simulations of Muis et al. (2020) instead of Muis et al.
(2023) because these consistently agreed better with the observations. A limitation of the comparison with GTSM is that we
trained the data-driven models with 3-hourly ERAS data (see Section 2.1), but simulations of GTSM are only available forced
with hourly instead of 3-hourly ERAS data. As atmospheric forcing with a lower temporal resolution reduces the accuracy of
storm surge models (Agulles et al., 2024), our comparison is biased towards GTSM in this regard. We will consider this for

the interpretation of our results in the following sections. Whi

3 Performance of the neural networks

3.1 Effect of density-based weighting on LSTM models

Figure 2 shows the RMSE of the predictions of extreme observations versus the F1 score in the validation split (RMSE}S‘IQZ9
versus F1%4), for each tide-gauge location. Each circle denotes these error metrics for an individual LSTM model. The
RMSE}’;IQZ9 is displayed relative to the magnitudeheight of the 99th percentile (Py4!) at each location so that it can directly be
compared between locations. Depending on the location, the minimum RMSE%Y, among the LSTM models trained without
density-based weighting (a=0, dark blue) ranges from 0.29 to 0.62 times P34!. Immingham stands out as a location at which the
LSTM models have a relatively high RMSE}’Daglg. Density-based weighting clearly reduces the RMSE}’;‘QZ9 of the LSTM models
at all locations (Figure 2). Furthermore, LSTM models trained with a higher « value (higher degree of weighting) tend to have
a lower RMSE%ZQ, as seen by the gradient of dark blue circles (a=0) on the right to red circles (a=5) on the left of each plot.
While among all tested values, a=5 leads to the lowest RMSEYY, at each location, the improvement obtained through
density-based weighting differs between locations (e.g., compare Stavanger to Den Helder). On average, increasing « from 0
to 5 reduces the minimum RMSE%Y, by 298%. The minimum RMSE%Y, for a=5 ranges from 0.22 to 0.345 times Pgg! at
all locations except Immingham, where the minimum RMSES2! equals 0.49exeeeds-0:45 times P!, As seen by the bars at
the bottom of each panel in Figure 2, the spread in the RMSE}S‘gQ among LSTM models with the same « is typically between

0.07-0.15 times Pg¢", depending on the location and on a.
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Density-based weighting also influences the F1%%, score of the LSTMs models. The maximum F1%%, score of models

trained without density-based weighting (a=0) ranges from 0.298 at Alicante to 0.70 at Den Helder (Figure 2). Increasing «
from 0 (dark blue) to 1 (light blue) improves the median F1%%, at all locations and the maximum F1%%, somewhat at most
locations. However, increasing « further has a mixed effect. For instance, at Esbjerg and Alicante, training with =5 leads to
the highest F1%%,, while at severat-other locations, a=1 or 3 leads to the highest F1%%, (Figure 2).

In general, the effect of density-based weighting on F1%%, is moderate: on average, the maximum F1%%, score of LSTM
models trained with density-based weighting (a=1, 3 or 5) is 9% higher than the maximum F 1}’;%19 score obtained without
density-based weighting (a=0). The effect of « on the F1 score results from the partial compensation between the precision
and the recall of the LSTM models, which depend on « oppositely (see Figure DE2). Namely, increasing the density-based
weights generally leads to a higher recall but a lower precision (i.e., less false negatives-mere-trae-pesitives but alse-te more
false positives), similar to the forecaster’s dilemma (Lerch et al., 2017). While Figure 2 suggests that increasing o beyond 5
may reduce the RMSE}JD“QI9 even further, this will therefore likely lead to less precise predictions of extreme storm surges, which
may negatively influence subsequent extreme-value analyses&STMmedelWﬂMewefﬁ%.

In conclusion, density-based weighting improves the everall-performance of the LSTM models at predicting extremes at all
locations, at least with an « value of 1. Our finding that using DenseLoss can improve both RMSE}’D“gl9 and Flljg‘gg suggests that
reweighting the loss function does not simply reduce prediction errors of a few specific outliers but improves to the models’
overall representation of extremes. However, the optimal « value depends on both the location and the metric to optimize, and
therefore needs to be tuned. Finally, we note that while density-based weighting may improve the performance of the LSTM
models at predicting extremes, it reduces their performance at predicting moderate observations by construction. Depending

on the intended application of the neural networks, this may also need to be considered.
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Fig. 2. Scatter plots of the root mean square error of predictions of the extreme storm surges observed in the validation split, relative to the
99th percentile of all observations in the validation split (@ x RMSE%Y,) [-], versus the F1 score of predictions in the validation split
evaluated using P35’ (F1%45) [-1, for each tide-gauge location. Each circle denotes these error metrics for an individual LSTM model. The
colors indicate the different values of « (0, 1, 3 or 5) used to train each LSTM model (30 LSTM models per « per location, as explained in
Section 2.3). The bars on the bottom and left sides of each panel denote the minimum, median and maximum relative RMSE%%, and F1%%,

of the LSTM models for each «, respectively. The value of P34 is Shfffm in the upper right corners.
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3.2 Comparison between models

Next, we compare the performance of the LSTM models with that of (1) the ConvLSTM model, (2) the MLR model of Tadesse
et al. (2020), and (3) the hydrodynamic model GTSM (Muis et al., 2020). To this end, Figure 3 shows the same error metrics
as Figure 2, but only for the best LSTM models for each a (colored circles). These were selected based on the highest sum of
the model’s rankings for RMSE%%Y, and F1}%,, separately for each location. The best ConvLSTM models were selected in the
same way (trained only with a=5; black-edged red squares).

First, we find that the selected LSTM models have a higher RMSE%%Y, than the selected ConvLSTM models at all locations
except at Vigo and Alicante (Figure 3a), and a lower F1 %‘1959 at all locations exeept-Alieante(Figure 3b), at least for a=5. Using
a ConvLSTM layer instead of an LSTM layer leads to an average improvement in the RMSE}&,“QZ9 and Fl}é%lg of 56 and 123%),
respectively. The finding that the ConvLSTM model outperforms the LSTM model at most locations indicates that exploiting
spatiotemporal patterns in the input data is generally beneficial for predicting extreme storm surges.

Second, Figure 3a shows that at all locations, the LSTM models trained with density-based weights have a lower RMSEY%,
than the MLR model of Tadesse et al. (2020) (white triangles). The LSTM models trained without density-based weights
(a=0; dark blue circles) also have an RMSE“Pagl9 similar to or lower than the MLR model, except at Vigo. Furthermore, the
Fl}é‘glg score of the LSTM models is higher than that of the MLR model at all locations, regardless of « (Figure 3b). These
results suggest that the non-linear relations between extreme storm surges and atmospheric predictors that the LSTM models
capture, but the MLR model cannot, are important to consider. The difference in the performance between the LSTM- and
MLR models may partially be reduced by using wind stress instead of wind speed as a predictor because wind stress is related
to surge more linearly (Harter et al., 2024). Like for the LSTM models, the performance of the MLR model may also be
improved by incorporating density-based weighting in its optimization, but we did not test this.

Third, the selected LSTM models have a higher RMSE'I’D“QZ9 than the hydrodynamic model GTSM (white diamonds) at
all locations except at-Wick, Vigo and Alicante, and a lower Fl”jﬂglg at all locations except Brest and Vigo, regardless of «
(Figures 3a & b). On average, GTSM has an approximately 942% lower RMSEY%, than the minimum RMSE%Y, and a 9
+2% higher F1%% than the maximum F1%%y of the LSTM models. Hence, we conclude that at the majority of locations, a
state-of-the-art numerical model like GTSM outperforms relatively simple neural networks like the LSTM models, although
the hourly instead of 3-hourly atmospheric forcing that was used to drive GTSM (see Section 2.4) may also help. Especially
at Immingham, GTSM performs relatively well while the LSTM models perform relatively poorly (Figure 3), indicating that
the LSTM models have poorly learned the existing relationship between the predictors and the extreme storm surges at that
location.

Finally, since the ConvLSTM models outperformed the LSTM models at most locations, we find that the ConvLSTM models
perform more similarly to GTSM than the LSTM models (Figure 3). Except at Stavanger and Immingham, the performance of
the ConvLSTM models trained with a=5 closely approaches or even exceeds that of GTSM. The average relative differences
in the RMSEYY, and F1Y%, between the best ConvLSTM models and GTSM at these 7 locations are marginal. Hence, based

on these evaluation metrics, the ConvLSTM model may be a viable alternative to state-of-the-art hydrodynamic models.
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Fig. 3. (a) RMSEYY, relative to Py4! [-] and (b) F1%%, [-], for the best overall performing LSTM models for each o (colored circles), the
best overall performing ConvLSTM model for a=5 (black-edged red squares), the MLR model of Tadesse et al. (2020) (white triangles) and
the hydrodynamic model GTSM (Muis et al., 2020) (white diamonds), at every tide-gauge location.

3.3 Model generalization

So far, we only considered how well the different models perform in the validation split. In this section, we also evaluate how
well the models generalize. To do so, we compare the error metrics in the validation and test splits (Figure 4), the latter of which
was completely held back during model training. Figure 4a shows that the relative RMSE}%%Z9 and RMSELSsE of the LSTM-
and ConvLSTM models (colored circles and squares, respectively) lie close to the 1:1 line at all locations except Alicante
(lightblue). This suggests that except at Alicante, the neural networks apply to unseen data relatively well in terms of their
error, which is further corroborated by the-high correlations between the RMSE%Y, and RMSESs! across models at individual
locations-(Figure-4a). Additionally, we find that increasing « leads to a lower RMSE pgg in both the validation and test splits
(Figure D3). The MLR model and GTSM show similar behavior, as shown by the {colored triangles and diamonds in Figure
4a, respectively?.

The F1%Y, and F135% scores of all models also lie relatively close to the 1:1 line at most locations (Figure 4b), again
suggesting that the models generalize reasonably well. However, the spread in the F1 scores is larger (as also seen in Figure

2) and the correlation between the-F1%%, and F115s¢ across the neural networks at each location is, although still visible and
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significant, lower than between RMSE}’J"S}9 and RMSE/Sst. With a few exceptions, increasing « has an approximately similar
effect on F11<5¢ as it has on F1%%, (Figure D3).

To some extent,Mederate differences between RMSEY%, and RMSE3s5, and F14%, and F14555, are expected because these
error metrics depend on a relatively small number of extreme events (see Table 1) that are not identically distributed in the
relatively short validation and test splits (<8 years each). For optimal model generalization, we therefore recommend tuning o
alongside other important (hyper)parameters using k-fold cross-validation. The differences between the splits Fhis-also affects
how the performances of the different models compare. For instance, at Fishguard (pink) and Brest (grey), the minimum
RMSEYY, of the ConvLSTM models is slightly higher than that of GTSM, while the minimum RMSESS! is slightly lower
(Figure 4a). However, the discrepancy between RMSE’JP‘IQZ9 and RMSE'SS! is exceptionally large at Alicante. Strikingly, this
is the case for both the data-driven models and GTSM (Figure 4a). Given that the same atmospheric forcing was used for all
models, this suggests that at Alicante, the extent to which the observed extremes can be explained by wind- and pressure-driven

surges differs substantially between the validation and test splits. Potential reasons for this will be discussed in Section 4.
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Fig. 4. Scatter plots of (a) RMSE pgg relative to Pog [-] in the validation split v=s. in the test split and (b) F1 pgg [-] in the validation split v=s. in
the test split, for the LSTM models (circles), ConvLSTM models (black-edged squares), the MLR model of Tadesse et al. (2020) (triangles),
and GTSM (Muis et al., 2020) (diamonds). Each marker denotes the error metrics of an individual model, and the colors represent the

different tide-gauge locations. The diagonal lines indicate equal error metrics in the validation and test splits.
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3.4 Underestimation of the highest extremes in the test split

To further investigate the performance of the neural networks at predicting extremes in the test split, we zoom in on the 6
locations at which the RMSEYY, and F1%%, of the ConvLSTM models and GTSM are comparable (Section 3.2) and the
models generalize well (Section 3.3): Wick, Esbjerg, Den Helder, Fishguard, Brest and Vigo. We find that like in the validation
split, the ConvLSTM models (orange) and GTSM (grey) have similar errors in the test split overall (average difference of 0.01
in the RMSE’}ES}; relative to Ptg%“), whereas the LSTM models (blue) consistently have a higher error (Figure 5a). However,
despite their similar RMSEfDegg, the ConvLSTM models and GTSM have a different error distribution. Namely, the ConvLSTM
models predominantly underestimate the observed extremes at all locations, while GTSM overestimates more than half of the
observed extremes at Wick, Fishguard and Brest (Figure 5b).

The predictions from which the error distributions in Figure 5b were derived are shown in Figure DE4. Because Figure D
€4 shows that the underestimation of extreme storm surges by the neural networks is more pronounced higher up the tail of
the distributions of observed storm surges, we also computed the RMSE of predictions of exceedances of a higher threshold,
namely P45t (Figure 5¢). Whereas the RMSEYSS! of the ConvLSTM models and GTSM are comparable, the RMSEZSS! o of
GTSM is lower than that of the ConvLSTM models at all locations (average difference of 0.087 in the RMSE/S3!  relative
to P{5%5). Comparing the error distributions in Figures 5b & d, we indeed find that the underestimation of extremes by the
ConvLSTM models is more severe when using P55 as a threshold. This contributes to a larger error compared to that of
GTSM, which has predictions errors centered closer to 0 (Figure 5d). Nevertheless, the improvement by the ConvLSTM
models relative to the LSTM models is still significant. Although these results are sensitive because the RMSESS!  is based
on only a small number of extremes (see Table B1), they suggest that the performance of the neural networks falls off in

comparison to GTSM when considering extremes above very high percentiles.
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Fig. 5. (a) RMSES3! relative to PiS5é, and (b) box plots of the distribution of the relative errors of the predictions of storm surges in the
test

test split exceeding P55, at Wick (UK), Esbjerg (DK), Den Helder (NL), Fishguard (UK), Brest (FR) and Vigo (PT). Panels (c¢) and (d)
show the same, but using P55 o as a threshold for evaluating the prediction of observed extremes. Blue and orange colors are used to denote
these metrics and distributions for the LSTM- and ConvLSTM models selected in Section 3.2 for a=5, respectively, and grey colors for the

hydrodynamic model GTSM.
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4 Discussion

We found that training LSTM models with the density-based weighting devised by Steininger et al. (2021) improves both
the error and timing of predicting extreme storm surge at 9 diverseseleeted tide-gauge locations in Europe. This suggests that
existing data-driven storm-surge models used for similar applications (e.g., Bruneau et al., 2020; Tiggeloven et al., 2021; Harter
et al., 2024; Tadesse et al., 2020) could also be improved by addressing the underrepresentation of extremes in the training
data in this way. How much additional weight more extreme events should be given through the hyperparameter o depends on
the location and the evaluation metrics to optimize (see Sections 3.1 & 3.3), and therefore needs to be tuned in relation to the
problem context. For instance, a higher o value may be better for applications in which recall is more important than precision
(see Fig. C2).

The optimal « value for reweighting the loss function value varies by location likely because the distribution of the training
data also varies by location. To apply the DenseLoss method to a larger number of locations in the future, the location-dependent
tuning of « could be automated (e.g., Feurer and Hutter, 2019) or informed by the distributional features of the training data,
such as target skewness and tail heaviness. More practically, a could be tuned for a limited number of clusters of locations with
similar characteristics and distributions (e.g., Calafat and Marcos, 2020; Morim et al., 2025), either by training cluster-specific
models or by training a single model incorporating cluster-specific attributes and weights (e.g., Kratzert et al., 2019). Our
results suggest that even for a diverse set of locations, a common value for a>0 can be found that improves the performance of
the data-driven models at predicting extremes at all locations, even though it may not lead to the most optimal performance at
every location individually.

Additionally,At-mestlecations; we found that at most locations, using a ConvLSTM- instead of an LSTM model improves
the predictions of the extreme storm surges. This conflicts with the results of Tiggeloven et al. (2021), who found that Con-
vLSTM models generally do not outperform LSTM models in Europe, nor globally. Most likely, the reason is that Tiggeloven
et al. (2021) used atmospheric predictors in a region of 1.25 by 1.25 degrees instead of 5 by 5 degrees around each tide-gauge
location as a default. Given that extratropical cyclones occur at scales of hundreds of kilometers (Catto, 2016), more mean-
ingful spatiotemporal features can likely be extracted from the predictor data when using a larger region. This is supported by
our sensitivity testsa-preliminary-test at Esbjerg (see Appendix A), which indicated that the LSTM- and ConvLSTM models
indeed perform more similarly when trained with predictor data in a smaller region-ef4:25-by1-25-instead-of S-by-S-degrees,
as well asand by sensitivity tests of Tiggeloven et al. (2021) with larger predictor regions.

Especially the ConvLSTM models perform relatively well at predicting extreme storm surges exceeding the 99th percentile,
and their performance approximates that of the high-resolution, hydrodynamic model GTSM at the majority of locations (see
Figures 3 & 5). This is promising, especially since GTSM was forced with ERAS data at a higher frequency than the neural
networks (see Section 2.1) and we did not tune hyperparameters other than the learning rate, the dropout rate, and « (see Section
2.3). Furthermore, depending on the application, a somewhat lower performance may be acceptable in exchange for the much
lower computational cost of applying the neural networks once trained. Follow-up research could therefore investigate the

application of our neural networks to climate model simulations. This will introduce additional complexity because simulated
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distributions of predictor variables may differ from observed ones used for training due to climate-model biases and potential
non-stationarity due to future changes (Lockwood et al., 2022). In this context, hydrodynamic model simulations forced with
the same climate model simulations (e.g., Muis et al., 2023) could serve as a valuable benchmark.

At one location (Alicante), both the neural networks and GTSM performed reasonably in the validation split but poorly
in the test split (Section 3.3), suggesting that the observed extremes in the test split can be explained by atmospherically-
driven surges less well (see Section 3.3). Previous studies have also reported a lower performance of both data-driven and
hydrodynamic models in southern Europe (e.g., Muis et al., 2020, 2023; Tadesse et al., 2020; Bruneau et al., 2020; Tiggeloven
et al., 2021). A complicating factor is that storm surges in this area are small and the effect of other processes such as ocean
dynamic sea-level variability, freshwater forcing and waves are therefore relatively more important. Adding other predictors
like temperature, precipitation, river discharge or waves, may help to represent these processes (Tadesse et al., 2020; Tiggeloven
etal., 2021; Bruneau et al., 2020; Harter et al., 2024), but not all of these predictors are directly available from climate models.

We trained and evaluated the models using tide-gauge observations outside the harbor of Alicante because they are more
complete, but tide-gauge observations inside the harbor are also available (Marcos et al., 2021; Haigh et al., 2021). Upon
comparison, we found that the two tide-gauge records have large differences in their extremes especially in the test split, and
that both the predictions of the neural networks and the simulations of GTSM agree better with the observations inside the
harbor. This signals the importance of waves, which affect the tide gauge inside the harbor less and are not (well) captured by
the models. Another reason for the difference could be observational errors. To train the neural networks with less noisy data,
hydrodynamic simulations could be used as the predictand instead of tide-gauge observations. The downside, however, is that
the neural networks will then inherit the biases of the hydrodynamic model and will not learn any indirect dependencies of
observed extreme water levels on surface winds and sea-level pressure.

At two locations (Stavanger & Immingham), GTSM performed significantly better than the neural networks (Figure 3).
Given that the models are forced by the same atmospheric variablesdata, this suggests that the neural networks at especially
atJeast Stavanger and Immingham may be improved by further optimizing the neural networks. Like aSinee, the optimal
hyperparameters of neural networks appear to be location-dependent (Tiggeloven et al., 2021). Therefore, more extensive
hyperparameter tuning than we did here may help to reduce both the performance differences between locations and between
the neural networks and GTSM, including at predicting the highest extremes. This could also involveinelades optimizing the
variables, domain size and look-back window of the predictor datathe-region-of-predictor-data used at each tide-gauge location
(see Appendix A).and-thetag-between-the predictors-and predictand,-which-we held-eon

Similarly to Harter et al. (2024), we find that the neural networks predominantly underestimate exceedances of very high
percentiles (e.g., the 99.9th). While this indicates that by density-based weighting, the neural networks are not overcompen-
sating by forcing good scores on only a few high-weighted outliers, the models do;-and perform worse than GTSM in this
that regard-despite-the-density-based-weightsused-for-training (Section 3.4). Agulles et al. (2024) found that by using daily
instead of hourly atmospheric forcing, their hydrodynamic model underestimated the 99.9th percentile of non-tidal residuals
by approximately 30-50%. While the underestimation with 3-hourly instead of hourly forcing would likely be less severe,

their results suggest that the difference in the temporal frequency of the forcing of the neural networks and GTSM explains
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the differences in their tail behaviour at least partially. Future work could investigate this further by running a hydrodynamic
model with 3-hourly forcing.

Another reason for the predominant underestimation of exceedances of the 99.9th percentile could be the limited ability of
the neural networks to extrapolate to the highest extremes, despite our use of DenseLoss. Smaller errors may be obtained by
increasing the density-based weights beyond the values that we tested, but likely at the cost of reduced precision (Section 3.1).
We therefore suggest several other avenues that -Beside
most-climate-models;-follow-up research could explore several-ways-to reduce the underestimation. First, to reduce the degree

of extrapolation required,the-underestimation—of-the-highest-extremestorm-surges—partially-oceurs-beeausethe-trainingda

it could be helpful to train the models with more data. This could be obtained from the backward extension of ERAS to 1950

(Bell et al., 2021), depending on the length of the tide-gauge records. In the same spirit, the added value of complementing
density-based weighting with synthetic oversampling of the extremes (e.g., Branco et al., 2017), and transfer learning across
both different storm-surge datasets and different locations (e.g., Xu et al., 2023), would be useful to explore.

Second, while we chose to use LSTMs and ConvLSTMs (see Section 2.2), follow-up research could investigateexplere
whether the predictions of the extreme storm surges can be improved with other, emergingadvaneed model architectures. For
instance, graph neural networks, hierarchical deep neural networks and gaussian process models have been found beneficial
for short-term forecasting (Kyprioti et al., 2023; Jiang et al., 2024; Naeini et al., 2025), and may also be in our context. Graph
neural networks in particular could help to predict storm surges at multiple related locations, capturing spatial dependencies
by representing different locations as nodes of a graph. Furthermore, path signatures, which encode features from time series
through tensors of iterated path integrals, have shown promise as feature maps in machine learning tasks concerning irregular
time series and the detections of extreme events (Riess et al., 2024; Lyons and McLeod, 2024; Akyildirim et al., 2022; Arrubar-
rena et al., 2024). Additionally, implementing self-attention mechanisms could help the neural networks to dynamically focus
on those features of the input data that are most relevant to the extremes (Ian et al., 2023; Wang et al., 2022). Finally, Anether
way-te-improve-the-accuracy may be improved byte incorporateing the shallow-water equations into the models, usingresulting
i so-called physics-informed neural networks (e.g. Zhu et al., 2025; Donnelly et al., 2024).

5 Conclusions

We conclude that through density-based weighting, the cost-sensitive learning approach DenselLoss (Steininger et al., 2021)
improves the performance of neural networks at predicting extreme storm surges at all 9 selected tide-gauge locations in
Europe. Furthermore, at most locations, exploiting spatiotemporal dependencies using a ConvLSTM- instead of LSTM layer
also improves the performance, if a sufficiently large region of atmospheric predictor data is used. At 7 out of the 9 tide-gauge
locations that we used, the performance of especially the ConvLSTM models closely approximates that of the state-of-the-art,
hydrodynamic Global Tide and Surge Model (GTSM), based on performance metrics evaluated using the 99th percentile as

a threshold for extremes. This is a positive sign for the potential application of neural networks to climate model simulations
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to project changes in extreme storm surges, especially since we trained the neural networks with 3-hourly data (the highest
frequency at which climate model simulations are typically provided) whereas GTSM was forced with hourly data. However,
the neural networks still predominantly underestimate the highest extreme storm surges (those exceeding the 99.9th percentile).

Follow-up research may improve this by further optimizing the neural networks and the data used to train them.

Code availability. The software that we developed to train and evaluate the models is publicly available on GitHub (https://github.com/
Timh37/surgeNN) and archived onin-a Zenodo-repesitery (Hermans, 2025b).
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Appendix A: Sensitivity to predictor data parameters

To test the sensitivity of the performance of the neural networks to the configuration of the predictor data, we performed several
additional tests at the tide gauge in Esbjerg (Denmark). For these tests, we separately varied the predictor variables, the domain
size and the length of the look-back window for a combination of LSTM and ConvLSTM models (see Figure A1). The models
were trained 10 times each to account for random variance, using a fixed dropout and learning rate (0.1 and 5e >, respectively),
and « values of 0, 1, 3 and 5. Figure Al shows the average error metrics (relative RMSE pgg and F1 pgg) for each sensitivity
test, in both the validation and test splits.

Based on these tests, we find that using the zonal and meridional wind components in addition to sea-level pressure clearly
improves the performance of the LSTM models, especially with regard to their generalization to the test split (see Figure Al,
top row). Additionally using the absolute wind speed does not substantially affect model performance. Therefore, the absolute
wind speed could potentially be left out as a predictor variable in the future to increase training efficiency.

Second, the LSTM models trained with a predictor region of 3 by 3 or 5 by 5 degrees tend to outperform LSTM models
trained with a domain size of 1 by 1 degrees (see Figure A1, second row), but not by much. Comparatively, the ConvLSTM
models benefit from a larger domain size more (see Figure Al, third row). As a consequence, the ConvLSTM models outper-
form the LSTM models when using a predictor region of 3 by 3 and 5 by 5 degrees, but not (clearly) when using a predictor
region of only 1 by 1 degrees.

Third we find that using a look-back window for the predictor data is clearly better for the performance of the LSTM models
than using no look-back window (see Figure A1, bottom row). A look-back window of 24 hours, which we use in the main
manuscript, seems to be approximately optimal. Namely, increasing the look-back window from 24 to 36 hours did not further
improve the performance of the models.

Finally, while the results in Figure Al provide useful insights into the sensitivity of the neural networks to the predictor
variables, region size and look-back window, we varied these parameters separately and did not test different combinations.
Additionally, the optimal configuration of the predictor data may vary by location. Follow-up research could further investigate

fine-tuning the predictor data at specific locations.
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Fig. A 1. Sensitivity of the average RMSE pgg relative to Pyg [-] and F1 pgg [-] of the LSTM and ConvLSTM models at Esbjerg (DK) to the
predictor variables (mean sea-level pressure msl, zonal and meridional wind ©10 & v10, and absolute wind speed w10), domain size of the
predictor data (1 by 1, 3 by 3 or 5 by 5 degrees), and the length of the look-back window (0, 12, 24 or 36 hours), for different values of «.
The error metrics are shown for both the validation (1st and 3rd columns) and the test splits (2nd and 4th columns). The bold text on the left

of the figure indicates the default settings used for the results in the main manuscript.
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Appendix B: Training and evaluation samples

Table B 1. Number of samples, the magnitude of the 99th and 99.9th percentiles (Pgg and Pgg.9) [m], and the number of filtered (see Section

2.4) extremes exceeding Pog and Pgg 9, per split and per tide gauge.

Samples [#] Pgs"" [m] > Py [#] P35y m] > Pify' [#1

Tide gauge Train  Val Test Train Val  Test Train Val Test Train Val  Test Train Val Test

1 Stavanger 65094 23178 21697 035 035 035 586 199 190 053 051 055 66 24 22
2 Wick 57832 21538 16200 043 043 041 516 192 138 063 0.63 0.61 59 22 16
3 Esbjerg 62889 20249 21364 1.07 1.09 1.10 572 187 192 1.85 1.69 172 63 21 22
4 Immingham 52939 20280 20164 0.56 0.57 0.56 403 153 159 1.01 093 1.00 51 20 20
5 Den Helder 66485 23368 23376 0.81 0.80 0.80 593 206 200 140 126 139 67 24 24
6 Fishguard 57995 18361 19284 038 039 039 475 153 156 059 0.64 065 55 19 18

7 Brest 67810 21748 23304 035 035 036 577 168 195 055 053 059 65 19 23
8 Vigo 59772 22775 22663 029 029 030 487 168 207 045 042 045 53 16 23
9 Alicante 53578 16692 19681 020 020 0.20 493 154 182 029 028 031 56 16 19
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Appendix C: Neural network architectures

The LSTM model consists of an LSTM layer followed by 3 densely connected layers (Figure C1). For the LSTM layer, we
specified 32 units and otherwise used the default TensorFlow options. The first two densely connected layers have 32 neurons,
the commonly used rectified linear unit (ReLLu) activation and L2 regularization (15=0.02), and are followed by a dropout layer
with a dropout rate that we lightly tuned (see Section 2.3). Regularization and dropoutnermalization help to avoid overfitting
the model to the training data. The last dense layer has 1 neuron and a linear activation to predict a single storm surge at each
time step. The ConvLSTM model consists of a ConvLSTM instead of regular LSTM layer, with 32 kernels of 3 by 3 grid cells,
even padding and also a ReLu activation. The ConvLSTM layer is followed by batch normalization and a max-pooling layer
that reduces the spatial dimensions of identified features. The remainder of the ConvLSTM model is the same as in the LSTM
model.

For each prediction, predictors at time steps up to 24 hours prior were used (see Section 2.1), resulting in a total of nine
3-hourly time steps per prediction. The predictor data at each of the 20 by 20 grid cells and for each of the 4 predictor variables
shown in Figure 1 were stacked for the LSTM model, resulting in input data with the shape (n,s,9,1600). Here, n,;s refers
to the number of observations. For the ConvLSTM model, the grid cells were not stacked and the 4 predictor variables were

inputted as channels. The input to the ConvLSTM model therefore has the shape (ny5,9,20,20,4).

LSTM Model
(Nobs,32) (Nobs,32) (Nobs,32)
(nobsvl)
Predictors _ _ _ _ Predictions
(Nobs,9,1600) . . . . (Nobs)
Dense (1)
LSTM (32) Dense (32) Dropout Dense (32) Dropout linear
tanh, sigmoid ReLu, 0.02 Iy RelLu, 0.02 rq
ConvLSTM Model
(Nobs,20,20,32) (Nobs,10,10,32) (Nobs,32) (Nobs,32)
(nODSvl)
| S
Predictors _ _ _ _ _ _ _ | . Predictions
(Nobs,9,20,20,4) . . - . . . - (Nobs)
Dense (1)
ConvLSTM2D (32)  Baich  MaxPool2D Dense (32) Dropout Dense (32) Dropout linear
Relu, 3x3, Normalization 2x2 RelLu, 0.02 I ReLu, 0.02 fd

even padding

Fig. C 1. Flowchart of the architectures of the LSTM- and ConvLSTM models used. The blue rectangles represent the LSTM and ConvLSTM
layers, the orange rectangles the densely connected layers, the white rectangles the dropout layers and the grey layers the batch normalization
and max-pooling layers. The labels above the rectangles show how the shape of the data after passing through that layer. rq refers to the

tunable dropout rate.
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Appendix D: Supplementary results

Den Helder (NL)
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Fig. D 1. Density-based weights [-] of standardized observations [standard deviation (s.d.)] at Den Helder (NL) for « values of O, 1, 3 and 5.
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Weights lower than le % were clipped to 1e = (see Section 2.3).
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Fig. D 2. Scatter plots of the recall’%, [-] versus the precision’%, [-], for each tide-gauge location. Each circle denotes these error metrics for

an individual LSTM model. The colors indicate the different values of « (0, 1, 3 or 5) used to train each LSTM model (30 LSTM models per
« per location, as explained in Section 2.3). The bars on the bottom and left sides of each panel denote the minimum, median and maximum

relative recall %, and precision%4, of the LSTM models for each a, respectively.
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Fig. D 3. Scatter plots of RMSE pgg relative to Pog [-] and F1pgg [-] in the validation vs. in the test split, displayed per tide gauge. The
colored circles represent the LSTM models for different values of «, the black-edged red squares the ConvLSTM models for a=5, and the
white triangles and diamonds the MLR model of Tadesse et al. (2020ggnd GTSM (Muis et al., 2020), respectively. The diagonal line in each

panel indicates equal error metrics in the validation and test splits.
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Fig. D 4. Scatter plots of predictions v=s. observed extremes (>Ph5°*) in the test split [m] at (a) Wick (UK), (b) Esbjerg (DK), (c¢) Den
Helder (NL), (d) Fishguard (UK), (e) Brest (FR) and (f) Vigo (PT). The blue and orange circles represent the predictions of the LSTM- and
ConvLSTM models selected in Section 3.2 for a=5, respectively. The grey circles represent the storm surges simulated with the hydrodynamic
model GTSM. The vertical dashed line indicates the observed 99.9th percentile in the test split (P55°5), and the diagonal 1:1 line denotes
equal predictions and observations.
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