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Abstract. The Stream Power Model (SPM) has become a cornerstone of quantitative geomorphology, widely used to predict

landscape evolution including the generation, moderation, and lowering of Earth’s topography, sedimentary flux and bio-

geochemical processes. It is well known that landscape geometries predicted by the SPM can be strongly influenced by noise.

However, its impact on the uncertainties or probabilities of, for instance, drainage planform geometries and widely used metrics

is poorly understood. Noise can be incorporated into SPM simulations in a variety of ways. For instance, random, low ampli-5

tude, topographic anomalies are often inserted into starting conditions to enhance the realism of calculated drainage networks.

Spatio-temporal or quenched (frozen) noise also influence the trajectories of evolving landscapes. Our goal with this paper is to

establish how noise impacts the probabilities of landscape geometries and the reliability of tectonic and erosional information

recovered from them. A series of landscape evolution models are run in which different arrangements, distributions, and imple-

mentations of noise are added to models evolving under the same tectonic and erosional forcings to an equilibrium state. We10

quantify uncertainties that arise from incorporating different arrangements of typical (uniform; white) and naturalistic initial,

quenched and spatio-temporal noise. We focus on three conclusions. First, tectonic rates and values of erosional-geometric

parameters (e.g., concavity and steepness indices, Hack exponents) recovered via metrics-based approaches (e.g., slope-area,

χ, length-area) are uncertain in the presence of noisy initial conditions. Recovered values from individual landscapes gener-

ated with the same distribution but different specific arrangement of noise are at least as uncertain as ranges attributed to, for15

instance, changes in aridity. In fact, even noise with amplitudes that are < 1% of cumulative uplift can cause tectonic rates to

no longer be recoverable to within a factor of two of true values. These results emphasise the sensitivity of metrics that rely on

calculating derivatives (e.g., slope-area, χ) to noise. Secondly, whilst noise can make landscape geometries highly uncertain

(different in different simulations), the distributions of their geomorphic properties (e.g., hypsometries, channel length-area

relationships, Hack exponents) appear to have well defined statistical properties (e.g., expected values and variance). Finally,20

we suggest that a useful way to assess the impact of noise on SPM predictions is to generate ensembles of hundreds to thou-

sands of models in which different arrangements of the chosen distribution of noise are inserted. Doing so can provide means

to quantify uncertainty in predicted geometries and derived metrics, which can be substantial.

1



1 Introduction

It is well established that processes acting to shape Earth’s topography leave behind some record of their history. Therefore25

interrogation of surface topography can, we hope, yield insight into how these processes operate and intertwine. Various ob-

servational and theoretical approaches exist to make such interrogations (e.g., Anderson and Anderson, 2010). One family of

approaches makes use of partial differential equations (PDEs), often solved numerically, to predict evolution of topography

in space and time. The Stream Power Model (SPM) is perhaps the most widely used (see e.g., Howard, 1994; Rosenbloom

and Anderson, 1994; Whipple and Tucker, 1999; Tucker and Hancock, 2010; Lague, 2014; Salles, 2016; Hobley et al., 2017,30

and references therein). A wide variety of metric-based, forward and inverse modelling studies utilise the SPM to derive infor-

mation about uplift, erosion, climate and biogeochemical processes from real and synthetic landscapes (e.g., Howard, 1994;

Whipple and Tucker, 1999; Baldwin et al., 2003; Zaprowski et al., 2005; Roberts and White, 2010; Roberts et al., 2012a; Fer-

rier et al., 2013; Croissant and Braun, 2014; Forte et al., 2016; Harel et al., 2016; Mitchell and Yanites, 2019; Campforts et al.,

2020; Lipp et al., 2020, 2021; Salles et al., 2023; DeLisle and Yanites, 2024). However, one complication to this endeavour is35

the presence of noise, which we consider in two categories.

The first category of noise, obfuscating the recovery of tectonic information, we term as ‘scientific’. By this we refer to

things which cannot be known, such as the many areas within a landscape that have unknown or poorly understood histories,

where information necessary to recover tectonic information has been removed by erosion, for instance. This category also40

includes noise that can be attributed to measurement or observational uncertainties due to, for example, fluctuations or changes

in landscape form that are too rapid or slow to be recorded directly (Lague, 2014; Ancey et al., 2015; Forte et al., 2016; Chen

et al., 2022; Roberts and Wani, 2024).

The second category of noise we consider, and the focus of this paper, is computational. A usual strategy in landscape evolu-45

tion models is for computational noise to be inserted as random elevations within a model starting condition to enable realistic

drainage networks to form (see e.g., Willgoose et al., 1991; Tucker and Slingerland, 1994; Braun and Sambridge, 1997; Smith

et al., 1997; Tucker et al., 2001; Coulthard et al., 2012; Goren et al., 2014, and references therein). Typically, initial topo-

graphic roughness is drawn from a random uniform distribution (i.e., white noise). Other types of noise have been incorporated

into landscape simulations, such as those with normal distributions or generated using specific algorithms (e.g., Perlin noise;50

diamond square algorithm), though they are less common (Fournier et al., 1982; Perlin, 1985, 2002; Perron and Fagherazzi,

2012; Mudd et al., 2018; Etherington, 2022; Ruiz Sánchez-Oro et al., 2024). The choice of noise (e.g., its distribution) has

important implications for landscape geometries, however the often assumed white noise is not necessarily representative of

observed topography or processes driving landscape evolution (see e.g., Ijjász-Vásquez et al., 1992; Perron and Fagherazzi,

2012; Kwang and Parker, 2019; Wapenhans et al., 2021). Whilst specific details of palaeotopography may not be knowable,55

spectral analysis of modern topography provides insight into the distributions of elevations that we might wish to replicate

when deciding on the distributions of noise to be used within, for instance, model starting conditions (Perron et al., 2008;
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Audet, 2011; Roberts et al., 2019; Wapenhans et al., 2021). We note that alternative approaches to generate realistic channel

planforms exist outside of adding random elevations. One option is to randomise flow directions (e.g., Salles, 2016; Salles and

Hardiman, 2016). However given the extensiveness of adding noisy random elevations to encourage LEMs to channelise, we60

focus our attention of the consequences of doing so in this study.

The presence of noise within natural and modelled landscapes is known to complicate the recovery of geomorphic informa-

tion. Roberts et al. (2012b) and Smith et al. (2022) showed how solutions recovered from channel slope-upstream drainage area

data become unstable when noise is added to longitudinal profiles. Castelltort and Yamato (2013) highlight how the steepness65

of slopes present in noisy initial conditions added to LEMs can unsatisfactorily influence the geometry of resultant drainage

basins. Wapenhans et al. (2021) demonstrate that adding white noise to longitudinal river profiles extracted from a landscape

evolution model leads to changes in power spectra that increase their similarity to power spectra of observed rivers. Addition

of quenched noise to landscape evolution models can have similar effects (Birnir et al., 2001; Wapenhans et al., 2021). Several

studies have sought to recover erosional parameter values using SPMs by maximising the similarity of predicted topography to70

observed landscapes (Croissant and Braun, 2014; Barnhart et al., 2020c). It is likely that the presence of noise contributes to a

range of acceptable values being recovered (Willgoose et al., 2003). Inverse approaches such as these require the construction

of a misfit function to quantitatively compare observations to model predictions. However, inserted noise is known to impact

drainage planforms, which can persist throughout a model run time (Ijjász-Vásquez et al., 1992; Willgoose et al., 2003; Perron

and Fagherazzi, 2012; Hancock et al., 2016; Kwang and Parker, 2019). An important challenge is to generate misfit functions75

that are insensitive to noise so that insight into the processes that drive topographic change such as uplift can be recovered with

accurate assessment of uncertainties (Willgoose et al., 2003; Morris et al., 2023).

In this study we seek to establish an understanding of the role of noise within landscape evolution models and its con-

sequences for a variety of commonly used geomorphic metrics and tools. We design four scenarios to assess how different80

distributions of noise and the way in which they are inserted into the SPM impact the variance of basic geometric properties:

elevations, planforms, hypsometry, spectral content, and fluvial information: longitudinal profiles, slope-area relationships,

χ-elevation profiles, length-area relationships. We also assess the variance of erosional parameter values and uplift rates cal-

culated from widely used metrics (slope-area, χ), quantifying the impact of noise on the reliability of information recovered.

Given the ubiquity of assumed steady state in studies making use of the SPM, we focus on assessing the impact of noise on85

landscapes that are demonstrably at, or very close to, topographic steady state, which we define here as (practically) no eleva-

tion change in any grid cell between successive model time steps and explain further in Section 2.4 (Willett and Brandon, 2002).
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2 Methodology

In this section we first describe how synthetic landscapes and noisy functions are generated. We then describe how steady state90

conditions are identified, and the modelling strategy used to assess the impact of noise on geomorphic metrics.

2.1 Generating Synthetic Landscapes

In this study, landscape evolution is modelled using a widely accepted grid-based framework in which we implement a partial

differential equation (PDE) governing the rate of change, and evolution, of elevations. We make use of gridding, flow routing,

and numerical PDE solver libraries that are part of the Landlab toolkit to generate synthetic landscapes (Hobley et al., 2017;95

Barnhart et al., 2020a; Hutton et al., 2020). The erosional model and uplift rates are defined, and noise is added, such that

∂z

∂t
=−KAm∇zn +κ∇2z+U + η, (1)

where z is elevation, t is time, and K, m, n, and κ are erosional constants. The erosional processes (first two terms on RHS of

Equation 1) can be regarded as being a simple version of the (advective) stream power model, and erosion that, phenomenolog-

ically at least, mimics diffusion, for instance ‘transport-limited’ or hill-slope processes (see e.g., Howard, 1994; Rosenbloom100

and Anderson, 1994). For simplicity—we seek to avoid the complexities that arise when shocks are expected or thresholds are

incorporated—and to aid assessment of the impact of noise, we implement a linear version of the stream power model, i.e.,

the slope exponent n= 1 (we include the n notation for completeness; see e.g., Pritchard et al., 2009; Lague, 2014; Roberts

and Wani, 2024). Upstream drainage area, A=A(x,y, t), uplift rate, U = U(x,y, t), and noise, η = η(x,y, t) can vary as a

function of space, (x,y), and time.105

Each synthetic landscape in this study is generated by the following steps (Figure 1). First, a uniform Cartesian (raster) grid

with dimensions of 100 × 100 km and cell size of 1 × 1 km is generated. Elevations at the boundaries of the domain are fixed

at zero (i.e., Dirichlet conditions). Each ‘east’, ‘west’, ‘south’ or ‘north’ boundary is individually set to be open/active (i.e.,

flux across it is permitted) or closed/inactive (i.e., flux is forbidden; see Hobley et al., 2017, for details). An initial (noisy) to-110

pography is then added to the grid. It is the choice of this initial topography, subsequent additive noise, and their consequences

on resultant landscape evolution and associated metrics that are the foci of this paper. Topographic depressions are then filled

to permit continuous flowlines and minimise the chance of internally draining regions forming (Barnes et al., 2014). Erosional

parameters m= 0.5 and K = 10−3 /kyr. Erosional ‘diffusivity’ κ = 100 m2 /kyr. Diffusion is calculated using the explicit

finite-volume method within the Landlab model component LinearDiffuser, with deposition turned off. The advection115

component of erosion is calculated using the FastScape erosion scheme, and flow routing is performed with the ‘D8’ algorithm

(O’Callaghan and Mark, 1984; Braun and Willett, 2013). In other words, the basic modelling framework is purposefully simple

and designed to honour the assumptions that underpin the calculation of many geomorphic metrics. Each synthetic landscape

is evolved forwards in time for 100 Myr, with uplift, flow-routing, erosion, and diffusion taking place at each model time step.

We use a model time step, ∆t= 10 kyr, which satisfies the Courant-Friedrich-Lewy (CFL) condition and is sufficiently large120
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that computational runtime is reasonable. This value provides numerical stability and demonstrable convergence.

2.1.1 Three categories of landscape configuration

We generate three categories of relatively simple synthetic landscapes designed to resemble widely studied natural and compu-

tational end-members: a ‘block’ of topography uplifted at a constant rate, escarpment evolution, and evolution of a topographic125

swell/dome (see e.g., Beaumont et al., 1992; Kooi and Beaumont, 1994; Tucker and Slingerland, 1994; Braun and van der

Beek, 2004; Pelletier, 2007; Anderson and Anderson, 2010; Roberts and White, 2010; Braun et al., 2013; Paul et al., 2014;

Hobley et al., 2017; O’Malley et al., 2021; Gasparini et al., 2024). The first category has open boundary conditions along each

edge of the model domain, for all other (core) grid cells uplift rate is constant, U(x,y) = 0.2 m/kyr. We henceforth refer to

this category as producing ‘square’ landscapes. The second category has open boundary conditions along the east and west130

edges of the model domain only; no flux is permitted along the north and south boundaries. Uplift is again as a ‘block’ with

U = 0.2 m/kyr. This category produces ‘escarpment’ landscapes. The third category has open boundaries and a Gaussian uplift

function, decaying from the centre of the domain towards its edges with the form

U(x,y) = Umax exp

{
−
[
(x−x0)

2

2σ2
x

+
(y− y0)

2

2σ2
y

]}
, (2)

where U(x,y) is uplift rate, x0 = y0 = 50 km are the central coordinates of the dome, and σx = σy = 20 km are the standard135

deviations (spreads) in the x and y directions. The function is scaled by maximum uplift rate, Umax = 0.2 m /kyr. This category

produces ‘domal’ landscapes. Examples of the ‘square’, ‘escarpment’, and ‘domal’ landscape are shown in Figure 1. We

maintain this nomenclature throughout to describe the three categories of landscape configuration.

2.2 Generating noisy functions and their verification

2.2.1 Introduction to noise in landscape simulators140

In this section we describe how different distributions of noise can be produced and inserted into landscape evolution models.

The resultant functions are used to define starting conditions and the additive noise inserted into the scenarios examined. We

then demonstrate how the spectral content and characteristics, e.g., colours of noise, of such functions and of evolved land-

scapes can be assessed.

145

We focus on examining the impact of ‘end-members’—red, white and blue noise—for the following reasons. First, topog-

raphy and many other natural phenomena (e.g., mantle convective support of Earth’s surface, potential fields) tend to have red

noise characteristics (see e.g., Bell, 1975; Rapp, 1989; Pelletier, 1999; Birnir et al., 2001; Turcotte, 2007; Singh et al., 2011;

Valentine and Davies, 2020; Holdt et al., 2022, and references therein). For a landscape to have red noise characteristics it

would have amplitudes of elevation that are inversely proportional to spatial frequencies, k (i.e., wavenumber), where k = 1/λ,150

λ is wavelength. Wavelength can be thought of as broadly synonymous with scale. In other words, as horizontal scales increase,
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Figure 1. Introduction to geometries and power spectra of landscapes generated using the Stream Power model. (a) Initial white

(‘uniform’) noise; typically used when parametrising landscape evolution models to ensure realistic looking drainage planforms emerge. (b)

The white noise function shown in panel (a) once sinks have been filled; a standard step that seeks to ensure drainage networks are continuous.

(c) Normalised power spectrum—ϕ(k), where ϕ is radially averaged (in the frequency domain) spectral power, and k is wavenumber, i.e.,

spatial frequency—of initial (panel a) and sink-filled noise (panel b), and of the three steady state landscapes shown in panels (d)–(f).

Normalisation is for visual purposes only. Note graticule showing power spectral slopes of theoretical blue (ϕ∝ k), white (ϕ∝ k0), pink

(ϕ∝ k1) and red (ϕ∝ k2) noise. (d-f) Steady state landscapes generated with uplift rates that are constant in space and time, unless otherwise

indicated (see body text for details). (d) ‘Square’ landscape generated with fixed, open, boundaries. (e) ‘Escarpment’ landscape with closed

north and south boundaries. (f) ‘Domal’ landscape generated with uplift rate modulated by a (spatial) Gaussian function (see Equation 2).
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so do vertical scales; wide features have big amplitudes, and narrow features have small amplitudes. Landscapes with red noise

characteristics have spectral power, ϕ(k) proportional to k−2, where ϕ= Z2 with Z = Z(k) being elevations in the frequency

domain. We discuss how such signals can be identified in the following section. In contrast, white noise (amplitudes are scale-

invariant; ϕ∝ k0), which appears to characterise some long-timescale atmospheric temperature variations and fossil records,155

for instance, is often assumed to be appropriate for parametrising landscape evolution models (see e.g., Ijjász-Vásquez et al.,

1993; Howard, 1994; Smith et al., 1997; Kirchner and Weil, 1998; Pelletier, 1998; Yacobucci, 2005; Castelltort and Yamato,

2013; Adams et al., 2015; Gray et al., 2017; Lyons et al., 2020; Shen et al., 2021; Cullen et al., 2022). Blue noise, which appears

to be a property of (at least some) systems that exhibit shockwave behaviour (e.g., perhaps at small scales in fluvial landscapes;

Wapenhans et al., 2021; Wang et al., 2022; Roberts and Wani, 2024) would indicate that landscapes have vertical amplitudes160

proportional to wavenumbers, i.e., narrow features have big amplitudes, wide features have small amplitudes (ϕ∝ k).

2.2.2 Generating white, red and blue noise

In order to generate a two-dimensional function, z(x,y), i.e., map of elevations, with a specific distribution (colour) of noise

we first create a random uniform (white noise) function of size Nx ×Ny , where Nx and Ny are equal to the number of cells165

in the x and y directions. Amplitudes are set to 0≤ z ≤ 1 m. Such functions are straightforwardly generated using a variety

of random number generators, such as Python’s numpy.random.uniform, which we make use of. Generating white noise

in this way is standard procedure in most simulations of two-dimensional landscape evolution (see e.g., Braun and Sambridge,

1997; Tucker et al., 2001; Goren et al., 2014; Gray et al., 2017; Lyons et al., 2020; Morris et al., 2023). Many white noise func-

tions with different specific arrangements of elevations can be generated rapidly by re-running such algorithms with different170

‘seed’ numbers. Seed numbers are sometimes set ‘under-the-hood’ using, for instance, computer clock time (see e.g., Press

et al., 1992, for extended discussion of random number generation). In contrast, we define (and record) a unique seed number

for each model, ensuring reproducibility.

Maps of elevation (e.g., white noise) in the spatial domain can be converted into the frequency domain using a two-175

dimensional discrete Fourier transform, such that

Z(kx,ky) =

Nx−1∑
j=0

Ny−1∑
k=0

z(x,y)e−2πi(kx/Nx+ky/Ny), (3)

where kx and ky are the wavenumbers in the x and y directions, i=
√
−1, j and k are index positions in the two-dimensional

z(x,y) array (Cooley and Tukey, 1965; Press et al., 1992; Perron et al., 2008).

180

We use the wavenumber content of white noise functions, Zw(kx,ky), to generate other functions that have different distribu-

tions (colours of noise), Zη(kx,yy), in four steps. First, Zw(kx, ky) is rearranged by shifting the zero-wavenumber component

to the centre of the array. Second, the array is multiplied by the square root of the radial wavenumber, f = f(kx,ky), raised to
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the power p,

Zη(kx,ky) = Zw(kx,ky)
√
(f/f∗)

p
, (4)185

where f∗ = 1 /km ensures dimensionality. The radial wavenumber, f , is given by

f(kx,ky) =
√

(kx −Nx/2)2 +(ky −Ny/2)2. (5)

The exponent p controls how rapidly elevations change in the wavenumber domain. When p < 0 longer wavelength signals

have greatest amplitudes. The opposite is true when p > 0. We generate red noise, Zr, using p=−2 , and blue noise, Zb, with

p= 1. White noise maps have p= 0. Third, the Zη (Zr or Zb) array is converted from the frequency domain into the spatial190

domain by, first, reversing the shifting of zero-wavenumber components, and then calculating the inverse 2D discrete Fourier

transform of the real components of Zη(kx,ky).

Finally, we normalise the resultant function zη(x,y) to ensure that elevations are between 0 and 1 m. Normalisation is

achieved by adding the minimum elevation to the entire array, and dividing through by the new maximum elevation:195

zη(x,y) =
|zη(x,y)+ zmin

η |
zmax
η

. (6)

These steps are repeated multiple times to generate M functions with red, blue or white noise characteristics (Figure 2). To test

the impact of different amplitudes of noise, zη(x,y) was scaled by a factor α (see Table 1). Histograms of elevations for these

noisy functions are shown in Figure S1.

Max. noise [m], α % of Udt % of
∫ τ

t=0
Udt

0.002 10−1 10−5

0.2 10 10−3

2 102 10−2

20 103 10−1

200 104 1

Table 1. Maximum amplitude of noise added to initial conditions, or each time step as percentage of uplift rate, U = 0.2 m/kyr, or cumulative

uplift after τ = 100 Myr.

2.2.3 Power spectra200

The noise characteristics of these functions are verified by first inserting them into Equation 3 and then calculating their power

spectra,

ϕ(kx,ky) =
1

N2
xN

2
y

|Zη(kx,ky)|2. (7)
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Since two-dimensional power spectra, ϕ(kx,ky), can be challenging to interpret they are usually visualised in one dimension

(i.e., ϕ(k); see e.g., McKenzie and Bowin, 1976; McKenzie and Fairhead, 1997; Perron et al., 2008; Watts and Moore, 2017).205

There are two quite widely used methods. The first approach calculates mean power between specific radial frequencies (from

the zero-shifted power spectrum) by averaging within annuli, in our case we average within sequential annuli of width δf = 1

km−1 (see e.g., McKenzie and Bowin, 1976). Figure 2 shows the power spectra of 100 red, white and blue noise functions

generated in this way. It demonstrates that these functions have respective power spectra that on average are proportional to

k−2, k0 and k, as expected.210

The second approach simply collapses the two-dimensional spectra into one dimension, such that each ‘pixel’ ϕ(kx,ky) can

be plotted as ϕ(k) (see e.g., Perron et al., 2008; Watts and Moore, 2017). In practice, if appropriate values of δf are chosen, the

one dimensional spectra from both approaches are very similar. We present collapsed power spectra of elevations, following

transformation z(x,y)→ Z(kx,ky)→ ϕ(k) = Z2(k), in later figures because they demonstrate the solutions to Equation 7215

directly. Also shown in these figures is mean power,

ϕ(k) = ⟨ϕ(k)⟩, (8)

where the angle brackets denote the average value for a wavenumber band centred on wavenumber k. We perform the averag-

ing within logarithmically equally spaced bands. The Code and Data Availability statements explain where Python scripts to

generate and verify noise maps can be found.220

2.3 Experimentation strategy

Figures 3 and 4 summarise our approach to experimentation. Our goal with this strategy is to establish the impact of noise on

landscape evolution in a series of increasingly complex, and perhaps more realistic, scenarios.

225

In scenario A, we examine the consequences of a widely used approach—insertion of noise only into the starting condition

of a landscape evolution model (see e.g., Braun and Sambridge, 1997; Tucker et al., 2001; Braun and Willett, 2013; Goren

et al., 2014; Barnhart et al., 2020a, b, c). We examine the impact of different distributions (i.e., red, white, blue) and ampli-

tudes of noise. Each ensemble examined (e.g., white noise, ‘square’ landscape; white noise, ‘escarpment’ landscape; white

noise, ‘domal’ landscape; red noise ‘square’ landscape, etc.) contains M = 100 or M = 1000 individual models. Within an230

ensemble, each model has the same boundary conditions, uplift function, erosional parameter values, and distribution of noise,

but crucially they all have different specific arrangements of noisy elevations; different ‘seeds’ were used to generate noise in

each model. The resultant M landscape geometries were used to gain statistical insight into the impact of noise on landscape

evolution, form and recovery of geomorphic metrics. Figure 4 summarises the ensembles tested (scenario A: ensembles 1–18).

235
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Figure 2. Noise functions (maps) used to generate initial conditions for landscape models. (a–c) Examples of functions with red, white

and blue noise characteristics. (d) Thin red lines = radially averaged (in the frequency domain) power spectra, ϕ(k), of the 100 red noise

functions used in this study (see body text for details). Thin grey and blue lines = respective power spectra of the 100 white and blue noise

functions used in this study. Thick lines = average values for each suite of coloured functions. Note graticule showing theoretical spectral

slopes for red (ϕ∝ k−2, where k = wavenumber), white (ϕ∝ k0), and blue (ϕ∝ k) noise.
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In scenario B we test the impact of quenched (i.e., ‘frozen’) noise. For an individual model, a noisy function is added to its

starting condition (as in scenario A), then the exact same arrangement of noisy elevations is inserted at every subsequent time

step (Figure 4: ensembles 19–21). A rationale for testing such a scenario arises from the work presented in Birnir et al. (2001)

and Wapenhans et al. (2021), which demonstrate the need for landscape evolution models to incorporate additive noise to

avoid artificial spectral reddening of landscapes, i.e., unrealistic reductions in topography at short wavelengths (small scales).240

Incorporating noise in this way is loosely related to modelling studies that seek to assess the impact of substrate on landscape

evolution by changing erodibility (see e.g., Sklar and Dietrich, 2001; Haviv et al., 2010; Forte et al., 2016; Campforts et al.,

2020).

Scenario C again includes noise added to the starting condition. However, in contrast with scenario B, different arrangements245

of the same underlying distribution (colour) of noise are added to each model at every time step. In other words, noise varies as

a function of space and time. Arguably, this approach is more realistic than scenarios A and B, and probably more appropriate

when specific arrangements of noise are likely to be unknown. Figure 4 (ensembles 22–24) summarises this experimentation.

The noise added throughout models within Scenarios B and C has amplitudes of 0 – 1 m. We choose to incorporate additive250

noise for two reasons. First, to maintain consistency with the amplitude of noise added to the starting condition, and second,

to avoid cases in which regions of internal drainage may arise, thus potentially requiring additional (ad hoc) sink-filling steps.

However we acknowledge that this may not necessarily represent noisy surface processes which act to alter topography. In-

stead, such processes may also reduce elevations. Whilst it is generally unclear what an appropriate mean elevation might be in

order to represent these processes, we also perform an additional set of simulations in the style of Scenarios B and C with noise255

of −0.5 to 0.5 m amplitude (i.e. mean elevation = 0). Results for these tests are shown in Supplementary Material Figures S9

and S10.

Scenarios A–C have flow routing and erosion applied in their final time step, after noise has been inserted. Thus, inserted

noise is eroded for 10 kyr (i.e., the length of the time step) before metrics are extracted. In actuality, noise could be inserted260

into a landscape at any time. Thus, we test scenario D in which noise is inserted into synthetic landscapes at the end of model

run time. We take the steady state landscapes (at 100 Myr) generated by scenario A with 1 m of noise and insert noise with the

same arrangement. The impact of inserting final noise with scaled maximum amplitudes of 2, 20 and 200 m is assessed (see

Table 1). For clarity, metrics are extracted from the noisy landscapes using drainage planforms determined before final noise

is added, i.e., no additional flow routing or sink filling is performed. This approach is a generalisation, to two dimensions, of265

that presented in Roberts et al. (2012b) and Smith et al. (2022), in which noise is added directly to the longitudinal profiles of

rivers (Figure 4: ensembles 25–27).
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Figure 3. Schematic summarising the scenarios tested and approach to extracting metrics. In scenarios A–D forward models are

initialised with starting conditions that include noise (white, blue or red in this study), they are then run for a specified number of time

steps, evolving to steady state. Geomorphic metrics are extracted from steady state topography. Each scenario is run multiple (M ) times

using different arrangements of noise to generate statistical insights and assess stability of calculated metrics. The example demonstrated

here is for the ‘square’ landscape shown in Figure 1d. Note that we also assess the impact of changing boundary conditions and uplift

function, and scenarios when no noise is explicitly incorporated. Scenario A: Noise is only incorporated into the starting condition; the

quintessential landscape evolution modelling strategy. Scenario B: Noise used in the starting condition is incorporated at each time step;

testing the impact of quenched, ‘frozen’, noise. Scenario C: Different arrangements (but same distribution) of noise are incorporated at each

time step. Scenario D: Uneroded noise is added to the landscape at the end of model run time.

2.4 Identifying steady state landscapes for experimentation

The assumption of topographic steady state remains widely used in quantitative studies of fluvial geomorphology (see e.g.,

Snyder et al., 2000; Istanbulluoglu and Bras, 2005; Attal et al., 2008; Perron and Fagherazzi, 2012; Theodoratos et al., 2018;270

Leonard and Whipple, 2021; Fisher et al., 2022; Clubb et al., 2023; Hoskins et al., 2023; Zhou et al., 2024). It underpins the

use of a variety of geomorphic metrics used to generate quantitative estimates of erosional parameter values and uplift rates

(see e.g., Wang et al., 2017). Thus, we run our models until they are demonstrably at, or get as close as reasonably possible to,

steady state and then examine the impact of noise on calculated metrics. A variety of criteria can be used to define steady state

topography in both natural (observed) and synthetic landscapes (see e.g., Willett and Brandon, 2002; Gasparini et al., 2024,275

and references therein). For clarity, in this paper steady state means ∂z/∂t= 0, i.e., rate of change of elevation is invariant

everywhere in the landscape.

As Gasparini et al. (2024) explain, demonstrating that a synthetic landscape is at topographic steady state is not necessarily

trivial, we extend their approach here. A useful attribute of landscape evolution modelling is that it is straightforward to280

extract and visualise distributions of topographic change over consecutive time steps, which can be used to assess topographic

(in)transience. Figure 5 shows three statistics used to assess topographic steady state. First, following Gasparini et al. (2024),

we extract the maximum local change in elevation, ∆z, across the entire model domain between consecutive time steps

∆ztα =max(|zti − zt−∆t
i |), (9)

where i here indicates the index of all elevations (i= 1, . . . ,NxNy), and t is the index of time steps. Similarly, the change in285

mean elevation of the entire domain, from one time step to the next, is calculated,

∆ztβ = |zt − zt−∆t|, (10)

where z̄ is the mean elevation of a landscape. Change in maximum elevation between consecutive time step is also extracted,

∆ztγ = |max(zt)−max(zt−∆t)|. (11)
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Figure 4. Guide to scenarios, ensembles and models in this study. Ensembles with asterisk (*) contain M = 1000 models, all others

contain M = 100 models.
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Examples of these statistics are shown in Figure 5 for three landscapes generated with white noise only in their initial con-290

ditions. Figures S7 and S8 similarly show statistics for typical landscapes generated within scenarios B and C.

In addition to such statistical approaches, it is beneficial to examine how distributions of elevation change evolve as the

synthetic landscapes mature. Consequently, Figure 5 shows histograms of topographic change between successive time steps

for all cells within the three example landscapes. The histograms summarise topographic change for the individual landscapes295

when they are immature (time steps 0.99→ 1 Myr), juvenile (4.99→ 5 Myr), and mature (i.e., have reached steady state;

14.99→ 15, and 79.99→ 80 Myr).

2.5 Mapping noise-specific geometries of landscapes

As Kwang and Parker (2019) discuss, planforms generated in simulations with noise inserted into starting conditions tend to

be ‘burned’ into simulated landscapes for the duration of model run time. This result is intuitive for models in which uplift300

rates tend not to vary as a function of time, or cannot outpace erosion (cf. O’Malley et al., 2021). This behaviour implies that

long-lived planform geometries, at least at some scales, are specific to the distribution and particular arrangement of noise. We

assess the consequences of inserting different distributions and specific arrangements of noisy topography on the geometries

of emergent landscapes, their planforms and marginals by running multiple simulations (see e.g., Figures 1, 6, 7).

305

We also make use of our model ensembles to assess the impact of different distributions and arrangements of noisy starting

conditions on resulting drainage basin sizes. We extract the upstream drainage area from the outlet positions of the ten largest

drainage basins in each ‘square’ model of scenario A for 1000 simulations (ensembles 10–12) and show this in Figure 8.

2.5.1 Establishing expectations (probabilities) of drainage network and divide geometries310

Following Lipp and Roberts (2021), to develop statistical insights into the development of synthetic landscapes, we ran 1000

simulations for each landscape configuration within scenario A (i.e., ‘square’, ‘escarpment’, ‘domal’). The same distribution

of noise, but different specific arrangements of topography (i.e., 1000 simulations initialised with different ‘seed’ numbers)

with amplitudes 0 to 1 m were used to define the initial conditions (model ensembles 10 – 18). To establish the propensity

of cells within landscapes to host rivers, cells with upstream drainage areas > 5 × 107 m2 were extracted from each model.315

The probability of a river being in a cell is calculated by dividing the number of times a cell met this criteria by the total

number of simulations (i.e., N/1000), which results in a probabilistic drainage map (Figure 9). These maps also help to estab-

lish expected locations of drainage divides, i.e., where calculated probability is low. Similar maps are shown for 100 ‘square’

landscapes generated in scenarios B and C in Figure S6.

320

The spectral characteristics of the synthetic landscapes can be assessed by transforming them into the frequency domain

using Equations 3 & 7 (see Figure 10). It is also straightforward to extract other geometric properties from the landscapes (e.g.,
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Figure 5. Identifying steady state landscapes. In each of these examples, white noise is only inserted in the starting condition, see scenario

A in Figure 3. (a) Evolution of changes in elevation between consecutive time steps (∆t= 0.01 Ma) for the ‘square’ landscape shown in

Figure 1d; green = maximum change in local elevation (∆zα); purple and orange = change in mean elevation (∆zβ) and change in maximum

elevation across the entire domain (∆zγ), respectively (see Equations 9–11). Grey dashed vertical lines correspond to histograms shown in

panels (c)–(e). (b) As (a), on logarithmic scale. (c) Histogram of elevation change, ∆z, for all grid cells between 0.99 and 1 Myr. (d) & (e)

As per (c), from 4.99→ 5 Myr, 14.99→ 15 Myr and 79.99→ 80 Myr, respectively. (f–j) As above for ‘escarpment’ landscape shown in

Figure 1e. (k–o) As above for ‘domal’ landscape shown in Figure 1f.16



Figure 6. Steady state landscapes generated with different initial conditions. (a–c) Steady state ‘square’ landscapes generated with red,

white and blue initial conditions, respectively. Planforms of channels in the four largest drainage networks in each landscape are emphasised

by the coloured lines. Main (longest) channels of 40 largest basins shown in black lines, plus the four longest coloured lines. Adjacent

topographic transects are between grey triangles at x= 50 km. (d–f) As above, for ‘escarpment’ landscapes. (g–i) As above, for ‘domal’

landscapes.
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longitudinal river profiles, hypsometry, channel length-area relationships) that can be directly compared or used to calculate

geomorphic metrics that can be compared in turn (Figure 11).

325

2.6 Geomorphic metrics

We examine the impact of noise on widely used geomorphic metrics. The metrics extracted from landscapes in this study

include: concavity indices, erosional parameter values and uplift rates from slope-area and χ (chi) analyses. In most landscape

evolution models the typical order of a single time step, which we follow, is add noise (if desired) → uplift → flow routing →
erode. For efficiency, slopes and drainage areas are calculated as part of the flow routing step. However, an obvious issue is330

that we want to calculate metrics for steady state landscapes, which requires knowledge of landscape geometries once erosion

has been performed. Therefore, just prior to extracting metrics (i.e., at time step N = 100 Myr) we run a single additional flow

routing step.

Hack exponents are calculated from channel lengths and basin areas. Hypsometry is calculated using elevations and cell ar-335

eas. Longitudinal river profiles are extracted from the synthetic landscapes using a version of the code within the ChannelProfiler

component of Landlab (modified for data manipulation and visualisation). We note that metrics are often derived, via slope-area

or χ analyses, for instance, from profiles alone.

2.6.1 Slope-area analysis

Expectations of power law scalings of channel slope and upstream areas were discussed by Gilbert (1877), and later quantified340

in a few settings by Hack (1957), Morisawa (1962) and Flint (1974), and subsequently by many others. Slope-area analysis

remains a widely used tool to estimate uplift rates and erosional parameter values (e.g., Schoenbohm et al., 2004; Kirby and

Whipple, 2012; Adams et al., 2020; Marder and Gallen, 2023). It is typically applied to information about local changes in

slope, ∂z(x)/∂x, and upstream drainage areas, A(x), extracted from the longitudinal profiles of individual rivers, where x here

indicates streamwise distance. There are many explanations of the approach in previously published work (see e.g., Tarboton345

et al., 1989; Montgomery and Foufoula-Georgiou, 1993; Kirby and Whipple, 2001). For completeness we summarise it as

follows.

If a river is assumed to be at topographic steady state, ∂z/∂t = 0, κ = 0, and there are no additional sources of elevation

(e.g., noise), the one dimensional version of Equation 1, predicting evolution of the longitudinal profile of the river,350

∂z(x)

∂t
=−KA(x)m

(
∂z

∂x

)n

+U, (12)

can be rearranged such that∣∣∣∣dzdx
∣∣∣∣= (

U

K

) 1
n

A(x)−
m
n . (13)
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Figure 7. Differences in elevations and drainage network planforms due solely to changing arrangements of initial noise. (a)–(b)

Steady state ‘square’ landscapes (at 100 Myr) generated with the same uplift rate histories, boundary conditions, and distributions (but

different arrangements) of white noise. (c) Landscape in panel (a) subtracted from that in panel (b). (d) Black dotted, dashed, solid lines =

elevation along transect indicated in panel (a) at 1, 5 and 100 Myr. Purple line = landscape at 100 Myr along transect indicated in panel (b).

(e) as for (d) for transects shown in panels (b) and (a). (f–j) Same as panels (a)–(e) for ‘escarpment landscapes.
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Figure 8. Variability of drainage areas due to noise. (a) Distributions of maximum upstream drainage area for the 10 largest drainage

basins of 1000 simulations for red, white, and blue noise initial conditions (i.e., scenario A, ensembles 10–12). White closed circles show

median values of drainage area as a proportion of total landscape area. Cumulative median areas sum to 64.4%, 63.5%, and 63.0% for red,

white, and blue noise respectively. (b) Data shown in (a) are divided by the white noise median values of drainage area in each respective

basin.

By substituting ks (the ‘channel steepness index’) for (U/K)
1
n , and θ (‘concavity index’) for the exponent ratio m/n, Equation

13 can be rewritten as355

log(S) = log(ks)− θ log(A). (14)

Equation 14 takes the form of a straight line in a plot of log(S) against log(A), with gradient θ, and log(ks) at the y-intercept.

In turn, because we know the values of n and K in the experiments we run, we can, in principle, recover the values of uplift

rate and erosional parameter m,

U = ks
nK, m= θn. (15)360

The black line in Figure 11e shows the analytical relationship (from Equation 14) between slope and area expected for all

rivers within steady state landscapes generated with ‘block’ uplift (see Figure 4: ‘square’, ‘escarpment’) in this study given

the values of erosional parameters and uplift rate used. We restrict slope-area analysis of river profiles extracted from the

two-dimensional landscapes to cells with upstream drainage areas >4 km2, a value often used in studies of real landscapes as
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Figure 9. Probability of drainage within landscapes generated by different arrangements of initial noise. (a–c) Colours indicate prob-

ability of a grid cell in 1000 ‘square’ landscapes containing a channel with upstream drainage area > 5 × 107 m2 generated with initial

red (a), white (b), or blue (c) noise. (d–f) As above, for ‘escarpment’ landscapes, and (g–i) for ‘domal’ landscapes. Examples of individual

landscapes that feature in this suite are shown in Figure 6. Associated power spectra are shown in Figure 10.

21



Figure 10. Spectral (two-dimensional Fourier) analysis of steady state landscapes generated with noise in the initial condition. (a)

Small red dots = power at positive frequencies from the two-dimensional Fourier transform collapsed into one dimension for a single ‘square’

landscape generated with a red noise initial condition (see body text for details). Open circles = mean power within logarithmically equalled

spaced bins (see Equation 8). Thin lines show the mean values for the other 99 models with same distribution but different arrangement of

initial noise. (b–c) As per (a), for a steady state landscape generated with a white noise (b), and blue noise (c) initial condition. (d–f) As per

(a–c) for the ‘escarpment’ landscapes such as that shown in Figure 1d. Arrow indicates power for regions on north and south boundaries.

(g–i) Power spectra for ‘domal’ landscapes (e.g., Figure 1e).
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indicative of overland flow (e.g., Whipple and Tucker, 1999; Roberts and White, 2010). Slope is calculated between adjacent365

cells in the streamwise distance downstream.

2.6.2 Chi analyses

Metrics estimated from slope-area analysis can be extremely sensitive to noise and thus calculated parameter values can be

highly unstable (see e.g., Roberts et al., 2012b; Smith et al., 2022). This result is unsurprising because even small amounts370

of noise can dramatically change local slopes. Fortunately, a variety of integral-based techniques exist that avoid the need for

differentiation of elevations when attempting to recover information from fluvial landscapes (e.g., erosional parameter values,

uplift rates; see e.g., Harkins et al., 2007; Pritchard et al., 2009; Roberts and White, 2010; Roberts et al., 2012a; Perron and

Royden, 2013).

375

Here, we focus on examining impact of noise on geomorphic metrics calculated using the widely used ‘χ’ (chi) analysis

(Royden et al., 2000; Harkins et al., 2007; Perron and Royden, 2013). Like slope-area analysis, χ-analysis can, in principle,

be used to estimate uplift rates and values of erosional parameters from the geometries of longitudinal river profiles providing

certain assumptions hold. There are many published explanations of the approach available (see e.g., Perron and Royden, 2013;

Mudd et al., 2014, 2018; Smith et al., 2022; Marder et al., 2023). For completeness, we summarise it as follows. First, Equation380

13 is rearranged and integrated in the upstream direction such that

z(x) = zb +

x∫
xb

ks
A(x)

m
n
dx, (16)

where z is elevation, xb is a downstream position on the channel often assumed to be base level (though not always), with

elevation zb. A reference drainage area A◦ (here = 1 m2) is often incorporated, such that

z(x) = zb +
ks

A
m
n
◦

x∫
xb

A
m
n
◦

A(x)
m
n
dx. (17)385

Thus χ is defined,

χ(x) =

x∫
xb

(
A◦

A(x)

)m
n

dx. (18)

Making use of Equation 15,

z(x) = zb +
ks

A
m
n
◦

χ(x) = zb +

(
U

KAm
◦

)1/n

χ(x). (19)

Various techniques exist to find the optimal values of m/n from the construction of z(χ) profiles (e.g., Perron and Royden,390

2013; Mudd et al., 2014; Hergarten et al., 2016; Mudd et al., 2018; Gailleton et al., 2021). If the landscape is at steady state
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then elevation is expected to be a linear function of χ. By systematically sweeping 0<m/n≤ 1, the optimal value can be

identified, i.e., as one that results in the z(χ) profile with the highest linear correlation coefficient, R2 (see e.g., Perron and

Royden, 2013). In the experiments run in this study, we of course know the true values of m and n. As Figure S4 shows, if

an incorrect value of m/n is assumed, z(χ) profiles are not linear. Correlation coefficients are calculated for the main channel395

in each simulation to identify the ‘optimal’ value of m/n as if we were studying a real landscape for which no independent

information about the erosional parameter values exists. Once armed with an optimal value for m/n it is straightforward to

estimate the uplift rate from the slope of the z(χ) profile (because we know the values of n= 1 and K here),

U =KAm
◦
dz

dχ
. (20)

Figure 11f shows an example of a relationship between χ and elevation for the main channel and tributaries of the largest400

drainage network in a single simulation.

2.6.3 Hack exponent

Hack’s law is an empirical relationship between the length of rivers and their upstream drainage areas, both of which are

straightforward to extract from synthetic landscapes and digital elevation data. It has been used to relate changes in channel

sinuosity to basin shapes, to develop an understanding of fractal (scale-dependent) characteristics of basins, and of energy405

expenditure in drainage basins, for example (Langbein, 1947; Hack, 1957; Robert and Roy, 1990; Ijjasz-Vasquez et al., 1993;

Rigon et al., 1996; Turcotte, 1997; Willemin, 2000). The law can be expressed as

L= CAh thus log(L) = log(C)+h log(A), (21)

where L is the length of the longest river in a basin, A is upstream drainage area, and C and h are known as the Hack coefficient

and exponent, respectively. Their values can be estimated from the respective intercept and slope of regressed log(L) and410

log(A) data. We show how noise impacts the values of Hack exponents calculated from the maximum lengths and upstream

drainage areas of the longest channels in the forty largest drainage basins (by area) in each model run.

2.6.4 Hypsometry

Hypsometry summarises area-elevation relationships of a landscape, including topography not necessarily incorporated into

the other geomorphic metrics examined (see e.g., Langbein, 1947; Strahler, 1952, 1957; Harrison et al., 1983; Lifton and415

Chase, 1992; Willgoose and Hancock, 1998; Hurtrez et al., 1999; Montgomery et al., 2001). We calculate hypsometry for the

entire domain of each steady state landscape by generating normalised cumulative density functions (the simple algorithm

used is available; see the Code and Data Availability statement). Hypsometry is also produced for select landscapes during

their evolution (e.g., Figure 11g).

420
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We have now introduced each of the geomorphic metrics extracted from synthetic landscapes in this study. Our primary aim

is to assess how changing the colour, amplitude, timing, and arrangement of noise affects these metrics. We synthesise results

for each scenario as follows.

3 Results

3.1 Scenario A: Noise only inserted into the initial condition425

3.1.1 Verification of Topographic Steady State

The boundary conditions and uplift rates—producing ‘square’, ‘escarpment’, or ‘domal’ landscapes in this study—influence

the precise time taken to reach steady state. Histograms shown in Figure 5 illustrate that, for the erosional model used in

this study, with noise only inserted into initial conditions, landscapes are immature and topographic change is driven by the

imposed uplift until ca. 1 Myr. By 5 Myr, the landscapes are maturing as drainage networks develop; topographic change430

is largely centred around zero by this time. By 15 Myr drainage networks have matured such that erosion rates balance the

imposed uplift rates across most of the domain. For most intents and purposes these landscapes can be regarded as being at

steady state at this time. However, we note that true numerical steady state is achieved where topographic change within a

single time-step across all cells is zero within computer precision, which is typically achieved by 40–90 Myr.

3.1.2 Spectral power of initial, sink-filled, and steady state landscapes435

Figure 1c shows examples of the spectral content of single models. It demonstrates how landscapes with initial white noise

(ϕ∝ k0) quickly ‘redden’ due to sink-filling, which reduces local roughness, resulting in such sink-filled landscapes having

pink noise (ϕ∝ k−1) characteristics. Figure 2d shows the spectral content of 100 initial conditions for each distribution of

noise (red, white, blue) used in this study.

440

Examination of the power spectra of evolving landscapes shows that the spectral signature of all (red, white, blue) initial

noise conditions with amplitude 0 – 1 m evolve to have red noise characteristics within 2 Myr of model run time (ϕ∝ k−2).

We attribute spectral reddening of topography in these landscape evolution models to the smoothing effects of sink-filling and

erosion, and the imposed uplift. Figure 10 shows radially-averaged power spectra for typical steady state landscapes in ensem-

bles 1 – 9. The escarpment landscapes (ensembles 2, 5, 8) contain above-average spectral power at a few intermediate to high445

wavenumbers (10−1 ≤ k ≤ 5× 10−1 km−1), highlighted with the black arrow in Figure 10d. This pattern is attributed to the

high elevations at the closed north and south boundaries of these landscapes. The domal landscapes exhibit a flattening in the

power spectrum at intermediate wavenumbers (5× 10−2 ≤ k ≤ 1× 10−1 km−1). The flattening corresponds to a white noise

signal at these wavenumbers. We attribute this spectral power to the areas of low elevation (few meters) between the uplifted

dome and the edge of the domain.450
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Figure 11. Geomorphic metrics for an example ‘square’ landscape generated with white noise only in the initial condition. All metrics

are for the steady state landscape (at 100 Myr) shown in Figure 6b unless otherwise indicated. (a–d) Longitudinal profiles of rivers, including

tributaries, within four largest drainage basins shown in Figure 6b. (e) Grey points show slope-area relationship for grid nodes of rivers in

four largest basins with drainage areas exceeding 4 km2. Black line = linear regression: calculated intercept = ks (steepness index); Urec =

recovered uplift rate; slope = θ =m/n (concavity index). True values, used to generate LEM: U = 0.2 m /kyr, θ = 0.5. See body text for

details. (f) Yellow = χ-elevation profiles for the main channel and tributaries of the largest drainage basin (panel d); open circles = main

channel. Inset shows R2 values for different assumed concavity indices for main channel; red dashed line = true value. Black solid line in

main panel illustrates linear relationship for θ = 0.5. (g) Coloured/black circles show maximum length-drainage area relationships for longest

rivers from four/forty largest drainage basins, respectively. h = Hack exponent. (h) Hypsometry (i.e., landscape area-elevation relationships)

at 1, 5, 15, 80 and 100 Ma.

Overall, Figure 10 shows that whilst landscape configuration can influence the details of the power spectrum, the steady

state landscapes produced in this study tend to exhibit red noise characteristics and are insensitive to the colour of noise used

to generate the initial condition.

3.1.3 Impact of noise on geometries and planforms455

In contrast, Figure 6 illustrates how those initial conditions can lead to very different drainage planforms. This result emerges

even for landscapes that are generated with the same erosional model parametrisations and uplift histories. Figure 7 extends

this demonstration by showing how different arrangements of the same distribution of noise (e.g., white) in the initial condition

results in formation of very different drainage planforms. Inevitably, the dissimilarity of planform arrangements is consistent

with elevations being very different locally, resulting in substantial differences in the positions of valleys and interfluves. These460

differences are illustrated using topographic transects from identical locations in the two landscape models shown in Figure 7.

As a further demonstration of the impact of noisy initial conditions on the geometries of landscapes, Figure 8 shows drainage

area of each of the 10 largest fluvial networks in the 3000 simulations generated with either red, white, or blue noise as a per-

centage of the total area of the model domain. The are ordered by rank: largest to smallest drainage area. Landscapes initialised465

with red noise tend to create, on average, fewer, larger drainage basins. The upstream area of the largest drainage basin in a

landscape initialised with red noise can be up to 2 times that of the median white noise equivalent, and on average is approx-

imately 20% larger. A consequence is that smaller drainage basins (rank 4 and below) in landscapes initialised with red noise

are smaller than their white and blue noise counterparts. Drainage basins in landscapes generated by white and blue noise

conditions are similar in size to each other.470

Figure 9 shows calculated probabilities of channel locations for steady state landscapes generated with different distributions

of initial noise. We emphasise three features of interest in the probability maps of ‘square’ landscapes (Figure 9a–c). First, all

three distributions of noisy initial conditions have regions of low probability within a ‘cross’ that extends from the four corners
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of the domain to its centre. Secondly, in between those regions the probability of drainage is broadly equal, and relatively high.475

Thirdly, landscapes with red noise initial conditions (panel a) have a more uniform probability of drainage across the domain.

The escarpment landscapes initialised with red noise also have a higher probability of drainage across the domain than those

initialised with white or blue noise (Figures 9d-f).

The domal landscapes exhibit probabilistic drainage patterns with a radial ‘spoke’ pattern for all three colours of noise. We480

interpret this pattern as being a consequence of the interaction of D8 flow routing on a Cartesian raster grid and the distribution

of inserted uplift. We suggest that the lower number of spokes for landscapes generated with red noise initial conditions are a

result of longer wavelength topographic roughness reducing the propensity for a flowpath to be diverted locally as frequently

as they are for white or blue noise. In other words, channels in a landscape initialised with red noise are more likely to drain

along a continuous azimuth without being interrupted by local topographic roughness. We note that the structure of probability485

in these maps is similar to drainage networks produced in models with no added noise (see Supplementary Figure S2).

3.1.4 Slope-Area Analysis

Slope-area data shown in Figures 11e, 12a and 13a are clustered around a single line with a slope and intercept that permit re-

liable uplift rates, USA, and m/n ratios (θSA) to be recovered (Equation 15). These results demonstrate the utility of slope-area

analysis for landscapes that are demonstrably at topographic steady state and subject to spatially invariant uplift; the ‘square’490

and ‘escarpment’ landscapes we study. Lines of best fit are shown in Figures 12a and 13a for each of the 3 × 100 simula-

tions generated with 0–1 m of red, white or blue noise. They are largely indistinguishable from each other, demonstrating

the insensitivity of slope-area relations to the colour of noise in the initial conditions. We note that changing the amplitude

of noise increases the spread of calculated USA and θSA (Figure S5). However, changing the amplitudes of initial noise, even

by many orders of magnitude, has a small impact (few percent compared to true values) on the recovered values of USA and θSA.495

3.1.5 χ analysis

Figures 11f, 12b and 13b show z(χ) profiles for the main channel and tributaries of the single largest drainage basin for simu-

lations in which uplift rate is spatially invariant (‘square’ and ‘escarpment’). Results are shown for each of the 100 simulations

generated with red, white or blue noise initial conditions. In theory, z(χ) profiles in such steady state landscapes should be500

straight and collinear, i.e., collapse to a single line (see Section 2). Whilst individual profiles are linear, we demonstrate that

when the models are initialised with noisy conditions, families of profiles do not collapse to a single line, even when they have

the same distribution of noise in their initial conditions.

The inset panels in Figures 11f, 12b and 13b show R2 values for the suite of z(χ) profiles generated by systematically testing505

different concavity values (θχ; see Section 2). Highest R2 values are generated when 0.4≤ θχ ≤ 0.6 (note: actual value used to

produce the landscapes is 0.5). These results highlight the variability in best-fitting χ transformations introduced by different
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Figure 12. Comparing geomorphic metrics from ‘square’ steady state landscapes initialised with red, white or blue noise. Each panel

shows metrics from 100 landscapes initialised with red, white or blue noise. (a) Upstream drainage area vs. channel slope for all grid cells

in rivers of four largest drainage basins with drainage area > 4 km2; black line = linear regression. Outlined circles show examples of

relationships for the main channel in the largest drainage network in single, typical, simulation for each colour of noise. (b) Elevation as a

function of χ for the main channel and tributaries of the largest drainage basin in each simulation, produced using θ = 0.5. Inset shows the

R2 value of different reference concavities. Dashed line marks true value of 0.5 used to parametrise models. (c) Maximum upstream drainage

area vs. maximum channel length for the longest (trunk) channels in the forty largest drainage networks in each landscape. Inset histogram

shows Hack exponent for the 4000 rivers generated for each colour of noise. (d) Hypsometries of the 300 landscapes.
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Figure 13. Geomorphic metrics of steady state ‘escarpment’ landscapes initialised with red, white or blue noise. See Figure 12 for

extended notation.
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Figure 14. Impact of noise on recovered uplift rates from z(χ). (a) Topography and planform of longest single river channel for a steady

state landscape initialised with 0–1 m white noise (scenario A). (b) Longitudinal profile of largest river channel. (c) Longitudinal profile

transformed into χ space (see Eqns. 16–19) using a best-fitting (highest R2) reference concavity value of 0.48 (black solid line) and the true

m/n value of 0.5 (orange solid line). Dashed black and orange lines show linear regressions. The slope of these lines, dz/dχ is used to

calculate an uplift rate (see Eqn. 20). (d–f) and (g–i) show two additional landscapes, longitudinal profiles, and z(χ) profiles for models in

scenario A with different arrangements of white noise and different best-fitting reference concavity values.
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noisy initial conditions.

Having established that different colours and arrangements of noise in initial conditions contribute to uncertainty in calcu-510

lated best-fitting concavity, Figure 14 demonstrates the impact of using the best-fitting values on calculated uplift rates. This

test mimics calculation of θ and U from χ-transformation of rivers in the real world. In this demonstration the rivers with the

largest upstream drainage area were extracted from three typical landscapes initialised with different arrangements of white

noise (scenario A: ensemble 1). Each longitudinal river profile is transformed into a z(χ) profile using the best-fitting value of

concavity. R2 values for each θχ value are shown. In the cases where the best-fitting reference concavity ̸= 0.5 (i.e., the true515

value), uplift rates recovered from the slope of the regression line (see Eq. 20) significantly differ—by more than 50% when

amplitudes of initial noise are 0− 1 m—from the true value of 0.2 m/kyr. These results demonstrate that even though chosen

values of θχ may result in z(χ) profiles with high R2 values (> 0.99), they can yield inaccurate and misleading estimates of

uplift rates. The instability of calculated Uχ arises because of its sensitivity to the derivative, dz/dχ (see Equation 20), and the

sensitivity of dz/dχ to noise and the way in which it impacts the geometries of landscapes.520

3.1.6 Length-Area relationships

Relationships between maximum channel lengths and upstream drainage areas are shown in Figure 11g (black circles) for the

main channels within the forty largest basins extracted from a typical ‘square’ landscape initialised with white noise. A best-

fitting non-linear regression, generated using Equation 21, is shown, and yields a Hack exponent value, h (slope of regression525

in log-log space), of 0.574.

Figures 12c, 13c and 15c collate lengths and areas for the main channels in the forty largest drainage basins for each

ensemble in scenario A. The non-linear regression is shown for each ensemble. The regressions are similar for landscapes

initialised with white and blue noise, However, a shallower gradient (and hence lower h) is required for landscapes initialised530

with red noise. Each inset panel in these figures show histograms of Hack exponent values calculated for each model from its

forty longest rivers. They demonstrate the variability in Hack exponent values: 0.4≤ h≤ 0.75, with h values in the landscapes

generated with red noise initial conditions tending to be slightly lower than those for the white and blue noise initial conditions.

Figures 16a-c demonstrates that the amplitude of initial noise has limited influence on the distributions of Hack exponents535

at the range of amplitudes tested (0.002 to 200 m). Landscapes initialised with different amplitudes of red, white or blue noise

have broadly consistent trends. For instance, the 25th and 75th percentile, and median show little variation between ensembles

1, 4 and 7 (Figure 16). These results demonstrate that the distribution of Hack exponent values largely do not depend on the

amplitude of initial noise. They all show considerable variance arising from noisy initial conditions.

540
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3.1.7 Hypsometry

The history of hypsometry for a single landscape is shown in Figure 11h. A large proportion of the landscape has relatively

high elevations early in its evolution, whilst fluvial networks are forming. As the landscape matures, an increasing proportion

of its area is at lower elevations. Figures 12d, 13d and 15d show the hypsometries of steady state landscapes within scenario A.

We emphasise two features. First, changing the arrangement of specific distributions of noise (i.e., red, white, blue) generates545

up to approximately 5% variability in the hypsometry, but the shape of the hypsometric curves remain similar. This result is

expected as hypsometry is largely insensitive to the age or maturity of landscapes once they approach steady state. Secondly,

there is little difference between the hypsometries of the landscapes initialised with red, white or blue noise once they reach

steady state. Figures 16d-f show the hypsometries for ensembles 1, 4 and 7 in which amplitudes of noise in the initial conditions

is systematically varied between 0.002 and 200 m. These results show that hypsometries of steady state landscapes are largely550

insensitive to the amplitudes of initial noise.

3.1.8 Spatially variable uplift

We now draw attention to the results for domal landscapes (Figure 15). Unsurprisingly, they tend to reach steady state earlier

than ‘escarpment’ or ‘square’ landscapes generated with the same erosional model (Figure 5k-o). Given that a fundamental555

assumption in slope-area and χ analyses (i.e., that uplift is spatially invariant) no longer holds, it is also unsurprising that the

results shown in Figure 15a-b have considerably more scatter than the equivalent panels in Figures 12 and 13. Decreases in

slope as a function of upstream area are not linear, clearly departing from the analytical solutions expected when uplift is

spatially invariant. z(χ) profiles are not (col)linear when produced using the true concavity value of 0.5. Instead, the value of

θχ that best linearised these profiles is close to 1. Therefore, it is also unsurprising that calculated values of uplift rate and560

concavity indices are wrong when uplift varies spatially. We discuss alternative approaches to recovery of uplift histories and

erosional parameter values in Section 4.

3.2 Scenario B: Quenched noise

3.2.1 Drainage Planforms and Steady State565

The impact of adding quenched noise to the morphometry of a single simulated landscape is shown in Figures 17a-b. In this typ-

ical example, both landscapes are initialised with identical noisy starting conditions and evolve under the same forcing except

for the identical (quenched) noise that is added at each time step to the model shown in panel a. The landscape with quenched

noise contains a larger proportion of higher elevations, as expected due to the additional noise. The mean elevation of added

noise is 0.5 m per time step (10 kyr). In essence, the addition of quenched noise in this way may be considered as a noisy but570

spatially constant uplift rate of 0.2 – 0.3 m/kyr, with a mean uplift rate of 0.25 m/kyr. Thus, added noise contributes mean cu-
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Figure 15. Geomorphic metrics of steady state ‘domal’ landscapes initialised with red, white or blue noise. (a) Coloured circles with

black outline show slope-area relationships for the main channel in the largest drainage network in single, typical, simulations initialised

with red, blue or white noise. (b–d) See Figure 12 for notation.
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Figure 16. Impact of amplitude of initial red, white or blue noise on geomorphic metrics recovered from steady state ‘square’ land-

scapes. Each box-and-whiskers plot shows results for M = 100 landscapes generated with annotated initial noise of indicated colour.

Whiskers = 1.5×IQR, or maxima/minima if higher/lower; dots = fliers. (a–c) Range in Hack exponent. (d–f) Solid lines = median hyp-

sometries; filled areas shows range for M = 100 landscapes of each amplitude of initial noise, bounded by dashed lines.

mulative uplift of 5 km by 100 Myr. In comparison, when added noise has a mean elevation of 0 m per time step, the quenched

noise landscape has elevations which are similar to that of the landscape in Scenario A (see Supplementary Material Figure S9).

This figure demonstrates that the geometry of the drainage network in a landscape generated with quenched noise can differ575

from that in a landscape generated with the same arrangement of noise only in its initial condition. Landscapes generated with

the same distributions (but different arrangements) of quenched noise tend to have drainage patterns that are more similar to

each other than those generated with different arrangements of initial noise (cf. Figures 3 and S6). We attribute these results to

the enhanced role noise plays in determining the location of drainage networks when it is quenched.

580

Figure 17c–e illustrates that landscapes with quenched noise tend to have an early phase during which they tend to move

away from equilibrium (see increasing ∆z between 0–15 Myr) before moving towards equilibrium (∆z → 0 at T > 15 Myr).

Such trajectories have not been observed in models in which noise is only inserted into initial conditions (see black curves in
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Figure 17. Comparison of geomorphic metrics for steady state ‘square’ landscapes evolving with initial or quenched noise. (a) To-

pography (at 100 Myr) generated with 0 – 1 m of identical (i.e., quenched) white noise added at every time step, i.e., scenario B in Figure

2. (b) Landscape at 100 Myr generated with identical initial condition to (a) but with no additional noise, i.e., scenario A in Figure 2. (c–e)

Changes in maximum local relief in M = 100 landscapes generated with only initial noise (black lines), and red, white or blue quenched

noise (coloured lines). (f–k) Geomorphic metrics for M = 100 red, white or blue landscapes generated with quenched noise unless otherwise

indicated. (f) Slope-area relationship for grid nodes with drainage area exceeding 4 km2. Black lines = linear regression. (g) Solid lines =

histograms of uplift rate recovered from each of the 100 red, white, and blue quenched noise landscapes from slope-area analysis. Dashed

lines = results for landscapes with only initial noise. Red rectangle = ‘true’ uplift rate used to parametrise the LEMs. (h) z(χ) profiles for the

main channel and its tributaries of the largest drainage basin in each simulation, produced using θ = 0.5. Black hashed region shows range of

equivalent z(χ) profiles when quenched noise with elevations −0.5 to 0.5 m is added (see Section 3.2.2 for details). Inset shows the R2 value

of different reference concavities. (i–k) Upstream drainage area vs. channel length for main trunks of the forty largest drainage networks in

the red (i), white (j), and blue (k) quenched noise landscapes. Black line = non-linear least squares best-fit. Filled/black histograms show the

range in Hack exponent for each simulations from quenched noise/initial noise landscapes.

Figure 17c–e).

585

3.2.2 Slope-Area, χ, and Length-Area Analyses

Figures 17f-g show that slope-area data becomes more scattered when noise is quenched compared to when it is only inserted

into initial conditions. A consequence of this scatter is that there is more variability in the lines of best fit (shown in Figure

17f), including their slopes and intercepts. Consequently, recovery of the true uplift rate becomes more unreliable, even when

elevation added by quenched noise is corrected (average: 0.05 m/kyr; see arrow in Figure 17g), or when quenched noise has590

a mean elevation of 0 m (Figure S9g). Recovered rates are 25% to 85% higher than the true value of 0.2 m/kyr. Uplift rates

recovered from landscapes with quenched red noise have greater variance than those generated with quenched white or blue

noise. We explore why distributions of recovered values of U are not centred at 0.25 m/kyr in the Discussion section.

To test the impact of quenched noise on uplift rates extracted from χ analyses we examine the consequences of fixing θ595

to its true value (0.5; Equation 20). Figure 17h shows that z(χ) profiles generated in this way are linear with some scatter.

Landscapes with quenched red noise tend to have higher elevations as a function of χ than those with quenched white or blue

noise. We note that, in contrast, noise inserted only into initial conditions results in more similarly distributed z(χ) profiles

(ensembles 1, 4, 7; cf. Figures 12b & 17h). The best-fitting concavity values are centred on the true value of 0.5 in both cases

(see inset panels in Figures 12b & 17h). The black hashed region in Figure 17h shows that scatter in z(χ) profiles is also600

present when quenched noise has elevations of −0.5 to 0.5 m (and mean elevation of 0).
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Figure 17i-k illustrates that there can be large variability in Hack exponent, h, values when noise is quenched. The distri-

butions of h are broadly similar in simulations with quenched noise and noise inserted only into the starting condition (cf.

coloured and black histograms in Figure 17i-k).605

3.3 Scenario C: Spatio-temporal noise

There are two main differences in the results obtained from landscapes generated with quenched or spatio-temporal noise. The

first unsurprising result is that landscapes with spatio-temporal noise never reach true steady state (Figure 18c). Time series

of maximum local ∆z show that, similar to models in scenario B, simulations with spatio-temporal noise take up to 20 Myr

to stabilise around a gradually decreasing mean value. However, they do not reach true numerical steady state (i.e., ∆z = 0)610

as a result of the arrangements of added noise changing at each time step. The absence of spatial consistency in added noise

can prevent erosion from balancing the added elevations within a single time step. The second main difference is that, un-

like quenched noise, adding spatio-temporal noise produces less scattered slope-area relationships (Figure 18f). Consequently,

uplift rates recovered via linear regression are more tightly clustered than those generated in scenario B. However, they are

offset from the true value by the added noise (see arrow in Figure 18g). This offset is not present when spatio-temporal noise615

has a mean elevation of 0 m (Figure S10g). A corollary is that recovering true tectonic uplift rates requires information about

the amplitude and distribution of noise in a landscape. In contrast, the results from z(χ) analyses, drainage probabilities, and

channel length-area relationships are all broadly similar to those obtained for scenario B (Figures 18h, i–k, & S6g–i).

3.4 Scenario D: Addition of un-eroded noise620

The impact on geomorphic metrics of adding noise to a steady state landscape such that the noise remains un-eroded is shown

in Figures 19 and 20. Adding noise in this way acts to ‘blur’ topography, and increases the proportion of elevations which are

between 20–50% of the maximum height, shown in Figure 19c. Whilst the impact of adding 0–20 m of noise is subtle on the

longitudinal profiles shown in Figure 19d, this noise generates scatter in the slope-area data such that recovered uplift rates are

50% larger than the steady state case. z(χ) profiles are less affected by 0–20 m of un-eroded noise, but become highly scattered625

when 0-200 m of un-eroded noise is added to the landscape. Slope-area analysis is demonstrably an inappropriate technique to

use for recovering U and θ from steady state landscapes containing, say, 200 m of un-eroded noise. In fact, even 20 m of added

noise can result in calculated uplift rates being unreliable (Figure 20b; Supplementary Information Figures S11-13).
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Figure 18. Comparison of geomorphic metrics for ‘steady state’ ‘square’ landscapes evolving with initial or spatio-temporal noise.

(a) Example of a ‘steady state’ landscape (at 100 Myr) generated with different (spatio-temporal) arrangements of white noise added at each

time step. (b) ‘Steady state’ landscape (at 100 Myr) generated with identical initial condition to (a). (c–k) Same annotation as for Figure 17

for models with spatio-temporal red, white or blue noise, or noise added only to the initial condition.
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Figure 19. Impact of un-eroded noise on metrics: An example. (a) Steady state ‘square’ landscape generated with up to 1 m of white

noise in its initial condition (Figure 4: ensemble 1), and with up to 20 m of white noise added after the final model time step. Filled grey

transect shows topographic profile of steady state landscape (without final noise). (b) Same landscape as in panel (a), but with up to 200

m of un-eroded noise. Black outline shows location of the same (longest) river in landscapes with final noise added. (c–i) Yellow/orange

= geometries and metrics extracted from landscapes with up to 20 and 200 m of un-eroded noise. (c) Black dashed curve = hypsometry of

landscape shown in panel (a); colours = hypsometries of landscapes with un-eroded noise. (d–f) Longitudinal profiles of rivers in largest

drainage basin (see panel a), slope-area and χ analyses of rivers shown in panel (d) respectively, for steady state landscape and landscape

with 0–20 m noise added. (g–i) As above, for landscape with 0–200 m noise added. Metrics for un-eroded red and blue noise are shown in

Figures S12 and S13.
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4 Discussion

4.1 Distributions of Geomorphic Metrics and Determinism630

We synthesise the results obtained from scenarios A – D in Figure 20 and use this as a framework to discuss key findings

regarding geomorphic metrics.

Across almost all scenarios we obtain distributions of results from model ensembles. In other words, slope-area relationships,

χ analysis, and length-area relationships are sensitive to noise inserted into the models. These results emphasise the benefits635

of using model ensembles or probabilistic approaches to landscape evolution modelling (rather than relying on interpretation

of singular, or small-batch, runs of stream power-based models). An ensemble-based approach permits characterisation of,

for instance, uncertainty and dependence on noisy (starting) conditions, model assumptions or model parameter values. These

results clearly indicate that caution is required to avoid over-interpretation of results from single models (and the real world)

which may be outliers with geometries that depend on an arbitrary noisy starting condition, which in reality represents (largely)640

unknowable palaeo-conditions (topography, weather, climate, biota, etc.) It emphasises the importance of embracing the fun-

damental unknowability inherent to landscapes and thus the importance of quantifying the impact of noise (and especially

its distributions) on geometric predictions (e.g., of topography, sedimentary flux) and calculated metrics (see e.g., Perron and

Fagherazzi, 2012; Gray et al., 2017; Lyons et al., 2020; Roberts and Wani, 2024; Thompson Jobe and Reitman, 2025).

645

4.1.1 Uplift Rates and Concavity Indices Recovered from Slope-Area and χ Analyses

The sensitivity of slope data to added noise has previously been discussed, for example in Roberts et al. (2012b) and Mudd

et al. (2018). In this study, we show that, when operating in a numerical steady state under spatially invariant uplift, slope-area

analysis can be used to recover input values of erosional parameters and uplift rates (see e.g., Figures 11, 20a-b). However, we

also show that this technique does not yield accurate results under conditions of spatially variable uplift (Figure 15), or when650

noise is added during or at the end of a simulation (Figures 19, 20a-b). This finding is also true of χ analysis, which is impacted

by noise in a different way.

The specific arrangement and distribution of noise used as a starting condition can change the value of the reference concav-

ity which best linearises z(χ) profiles. The sensitivity of χ to reference concavity values has also been shown by Gailleton et al.655

(2021). Best-fitting reference concavity values are shown in Figure 20c, and can vary from the true value of 0.5 (in this study).

The colour of noise has a minor impact on the variance of the distributions. The distributions become less centred on 0.5 when

the amplitude of initial or final noise increases, or when quenched noise is present. Figure 14 shows the impact of using differ-

ent values of θref to generate z(χ) plots, and the resulting distributions of uplift rate calculated from the slopes of these profile

are shown in Figure 20e. Several clusters of distributions exist because of the different best-fitting values of θref , with calcu-660

lated uplift rates varying between 0.5 and 1.5× the true uplift rate for scenario A, and up to 2× the true uplift rate for scenarios
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B-D. Even in the case of z(χ) profiles calculated using the true value of θ = 0.5, rather than the best-fitting θ, recovered uplift

rates are distributed around the true uplift rate of 0.2 m/kyr (Figure 20d). This result highlights the uncertainties generated from

noisy conditions in landscape evolution models and thus the challenges associated with interpreting outputs from single models.

665

A further complication in recovering tectonic information from slope-area and z(χ) analyses arises in cases where uplift is

spatially variable, e.g., for domal landscapes. In general, Figures 15a-b demonstrate that slope-area analysis is an inappropri-

ate tool for recovering uplift rates and erosional parameter values from domal landscapes, or more broadly landscapes with

spatially variable uplift. We extend this comment to also encompass χ analysis when used in this way, given the absence of

(col)linearity of z(χ) profiles in Figure 15b and the best-fitting reference concavity being close to 1, rather than the true value670

of 0.5. We acknowledge that modifications to χ analysis exist to account for spatially variable uplift (see e.g., Mudd et al.,

2014; Hergarten et al., 2016; Mudd et al., 2018). In practice, both slope-area analysis and χ analysis rely on an assumption of

steady state, which we discuss in section 4.2. Our result, generated under steady state conditions and different arrangements,

distributions, or implementations of noise extend those of Mudd et al. (2018), who generate examples of transient synthetic

landscapes with spatially variable erodibility or uplift rate, and calculate distributions of best-fitting reference concavities from675

different basins, across a range of calculation methods.

One could also argue that the uplift applied to the ‘square’ landscapes in scenario B is spatially variable, due to the presence

of quenched noise. A consequence of quenched noise is to add scatter to slope-area data such that recovered uplift rates are

distributed between 0.26 and 0.37 m/kyr (Figures 17g, 20b). Given that the mean elevation of noise added per time step is680

0.5 m, and the maximum elevation added is 1 m, it might be expected that quenched noise contributes an additional mean

and maximum uplift rate of 0.05 and 0.1 m/kyr, leading to mean and maximum calculated uplift rates of 0.25 and 0.3 m/kyr

respectively. We interpret recovered uplift rates being up to 0.37 m/kyr as the result of scattered data and trade-offs between the

slope and intercept (from which uplift rates are calculated) of the best-fitting linear regression. The presence of quenched noise

in models tends to generate considerable spread in slope-area data, and thus in calculated intercepts (and thus uplift rates). In685

contrast, uplift rates recovered from slope-area data in scenario C are offset from the true uplift rate by 0.05 m/kyr, i.e., the

mean amplitude of uplift added from noise. We note that it is unlikely that the true amplitudes of noise are known for real

landscapes, meaning that it is not trivial and perhaps impossible in some circumstances to correct uplift rates calculated in this

way for noise.

690

4.1.2 Variability in Hack exponent value

A consistent result across all model scenarios and ensembles is the variability in Hack exponent value, h, due to different

arrangements and distributions of noise. Hack exponent values vary between 0.45 and 0.75, generally a larger range than pre-

vious studies which calculate h based on data from natural landscapes across regional and global scales (Hack, 1957; Mueller,

1972; Montgomery and Dietrich, 1992; O’Malley, 2020; He et al., 2024; Singer et al., 2024). Many of these studies find 0.45695
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≤ h≤ 0.7, whilst dimensional analysis predicts h= 0.5. It has been suggested that Hack exponent values < 0.5 imply that

drainage basins are widening and values > 0.5 imply elongating basins (Mueller, 1972). Many of the distributions of h that we

calculate from our models have values > 0.5, indicating that, if we accept this reasoning, basins are elongating more than they

are widening. Figure 20f demonstrates that on average, landscapes initialised with red noise in Scenarios A–D produce lower

Hack exponent values than their white and blue noise counterparts, implying that their catchments are elongating at a slower700

rate. However, it is unclear that the temporal evolution of drainage basins can be related to length-area relationships obtained

at a single model time step, and in many cases the topography is at a numerical steady state (i.e., ∂z/∂t= 0 everywhere),

indicating no change in basin geometry. Prior studies have recognised the potential for drainage basin scale to influence the

calculation of h (Mandelbrot and Wheeler, 1983; Robert and Roy, 1990). The drainage basins in our models used to calculate

Hack exponents range in size from 107–109 m2. These sizes fall within the range of basin areas from which Hack exponents705

have been calculated in previous studies, though are closer in size to those originally examined by Hack (1957), who found

h > 0.5. Extraction of channel lengths and upstream areas from synthetic landscapes also circumvents measurement errors

encountered when calculating these metrics from field data or digital elevation models.

Climatic conditions have also been suggested to influence Hack exponent values. For example, Yi et al. (2018) categorise710

drainage basins in the contiguous United States by aridity index and find that h≃ 0.49 for basins in arid regions, and h≃ 0.59

for basins in humid regions. Conversely, Singer et al. (2024) find from a global drainage dataset that h increases with increasing

aridity. Our findings suggest that different arrangements and distributions of noise within landscape evolution models produce

at least as much variance in Hack exponent values as climatic variables. This result is similar to that of Sassolas-Serrayet et al.

(2018) and O’Malley (2020), who found a limited influence of (modern day) mean annual precipitation (and lithology) on715

Hack exponent values calculated from observational data.

4.2 An Assumption of Steady State

A fundamental assumption underlying the recovery of uplift rates and erosional parameter values from widely used techniques

such as slope-area or χ analyses is that uplift rates are balanced by erosion, i.e., there exists a topographic steady state. When720

operating with synthetic landscapes it is straightforward to numerically verify that this condition is true (e.g., Figure 5). Our

results demonstrate that, even under conditions of steady state, recovery of uplift rates and erosional information is complicated

by the choice of how noise is included within models, which leads to distributions of recovered values, shown in Figure 20.

Notwithstanding inconsistencies in how steady state topography is defined, as outlined by Gasparini et al. (2024), in gen-725

eral, observational evidence to confirm that landscapes in the real-world are at topographic steady state is scant. In fact, most

continental topography appears to refute the steady state assumption, which in general must be wrong because geological

observations (e.g., uplifted marine rock; sedimentary isopachs indicating punctuated sedimentary flux; incision rates from ra-

diometrically dated rocks) demonstrate that topography increases and decreases in elevation on a variety of spatial and temporal
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scales, and may horizontally advect (e.g., Rust and Summerfield, 1990; Young and McDougall, 1993; Roberts and Kirschbaum,730

1995; Willett and Brandon, 2002; Karlstrom et al., 2007; Stephenson et al., 2019; Racano et al., 2020; Malatesta et al., 2022).

These observations, alongside the findings from our synthetic landscapes, and results from some analogue models, call into

question the utility of geomorphic techniques which rely on assumptions of steady state (see e.g., Hasbargen and Paola, 2000).

4.3 Drainage Planform Variability and Maximum Drainage Sizes735

Figures 7 and 9 demonstrate how different arrangements and colours of noise can lead to different drainage planform struc-

tures. This result extends that of Kwang and Parker (2019), who interpret the lasting influence of initial conditions in landscape

evolution models as an absence of other mechanisms that can remove initial network structure (e.g., lateral erosion and mi-

gration of channels present in natural environments; Kwang et al., 2021). Figure 7 emphasises how landscapes that evolve

with identical tectonic histories can have different geometries due to noise. It is clear that in such cases using Euclidean-based740

approaches to compare modelled and observed elevations of entire landscapes may lead to undesirable high misfit when tec-

tonic histories are in fact similar. Instead, minimising misfits (via inverse modelling for instance) to recover tectonic (uplift)

rates probably requires techniques that can ‘see through’ the local complexity of precise planform arrangements introduced

by specific arrangements of noise (e.g., Morris et al., 2023). More generally, broadly equal probabilities of channel locations

under the uplift and erosional conditions modelled (Figure 9) indicates that caution should be taken when interpreting drainage745

planform structures, or related metrics, from single models, or observations. We note that the drainage planform patterns of

‘square’ landscapes containing quenched or spatio-temporal noise (scenarios B, C) more closely resemble the general structure

of probabilistic drainage maps than landscapes containing only initial noise (scenario A). For instance, landscapes generated

with spatio-temporal or quenched noise tend to have interfluves and high topography with low drainage probability extending

in a ‘cross’ from the centre of the domain to each corner; cf. Figures 17a-b, 18a-b, S6. Perhaps surprisingly, even landscapes750

with quenched noise display this pattern. These results indicate that repeated insertion of noise (i.e. at each time step), reduces

the influence of noisy initial conditions on the geometries of landscapes at large scales.

Similarly, the position of drainage divides can also depend on noisy starting conditions, for example the areas of low prob-

ability in the ‘escarpment’ landscapes shown in Figures 9d-f. In particular, models initialised with red noise have less well-755

defined regions of low drainage probability. We interpret this result as a consequence of long wavelength changes in topography

permitting initial flow-lines to span across more than half of the domain, even after sink-filling. Conversely, the shorter wave-

length topographic roughness present in landscapes initialised with white or blue noise means that the largest drainage basins

usually terminate at the centre of the domain, leading to consistent regions of low drainage probability (see Figures 9b-c). We

also interpret this as a mechanism for why the largest drainage basins in ‘square’ landscapes initialised with red noise are, on760

average, larger than those from landscapes initialised with white or blue noise (Figure 8).

44



Figure 20. Impact of noise on variance of geomorphic metrics from steady state landscapes. Series of histograms showing the distri-

bution of different geomorphic metrics under different noisy conditions for the ‘square’ landscape (Scenarios A–D; see Figures 3–4). Black

dashed lines = true values, used to produce the LEMs. For the quenched and spatio-temporal examples, up to 1 m of noise was added at

every time step. (a–b) Concavity index and uplift rate recovered from slope-area analysis. (c) Value of concavity index that best linearises

χ-elevation plots. (d) Corresponding uplift rate associated with the slope of the best-fitting line of χ-elevation data, from the rivers of the

four largest basins transformed using θ = 0.5. (e) As per (d), for a slope of the best-fitting line of χ-elevation data from the rivers of the four

largest basins, transformed using the respective best-fitting values of θ. (f) Values of Hack exponent calculated from river length-upstream

area relationships.
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4.4 Comparison to Natural Landscapes

4.4.1 The relevance of initial, quenched, and spatio-temporal noise

The result that distributions in geomorphic metrics arise from different arrangements, colours, and implementations of noise765

within landscape evolution models is a finding similar to that of Perron and Fagherazzi (2012), and emphasises that the appli-

cation of noise is not an arbitrary model choice. Whilst noisy initial topography enables the generation of realistic drainage

planforms within models, it can also be representative of natural processes or features. For example, noisy starting conditions

may be considered to represent a palaeotopography. In some studies, it may be inappropriate to solely implement random noise

as a starting condition, for example where it may be possible to guess palaeotopography prior to volcanic eruption or ice cover,770

for instance (e.g., Paxman et al., 2019; Barnhart et al., 2020b; O’Hara et al., 2024). Yet in many other studies and at different

scales, palaeotopography is unknowable and therefore assessing uncertainties using ensembles of models with variable starting

conditions is probably a sensible, perhaps necessary, strategy.

However, it is questionable whether the application of noise exclusively as an initial condition is a reasonable assumption.775

Perhaps incorporating noise throughout model run time is closer to reality. For instance, erosion of substrate with constant (in

time) erodibilities, or landsliding occurring repeatedly in the same place, could be regarded as sources of quenched (i.e., fixed

for all time) noise. In general however, geomorphic noise in natural landscapes must vary as a function of space and time. For

instance, as lithologies with different erodibilities are exposed. Thus, in scenarios B–C we explore the consequences of adding

quenched and spatio-temporal red, white, or blue noise with amplitudes 0 to 1 m and −0.5 to 0.5 m throughout model run780

time. Figures 17g and 18g show that noise generates uncertainty in recovered uplift rates, which can be considerable (see also

Figures S9 & S10).

4.4.2 Colour, Scale, and Metrics

The spectral content of synthetic steady state landscapes generated in scenario A is characteristic of red noise (ϕ∝ k−2). Simi-785

lar spectral characteristics have been identified in natural landscapes, across scales from centimetres to thousands of kilometres

(e.g., Balmino, 1993; Birnir et al., 2001; Perron et al., 2008; Booth et al., 2009; Roberts et al., 2019). Wavelet spectral analysis

of longitudinal profiles for large African rivers shows that their power spectra can be characterised as pink noise (ϕ∝ k−1) at

wavelengths ≲ 100 km and as red noise (ϕ∝ k−2) at longer wavelengths (Roberts et al., 2019). The transition from complexity

at local scales to relative predictability at large scales emphasises why some geomorphic metrics are more sensitive to noise790

than others. For example, it is unsurprising that the recovery of uplift rates or erosional parameter values from derivatives (i.e.,

topographic slopes, dz/dx, or gradients of z(χ) profiles, dz/dχ) is hampered by the addition of noise; Figure 19. In these

examples, metrics which incorporate topographic information from restricted spatial scales are likely to have lower signal to

noise ratios, and differentiation of noisy data accentuates uncertainties. In comparison, geomorphic metrics which consider the
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entire shapes of landscapes, such as hypsometry, appear less sensitive to noise.795

4.5 Limitations and Recommendations

Obvious ways in which the work presented could be extended include assessing the impact of noise using other landscape

modelling software packages (e.g., Badlands, CHILD, FastScape) or by randomising flow directions (Tucker et al., 2001;

Salles, 2016; Salles and Hardiman, 2016; Bovy, 2021). Secondly, we note that alternative approaches to defining noise could800

be examined. We briefly explored the use of simplex noise (related to Perlin noise) but found it to generate linear artefacts

(Perlin, 2002). Third, there are a host of additional geomorphic properties that we have not examined that may be impacted by

noise, e.g., sedimentary flux.

Our first recommendation concerns the application of noise within landscape evolution models. Noise should be expected to805

always be present, even if it is difficult to quantify, in real landscapes (Birnir et al., 2001). We therefore consider the applica-

tion of noise as an important, and not arbitrary, choice within models that seek to represent natural landscapes and underlying

mechanisms which govern their evolution. We have shown that two widely used techniques (namely slope-area and χ analyses)

for recovering uplift rates or erosional parameter values from topography can give results that are wrong but look correct, even

when a landscape is demonstrably at topographic steady state. If such methodologies are used, our suggestions are to, first,810

do more, for instance re-run models many times to test the impact of uncertainties (noise), and to explicitly communicate the

distributions (colours) and amplitudes of noise used. Second, do it better, i.e., find ways to ensure that fundamental assump-

tions, such as topographic steady state, are appropriate. One pragmatic way of doing so is to use independent evidence (e.g.,

geologic evidence of uplift or erosion) to test results. Third, above all else, acknowledge and communicate uncertainties, e.g.,

in calculated uplift rates or concavity indices from metrics-based approaches.815

Our second recommendation is to use or develop other methodologies that allow assumptions about topographic steady state

to be relaxed, and explicitly incorporate uncertainties. Inverse modelling of landscapes for uplift rate histories, for instance,

allows one to avoid many of the pitfalls associated with metrics-based approaches, in particular when probabilistic approaches

are taken (e.g., Willgoose et al., 2003; Croissant and Braun, 2014; Rudge et al., 2015).820

5 Conclusions

Landscapes with the same uplift and erosional forcings evolved to equilibrium conditions using the SPM can have very variable

geometries as a result of noise inserted into their starting conditions or as models evolve. Extraction of geomorphic informa-

tion from such landscapes using common metrics-based approaches (slope-area, χ), and subsequent recovery of uplift rates,

erosional parameters values, and Hack exponents, show that varying the arrangement, distribution, and implementation of even825

small amplitudes (< 1% of cumulative uplift) of noise can produce results with broad distributions. Adding quenched noise
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to models produces more uncertainty in recovered uplift rates than when noise varies spatio-temporally. Observations of the

spectral content in natural landscapes indicates that features with red noise are prevalent. The largest drainage basins produced

in modelled landscapes initialised with red noise tend to be larger than those in landscapes initialised with white or blue noise.

Positions of drainage divides in landscapes initialised with red noise are less predictable than those generated with white or blue830

noise. All introduce considerable uncertainties in the position of drainage divides and basin geometries. The production of dis-

tributions in results arising from noisy conditions illustrates the benefits of probabilistic or ensemble approaches to modelling,

and the peril of interpreting predictions from single models. We suggest that assessing the impact of noise on SPM predictions

benefits from two considerations. First, utilising ensembles of models. Secondly, assessment of the distributions of geometries

including elevations, planforms, drainage divides, length-area relationships, and metrics, e.g., concavity and steepness indices.835

Doing so provides insight into the uncertainties that arise solely through the incorporation of noise, which can be considerable.

Code and data availability. The Landlab package is available from https://github.com/landlab/landlab and a version archived on Zenodo

with DOI 10.5281/zenodo.595872 (Hutton et al., 2020). We use version 2.7.0 here. Code used to generate noisy initial conditions, and noisy

conditions themselves, are archived on Zenodo with the following DOI: 10.5281/zenodo.15276032. Some of the code used to calculate

two-dimensional radially-averaged power spectra is adapted from Pulkkinen et al. (2019).840
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