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Abstract. Most flood hazard assessments follow the event-based approach, assuming that the probability of flooding
approximates the probability of flood drivers. However, this approach neglects information about the temporal and spatial
variability of flood drivers and flood processes such as water propagation inland and its interaction with topography. The
response-based approach accounts for these factors by using a large number of flood events that allow the calculation of flood
probabilities. Here, we compare differences in flood hazards between the event- and response-based approaches for a case
study in Gloucester City (NJ, U.S.). We find that compound events with return periods less than 20 years can produce the 100-
year (i.e., 1% annual exceedance probability) flood depths in large areas of the city. This is caused by the temporal and spatial
characteristics of these events, such as prolonged high coastal water levels and rainfall fields with higher rainfall rates over
urbanized areas. These event characteristics are not included in extreme value models of the flood drivers and are commonly
simplified by using a single design event. However, flood hazards largely depend on them, introducing large discrepancies in
resulting flood hazards if neglected. The temporal and spatial variabilities of flood drivers need to be incorporated in flood

hazard assessments to produce robust estimates.

1 Introduction

Coastal communities worldwide are facing increasing flood hazards from rising sea levels (Taherkhani et al., 2020; Wing et
al., 2024) and extreme events such as tropical cyclones (Nederhoff et al., 2024). The rapid development in coastal zones
compared to the-hinterlandinland areas is also contributing to increasing the exposure to flooding of people and assets (Cosby
etal., 2024), making flooding the costliest hazard for coastal zones. In the U.S. alone, damages from tropical cyclones exceeded
$1 trillion since 1980 and account for more than 50% of total disaster costs every year (NCEI, 2024). Therefore, developing
adaptation and mitigation strategies to reduce flood impacts and increase the resilience of coastal communities is essential.

The most common framework for estimating coastal flood risks is the one defined by the Intergovernmental Panel on Climate
Change (IPCC) in the Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change
Adaptation (SREX), in which risks are defined as a function of the hazard, exposure, and vulnerability (IPCC, 2012). In the

context of coastal flooding, quantifying the likelihood of coastal flood hazards is thus the first step to estimating flood risks
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and impacts. However, there is no standard approach to quantifying flood hazards, resulting in a variety of methods being
used, and discrepancies between them are not being-well understood. There are two main general approaches to estimating

flood hazards, namely event-based and response-based. However, there is also no clear consensus in the literature regarding

the terminology used to distinguish these two approaches. The event-based method is often referred to as the “design-storm”

or “deterministic” approach. In contrast, the response-based approach has been described using terms such as “probabilistic,”
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“stochastic,” “continuous,” or “weather-generator-based”. Some of these terms (particularly “probabilistic”) are also used in

other contexts, such as to describe flood maps that incorporate uncertainty in model parameters, which can lead to ambiguity

in their interpretation (Alfonso et al., 2016; Di Baldassarre et al., 2010; Bates et al., 2004). Therefore, in this study, we adopt

the term “response-based,” consistent with its usage in the structural reliability literature (Gouldby et al., 2014; Jane et al.,

2022b).

The event-based approach is the most commonly used. It consists of estimating first the probability of the flood driver(s),
selecting one event of desired probability (e.g., 1% annual exceedance probability (AEP)), and assuming that the flooding

resulting from that event approximates the occurrence probability of the event (i.c. one-to-one relationship). This approach can

be applied for the full range of probabilities of events, from low to high, and produce what is also known as probabilistic flood

hazard estimates (e.g., Kupfer et al., 2024). However, the most commonly used benchmark event for flood hazards is the 1%

AEP. often referred as the 100 year return period or in other words, an event that has a 1 in 100 chance of being equaled or

exceeded in any given year. In the U.S., the event-based approach has been widely used and is recommended by -the Federal

Emergency Management Agency (FEMA) to produce the 1% AEP flood elevations for both coastal and inland flood mapping

which serve as the basis for regulatory floodplain for management and planning (FEMA, 2022). For inland flooding, FEMA

applies the event-based approach that starts by defining a design rainfall storm, typically derived from NOAA Atlas 14 which
provide rainfall depths for specific probabilities (e.g., 1% AEP, 24-hour storms). The design storms are used in hydrologic

models to simulate runoff, with the resulting hydrographs then routed through hydraulic models to estimate flood depths and

extents. Similarly for coastal regions, a design event is selected from the distribution of coastal water levels to estimate the 1%

AEP regulatory floodplain. In regions affected by tropical cyclones (TCs), FEMA further implements the Joint Probability

Method (JPM) to construct a synthetic storm climatology. This involves statistically sampling combinations of key storm

parameters (e.g. central pressure deficit, radius to maximum winds, forward speed) based on their joint probability

distributions. These synthetic events are then dynamically downscaled to the coast and exceedance probabilities of coastal
water levels are calculated based on the probabilities of the storm characteristics. Although the JMP approach might reduce

the uncertainties related to estimating the likelihood of low-probability coastal water level events by increasing the sample size

of this events, in both cases, the probability of the event is assumed to approximate the probability of flooding (FEMA, 2022).

Selecting a single event

that approximates the 1% AEP floodplain might not be a simple task. On one hand, observational records of flood drivers are

typically shorter than 100 years, making it necessary to apply statistical extreme value models to estimate the likelihood of
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events and to extrapolate beyond the observed data to characterize low-probability events (such as the 1% AEP) that may not

be captured in the historical record.On-the-one-handstatistical-Statistical extreme value models used-to-derive-the likelihood

ofevents-focus only on the magnitude of the fleed-drivers, and the temporal and spatial variability during events are neglected
(e.g., Jane et al., 2020; Moftakhari et al., 2019). In the case of coastal water levels, the lack of information about the temporal
evolution of the event has been commonly simplified using different approaches such as selecting one historical event as a
“design event” and rescaling its time series to the desired magnitude, e.g., matching the 1% AEP event (Dawson et al., 2005;
Peiia et al., 2023; Wadey et al., 2015); assuming a triangular or sine shape (e.g., Vousdoukas et al., 2016, Moftakhari et al.,
2019); or defining a mean hydrograph shape from hindcast data (Dullaart et al., 2023). However, neglecting the temporal
variability of coastal water levels can introduce large uncertainties in estimated flooding (Kupfer et al., 2024; Quinn et al.,

2014; Santamaria-Aguilar et al., 2017). Similarly, for rainfall and river discharge, traditional approaches defined a single

“design storm” or “design event” to represent the temporal and spatial patterns of these drivers (i.e. a representative event

structure). However, some recent studies have shown that relying on a single ‘design storm”, overlooking the variability in

event structure across multiple storms, can underestimate flood hazards and associated impacts (Baer, 2025; Perez et al., 2024).

Furthermore, when flooding results from multiple drivers (e.g., tropical cyclones producing both storm surge and heavy
rainfall), various combinations of driver magnitudes may share the same probability yet lead to differing flood depths and
extents (see e.g. Pefia et al., 2023). On the other hand, flooding (i.e., the response) also depends on other factors beyond the
flood driver characteristics, such as topography and associated water dynamics.

In contrast, the response-based approach can account for all these factors to produce more robust flood hazard estimates_(Baer,
2025; Perez et al., 2024). This approach involves simulating flooding from many events, enabling the calculation of empirical
flood depth distributions at different points in the floodplain. However, the response-based approach also has limitations. First,
a large set of events is needed, which is unavailable in observed records that rarely span more than a few decades-up-te-centary
(Ponte et al., 2019). Therefore, synthetic event datasets generated through dynamical modelling and/or complex statistical
frameworks are necessary (Gori et al., 2020; Kim et al., 2023; Maduwantha et al., 2025). Second, this approach is
computationally more demanding and hence it has been rarely used in the past, but it is becoming more feasible due to advances
in computing power (Gori et al., 2020) and new computationally efficient flood models (Bates et al., 2005; Leijnse et al.,
2021). Although the response-based approach provides more robust estimates of flood depths at the household level (or at
single points), the corresponding flood extent does not represent the floodplain of a single event, which might be needed for

some applications such as emergency management, government budgeting for natural disasters, and insurance market. For

Coastal flooding often occurs from a combination

of different drivers such as storm surges, wave runup, tides, heavy precipitation, and river discharge; so-called compound

events. In fact, the risk of compound flooding from storm surges and rainfall is larger in the Atlantic and Gulf coasts of the
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U.S. (Wahl et al., 2015).; for-which— However, FEMA recommends—using—the—event-based-approach has not planned to

incorporate compound flood modelling in coastal regions or transition to a full response-based approach to estimate coastal

compound flood hazards. Although FEMA provides some guidelines to map the 1% AEP floodplain, Mapping Partners can

deviate from the guidelines if they consider it appropriate (FEMA, 2022). Thus, choosing between an event-based or response-
based approach to estimate flood hazard is a decision that can be made. However, this choice is challenging to make in advance
since it is unclear how closely the 1% AEP event (in terms of the flood drivers) approximates the 1% AEP flood (in terms of
the response). To our knowledge, the differences in flood hazard estimates between these two approaches havenotyetbeen
evaluated;—speetfically-whenflooding arisesfromcompound-events—have only been evaluated for rainfall flooding (Baer,

2025; Perez et al., 2024; Winter et al., 2020), but remain unexplored for compound coastal flooding. For the latter, selecting a

single 1% AEP design event is particularly challenging, as multiple combinations of flood drivers can yield the same joint

exceedance probability. This challenge has sometimes been addressed through the introduction of ambiguous constructs, such

as the “most likely” event, which attempts to identify a representative scenario among equally probable combinations based

on the density of observed events (Jane et al., 2022; Moftakhari et al., 2019; Salvadori et al., 2011).

Here, we explore how-the degree of linearity in the relationship between events of 1% chance of occurring any year and

flooding of equal probability, elosely—the 1% AEP event-approximates—the 1% AEP fleed from compound events of

precipitation and estuarine water levels in a case study for Gloucester City, New Jersey. We first assess the variability in

flooding from different synthetic 1% AEP events of equal probability but different magnitudes, and temporal and spatial
evolutions, to quantify the uncertainties related to using a single design event for estimating flood hazards. Then, we compare
flood extents and depths from the 1% AEP events with the response 1% AEP flood. Finally, we investigate which individual
compound events can cause the response 1% AEP flood depth in different parts of the study area.

2 Study site

Our study site is Gloucester City, New Jersey, a small municipality located in the Delaware estuary (Fig. 1) frequently affected
by pluvial and coastal flooding (CDM Smith, 2023). We selected this study site based on the exploratory scoping analysis of
Helgeson et al. (2024) for place-based convergence research. Gloucester City is bordered by water on multiple sides, with the
Delaware River to the west and Newton Creek and Little Timber Creek to the north and south, respectively. The catchments
of these two creeks are relatively small (147.45 Km?), extending slightly beyond the city’s administrative boundaries and
draining into the Delaware River to the north and south of Gloucester City. Alongside the confluence of Newton Creek, Little
Timber Creek, and the Delaware River, the city's low-lying terrain, with elevation <10 meters above NAVDS88, makes it
especially susceptible to compound flooding from rainfall and elevated estuarine water levels, including storm surges, tides,

and river discharge. In addition, these catchments are highly urbanized (See Fig. S2) and the sewer and stormwater systems

are combined. The municipalities in these catchments have faced long-standing issues with repetitive flooding of streets and
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properties caused by inadequate stormwater drainage systems and tidal influences in the outflow discharging systems (CDM

Smith, 2023).
The FEMA Risk Map and Report, dated in 1979 and updated in 2016, defines a coastal and riverine 1% AEP floodplain (i.e.,

Special Flood Hazard Area, SFHA) that covers large areas of the city, including five essential facilities (FEMA, 2016).

Between 1974 and 2016, Gloucester City was subject to five federally declared flood-related disasters. Despite this, only 94

properties were enrolled in the National Flood Insurance Program (NFIP) as of 2016, according to data from OpenFEMA. Of

these, 76 properties were located within the SFHA. Based on the National Structure Inventory, Gloucester City contains a total

of 3,341 single-family homes, 148 of which are situated within the SFHA. Until 2016-there-have-beenfivefederal-disaster

Program(NEH). Gloucester City has been facing problems with repetitive localized pluvial and coastal flooding for years
(Fig. S43 of Supplementary Material), further exacerbated by an inadequate stormwater drainage system (Smith, 2023). This
is also highlighted in the FEMA Risk Map, in which an intersection of the city outside the SFHA is marked together with a
photo of flooding from an event in 2009 (FEMA, 2016. Fig. S21).
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Figure 1. Location of Gloucester City (NJ, U.S.) within the inner part of the Delaware estuary_(a-b). The map en-therightc) shows
the flood model domain covering the catchments of Newton Creek and Little Timber Creek that surround the study site of Gloucester
City. The blue line shows the location of the open boundary of the flood model along the Delaware River, the purple line is the inland
outflow boundary, and the orange dots are the grid nodes of the rainfall forcing. [NAD83/UTM18N. ©OEsri]
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3 Data and Methods

We investigate differences in flooding between the event- and response-based approaches by simulating flooding from a large
number (5,000) of compound events that allow estimating the empirical distribution of flooding and comprise several +%-AEP

events that have a 1% chance of happening in any year. We created a catalog of 5,000 synthetic compound events (more details

on those events are provided in Section 3.1) following the framework of Maduwantha et al. (2025), which provides storm tide
hydrographs and rainfall fields.

The joint probabilities of these events were calculated using the multivariate statistical framework of Maduwantha et al. (2024).
We use the reduced-complexity flood model SFINCS (Super-Fast INundation of CoastS) to simulate pluvial and coastal
flooding from the synthetic events in the study area (Fig. 1). Details of the flood model configuration and input data are

described in Section 3.2, and the model validation is presented in Section 3.3.

3.1 Synthetic compound events

We need a large sample of compound events to estimate the response-based flood hazard, in which the probability of certain
flood thresholds being exceeded is calculated for each model cell based on the empirical distribution. We use both the
multivariate statistical framework of Maduwantha et al. (2024) and the event generation approach of Maduwantha et al. (2025)
to derive a catalog of synthetic compound events, including information on rainfall fields and coastal water levels along the
Delaware River at Gloucester City. Maduwantha et al. (2024) developed a new multivariate statistical framework to estimate
joint probabilities of rainfall and non-tidal residuals (NTR) using copulas, accounting for the dependencies between these two
flood drivers but also stratifying the extreme events by the different storm types that generate them, namely tropical cyclones
and non-tropical cyclones (Fig. 2), since these show different statistical characteristics. Non-tropical events dominate the low
return levels, while tropical cyclones have a stronger effect on large return levels, such as the ones associated with the 1%-AEP

eventevents of 1% chance occurring in any given year. Accounting for the different statistical characteristics of events caused

by these different storm types, the joint probability analysis avoids mischaracterization of both low and high-return level
events.
For the catchments of our study site, Maduwantha et al., (2024) used around 120 years of in-situ rainfall and coastal water

level measurements to estimate the joint probabilities of the flood drivers, namely rainfall and NTR. Since our study site is

located in the mid-estuarine region of the Delaware Estuary, the NTR reflects contributions from both fluvial discharge and

coastal storm surge, as well as their nonlinear interactions. We opted not to disaggregate the NTR into riverine and coastal

components due to the substantial complexity of their coupled dynamics and the additional challenges this would introduce

into the structure and parameterization of the multivariate statistical model. —Fhey-found-thatMaduwantha et al., (2024) found

the largest dependency between NTR peak and rainfall exists for 18-hour rainfall accumulation. Since single-point rainfall
might not be representative of the entire catchment, they also used 40 years of 4km gridded rainfall data from the Analysis of

Period of Record for Calibration (AORC, Kitzmiller, 2018) of the corresponding catchments to obtain spatial rainfall
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information and average catchment values. Observed compound events were identified using the Peaks Over Threshold (POT)

approach combined with a two-sided conditional sampling method. Thresholds were set to capture an average of five events

per year, providing a balance between sufficient sample size and an appropriate representation of the tail distribution. These

thresholds also maximized the statistical dependence between variables. Additionally, the conditional sampling method

includes events where one variable is not extreme, allowing for coverage of the full range of driver magnitudes, including

those that may not lead to flooding. Further details about the multivariate statistical framework can be found in Maduwantha

etal. (2024).

Maduwantha et al. (2025) developed an approach to generate synthetic compound events based on the joint probability
distribution from the previous analysis and by considering the temporal and spatial information of historical events. From the
joint probability distribution, they derived a sample of 5,000 events, ensuring that the proportion of observed tropical and non-
tropical events is retained in the synthetic data (Fig. 2). Dynamic flood models such as SFINCS also require information about
the temporal evolution of events, namely time series of both coastal water levels and rainfall fields. For that, Maduwantha et
al. (2025) used the time series of historical events to generate new time series for the synthetic event set. For each synthetic
event, the time series of a historical event is selected randomly accounting for their proximity in the joint probability space,
and thus accounting for differences in the temporal and spatial characteristics of these events depending on their magnitude.
The historical event is then rescaled to the desired magnitude of the synthetic event. The rescaled NTR time series is then
combined with a mean sea-level value and a tidal curve while accounting for seasonality. The NTR hydrograph (i.e., time
series) and the selected tidal curve are combined by selecting the lag from the observed events in order to account for the tide-
surge interaction. Likewise, the synthetic rainfall field is combined with the synthetic water level hydrograph selecting a time

lag between peaks based on the observed historical events. The synthetic compound events were validated by comparing

observed and simulated distributions of key event characteristics (e.g. magnitude of the peaks, duration, times lags, intensities)

and dependencies among them, finding a good agreement between observed and simulated events. Further details about the

methodology used to generate the synthetic compound events can be found in Maduwantha et al. (2025).
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Figure 2. a) Joint probabilities of non-tidal residual (NTR) and 18hr rainfall accumulation. Blue dots show the historical non-tropical
cyclone events, red dots show the historical tropical cyclone events, and grey dots the 5,000 synthetic events generated for this study.
All synthetic events (grey points) have assigned water level hydrographs and rainfall fields to be used as boundary conditions for
SFINCS. b) ¢) and d) show as an example the time series of three 1% AEP (100-year) events (black dots along the 100-year isoline);
b) shows the time series of the “most likely” event, marked as a purple triangle in a); c) shows the 1% AEP (100-year) event that
produces the largest flood from all 1% AEP (100-year) events (black dots in a); and d) shows the 1% AEP (100-year) event that
produces the smallest flood from all 1% AEP (100-year) events. Water levels are referenced to NAVDSS.

Of the 5,000 synthetic compound events used, 25 lie along the 100-year (1% AEP) isoline (i.e. with a 1% probability of

happening any given year; Fig. 2)- To further investigate differences in flood hazard estimations between approaches, we also

define a “design event” from all the 100-year events following the “most likely” approach for multivariate events (Jane et al.,
2022; Moftakhari et al., 2019). This approach selects one event in the isoline based on the Based-en-the-density of observed
events along the-iselinesit;-we-can-define-the relative probability-of these-events (Salvadori et al., 2011b), te-identifying this

event as the most representative scenario (“most likely”) -event-along-the-iselineamong the equally probable combinations

along the isoline.

The water levels at the Delaware River boundary of the model are also affected by the tidal variability, which is periodic and
thus its probability is not included in the multivariate extreme method of Maduwantha et al. (2024) for stochastic variables.
We estimate the likelihood of tidal levels based on the predicted tides of the 19-year period from 2003 to 2021 to include long-
term tidal variations such as the perigean and nodal cycles (4.4 and 18.6 years). Predicted tidal levels are generated based on
the annual harmonic analysis performed by Maduwantha et al. (2024) including nodal corrections estimated from astronomical
parameters (see Codiga (2011) for further information about the tidal harmonic analysis using UTide). We focus only on the
likelihood of high tide peaks since flooding is more likely at these levels, but it is important to notice that the synthetic events
are generated by combining the NTR peak and the high tide peak accounting for the historical distribution of time lags, and
thus accounting for tide-surge interactions (Maduwantha et al., 2025).

The tidal regime in our study region is mixed semidiurnal, with two high tides per day, but one is higher than the other. We
calculate the Mean Higher High Water (MHHW) level following the definition by the National Oceanic and Atmospheric
Administration (NOAA) to provide an average level of the largest tidal level that happens once a day. MHHW is estimated as
the average of the higher high water peaks of each day over a specified period, which in our case is the 19-year period from
2003 to 2021 (instead of the National Tidal Datum Epoch (1983-2001) used by NOAA), in order to provide an updated estimate
of MHHW and better representing present-day tidal conditions (Fig. 3). Although the largest variability of tidal levels is at
daily scale, tidal high waters also vary at fortnightly, seasonal, and interannual time scales. Therefore, we also estimate the
mean spring tidal levels as the average of the largest high-water levels every 14 days and the average “king tide” as the mean

of the annual largest tide over the 19-year period (Fig. 3).

10
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Figure 3 Histogram of tidal high water levels over the last 19 year period from 2003 to 2021. Black lines show the tidal levels of
MHHW, Mean Spring Tide, and Mean King Tide (defined as the largest annual tide). Coloured lines show as an example the largest
high tide levels of the tidal curves selected for the synthetic events shown in Fig. 2b-d, and two additional synthetic events (#605 and
#3354) discussed in the results section.

Previous studies pointed to periods of increases in both high-tide flooding (Thompson et al., 2021) and extreme coastal flooding
(Enriquez et al., 2022) caused by the nodal and perigean modulations of high-tide levels. Although these modulations are at
longer time scales (4.4 and 18.6 years), the next peaks of both cycles will occur between 2025 and 2034 for diurnal and
semidiurnal regimes. Since the tidal regime in our study site is mixed semidiurnal, the peaks of these two long-term tidal cycles
are expected to occur within that period. To evaluate potential impacts of the long-term tidal modulations on the compound
flood analyses, we estimate the 4.4- and 18.6-year tidal cycles following the approach of Enriquez et al. (2022) for the tide-
gauge records of Philadelphia. We fit a least-squares regression to the annual king tidal levels (Eq. 1) of the last 60 years of
record as suggested by Haigh et al. (2011).

H(t) = B + By (t) + B, cos (i—’:t) + B sin (i—’:t) + B, cos (%t) + Bs sin (%t) (1)

Where H(t) are the king tides of each year ¢, o is a constant term, ; is the linear term, P, and B3 are the amplitudes of the
perigean cycle and B4 and s are the amplitudes of the nodal cycle. Based on the fitted regression, we estimate the amplitudes
of both the perigean and nodal cycles, and the timing of the next peak of both cycles for our study region; this provides a better

estimation of the present-day probability of large astronomical tides.

3.2 Flood Model

We use the dynamic flood model SFINCS (Super-Fast INundation of CoastS), which was designed specifically for simulating
flooding from multiple flood drivers (Leijnse et al., 2021), since we are interested in capturing interactions between rainfall
and coastal water levels as well as the effects of spatio-temporal variability of compound events on the flood response. SFINCS
is a reduced-complexity flood model that balances computational efficiency with accuracy, making it a perfect candidate to
simulate thousands of events at a reduced computational cost.

The municipality of Gloucester City is encircled by the catchments of Newtown Creek and Little Timber Creek, for both of
which discharge data is unavailable. Therefore, we define the SFINCS model domain (Fig. 1) to cover the catchments of these
two creeks by their 14-digit hydrologic units from the NJDEP Bureau of GIS (Table S1). This domain encompasses all runoff
that could potentially lead to pluvial flooding in the study area or fluvial flooding from the creeks. We define an open boundary
along the Delaware River where the water level boundary conditions are given. The inland boundaries of the model domain
are defined as “outflow” to allow any water flow to exit the domain. We use the subgrid approach of SFINCS with a dual

resolution of 10 m_(758.904 cells) and 1 m_(147.450.698 cells) and the Digital Elevation Model (DEM) of Coastal National
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Elevation Database (CoNED) from the U.S. Geological Survey (Fig. S1), which has a horizontal resolution of 1 m and a
vertical accuracy of 10 cm (Danielson et al., 2016). This DEM at 1 m is aggregated using the median to 10 m in ArcGIS pro-
3.2.0. We use spatially varying surface roughness based on land cover data from the NJDEP Bureau of GIS (Table S1),
converting land classifications into Manning's coefficients based on guidance from the U.S. Army Corps of Engineers
(USACE, 2021). Water level boundary conditions are provided as time series at the location of the Philadelphia tide-gauge
and the model interpolates them along the open boundary of the Delaware River. Rainfall forcing is applied as spatially varying
fields, with the same resolution as the AORC data (Fig. 1); SFINCS interpolates these onto the model grid resolution. The
model is run with the advection term neglected, solving the local inertia equations. We use the GPU version of SFINCS and
run the 5,000 simulations on an Intel(R) Core (TM) i7-13700KF CPU and NVIDIA GeForce RTX 4080 GPU. The outputs of

the simulations at 10 m resolution are downscaled to 1 m resolution using MATLAB 2023a.

Validation and calibration of flood models is a difficult task due to the common lack of observed flood data worldwide (Merz
et al., 2024; Molinari et al., 2019). This is especially true for under-resourced regions; but the lack of observed flood data is
also an issue in developed countries and more noticeable in the case of pluvial flood events, which are the most frequent in
our study area of Gloucester City (Hino and Nance, 2021).

To address the challenges of flood model validation in data-scarce environments, we conducted an extensive search for

observational data in Gloucester City. We evaluated a wide range of sources, including satellite imagery, high-water marks,

FEMA reports, NOAA’s Storm Events database, local news articles, and crowd-sourced platforms such as MyCoast and

Twitter. Although conventional data sources provided limited information, we identified and simulated three documented flood

events (2009, 2019, and 2020) for model validation. As part of this process, we evaluated the model outputs when including

infiltration, finding an overestimation of infiltration and underprediction of flooding using the Curve Number method. Based

on this and the high imperviousness of the urban area, infiltration was excluded from the final model configuration.

Additionally, the known flood-prone areas identified by local authorities (Smith, 2023)_were well captured by our 10-year

flood hazard map. This multi-source approach provides the most robust validation feasible for this site given current data

availability. A detailed description of the model validation is included in the Supporting Material.
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4 Results

4.1 Differences in flood response from events with the same (joint) probability

We simulate flooding from 25 events with a_1% chance of occurring in any given year (1% AEP) that have different

combinations of the magnitude of rainfall and NTR peak, but also different temporal and spatial evolutions and are combined
with different tidal curves (Fig. 2). We find that the floodplain of each of these 1% AEP events is different (Fig. S7), resulting
in very large differences in both flood extent and depth between some of the events_(Fig. S7). In Figure 4-a, we show the
frequency of flooding at each cell (1m?) from all 25 1% AEP events; a frequency of 1 indicates that the particular area is
flooded from all 25 events and a frequency near zero indicates that this area is only flooded from one or few of the 25 events.

Certain areas scattered throughout the municipality experience flooding during all +%-AEP-events_with a 1% chance of

occurring in any given year (1% AEP; green areas in Fig. 4-a). However, a larger area is flooded only by a few of the—1%

AEPse events, which shows that selecting only one +%-AEP-event with 1% chance of occurring in any given year (1% AEP)

for estimating flood hazard can introduce large uncertainties in exposure (and subsequently risk). Areas flooded only from a
few 1% AEP events are mainly along the Delaware River and creeks, where both flood drivers interact. In contrast, pluvial hot
spots, i.e. regions that are not hydrologically connected to the Delaware River or creeks and thus rainfall is the only flood

driver, exhibit notably lessshew-almestne variability in flood extents and water depths between the different +%6-AEP-events

of 1% chance of happening in any given year-._The variability of flooding in pluvial hotspots is more clearly observed by

comparing the flood hazard maps across the 25 events presented in Figure S7 of the Supporting Material.
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Figure 4 a) Frequency of flooding at each model cell (1m?) from the 25 events selected along the 100-year (1% AEP) isoline. b) The
standard deviation of water depth (m) at each model cell (1m?) between the 25 events selected along the 100-year (1% AEP) isoline.
[NAD83/UTM18N. ©Esri]

We also analyze the variability in water depths using the standard deviation between the flooding from all 25 +9%-AEP-events

1% chance of occurring in any given year -in all model cells (Fig. 4-b). Larger standard deviations in water depth exist in

regions where all +%-AEP-events_of 1% chance of occurring in any given year -produce flooding, with maximum values of

~0.8 m. Larger variability of water depths also exists in coastal regions, where both flood drivers interact, while small variations

occur in pluvial hotspots (see also Fig. S7).

The largest and smallest flooding, in terms of flood extent and volumes, are produced by events that have almost the same 18h
accumulation rainfall and NTR peak, 59.18 mm and 1.86 m and 57.18 mm and 1.88 m respectively, and thus lie very close to
each other on the 100-year (1% AEP) isoline (Fig, 2 ¢ and d). However, the NTR hydrographs of these events are different,

with one of them lasting for several hours with sustained large water levels (Fig. 2¢) while the other is shorter and with lower
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water levels (Fig. 2d). In addition, the two events are combined with different tidal curves with high-tide levels that differ by
more than 20 cm, an average MHHW and a larger than average king tide (see Fig. 3). The 1% AEP event that produces the
smallest flooding is combined with a tidal curve with high-tide levels similar to MHHW, but the 1% AEP event that generates
the largest flood is combined with a tidal curve that reaches values larger than the average king tide (Fig. 3). These factors
cause the water level hydrographs of these events to differ in their temporal evolution and to have water level peaks that differ
by ~0.5 m, which combined leads to the large differences in flood response. Although the tidal curve combined with the 1%
AEP event that produces the largest flood might appear “extreme”, the analysis of the long-term modulations of the tide reveals
that this king tide level was reached several years earlier in the current nodal cycle (Fig. 5). By extending the fitted long-term
modulation, we show that the tides are currently in the ascending phase of both nodal and perigean cycles, with a peak expected

in 2026. As a result, the likelihood of the tidal level of this particular synthetic event is higher over the coming years.
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Figure 5 Annual king tide levels (as the maximum tidal level) at the tide-gauge of Philadelphia used in this study. Estimated long-
term variability of king tides (a) from the combined nodal (18.6-y) and perigean (4.4-y) cycles including prediction of future
combined peak of these long-term cycles expected for 2026; (b) separated nodal (18.6-y) and perigean (4.4-y) cycles for the historical
and future period.

These results show that the variability of the NTR hydrograph, together with the variability of the tidal curve, have very large
effects on the resulting flooding since events with almost equal NTR peaks can produce very different flooding. The
topography also plays an important role (Fig. S1); when the water level at the Delaware River boundary exceeds the elevation
of the coastline, the large low-lying region behind it floods. Thus, small increases in water levels along the hydrograph can

cause large changes in flood extents when certain thresholds are exceeded.
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We also compare the flooding arising from all +%-AEP-events with a 1% chance of occurring in any given year with the “most

likely” event (i.e. “design event”) in order to assess the uncertainties related to the use of a single design event when assessing

flood hazards. This is commonly done when following the event-based approach_for compound flood hazard modeling. In

terms of flood extent and volumes (Fig. 6), most of the +%6-AEP-events with a 1% chance of happening in any given year (17

and 19 of the 25, respectively) produce larger flooding than the “most likely” design event. However, there are substantial
spatial variations between events, as some can produce larger flooding in some areas and smaller flooding in other areas (not
shown). We calculate the total flood extent and volume of all 5,000 events to estimate the empirical return periods of these
two flood metrics (Fig. 7). Based on the empirical distribution, the “most likely” event has a return period of 38 years in terms

of extent and 33 years in terms of total flood volume. 20 of the +%-AEP-events with 1% chance of happening in any given

year have return periods <100 years (> 1% AEP, >1% chance of happening in any given year) in terms of total flood extent,

while only 12 events have return periods <100 years in terms of total flood volumes. This shows that using a single design
event when assessing compound flood hazards can lead to large uncertainties in both flood extent and depth, often resulting in

an underestimation of the extent in our case study.
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Figure 6. (a) Empirical distribution of total flood extent from all events (blue points), 1% AEP events (pink dots) including the "most
likely" (purple triangle) and largest and smallest flood (purple diamonds); (b) same as (a) but in terms of total flood volumes.

4.2 Response-based flood hazard

We estimate the response-based flood hazard map by calculating the empirical distributions of water depths at each model cell

(of 1 m?) and show the water depth with a 1% chance of happening in any giver year cerrespondingto-the-(1% AEP; (Fig. 6).

This 1% AEP response flood hazard can thus be produced by different events in different regions. Comparing the response

flood hazard to the flood hazard of the different 19%-AEP-events with a 1% chance of happening in any given vyear (1% AEP),

the response flood hazard has generally larger flood extents and water depths, with a few exceptions. In the 1% AEP response

flood hazard map, there is a larger area in the south of Gloucester City facing the Delaware River (Fig. 6) with water depths
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up to 1 m. However, this region is only flooded by a few +%-AEP-of the events with a 1% chance of happening in any given

year (1% AEP; Fig. 4). In contrast, the flood hazard in the northern Delaware region from the response-based flood hazard

map is similar to the region flooded by all +%-AEP-the events with a 1% chance of happening in any given year (1% AEP). In

this region, the +%-AEP-event with a 1% chance of happening in any given year that causes the largest overall flooding (Fig.

2c¢) also produces more extensive flooding. This might be caused by the relatively longer hydrograph of that event combined

with a larger-than-average king tide. Comparing the differences between the response-based and event-based flood hazard in

the pluvial hotspots (areas not hydrologically connected to the Delaware River), only one +%-AEPof the event with a 1%

chance of happening in any given year causes larger flooding than the response-based approach. In the northeast region of the

domain, ten of the 1% AEP-events with a 1% chance of happening in any given year (1% AEP ) produce larger flooding than

the response-based 1% AEP floodplain. This can point to effects of the spatial variability of rainfall fields between events,

which are masked in the joint probabilities because these are based on the 18h accumulated average rainfall in the catchment.
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Figure 7. 1% AEP response flood hazard map calculated by the empirical distribution of water depths from 5,000 simulations; we
show the 1% AEP water depth at each model cell (1m?) [NAD83/UTM18N. ©Esri]

We trace the events that produce the +%-AEP-response-based flood hazard of 1% chance of happening in any given year (1%
AEP) and group them by their corresponding return periods based on the joint probabilities of flood drivers (Fig. 8). This helps

identifying the types of events causing the 1% AEP water depth in different areas of our study site. Across most of the study
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domain, and especially in the urbanized region in the centre of the city, events with joint AEPs much higher than 1% can lead
to the 1% AEP water depth as identified from the response-based approach. Most of the +%-AEP-water depths_with a 1%

chance of happening in any given year along the south coastal region of the city are produced by a single compound event

with an-AEP-ef ~50% chance of happening in any given year (50% AEP or 2-year return period; yellow) and another event

with anAEP-ef ~7% chance of happening in any given year (7% AEP orl4-year return period; light orange) based on the joint

probability distribution of NTR and 18h accumulated rainfall. Although the NTR peak of these events is around 1 m, and thus
much smaller than other events, these two events have long hydrographs with sustained water levels for several hours and
combined with tidal levels of around 1 m can produce the 1% AEP water depths in that area (Fig. S54 of Supporting Material).
The tidal levels of these two events (#605 and #3354 in Fig. 3) exceed the MHHW but remain below the mean spring tides,
making them likely to occur on a fortnightly basis. The 1% AEP water depths in regions that are only affected by pluvial flood

events are generally also caused by events with AEPs->2% chance of happening in any given year (AEPs). Notably, there are

two pluvial hotspots in the city region produced by events with AEPs->10% chance of happening in any given year (less than

10-year return period or >10% AEPs). These are produced by two different events, both with AEPs of ~12% based on the joint
probability distribution. More detailed assessment of the rainfall fields of these events reveals that they have larger rainfall

over that area of the model domain, which gets masked when averaging the rainfall over the entire catchment (Fig. S65-S67).
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Figure 8. Return periods (based on the bivariate extreme model) of the events that generate the 100-year water depth from the
response approach. [NAD83/UTM18N. ©Esri]

5 Discussion

Eets-Much of the research has been dedicated to improving extreme statistics of compound events and to quantifying the
uncertainties of extreme value analysis of flood drivers (e.g., Lucey and Gallien, 2024), assuming that the probability of the
event approximates the probability of the resulting flooding. However, little research has been focused on analyzing the latter,
specifically for compound flooding, in which more than one driver is involved, and thus different combinations of flood driver
magnitudes have the same joint probabilities. Here, we have assessed how wel-the 1% AEP-event-approximates—the 1%
AEPlinear is the relationship between the probability of the event and the probability of flooding for a case study in Gloucester
City (NJ, U.S.) by comparing the +%-AEP-flood hazard with a 1% chance of happening in any given year (1% AEP) based on

the event- and response-based approaches. We find that the 1% AEP water depth can be produced by different events in

different parts of the city and that the AEPs of these events are often much larger than 1%. This means that the relationship

between the probability of the event and the probability of flooding does not follow a one-to-one relationship. These results

are in line with previous studies that addressed the same question for rainfall-driven flooding (Baer, 2025; Perez et al., 2024;

Winter et al., 2020). SpeeifiealltWe find that the region of Gloucester City with the largest 1% AEP flood hazard is the
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coastal zone and it is caused by events with AEPs>5% chance of happening in any given year (>5% AEP and less than 20-

year return period) based on the joint probability distribution of 18h rainfall accumulation and NTR peaks. However, these
events (Fig. S45) exhibit sustained high NTR levels, which, when combined with tidal levels larger than MHHW, can result

in greater water depths than most of the analyzed +%-AEP-events with 1% chance of happening in any given year (1% AEP).

Similarly, the regions impacted mainly by pluvial flooding also tend to experience the 1% AEP water depths from events with

AEPs>10% chance of happening in any given year (>10% AEP or less than 10-year return period). In this case, the events
producing the 1% AEP water depths in the city show spatial variations in their rainfall fields, with larger precipitation rates
over the urbanized city region. However, the spatial variability of the rainfall fields is smoothed when calculating the average
rainfall in the catchment to perform the extreme value analysis, and together with small NTR peaks, these events get assigned
high AEP values (or short return periods).

These results show that the response-based approach leads to better representation of flood hazard at the household level. It
accounts for the temporal variability of NTR hydrographs, combination with tides and mean sea level, and the spatial variability
of rainfall fields. All of those are not explicitly accounted for in extreme value models to derive joint AEPs or joint return
periods for the event-based approach. Nevertheless, some applications, such as emergency management, might need event-
based flood hazard maps.

Event-based flood assessments commonly use a single design event_with specific temporal and spatial structure, thus
neglecting temperal-and-spatial-variations_the variability in the temporal and spatial evolution of the flood drivers_between
different events-ateng-the-duration-of the-event. We have shown that using a single design +%-AEP event with a 1% chance of

happening in any given vear (1% AEP) can introduce large uncertainties in both flood extents and water depths that arise from

the different combinations of the drivers’ magnitude but are mostly due to the-differences in temporal and spatial wariability
evolution ef-between events. Events of almost equal magnitude but different spatial rainfall fields and temporal wariabiity

distribution of the water level hydrographs can produce very different flood extents and water depths. The disparities in
resulting flooding are more pronounced in the coastal areas of our study domain, where both flood drivers interact and are
further influenced by changes in tidal variability. Considering the variability of the tide, rather than relying on a single MHHW
level is also crucial, as tidal fluctuations over longer time scales (such as spring and king tides) can influence coastal flooding.
This is especially relevant now, as tides are in the ascending phase of their long-term cycles, which are projected to reach their
peaks within this decade, with the first peak expected as soon as 2026 at our study site. This finding highlights the necessity
of taking into account the variability in the tidal levels.

Ignoring the_variability in the spatio-temporal variability-structure betweenef extreme events by relying on a single design
event can lead to significant uncertainties in flood exposure, which in turn can result in substantial uncertainties in flood risks.
One way to address this limitation when using the event-based approach is to employ ensembles of events that account for
variations in the spatial and temporal variabiity-structure of the flood drivers. From that one can produce an ensemble of flood

hazard maps for a desired return period, similar to probabilistic flood maps but for a given AEP (or return period).
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Our study has several limitations that highlight areas for further research. We focused on a small study site with a particular
topography that is affected by two flood drivers with associated variabilities. Thus, the results cannot be extrapolated to other
coastal regions. However, we expect that our general conclusions are transferable to other regions. For example, the importance
of temporal and spatial variations of the flood drivers has been pointed out by other studies in Germany (Kupfer et al., 2024;
Santamaria-Aguilar et al., 2017) and in the UK (Quinn et al., 2014), showing that changes in water level hydrographs can

produce large changes in flood hazards. Likewise, differences in rainfall-induced flooding between the event-based approach

and the use of synthetic storms that capture the temporal and spatial variability of rainfall fields between events have been

shown to significantly influence flood hazard estimates in the East and Gulf coasts of US (Baer, 2025; Perez et al., 2024) and

Austria (Winter et al., 2020).-Another limitation of our study is that we use a synthetic event set developed using a data-driven

statistical framework, which is limited to observed events. Although the statistical framework used to generate the synthetic

events account for more dependencies between parameters that characterize the events (e.g. time lags) than other previous

frameworks (Couasnon et al., 2018; Moftakhari et al., 2019), -Censequently-it may not fully capture the full range of the

potential spatio-temporal variability of flood drivers. Tropical cyclones might also be underrepresented in the historical sample
since their frequency of occurrence is very low. This limitation can be overcome by using synthetic tropical cyclones that are

dynamically downscaled to the study site_(e.g., Gori et al., 2020) Fhis—is-computationally-expensive-but-has-been-donefor
otherregions—This-Methods such as the JPM, which expand the storm climatology, enable the generation of a larger set of

tropical cyclones, and capture greater variability in their spatio-temporal characteristics compared to historical records.

However, these methods are computationally demanding, as flood drivers must be generated in advance of the flood assessment

using hydrodynamic models. Further research is needed to evaluate how different synthetic event generation approaches affect

flood hazard estimates. Given the high computational demands of JPM., its application across large coastal areas may be

impractical, making data-driven approaches like the one used in this study a more efficient alternative. Similarly, other data-

driven techniques, such as stochastic storm transposition, are increasingly being adopted to generate synthetic rainfall fields

for assessing rainfall-driven flood hazardsst(Baer, 2025; Perez et al., 2024; Winter et al., 2020). However, further investigation

is needed to ensure that this method adequately preserves the interdependencies between coastal and rainfall processes when

generating synthetic compound events for coastal flood assessments. allowsfor-inereasing-the-number-of extreme-eventsin
e-butabio-torchanoeinthespato—temporansinbilin-othescoventreompreedrothe-bistorienkrecords A potential

source of uncertainty in the variability captured by our synthetic event set arises from not disaggregating river- and coastal-

driven components of the NTR. In our mid-estuarine study area, both processes contribute to the NTR, along with their

nonlinear interactions. Separating these contributions would introduce considerable complexity due to their tightly coupled

dynamics. Our approach is supported by recent work from McKeon and Piecuch, (2025), who investigated the relative

influence of coastal and fluvial drivers in the Delaware Estuary above flood thresholds. They found that most events observed

at the Philadelphia tide gauge were primarily driven by coastal processes (e.g., tides and storm surge), but others resulted from

river discharge alone or a combination of both mechanisms.
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Another limitation of the synthetic event set used is the reliance on mathematically defined thresholds for event selection

rather than thresholds based on actual flood impacts. This approach may exclude relatively frequent, lower-magnitude events

that fall outside the statistical tails of the drivers’ distributions but are still capable of causing localized flooding, potentially

influencing response-based flood estimates. In our study, we evaluated the flood response of events near the selected thresholds

and found that several produced no flooding, while others resulted in only minor inundation, with empirical return periods

between 1 and 2.8 years. As a result, the selected thresholds did not affect our response-based flood estimates; however, this

may not hold true in other regions with different hydrologic or exposure characteristics.

Our flood model approach also has some limitations. First, we are neglecting the stormwater system and thus we might
overestimate flooding and neglect the fact that some areas might experience flooding due to backwater effects in the system.
Stormwater systems are typically designed for events with low to moderate return periods (often the 10-year event, or 10%
AEP event) while we have focused on the 1% AEP (100-year) flood hazard. Such events would likely exceed the capacity of

the stormwater system. Nevertheless, the exclusion of stormwater infrastructure may have a greater impact on the results for

smaller, more frequent events, potentially leading to an overestimation of flooding in cases where the existing drainage system

would likely manage the runoff: However, this should not affect the response-based estimates for the 1% AEP since the

empirical distribution will not change for rare large events. -In addition, we neglected infiltration based on the validation of
the model for one single event for which we have information on reported flooding at a single location. Although most of our
study domain is urban and thus covered by impervious surfaces, we might underestimate infiltration in areas efthe with larger

amounts of vegetation_such as areas around the creeks. The bathymetry of the creeks might also not be very accurately

represented in the CoNED DEM used (Fig. S1). The limited depth representation of creek channels, combined with the

exclusion of infiltration processes, likely results in an overestimation of floodwater depths along the margins of the creeks.

Both the validation of the flood model and calibration of parameters and processes such as infiltration can be improved if more
observed flood data from past events is available. The lack of this data is a common problem worldwide (Merz et al., 2024;
Molinari et al., 2019) and it can be overcome by systematically collecting flood data after flood events or making available

datasets such as claims from the National Flood Insurance Program (Sebastian et al., 2021).

6 Conclusions

Coastal communities are experiencing growing flood hazards due to rising sea levels, more frequent extreme events, and an
increase in population and assets in flood prone areas. Consequently, more robust flood hazard estimates are required to
develop effective adaptation strategies to mitigate flood impacts. Although significant attention has been focused on reducing
uncertainties in the estimation of probabilities of flood drivers, little is known about how well the probability of compound
events approximates the probability of flooding. Here, we addressed this issue by comparing flood hazard derived from the
event- and response-based approaches for a case study in Gloucester City (NJ, U.S.), which is frequently affected by pluvial

and coastal flooding.
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Our findings reveal that the 1% AEP flood hazard derived from the response-based approach can be caused by different events
in various parts of the city, with AEPs much larger than 1% (return periods <100-year). In the coastal area, events with AEPs

>5% _chance of occurring in any given year (>5% AEP or less than 20-year return period) can produce a 1% AEP water depth

if the NTR hydrograph leads to prolonged high water levels when combined with tidal levels between the MHHW and average
spring tides. In this context, our findings are in line with previous studies that highlighted that the long-term variability of tides
can modulate both minor and extreme flooding (Enriquez et al., 2022; Thompson et al., 2021). We find that considering tidal
variability is crucial, rather than relying on the assumption of a constant MHHW, as flooding from both low and high return
period events can differ substantially depending on the tidal level considered. Tides are currently in the ascending phase of the
nodal and perigean cycles, which are expected to peak in 2026 in our study region, making it more likely that storm surges

coincide with high tide levels, thus increasing the probability of flooding. Similarly, not accounting for the variability in the

spatial pattern ofvariability-ef rainfall fields between events, which is masked when using catchment average values for
extreme value analysis, can underestimate pluvial flood hazards. This study highlights the importance of considering_the

variability of the temporal and spatial wariabiitystructure of extreme events in flood hazard estimates. The traditional method

of using a single design event in event-based assessments can lead to considerable uncertainties in flood extent and water
depth, especially due to varying combinations of flood drivers. The response-based approach, which accounts for factors like

tidal variations and spatial-variabilityinrainfalithe full range of the variability of temporal and spatial distributions at event

scale, provides a more robust representation of flood hazards. However, event-based maps remain essential for some
applications such as emergency management. Using ensembles of events that account for these variations would enhance flood
hazard estimates derived from the event-based approach.

While our results are not directly applicable to other regions, we expect similar conclusions elsewhere regarding the impacts
on compound flood hazards from neglecting the temporal and spatial variability of flood drivers. Future work should focus on
producing more robust flood hazard estimates by using many compound events including their temporal and spatial evolution
rather than focusing on single design events for given AEPs or return periods. Similarly, future projections of flood hazards

should also account for potential changes in the temporal and spatial evolution of events rather than focusing only on changes

in their magnitude. Additionally, future research should aim to evaluate how different methods for generating synthetic events

influence the resulting flood hazard estimates. Such comparisons can help inform best practices for generating more reliable

flood hazard assessments under both current and future climate conditions.

Code availability

The SFINCS model is available at https://sfincs.readthedocs.io/en/latest/example.html#executable. The codes used for these

analyses are available on GitHub (https:/github.com/CoRE-Lab-UCF/MACH-Compound-Flooding/tree/main/Santamaria-
Aguilar_et_al 2025 Event Response) (The DOI and the final version of the codes will be available after addressing the

reviewers’ comments and suggestions.)
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Data availability

The hydrologic units are available https://gisdata-
njdep.opendata.arcgis.com/datasets/02599a9424254a4¢a33¢689941559¢3¢ 17/explore. The DEM is available at

https://www.usgs.gov/special-topics/coastal-national-elevation-database-applications-project/data, and land cover data is

available at https://gisdata-njdep.opendata.arcgis.com/documents/njdep::land-use-land-cover-of-new-jersey-2015-

download/about.

The SFINCS model files generated and used in this study are available at https://zenodo.org/records/14251309, and the 5,000

flood simulations are available at https://zenodo.org/records/15047845.
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