
Summary  

This study compares the flood hazard estimates generated using an event-based approach 
to those generated using a full suite of synthetic events, referred to herein as a response-
based approach. Using Glouchester, NJ as a case study, the researchers estimate the 
compound hazard resulting from the joint probability distribution of 18-hr total 
precipitation and non-tidal residuals. From this distribution, they generate 5,000 synthetic 
storm events, each of which has a statistically derived spatiotemporally varying rainfall 
field and storm tide hydrograph (non-tidal residual + tide). From these, the authors sample 
25 synthetic storm events with an Annual Expected Probability (AEP) of 1% (i.e., ‘event-
based’) sampling from the isoline (representing maximum likelihood) and compare the 
estimated 1% AEP inundation map generated using the entire suite of synthetic storm 
events (i.e., ‘response-based’). They find that the response-based approach generally 
generates higher hazard estimates, suggesting that selecting the 1% events based on 
boundary conditions alone does not generate the 1% hazard.  

The authors thank the Reviewer for the thoughtful and constructive feedback. Below, we 
provide detailed responses to each comment, along with explanations of how the 
suggested changes will be incorporated into the revised manuscript. 

 
Overall, I found this study very interesting to read and many of my comments and 
questions come from a place of genuine interest in the modelers’ choices. My major review 
comments are as follows:  

First, while the experimental design itself is not particularly novel, the combination of 
statistically-derived synthetic storm events that can represent compound drivers (both 
non-tidal residual and precipitation) as inputs to a process-based model takes many of the 
concepts that have been discussed within the compound hazard modeling community a 
step further than previous studies, and thus I find that it is worthy of publication.  

We thank the reviewer for the positive feedback on our approach and its contribution to 
advancing compound flood hazard modeling. 

Second, while this work is new in the context of compound flooding – a topic of 
considerable interest – the authors rely heavily on the compound flood literature. In doing 
so, they overlook a larger body of research regarding stochastic flood hazard simulation for 
rainfall-induced floods. For example, there have been several other studies that draw 
similar conclusions about the use of design storms vs stochastically generated (see, e.g., 
Perez et al. 2024, several papers by Daniel B. Wright). The paper could be further improved 



by placing itself in this body of work, perhaps as part of both the introduction and 
discussion.  

We agree with the reviewer that the discussion of the research gap in the introduction and 
the interpretation of the results leaned heavily toward coastal drivers and compound 
events, reflecting the authors' stronger background in this area. We appreciate the 
reviewer’s comment and the helpful references provided. In response, we have expanded 
the introduction and the discussion to better incorporate previous work on rainfall-induced 
flood hazards. 

“Similarly, for rainfall and river discharge, traditional approaches defined a single “design 
storm” or “design event” to represent the temporal and spatial patterns of these drivers (i.e. 
a representative event structure). However, recent studies have shown that relying on a 
single “design storm”, overlooking the variability in event structure across multiple storms, 
can underestimate flood hazards and associated impacts (Baer, 2025; Perez et al., 2024).” 

“In contrast, the response-based approach can account for all these factors to produce 
more robust flood hazard estimates (Baer, 2025; Perez et al., 2024).“ 

“To our knowledge, the differences in flood hazard estimates between these two 
approaches have only been evaluated for rainfall flooding (Baer, 2025; Perez et al., 2024; 
Winter et al., 2020), but remain unexplored for compound coastal events. “ 

“These results are in line with previous studies that addressed the same question for 
rainfall-driven flooding (Baer, 2025; Perez et al., 2024; Winter et al., 2020)” 

“Likewise, differences in rainfall-induced flooding between the event-based approach and 
the use of synthetic storms that capture the temporal and spatial variability of rainfall fields 
between events have been shown to significantly influence flood hazard estimates in the 
East and Gulf coasts of US (Baer, 2025; Perez et al., 2024) and Austria (Winter et al., 2020).” 

“Methods such as the JPM, which expand the storm climatology, enable the generation of a 
larger set of extreme events (particularly tropical cyclones) and capture greater variability in 
their spatio-temporal characteristics compared to historical records. However, these 
methods are computationally demanding, as flood drivers must be generated in advance of 
the flood assessment using hydrologic and hydrodynamic models. Further research is 
needed to evaluate how different synthetic event generation approaches affect flood 
hazard estimates. Given the high computational demands of JPM, its application across 
large coastal areas may be impractical. One way to address this is optimal sampling, where 
a smaller set of events has to be run through hydrologic/hydrodynamic models while still 
capturing a large portion of the variability.  Data-driven approaches like the one used in this 
study represent another efficient alternative. Similarly, other data-driven techniques, such 



as stochastic storm transposition, are increasingly being adopted to generate synthetic 
rainfall fields for assessing rainfall-driven flood hazard (Baer, 2025; Perez et al., 2024; 
Winter et al., 2020). However, further investigation is needed to ensure that this method 
adequately preserves the interdependencies between coastal and rainfall processes when 
generating synthetic compound events for coastal flood assessments.” 

Third, I commend the authors on their work to validate the hydrodynamic model in a data-
scarce environment, however, I would like to see more discussion of the potential 
limitations of the synthetically generated boundary conditions. The proposed approach 
also introduces considerable uncertainties into the hazard estimates that are difficult to 
disentangle, including questions about how the authors are accounting for different flood 
types (e.g., those driven by high river events vs coastal storms) and whether the 
statistically-derived framework can adequately account for these.  

We thank the reviewer for this valuable comment. We agree that the manuscript’s 
discussion of the limitations and uncertainties in the synthetic event generation approach 
was limited. While these issues are explored in more detail in a separate manuscript 
currently under review (Maduwantha et al., 2025), we recognize the importance of 
addressing them here, particularly in the context of flood hazard estimation. 

Our data-driven framework is constrained by the length of the historical record (~100 years 
for point data and ~40 years for gridded precipitation), which limits the representation of 
rare or unprecedented compound events, especially those involving tropical cyclones. The 
stratification method used (based on a 350 km radius) may also lead to misclassification of 
events, further impacting the characterization of extremes due to small sample sizes. While 
this statistical framework accounts for dependencies of more key characteristics of the 
events (i.e., magnitude of the peaks, duration, time lags, intensities, etc.) than previous 
approaches, we acknowledge the difficulty in fully quantifying uncertainties given the 
stochastic nature of the drivers and potential long-term trends due to climate change. 
These uncertainties related to synthetic events potentially not capturing the full range of 
climate variability would affect the estimated flood hazards, but not the general findings 
and conclusions of the study. We validated the framework by comparing observed and 
simulated distributions of key event characteristics (i.e., magnitude of the peaks, duration, 
time lags, intensities, etc.) and dependencies among them, adding some constrains 
preventing the model from generating events that might not be physically possible (e.g., our 
maximum simulated peak NTR (2.9 m) and 18-hour rainfall (188 mm) are not much higher 
than the largest observed events in the records). One potential way to further validate the 
statistical framework’s ability to represent low-probability events (primarily TCs) and to 
assess their impact on flood hazard estimates would be to compare its results with those 



from an approach that uses the Joint Probability Method (JPM) to generate synthetic storms 
based on storm parameter distributions, followed by dynamic downscaling to the study 
site. Such a comparison would provide insight into the differences in driver variability 
captured by each method and their influence on compound flood hazard estimates. The 
authors intend to pursue this as part of future research.  

Regarding the separation of coastal- vs. river-driven events, we agree with the reviewer that 
these can have different characteristics that are not specifically modeled. However, the 
location of our study site, within the tidal portion of the Delaware Estuary, makes such 
separation challenging due to the continuous influence of both drivers and their non-linear 
interactions. Disentangling and recombining these signals for synthetic event generation 
would be challenging and introduce significant uncertainties. Based on recent work (e.g., 
McKeon & Piecuch, 2025), we assume most NTR events at our site are primarily coastal in 
origin, though some include riverine influences. Our synthetic events are generated by 
sampling from observed NTR time series, which inherently reflect a mix of event types 
(although coastal dominated). While we do not explicitly classify events during generation, 
this historical variability allows us to include a range of compound event scenarios. Still, we 
acknowledge that the method may not fully capture unobserved combinations of coastal 
and fluvial drivers. 

We have added the following lines into the manuscript to address this comment: 

“Another limitation of our study is that we use a synthetic event set developed using a data-
driven statistical framework, which is limited to observed events. Although the statistical 
framework used to generate the synthetic events account for more dependencies between 
parameters that characterize the events (e.g. time lags) than other previous frameworks 
(Couasnon et al., 2018; Moftakhari et al., 2019a), it may not fully capture the full range of 
the potential spatio-temporal variability of flood drivers. Tropical cyclones might also be 
underrepresented in the historical sample since their frequency of occurrence is very low. 
This limitation can be overcome by using synthetic tropical cyclones that are dynamically 
downscaled to the study site (e.g., Gori et al., 2020). Methods such as the JPM, which 
expand the storm climatology, enable the generation of a larger set of tropical cyclones, 
and capture greater variability in their spatio-temporal characteristics compared to 
historical records. However, these methods are computationally demanding, as flood 
drivers must be generated in advance of the flood assessment using hydrodynamic 
models. Further research is needed to evaluate how different synthetic event generation 
approaches affect flood hazard estimates. Given the high computational demands of JPM, 
its application across large coastal areas may be impractical, making data-driven 
approaches like the one used in this study a more efficient alternative. Similarly, other 



data-driven techniques, such as stochastic storm transposition, are increasingly being 
adopted to generate synthetic rainfall fields for assessing rainfall-driven flood hazards 
(Baer, 2025; Perez et al., 2024; Winter et al., 2020). However, further investigation is needed 
to ensure that this method adequately preserves the interdependencies between coastal 
and rainfall processes when generating synthetic compound events for coastal flood 
assessments.” 

“Since our study site is located along the Delaware Estuary, the NTR reflects contributions 
from both fluvial discharge and coastal storm surge, as well as their nonlinear interactions. 
We opted not to disaggregate the NTR into riverine and coastal components due to the 
complexity of their coupled dynamics and the additional challenges and uncertainties this 
would introduce into the structure and parameterization of the multivariate statistical 
model.” 

 

The comments below primarily ask for additional clarification or suggest that the authors 
contextualize some of their findings.  

Comments  

Line 34 the authors differentiate between event-based and response-based approaches. Is 
‘response-based’ a commonly used term in flood hazard literature? Is there a citation that 
can be used to support this terminology? I have often heard them differentiated as ‘design-
storm’ vs ‘probabilistic’ or ‘stochastic’ methods. Is there a citation that can be included to 
help support this choice of terminology?  

We appreciate the reviewer’s observation regarding the varied terminology used in the 
literature. In the flood literature, different terms have been used for both the event and 
response-based approaches. Terms such as “design-storm” or “deterministic” have often 
been employed to describe what we refer to as the “event-based” approach. These terms 
typically involve estimating the probability of the flood drivers themselves, which can 
sometimes be misinterpreted as “probabilistic” methods. However, the term “probabilistic” 
has been applied across a range of methodologies: from those that consider the full 
probability distribution of flood drivers (Kupfer et al., 2024), to others that explore the 
uncertainty in flood model parameters for individual scenarios (e.g., Alfonso et al., 2016; 
Bates et al., 2004; Di Baldassarre et al., 2010).  

We adopted the term “response-based” because of its use in the structural reliability 
literature, particularly in multivariate statistical contexts (see e.g. Gouldby et al., 2014; Jane 
et al., 2022), where the response variable (in our case, flooding) is influenced by multiple 
interdependent inputs, and different combinations of these inputs can yield similar 



outcomes. However, upon further review of recent literature, we recognize that alternative 
terms such as “weather-generator-based” or “continuous simulation” approach (e.g. 
Winter et al., 2020) could have also been used instead of “response-based”. We have 
added the following text in the introduction to acknowledge the different terminology used 
in the literature.  

“There is no clear consensus in the literature regarding the terminology used to distinguish 
these two approaches. The event-based method is often referred to as the “design-storm” 
or “deterministic” approach. In contrast, the response-based approach has been 
described using terms such as “probabilistic,” “stochastic,” “continuous,” or “weather-
generator-based.” However, some of these terms (particularly “probabilistic”) are also used 
in other contexts, such as to describe flood maps that incorporate uncertainty in model 
parameters, which can lead to ambiguity in their interpretation (Alfonso et al., 2016; Bates 
et al., 2004; Di Baldassarre et al., 2010). Therefore, in this study, we adopt the term 
“response-based,” consistent with its usage in the structural reliability literature (Gouldby 
et al., 2014; Jane et al., 2022).” 

In this same paragraph there is some discussion of the FEMA regulatory maps and process 
used for flood hazard delineation in the U.S. It is perhaps necessary here to differentiate 
from the approaches used for inland and coastal hazard. While they both rely on event-
based approaches, the inland hazards are derived from design storms and assume a one-
to-one relationship between the AEP of the precipitation event (spatially uniform, but 
varied in time according to a characteristic distribution) and the resulting flood flow which 
is then translated into hazard. In line 43, you state that temporal variability for inland 
flooding is neglected, but this is not true in the case of rainfall. It is true, however, in the 
case of flood mapping, where the peak flow is used to estimate the extent of the floodplain. 
There is some nuance here that gets lost in the way it is written now, and it might be worth 
revisiting this section.  

We thank the reviewer for highlighting once again our focus on coastal approaches while 
overlooking inland regions. In response, we have added the following text to include the 
approach used by FEMA for inland areas. 

“For inland flooding, FEMA applies the event-based approach that starts by defining a 
design rainfall storm, typically derived from NOAA Atlas 14 which provides rainfall depths 
for specific probabilities and event durations (e.g., 1% AEP, 24-hour storms). The design 
storms are used in hydrologic models to simulate runoff, with the resulting hydrographs 
then routed through hydraulic models to estimate flood depths and extents.” 



With respect to coastal flood hazard estimation, I’m not sure I agree with what is written in 
lines 43-49. Perhaps you are referring to how boundary conditions are applied to the 
downstream end of an inland model(?), but with respect to the FEMA SFHA (V-zone), it is 
my understanding that the most recent version is derived from ADCIRC simulations (where 
events are created using JP-OMS) in which case the spatial and temporal variability of the 
drivers and also the resulting water levels are considered when estimating the resultant 
hazard.  

The reviewer is correct that FEMA’s most recent coastal flood mapping incorporates 
synthetic storm simulations using the JPM and ADCIRC; however, this approach has so far 
been applied only in some coastal regions. We have added the following text to address 
this comment: 

“Similarly for coastal regions, a design event is selected from the distribution of coastal 
water levels to estimate the 1% AEP regulatory floodplain. In regions affected by tropical 
cyclones (TCs), FEMA further implements the Joint Probability Method (JPM) to construct 
synthetic storm climatology. This involves statistically sampling combinations of key storm 
parameters (e.g., central pressure deficit, radius to maximum winds, forward speed) based 
on their joint probability distributions. These synthetic events are then dynamically 
downscaled to the coast and exceedance probabilities of coastal water levels are 
calculated based on the probabilities of the storm characteristics. Although the JPM 
approach might reduce the uncertainties related to estimating the likelihood of low-
probability coastal water level events, in both cases the probability of the event is assumed 
to approximate the probability of flooding.” 

Line 57 remove ‘up to a century’  

Removed 

Line 74-76 I think you are correct that this has not been done for compound flooding; 
however, I would point out two relevant studies that undertake a similar analysis applied to 
rainfall flooding (one that uses SFINCS) and reach the same conclusion. I think you may 
want to point to these both in your introduction (and draw differences between your work 
from theirs) and again in the conclusion.  

Perez, G., Coon, E. T., Rathore, S. S., & Le, P. V. (2024). Advancing process-based flood 
frequency analysis for assessing flood hazard and population flood exposure. Journal of 
Hydrology, 639, 131620.  

Baer, J. A. (2025). Design Storms Underestimate Flood Hazard and Risk Derived From 
Stochastic Storm Transposition (Master's thesis, The University of North Carolina at Chapel 
Hill).  



As noted in our response to a previous, similar comment, we have expanded the 
introduction to incorporate the relevant studies highlighted by the reviewer. The following 
references have been added to the introduction: 

“Similarly, for rainfall and river discharge, traditional approaches defined a single “design 
storm” or “design event” to represent the temporal and spatial patterns of these drivers (i.e. 
a representative event structure). However, some recent studies have shown that relying on 
a single ‘design storm”, overlooking the variability in event structure across multiple storms, 
can underestimate flood hazards and associated impacts (Baer, 2025; Perez et al., 2024).” 

“In contrast, the response-based approach can account for all these factors to produce 
more robust flood hazard estimates (Baer, 2025; Perez et al., 2024).“ 

“To our knowledge, the differences in flood hazard estimates between these two 
approaches have only been evaluated for rainfall flooding (Baer, 2025; Perez et al., 2024; 
Winter et al., 2020), but remain unexplored for compound coastal events. “ 

Line 88-90 What is the total size of the model domain in km2?  

The model domain is 147.45 km2. We have added this information in the corresponding 
lines.  

Line 93 Provide date range for the start of the federal disaster declarations, e.g., ‘Between X 
and 2016, there were five federal disaster declarations…’  

Added 

Line 94 Please provide more information about the building stock for context. You state that 
there are only 118 properties with coverage. Is this reflective of active policies based on 
OpenFEMA or where does this number come from? Do you also have the ability to provide a 
denominator for the total number of properties in Glouchester City and the number located 
within and outside of the FEMA SFHA? These would be useful numbers for context, given 
that insurance is only required at properties with a federally-backed mortgage within the 
SFHA.  

The information citing 118 properties with NFIP coverage was originally sourced from 
FEMA’s Flood Risk Report for Camden County. To address the reviewer’s request for 
clarification, we cross-checked the OpenFEMA dataset for “Individuals and Households 
Program – Valid Registrations” and found discrepancies. Specifically, for the year 2016 (the 
date of the Flood Risk Report) we identified only 94 properties with NFIP coverage, 76 of 
which are located within the Special Flood Hazard Area (SFHA). According to the National 
Structure Inventory, Gloucester City has 3,341 single-family homes, with 148 situated in the 
SFHA. We have updated the manuscript accordingly. 



“Between 1974 and 2016, Gloucester City was subject to five federally declared flood-
related disasters. Despite this, only 94 properties were enrolled in the National Flood 
Insurance Program (NFIP) as of 2016, according to data from OpenFEMA. Of these, 76 
properties were located within the SFHA. Based on the National Structure Inventory, 
Gloucester City contains a total of 3,341 single-family homes, 148 of which are situated 
within the SFHA.” 

Line 116-120 The downstream boundary condition at the Delaware River is assumed to be 
represented as a coastal water level? How do you consider the possibility of high river flow 
events (antecedent conditions that are not coastally driven) in your compound events 
framework? Have the previous works that are cited already established the relative 
frequency of high river flood events vs those that are driven by high coastal water levels and 
local rainfall? Do these events come from a different distribution than those that are 
considered ‘compound coastal’ events?  

The NTR, defined here as the “coastal boundary,” is based on water level observations at 
the Philadelphia tide gauge and hence encompasses both river discharge and coastal 
storm surge, meaning that extreme NTR levels may result from either driver independently 
or from their combined influence. This integrated approach enables the modeling of both 
mechanisms while also capturing potential non-linear interactions between them, which is 
essential given our focus on compound flood events. Nonetheless, the dependence 
structure between NTR and rainfall may differ if the contributions from storm surge and 
river discharge are analyzed separately. Attempting to isolate and then recombine these 
components could introduce greater uncertainty in the resulting hydrographs due to the 
complexity of their interactions. Recent studies, such as McKeon & Piecuch (2025), which 
examined the relative contributions of coastal and fluvial influences in the Delaware 
Estuary, found that many events recorded at the Philadelphia tide gauge were 
predominantly driven by coastal processes (storm surge and tides). However, they also 
identified events driven solely by river discharge or by the interaction of both mechanisms. 
We have the following text to Section 3.1 (Synthetic compound events): 

“Since our study site is located along the Delaware Estuary, the NTR reflects contributions 
from both fluvial discharge and coastal storm surge, as well as their nonlinear interactions. 
We opted not to disaggregate the NTR into riverine and coastal components due to the 
complexity of their coupled dynamics and the additional challenges and uncertainties this 
would introduce into the structure and parameterization of the multivariate statistical 
model.” 

And these lines in the discussion: 



“A potential source of uncertainty in the variability captured by our synthetic event set 
arises from not disaggregating river- and coastal-driven components of the NTR. In our mid-
estuarine study area, both processes contribute to the NTR, along with their nonlinear 
interactions. Separating these contributions would introduce considerable complexity due 
to their tightly coupled dynamics. Our approach is supported by recent work from (McKeon 
and Piecuch, 2025), who investigated the relative influence of coastal and fluvial drivers in 
the Delaware Estuary above flood thresholds. They found that most events observed at the 
Philadelphia tide gauge were primarily driven by coastal processes (e.g., tides and storm 
surge), but others resulted from river discharge alone or a combination of both 
mechanisms.” 

Section 3.3 You invested considerable effort in validating the model, which I think was 
excellent given how limited the data for this cite is, however, the process used to generate 
the synthetic events for the model also has many layers of uncertainty in it (e.g., 
statistically derived joint probabilities of precipitation and non-tidal residual, statistically 
derived spatio-temporal rainfall structures, scaled event magnitudes, lag). To what extent 
could your model framework allow you to explore some of these uncertainties? Is there any 
mechanism that you could use to test the compound events framework and whether you 
believe your hazards estimates are true (assume the process-based model results are 
valid)? Given that you are comparing the model against itself, this probably doesn’t impact 
the main takeaways from your paper, but I think it is important to consider and an 
important question for the field: how do we validate the hazard estimates?  

The authors agree with the reviewer that validating and quantifying the uncertainties related 
to synthetic storms/events is difficult due to the large natural variability of the stochastic 
climate and potential trends and changes induced by climate change. The authors have 
described and validated the data-driven statistical framework to generate the synthetic 
events against observed data to the best of our abilities in the following manuscripts 
(Maduwantha et al., 2024, 2025), having the second one under review. One of the options 
that the authors believe could help test the statistical framework for extreme events would 
be to compare the compound event hazard estimates of low-probability events, which are 
mostly TCs and the type of events of smaller sample size in the observed record and thus 
larger uncertainties, against synthetic TCs datasets dynamically downscaled to the study 
site. This would allow us to compare how well the statistical framework can capture their 
characteristics (e.g., return levels, spatio-temporal structures, lags…). We have extended 
the discussion about the uncertainties related to the synthetic compound event dataset. 

We have added the following text to the section describing the methodology used for the 
synthetic event generation: 



“The synthetic compound events were validated by comparing observed and simulated 
distributions of key event characteristics (e.g. magnitude of the peaks, duration, times lags, 
intensities) and dependencies among them, with good agreement between observed and 
simulated events.” 

And extended the discussion of the limitations and potential ideas for future research to 
address the point made by the reviewer: 

“Another limitation of our study is that we use a synthetic event set developed using a data-
driven statistical framework, which is limited to observed events. Although the statistical 
framework used to generate the synthetic events accounts for more dependencies 
between parameters that characterize the events (e.g. time lags) than other previous 
frameworks (Couasnon et al., 2018; Moftakhari et al., 2019a), it may not fully capture the 
full range of the potential spatio-temporal variability of flood drivers. Tropical cyclones 
might also be underrepresented in the historical sample since their frequency of 
occurrence is very low. This limitation can be overcome by using synthetic tropical 
cyclones that are dynamically downscaled to the study site (e.g., Gori et al., 2020). 
Methods such as the JPM, which expand the storm climatology, enable the generation of a 
larger set of tropical cyclones, and capture greater variability in their spatio-temporal 
characteristics compared to historical records. However, these methods are 
computationally demanding, as flood drivers must be generated in advance of the flood 
assessment using hydrodynamic models. Further research is needed to evaluate how 
different synthetic event generation approaches affect flood hazard estimates. Given the 
high computational demands of JPM, its application across large coastal areas may be 
impractical, making data-driven approaches like the one used in this study a more efficient 
alternative. Similarly, other data-driven techniques, such as stochastic storm transposition, 
are increasingly being adopted to generate synthetic rainfall fields for assessing rainfall-
driven flood hazards (Baer, 2025; Perez et al., 2024; Winter et al., 2020). However, further 
investigation is needed to ensure that this method adequately preserves the 
interdependencies between coastal and rainfall processes when generating synthetic 
compound events for coastal flood assessments. A potential source of uncertainty in the 
variability captured by our synthetic event set arises from not disaggregating river- and 
coastal-driven components of the NTR. In our mid-estuarine study area, both processes 
contribute to the NTR, along with their nonlinear interactions. Separating these 
contributions would introduce considerable complexity due to their tightly coupled 
dynamics. Our approach is supported by recent work from (McKeon and Piecuch, 2025), 
who investigated the relative influence of coastal and fluvial drivers in the Delaware Estuary 
above flood thresholds. They found that most events observed at the Philadelphia tide 



gauge were primarily driven by coastal processes (e.g., tides and storm surge), but others 
resulted from river discharge alone or a combination of both mechanisms.  

Another limitation of the synthetic event set used is the reliance on mathematically defined 
thresholds for event selection, rather than thresholds based on actual flood impacts. This 
approach may exclude relatively frequent, lower-magnitude events that fall outside the 
statistical tails of the drivers’ distributions but are still capable of causing localized 
flooding, potentially influencing response-based flood estimates. In our study, we 
evaluated the flood response of events near the selected thresholds and found that several 
produced no flooding, while others resulted in minor flooding, with empirical return periods 
between 1 and 2.8 years. As a result, the selected thresholds did not affect our response-
based flood estimates; however, this may not hold true in other regions with different 
hydrologic or exposure characteristics.” 

Figure 2 It would be helpful to see the univariate distributions of the two variables (rainfall 
and NTR). Here, you only show combinations that exceed either ~40 mm in 18-hr or ~0.6 m 
NTR. Why were these values selected to threshold the data? Given your findings that events 
with combined boundary conditions much, much smaller than the 1% AEP event can still 
generate flooding in excess of 1%. Do you have any concerns that there many be small 
events that should have been included in your stochastic event set?  

We agree with the reviewer that the threshold should be selected depending on the 
application, and in terms of flooding, the threshold should be selected based on an 
elevation (or rainfall rate) that starts flooding. However, the multivariate statistical models 
used are based on the statistical distribution of the variables, and thus the threshold should 
define the tail of the distribution. However, selecting a threshold is not a straightforward 
task, and subjectivity is included. We have selected a threshold that balances the events' 
sample size (large enough to reduce the uncertainties) with the magnitude of the drivers (to 
capture the tail of the distribution). We decided to set the threshold to obtain an average of 
5 events per year from each of the drivers. We performed a sensitivity analysis of the 
dependence between the drivers, finding that selecting an average of 5 events per year also 
gave us the strongest dependency between the drivers. However, the two-way conditioning 
sampling allows the selection of events of smaller magnitude than the threshold for the 
other driver. This also allows to account for compound events in which one of the drivers 
might not be extreme. Still, since these events are selected following mathematical 
conditions instead of physical processes (i.e. flooding), we have checked the flooding 
arising from the events with the largest joint probabilities (smallest return periods), finding 
that the events closest to both the rainfall and NTR thresholds cause none or very little 
flooding, with response-based return periods between 1 and 2.8 years. Therefore, including 



smaller events might affect the response-based estimates on the lower part of the tail, but 
their effect on the 1% AEP flood would be negligible.  

We have added the following lines to include details about threshold selection  

“Observed compound events were identified using the Peaks Over Threshold (POT) 
approach combined with a two-sided conditional sampling method. Thresholds were set to 
capture an average of five events per year, providing a balance between sufficient sample 
size and an appropriate representation of the distribution tail. These thresholds also 
maximized the statistical dependence between variables. Additionally, the conditional 
sampling method includes events where one variable is not extreme, allowing for coverage 
of the full range of driver magnitudes, including those that may not lead to flooding. “ 

“Another limitation of the synthetic event set used is the reliance on mathematically 
defined thresholds for event selection, rather than thresholds based on actual flood 
impacts. This approach may exclude relatively frequent, lower-magnitude events that fall 
outside the statistical tails of the drivers’ distributions but are still capable of causing 
localized flooding, potentially influencing response-based flood estimates. In our study, we 
evaluated the flood response of events near the selected thresholds and found that several 
produced no flooding, while others resulted in only minor inundation, with empirical return 
periods between 1 and 2.8 years. As a result, the selected thresholds did not affect our 
response-based flood estimates; however, this may not hold true in other regions with 
different hydrologic or exposure characteristics.” 

Figure 2 What do your rainfall return period values look like compared to those estimated 
by NOAA Atlas 14? Is this distribution derived from the entire precipitation record (and over 
what scale)? I recognize that this information is likely provided in Maduwantha et al., but I 
think it is also important to reference that information in this paper as not every reader will 
have previously read Maduwantha.  

NOAA Atlas 14 estimates for 18-hour rainfall in this region are approximately 163 mm and 
187 mm for the 50-year and 100-year return periods, respectively (based on linear 
interpolation between the published 12-hour and 24-hour durations). However, these 
values are not directly comparable to the 18-hour univariate rainfall return levels produced 
by our statistical framework. This is because NOAA Atlas 14 provides “point rainfall 
estimates” while our framework estimates “basin-averaged rainfall values”, representing 
the spatially averaged precipitation over the entire catchment area. 

Our 50-year and 100-year 18-hour basin-average rainfall return levels are 124 mm and 139 
mm, respectively. These are lower than the corresponding point estimates, as expected, 
since spatial averaging smooths localized peaks. When scaling a historical rainfall field to 



match a synthetic rainfall peak, the observed basin-average peak is called to match the 
synthetic peak. However, individual grid cells within the basin may exhibit values higher or 
lower than the basin average, reflecting the spatial heterogeneity in the original historical 
rainfall field.  

The rainfall (joint probability) distribution is derived using the rainfall data of Philadelphia 
airport from 1900 to 2021 and AORC (Analysis of Period of Record for Calibration) data from 
1979 to 2021 over the selected catchment. We apply a bias correction to the hourly RF 
gauge data to match the hourly basin-average RF values calculated from AORC. The bias 
correction is performed using the quantile mapping method, fitting both the hourly 
measured gauge data and the hourly AORC  basin-average data to gamma distributions. 

Figure 2 How often is the NTR observed the Delaware River driven by coastal vs riverine 
flood events?  

As previously noted, we have not separated or analyzed the NTR (non-tidal residual) events 
based on coastal and riverine contributions due to the complex interactions between these 
components. According to the analysis by (McKeon & Piecuch, 2025), most minor flood 
events at the Philadelphia tide-gauge (defined using NOAA's minor flooding thresholds) are 
primarily driven by coastal drivers (storm surge and tides). However, some events are 
mainly attributed to river discharge combined with tides, or to a mix of all three factors. 
They also report that the “residuals” (water level variations not accounted for by open coast 
surge, tides, or upstream river discharge) are substantial at this site, likely due to non-linear 
interactions among these contributing elements. Therefore, we assume that the NTR events 
we identified are primarily driven by coastal processes, although some may also be 
influenced by river discharge and non-linear interactions among the contributing drivers. 

Figure 2 I would recommend splitting Figure 2 into two separate figures. One which shows 
panel a and a separate figure (and figure caption) for panels b-d. In addition, I would add a 
second column that shows the spatial distribution of the rainfall plotted next to each time 
series graph, similar to those shown in Supplementary Figures S5 and S6. This information 
is really valuable for understanding the resulting differences in flood inundation generated 
from these events that are described later in the paper.  

We recognize the added value of including the rainfall fields; however, splitting the figure 
into two would make it more difficult to visualize the location of events within the joint 
probability space. Similarly, incorporating the rainfall fields directly into the figure would 
result in an excessively large and cluttered layout. The main flood differences among these 
events occur along the city’s waterfront and are primarily driven by variations in water 
levels. In response to another reviewer’s comment, we have included flood hazard maps 



for all events with a 1% AEP in the Supporting Material. Therefore, we believe that splitting 
Figure 2 is no longer necessary and have chosen to retain its current format.Line 208-210 
What is the size of the domain (total number of cells) in the model? Is 10 m the resolution 
of your model and 1 m the resolution of the subgrid?  

Yes, the resolution of the model is 10m and the subgrid is 1m. At 10 m, the model has 
758,904 cells and at 1m it has 147,450,698 cells. We have added this information to the 
manuscript.  

Line 208 You state that the DEM was retrieved from CoNED. Does CoNED provide an 
accurate estimate for the channel bathymetry for the creeks in your model domain? 
Channel bathymetry is a big unknown in many hydrodynamic simulations and has been 
shown to be critical to correctly estimating flood inundation (e.g., they are too shallow, 
more water will be routed over the floodplain whereas if they are too deep, not enough 
water will be routed onto the floodplain). If they are not well-represented in CoNED, did you 
make any effort to ‘burn in’ or manually adjust the depth and width of the channels in your 
model? If not, to what extent do you think poor channel bathymetry may impact your 
validation results, particularly when you have to assume no infiltration in order to match a 
flood event in 2009 (lines 239-251)?  

CoNED is a lidar-derived topobathymetric dataset with a 1-meter resolution, and to our 
knowledge, it is the most current and highest-resolution dataset available for our study 
area. However, we were unable to find information on its accuracy in representing creek 
channels within our site, nor did we find any other DEMs that provide detailed information 
about these features or had the opportunity to collect the data ourselves. Therefore, we 
have not modified the bathymetry of these channels. We could only revise satellite images 
and street-view photos to better understand the potential depth of these channels. These 
sources suggest that the channels may be a few meters deep near their intersections with 
the Delaware River, but become much shallower and more vegetated further inland. We 
have included a map of the topobathymetric dataset used in the Supporting Material. As 
can be seen in it, the channels are represented in the DEM, though their depth may be 
underestimated. We have addressed this limitation, as well as the uncertainty in water 
depth levels around the creeks due to the exclusion of infiltration, adding: 

 “Although most of our study domain is urban and thus covered by impervious surfaces, we 
might underestimate infiltration in areas with larger amounts of vegetation such as areas 
around creeks. The bathymetry of the creeks might also not be accurately represented in 
the CoNED DEM (Fig. S1). If that was the case, combined with the exclusion of infiltration 
processes, our approach could overestimate floodwater depths along the margins of the 
creeks. “ 



 

Figure S1 Topobathymetry from CoNED (NAD83/UTM18N) 

 

We do not believe that the validation of the 2009 event is affected by inaccuracies in the 
creeks' channels since the location of the photo used for validation is in an area far from the 
creeks and not hydrologically connected to the creeks (at least for an event of that 
magnitude and that was rainfall-driven).  

Line 237 You cite Flores et al. 2023 but there are other, more authoritative sources on this 
topic. Perhaps this study by the National Academies would be worth citing here in addition 
to Flores et al.  

We appreciate the reviewer's suggestion, and we have added the study. 

Lines 239-251 You do an excellent job of using what information you could find to try and 
validate the model. However, your primary focus is on infiltration and there is no discussion 
of whether local stormwater management (i.e., subsurface drainage) exists and whether 
that might contribute to error in the model performance since it can’t be represented by 
SFINCS. There is a late reference to backwater (surcharges), but it does not come up in the 
validation. I would also suggest to include a description of the watershed as fully urbanized 
to help justify the decision to neglect infiltration.  



We thank the reviewer for highlighting this important issue. In response, we have expanded 
the description of land cover in the study area and included a land cover map in the 
Supporting Information. We also address the challenges faced by municipalities within the 
catchments due to inadequate stormwater infrastructure, particularly the use of combined 
sewer systems. Additionally, we have included a note on the initial soil moisture 
assumption in the Curve Number method implemented in SFINCS, which presumes soils 
are at 50% of their total capacity, a simplification that has been shown to potentially 
overestimate infiltration (e.g., Nederhoff et al., 2024). These considerations have also been 
incorporated into the discussion of the model validation and the study’s limitations. 

“This, combined with the highly urbanized nature of the catchment (characterized by 
extensive impervious surfaces) and the inadequate stormwater system performance 
reported by the CCMUA, led us to exclude infiltration in the SFINCS model configuration 
used for all simulations in this study. At the time this study was conducted, the Curve 
Number method was the most advanced infiltration approach available in SFINCS (the 
latest release has since added the Green-Ampt method). However, as noted by Nederhoff 
et al. (2024), assuming that the initial soil moisture is at 50% of its total capacity can lead to 
an overestimation of infiltration.” 



 

Figure S2 Land Cover of the study site. Note that the land cover classes have been grouped in these main classes for plotting 

purposes, but the original dataset contains a larger number of classes (NAD83/UTM18N) 

 

“Nevertheless, the exclusion of stormwater infrastructure may have a greater impact on the 
results for smaller, more frequent events, potentially leading to an overestimation of 
flooding in cases where the existing drainage system would likely manage the runoff. 
However, this would have a negligible impact on the response-based estimates for the 1% 
AEP since the empirical distribution will not change for rare large events. “ 

Line 244-246 I would expect that neglecting infiltration has bigger implications for the 
smaller return period events and for those with low-intensity over the duration of the storm. 
Given that you are later comparing the design storms which only contain a few (or one?) 
event(s) with these characteristics against the probabilistic set which may contain many 
storms with these characteristics, what impact might this have on your final results. How 
could antecedent conditions in the 2009 events contributed to your choice to neglect 
infiltration? Could the land use (urban?) in this area also provide a justification for 
neglecting infiltration?  



Neglecting infiltration will likely produce an overestimation of the flood results, which will 
be more noticeable for small return period events and in vegetated areas. Since we 
primarily focus on events of 1% joint probabilities, we assume that these effects are 
small/negligible and will not affect the main conclusions of the analysis. The response 
flood hazard is estimated based on the empirical maximum water depth distribution at 
each model cell, and thus, reducing the water depth corresponding to small events will not 
have an impact on the 1% water depth (as discussed previously).  

In line with our response to the previous comment and the findings of Nederhoff et al. 
(2024), we consider that one of the primary factors contributing to the significant 
overestimation of infiltration is the fixed initial condition assuming the soil is at 50% of its 
storage capacity. At the time this study was conducted, this parameter could not be 
modified within the model. As the reviewer correctly notes, antecedent conditions (such as 
those preceding the 2009 event) can influence actual soil moisture levels, potentially 
making the 50% assumption inaccurate. We reviewed rainfall data from the two days 
preceding the 2009 event and found no recorded precipitation, suggesting that the soil was 
likely dry. We believe that the curve number method overestimates infiltration for this event, 
particularly in areas dominated by urban impervious surfaces. 

Line 275 Given that SFINCS is very computationally inexpensive, another option for 
validation would have been to increase the size of the model domain to include locations 
with gages. For example, if you increase the model to the scale of the HUC10, it appears 
that the Cooper River watershed, adjacent to Newton Creek has two active USGS gages. 
Knowing how the model performs at these locations would give you confidence in the 
parameterization of your model (e.g., infiltration, roughness, elevation), even if your later 
simulations are focused on a subarea of the entire model domain.  

We acknowledge the reviewer’s suggestion that extending the model domain to include 
gauged locations and using gauge records for validation is a well-established and widely 
used practice, and we considered this approach during the study. However, we concluded 
that it would not significantly improve the validation of our flood model for the specific 
study area, as the dominant physical processes in riverine systems differ from those 
governing urban overland flooding. For instance, infiltration dynamics in river environments 
contrast sharply with those in densely urbanized regions. Surface roughness also varies 
considerably between riverbeds and urban surfaces. Furthermore, bathymetric 
uncertainties in the main river (affected by factors such as water color and vegetation 
cover, which can influence lidar accuracy) are not directly comparable to those in the 
smaller creeks of our domain. Considering these factors, along with the high computational 



cost of extending the high-resolution model domain and the large number of simulations 
required, we decided not to implement this type of validation. 

Line 285 I find it interesting that there was little variability in the pluvial flood extent 
between the different 1% AEP events. How different were the simulated rainfall intensities 
for these storms or did they all have similar spatial-temporal distributions? Were their 
centers of mass all located in the same place? Perhaps a supplemental figure that provides 
the boundary conditions associated with the 25 events would be useful (similar to Figure 
2b-d) but with the addition of a panel showing the spatial distribution of the rain that fell.  

There is substantial variability in the location and extent of pluvial flooding hotspots across 
the different 1% AEP events, with accumulated catchment-average rainfall ranging from 
23.26 mm to 132 mm. However, water depths in these areas are generally much lower than 
those in coastal zones, where the interaction of rainfall and coastal drivers results in 
significantly greater combined variability. Since both pluvial and coastal flooding are 
displayed on the same maps, we used a consistent color scale, which limits the visibility of 
variation in the pluvial hotspots. Although we tested several colormaps and scaling options, 
we were unable to meaningfully enhance the representation of this variability. To address 
this, we included the 25 flood maps corresponding to the 1% AEP events in the Supporting 
Material to better illustrate the spatial variability in pluvial flooding. However, we opted not 
to include the spatial and temporal distributions of the rainfall events, as doing so would 
require 50 additional figures and would not effectively convey the differences in flooding 
outcomes for these locations.  

Line 377 Replace ‘Lots’ with ‘Much’  

Done 

Line 410 You state that ignoring the spatio-temporal variability of extreme events by relying 
on a design event can lead to significant uncertainties in flood exposure, but it does not 
appear that you prove this point. In both your cases (event- and response-based) you are 
selecting events that vary in space and time, you just sample them differently. This point 
sounds more like its drawing a comparison with the standard FEMA approach to selecting 
design storms that are uniform in space and vary in time according to a characteristic 
distribution. One way to address this would be to cite the existing literature when you make 
this point before discussing how your approach (both event- and response-based) provide 
more information than the standard design storm approach.  

The authors agree with the reviewer that it is challenging to isolate the effects of spatial and 
temporal variability on flooding, given that the sampled events vary in both space and time. 
As a result, it is difficult to distinguish whether differences in flooding outcomes are driven 



by temporal variability or by spatial differences in the rainfall fields and/or the time lag 
between the peaks of the events. However, we do observe a clear example illustrating 
these effects: two events with nearly identical magnitudes in the joint probability space 
(i.e., both classified as 1% AEP meaning they have essentially the same NTR and rainfall 
total) exhibit significantly different spatial and temporal characteristics, resulting in notably 
different flood extents and water depths (among the largest observed across all 1% AEP 
events). If both events were simulated using the same design rainfall field and coastal 
hydrograph (i.e., with identical spatial and temporal characteristics and time lag), they 
would be expected to produce almost equal flooding outcomes. Additionally, we find that 
events with relatively high AEPs (i.e., lower magnitude) can still produce 1% AEP water 
depths when they have prolonged hydrographs with sustained high water levels and spatial 
rainfall distributions concentrated over Gloucester City. This indicates that event structure 
(both in time and space) plays a critical role in driving flood impacts, regardless of the 
overall event magnitude. 

We also agree with the reviewer that the term “temporal and spatial variability” we used to 
describe the variations of temporal and spatial patterns between events can be misleading, 
since it can also refer to differences between events that are constant in time and space to 
those with varying temporal distributions and spatial fields. Therefore, we have rephrased 
those lines. 

“Event-based flood assessments commonly use a single design event with specific 
temporal and spatial structure, thus neglecting the variability in the temporal and spatial 
evolution of the flood drivers between different events. We have shown that using a single 
1% AEP design event can introduce large uncertainties in both flood extents and water 
depths that arise from the different combinations of the drivers’ magnitude but are mostly 
due to differences in temporal and spatial evolution of events. Events of almost equal 
magnitude but different spatial rainfall fields and temporal distribution of the water level 
hydrographs can produce very different flood extents and water depths.”   

Line 455-462 You again write here that ‘not accounting for the spatial variability of rainfall…’ 
Perhaps I misread, but per the previous comment, I understood that for both your event 
and response-based approaches, the precipitation was spatially and temporally varied 
across the model domain. This raises an interesting question… to what extent are your 
findings driven by the spatial variations in the rainfall in the rainfall field vs the temporal 
variations in the rainfall distribution? Could one take a design storm approach in which you 
select the accumulated rainfall from the curve (Figure 2) and apply a characteristic 
distribution to distribute it over time, compare that to the situation in which you allow it to 
be temporally varying, and then against the full Monte Carlo approach to provide insight 



into whether it’s the spatial variability or the temporal variability of the rainfall that really 
matters for the flood hazard? At a minimum, I would be more intentionally about what 
conclusions can be drawn from the findings in this analysis vs those that are made more 
broadly in the literature. 

The authors agree with the reviewer that it is not possible to isolate the individual effects of 
temporal and spatial variability in rainfall fields, as both vary simultaneously across events. 
Initially, we explored using a set of design storms with varying temporal and spatial 
structures (and time lags), rescaled to different points along the 1% AEP isoline. However, 
this approach can lead to unrealistic compound scenarios by combining spatial and 
temporal features that may not be physically plausible and are not easily validated. To 
provide a more robust and representative analysis of the temporal and spatial 
characteristics of compound events and their impact on flooding in the study area, we 
chose to use events generated by the data-driven statistical framework. This method 
captures the observed variability in event characteristics and their associated probabilities. 
While this limits our ability to attribute flood impacts to specific factors (e.g., temporal 
pattern, spatial distribution, or time lag), it offers a more realistic assessment of the 
consequences of neglecting inter-event variability. Finally, by “temporal and spatial 
variability,” we do not imply that traditional or design-event approaches assume uniform 
time series or rainfall fields, but rather that they use a fixed temporal distribution and spatial 
pattern, thus omitting the broader variability observed in real events. Following our 
response to the previous comment, we have modified these lines to clearly reflect the 
previous point. 

“Not fully accounting for the variability in the spatio-temporal structure between extreme 
events by relying on a single design event can lead to significant uncertainties in flood 
exposure, which in turn can result in substantial uncertainties in flood risks. One way to 
address this limitation when using the event-based approach is to employ ensembles of 
events where the flood drivers exhibit different spatial and temporal variability” 


