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Abstract

Isoprene-derived secondary organic aerosol (SOA) constituents, such as the 2-methyltetrols (2-
MT) and 2-methyltetrol sulfates (2-MTS), have been readily detected in atmospheric fine aerosols
(PMa2.5). Isoprene-derived SOA compounds exist within aerosol mixtures containing inorganic
salts, such as ammonium sulfate (AS). Despite its prevalence within the atmosphere, the water
uptake of 2-MT, 2-MTS, and their mixtures are not well understood. In this study, we determine
the physicochemical properties of 2-MT, 2-MTS, and their mixtures with AS. 2-MT and 2-MTS
have been previously identified as surface-active compounds and are both considered viscous;
thus, dynamic surface tension (osa) measurements were taken for both compounds to determine
their organic diffusion coefficients (Ds). The droplet growth of the synthesized organic compounds
and AS mixtures was measured under subsaturated conditions (< 100% RH) using a humidified
tandem differential mobility analyzer (H-TDMA) and relative humidity (RH) was kept constant at
88.2% + 1.5%. Aerosol activation and droplet growth was also measured under supersaturated (>
100% RH) conditions using a cloud condensation nuclei counter (CCNC); supersaturation (SS)
ranged from 0.3-1.4%. Both subsaturated and supersaturated hygroscopicity were parameterized
by the single hygroscopicity parameter x. Furthermore, aerosol viscosity and phase morphology
were analyzed using atomic force microscopy (AFM) measurements.

This study demonstrates how diffusion and salting-in effects influence the water uptake of
synthesized, isoprene-derived SOA mixtures such as 2-MT/AS and 2-MTS/AS. Results show that
when mixed with AS, organic diffusion for 2-MTS/AS becomes an order of magnitude greater
than for the organic solute alone; 2-MT diffusivity remains unchanged in the presence of AS. 2-
MT/AS aerosols present a plateau in sub- and supersaturated x-values close to pure AS; 2-MTS/AS
aerosols exhibit a similar behavior under subsaturated conditions. However, under supersaturated
conditions, 2-MTS/AS behaves as an ideal well-mixed aerosol and can be characterized by
traditional x-Kd6hler theory. Isoprene-derived SOA like 2-MT and 2-MTS are ubiquitous, and thus,
the impact from biogenic sources and its non-ideal thermodynamic properties must be considered
in aerosol-cloud interactions.
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1. Introduction

Fine aerosol particles (PM2.s) suspended within our atmosphere are a major contributor to Earth’s
radiative forcing and uncertainties in global temperature projections (Intergovernmental Panel on
Climate, 2023). Aerosol-cloud radiative forcing uncertainty is attributed to aerosols’ ability to
form and modify cloud properties, known as aerosol-cloud interactions or the “aerosol indirect
effect” (Kohler, 1936; Twomey, 1959; Twomey, 1974; Albrecht, 1989; Intergovernmental Panel
on Climate, 2023). An aerosol’s ability to alter droplet formation is dependent on its
hygroscopicity or water uptake behavior under supersaturated conditions (RH > 100%). In the
presence of water vapor, aerosols present a surface for condensation; droplet activation depends
on aerosol particle chemical composition and size (Seinfeld & Pandis, 1998; Petters &
Kreidenweis, 2007). The aerosol droplets can reach a point of unstable and uncontrollable growth,
thereby acting as cloud condensation nuclei (CCN) (Kdohler, 1936; Seinfeld & Pandis, 1998).

Droplet models can apply Kohler theory to estimate aerosol droplet growth and CCN activity
(Kohler, 1936). In traditional K6hler theory, it is assumed that all aerosol solutes instantaneously
dissolve and contribute to water uptake (Petters & Kreidenweis, 2007). Aerosol hygroscopicity is
thus parameterized by Kohler theory through the single hygroscopicity parameter x; x of mixed
composition is often estimated by the Zdanovskii-Stokes-Robinson (ZSR) mixing rule and it is
assumed that an individual solute’s contribution to hygroscopicity is scaled by its volume fraction
(Petters & Kreidenweis, 2007). Thus, knowing aerosol composition is critical for understanding
CCN formation. However, x-Kohler predictions of aerosol CCN activity neglect solute
physicochemical properties that may alter droplet growth. Previous studies have shown that
droplet-altering properties may be present within aerosols, such as the presence of complex
morphologies (e.g., inner core-outer layer), surface-activity, or salting in/salting out effects; as a
result, discrepancies between experimentally-determined x and x-Kdhler predictions may occur
(Asa-Awuku & Nenes, 2007; Bertram et al., 2011; Song et al., 2013; Prisle & Meglgaard, 2018;
Riemer et al., 2019; Ott et al., 2020; Malek et al., 2023).

Field studies have observed the presence of internally mixed aerosols containing both inorganic
and organic compounds (Saxena, 1995; Murphy et al., 1998; Pratt & Prather, 2010). Inorganic
aerosols, primarily composed of salts like ammonium sulfate (AS) and sodium chloride have well-
defined hygroscopic properties. The ionic behavior of inorganic compounds promotes
instantaneous dissolution in water and contributes to CCN activation (Cziczo et al., 1997; Seinfeld,
2003; Rose et al., 2008; Laskina et al., 2015). However, fine organic aerosols (OA) pose a greater
challenge to aerosol hygroscopicity predictions. OA constitute 20-50% of atmospheric fine aerosol
mass and are diverse in composition. OA can be directly emitted into the atmosphere, referred to
as primary organic aerosols (POA) (Kanakidou et al.,, 2005). POA can originate from
anthropogenic (e.g., biomass burning and coal combustion) and biogenic (e.g., pollen) sources
(Seinfeld & Pandis, 1998; Kanakidou et al., 2005). In addition to POA, secondary organic aerosol
(SOA) can be formed through multigeneration gas-phase oxidation reactions of volatile organic
compounds (VOCs) or multiphase reactions of semi-/low-volatility organic compounds
(SVOCs/LVOCs) (Kanakidou et al., 2005). SOA is ubiquitous in the atmosphere, forming a major
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component of fine OA mass (Zhang et al., 2007; Srivastava et al., 2022). For example, a study by
Zhang et al. (2007) found that SOA contributed 65% to 95% of OA mass in urban and remote
regions. Furthermore, SOA have been readily detected in mixtures with inorganic components,
such as AS (Yang et al., 2009; Zhu et al., 2017); indeed, a study by Zhu et al. (2017) estimated
66% of SOA as being internally mixed with sulfate. Thus, in addition to understanding pure
organic compounds, it is important to also study organic-inorganic interactions.

Previous studies have determined that a significant contributor to SOA is the aqueous-phase
chemical processing of isoprene-derived oxidation products (Claeys et al., 2004; Kanakidou et al.,
2005). Isoprene is a VOC emitted from biogenic sources and is considered one of the most
abundant biogenic VOCs (BVOC:s). Isoprene emissions have been estimated to be ~ 500 Tg C
year’!, rivaling methane emissions (Guenther et al., 2012; Sindelarova et al., 2014). Under alkyl
peroxy radical (RO:2") + hydroperoxy radical (HO:2") dominant conditions, isoprene is
photochemically oxidized by gas-phase hydroxyl radicals ("(OH) to form large quantities of
isoprene-derived epoxydiols (IEPOX) (Paulot et al., 2009). IEPOX is then able to partition into
acidic sulfate-containing aerosol particles to produce isoprene-derived SOA (Surratt et al., 2010;
Lin et al., 2012; Gaston et al., 2014; Riva et al., 2019), which consists largely of 2-methyltetrols
(2-MT) and 2-methyltetrol sulfates (2-MTS).

Both 2-MT and 2-MTS were previously detected in atmospheric PMz.s. For example, a study by
Claeys et al. (2004) found that 2-MT contributed 2% of organic carbon detected in PM2 s collected
from the Amazon rainforest. Additional field studies have also found that 2-MTS can contribute
0.3-16.5% of total organic carbon in both the Amazon rainforest and Southeast US (Chan et al.,
2010; Froyd et al., 2010; Hettiyadura et al., 2019; Riva et al., 2019; Chen et al., 2021; Hughes et
al., 2021). The formation of both compounds can also alter aerosol particle composition and phase
state (Zhang et al., 2019a; Zhang et al., 2019b). For example, 2-MT and 2-MTS have been
observed to be in a semisolid or glassy state in aerosol particles (Chen et al., 2023). Highly viscous
SOA can exist in a glassy state; SOA viscosities can range from 10 to 10'? Pa-s for ultraviscous
liquids or >10'? Pa-s for amorphous, extremely viscous compounds (Virtanen et al., 2010;
Renbaum-Wolffet al., 2013; Zhang et al., 2015). Viscosity can influence organic solute dissolution
in droplets by slowing diffusion through the aqueous phase (Renbaum-Wolff et al., 2013). As a
result, slower organic diffusion rates can influence gas partitioning, particle shape, chemical aging,
multiphase reactions, and aerosol droplet growth (Riipinen et al., 2011; Shiraiwa & Seinfeld, 2012;
Zhang et al., 2015). Furthermore, studies incorporating SOA viscosity and phase state into larger,
global-scale models have observed changes to CCN and ice nuclei (IN) formation predictions
(Riipinen et al., 2011; Shiraiwa et al., 2017; Wolf et al., 2021). Thus, probing the viscosity and
resulting diffusion limitations may be necessary for understanding 2-MT and 2-MTS water uptake
properties (Chen et al., 2023).

Similar to other complex organic mixtures, the water uptake ability of isoprene-derived SOA can
be further complicated when mixed with inorganic components, such as AS. Previous studies have
observed the presence of internally-mixed SOA/AS aerosols in both the southeast US and Amazon,;
in both regions a strong presence of 2-MT and 2-MTS has been observed (Chan et al., 2010; Froyd
et al., 2010; Bondy et al., 2018; Riva et al., 2019; Wu et al., 2019). The presence of inorganic salts
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in aerosol mixtures can influence phase state based on organic physicochemical properties
(Topping, 2010; Ruehl et al., 2012; Ruehl et al., 2016; Malek et al., 2023). Inorganic compounds
can result in water solubility-limited and/or surface-active organics partitioning to a separated
phase (Ruehl et al., 2012; Ruehl et al., 2016; Freedman, 2017; Kang et al., 2020). As a result, the
partitioned aerosols can exhibit a phase separated morphology (Ruehl et al., 2012; Ruehl et al.,
2016; Freedman, 2017; Kang et al., 2020; Malek et al., 2023). However, inorganic salts may also
enhance organic dissolution, known as “salting in” (Riva et al., 2019). For instance, studies have
observed increased diffusion in viscous SOA particles through the aqueous droplet phase in the
presence of inorganic salts (Reid et al., 2018; Jeong et al., 2022; Sheldon et al., 2023). Increased
diffusion is a result of salts disrupting the hydrogen bonding network between neighboring organic
molecules (Reid et al., 2018; Jeong et al., 2022; Sheldon et al., 2023). Therefore, organic
physicochemical properties (surface-activity, viscosity) of SOA, such as 2-MT and 2-MTS, must
be better defined to better predict mixed SOA/AS aerosol CCN activity. To our knowledge there
are no studies to date that investigate 2-MT and 2-MTS aerosol water uptake, water uptake of
mixtures with AS, and the potential effect of physicochemical properties on CCN activity
predictions.

In this study, we investigated the surface activity, diffusivity, droplet growth and water uptake of
2-MT, 2-MTS, and their mixtures with AS. 2-MT and 2-MTS surface tension values were
experimentally determined. A previous study by Ekstrom et al. (2009) found 2-MT to be
moderately surface-active. However, the surface activity of 2-MTS has not been characterized and
potential organic surface tension depression in the presence of AS has not been explored for both
organics. In tandem with surface tension measurements, this study estimated diffusion coefficients
of both compounds to explore the effects of viscosity and diffusivity on aerosol water uptake.
Aerosol x-hygroscopicity for pure organic and organic-AS mixtures were experimentally
determined under both subsaturated conditions (< 100% RH) and supersaturated (> 100% RH)
conditions to observe both droplet growth and CCN activity, respectively. x-hygroscopicity
measurements were then compared to x-Kohler hygroscopicity theory to evaluate the efficacy of
traditional full dissolution and negligible viscosity assumptions in predicting the CCN activity of
both compounds and their mixtures. Lastly, Atomic Force Microscopy (AFM) measurements on
mixed particles were conducted to further understand particle morphology. The following work
provides a comprehensive analysis of the wide range of physicochemical properties that may
influence the droplet growth of 2-MT and 2-MTS mixed with AS.

2. Experimental Methods
2.1. Experimental Chemicals

For this study, ammonium sulfate (AS, (NH4)2SO4; Thermo Fisher Scientific, >99.0%), was
purchased and used without further purification. 2-methyltetrol (2-MT) and 2-methyltetrol sulfate
(2-MTS) samples were synthesized using the published procedure of Cui et al. (2018). 2-MT was
determined to be > 98% pure. The purity of 2-MTS was determined to be ~73 wt%, with remaining
sample mass estimated to be 3 wt% AS and 24 wt% sodium methyl sulfate (SMS).
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2.2. Surface Tension Measurements

The surface tension of 2-MT, 2-MTS, and their mixtures with AS was measured at atmospherically
relevant aqueous phase concentrations. Due to the limited amounts of synthesized sample, mixed
amounts were judiciously selected to mimic mixture ratios previously reported in the literature.
Specifically, a study by Cope et al. (2021) found that 2-MT concentrations in the atmosphere
reached an upper bound of 300 mM. Therefore, stock solutions of 300 mM 2-MT and 2-MTS were
prepared using deionized (DI) water. Furthermore, it is assumed that surface tension measurements
at dilutions higher than 300 mM are also relevant for droplet growth. A study Bain et al. (2023)
found that aerosol surface tension can be approximated from surface tension measurements of bulk
mixtures composed of < 100 mM organic component. Additionally, recent studies (Mikhailov et
al., 2024; Ferdousi-Rokib et al., 2025) also support the application of more dilute concentration
regimes to predict droplet growth. A recent study by Mikhailov et al. (2024) found that surface
tension depression observed in bulk dilute surface tension measurements was reflective of aerosol
properties. Ferdousi-Rokib et al. (2025) also found that salting out effects can be approximated in
mixtures having < 100 mM organic component. Thus, in this work, the stock solutions were diluted
to a 3-94 mM range; each stock solution and subsequent dilution concentrations are provided in
Supplemental Tables S1-S5.

Droplet surface tension (osa) was measured using a pendant drop tensiometer with a modified
profile analysis tensiometer (SINTERFACE Inc.); the experimental set up has been described in
Fertil et al. (2025). Briefly, the pendant drop tensiometer generates a droplet of solution (< 10 puL)
suspended from a 0.9-mm diameter needle (Beier et al., 2019; Fertil et al., 2025). Droplets remain
suspended for 300 s to reach equilibrium; at each time step (~1 s), the droplet gs.a was obtained
from fitting the droplet curvature to the Young-Laplace Equation (Fordham & Freeth, 1948; Spelt,
1996; Padro et al., 2010). Surface tension measurements were run in triplicate; prior to each
measurement, the tensiometer was flushed with DI water and ~ 2 mL of solution. Measurements
were obtained at ambient room conditions, with temperature range of 20.2-22 °C and relative
humidity range of 40-45 % RH.

As the droplet equilibrates, surface tension changes, which is attributed to the accumulation of
solute diffusing to the droplet surface (Joos & Rillaerts, 1981; Eastoe et al., 1998; Chernyshev &
Skliar, 2015). As the solute saturates the surface, surface tension reaches equilibrium (Ross, 1945).
The accumulation of solute at the surface and resulting concentration gradient within the droplet
can be described by Fick’s Second Law:

ac a%¢c
o~ Dsoer (1

. . ac . : o :
where concentration over time o 18 proportional to the second derivative concentration over

... 9% . . . . .
position —— and the diffusion coefficient Ds (m? s™!). The dynamic surface tension can be correlated

with solute diffusion over time as (Joos & Rillaerts, 1981):

0, = gy — 2RTC (%)05 )
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where o is the starting surface tension, ot is the surface tension at specified time ¢, R is the universal
gas constant, 7'is temperature, and C is organic molar concentration. Here, evaporation effects are
negligible during the short suspension times. Therefore, the organic molar concentration C is
equivalent to the droplet solution concentration as Eq. 2 can then be rearranged to solve for Ds
using dynamic surface tension measurements.

2.3. Aerosol Experimental Methods
2.3.1. Aerosol Generation

Solutions of 0.1 g L' total solute (2-MT, 2-MTS, and mixtures with AS) were prepared using
ultra-purified Millipore water (18 MQ-cm). Mixtures compositions are provided in Table S6.
Polydisperse aerosols were then generated by passing each aqueous solution through a constant
output Collison Nebulizer (Atomizer, TSI 3076); the generated aerosols were then dried to < 5%
RH using two silica gel dyers in series. Aerosols were then analyzed for their water uptake
properties under sub- and supersaturated conditions. To determine aerosol phase morphology,
atomic force microscopy (AFM) images were also obtained. In addition to water uptake and AFM
measurements, organic density and shape factor were measured; for details on density and shape
factor measurements, see Armstrong et al. (2025).

2.3.2 Water Uptake Measurements

A humidified tandem differential mobility analyzer (H-TDMA) measured droplet growth under
subsaturated conditions. Dry, polydisperse aerosols were size selected at 100, 150, and 200 nm by
an electrostatic classifier (DMA 1, TSI 3082; flow rate = 0.3 L min'') and humidified using a
Nafion humidification line (PermaPure M.H. series); particles were humidified at 88.2% + 1.5%
RH. Selected dry diameters are often assumed to be spherical, thus having a shape factor (y) of 1
(DeCarlo et al., 2004). Aerodynamic aerosol classifier (AAC) shape factor measurements
confirmed 2-MT and 2-MTS sphericity (Armstrong et al., 2025). The wet diameter (Dw) was
measured using a second electrostatic classifier (DMA 2, TSI 3082; flow rate = 0.3 L min!); the
ratio of Dw to the dry-size selected diameter (Dd) is equal to the growth factor (Gr). The
experimental set up is provided in Fig. S1. To calibrate the H-TDMA, a 0.1 g L' solution of AS
was aerosolized; dried AS aerosols were size selected at 100 and 150 nm. Dried AS aerosol Gr
and instrument RH was measured, with calibration measurements repeated multiple times as
reported in Table S7. The experimental solutions were then aerosolized, and Gr was obtained for
each solution; Gr is used to calculate the hygroscopicity parameter under subsaturated conditions,
xu-toMA. In addition to subsaturated conditions, water uptake was measured under supersaturated
(8S) conditions using a CCNC-100 (Droplet Measurement Technologies); the experimental set up
is provided in Fig. S2. The theory and operation of the CCNC has been previously described
(Roberts & Nenes, 2005; Lance et al., 2006; Rose et al., 2008). The Scanning Mobility CCN
Analysis (SMCA) protocol was used to measure droplet activation (Moore et al., 2010). Briefly,
the dried polydisperse aerosols were passed through an electrostatic classifier (TSI 3080) in
scanning mode and charged; scanning mode operated from 8-352 nm for 135 s. The DMA operated
at a sheath-to-aerosol flow rate ratio of 10:1, and aerosol sample flow rate of 0.8 L min™!. The
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monodisperse, size-selected aerosol stream was then sampled by a condensation particle counter
(CPC, TSI 3776, flow rate = 0.3 L min™") and the CCNC-100 (flow rate = 0.5 L min™!) in parallel.
The CPC counted the number concentration of dry particles at a given particle size (condensation
nuclei, Ncv). The CCNC exposed the particles to 0.3-1.4%SS and the number concentration of
particles activated (Nccnv) were measured. The instrument set up was calibrated using AS (Rose et
al., 2008) and the calibration data are provided in Table S8 and Fig. S3.

The CPC counted the number concentration of dry particles at a given particle size (condensation
nuclei, Ncv). The CCNC exposed the particles to 0.3-1.4%SS and the number concentration of
particles activated (Nccv) were measured. The instrument set up was calibrated using AS (Rose et
al., 2008) and the calibration data are provided in Table S8 and Fig. S3.

CCN data of AS and experimental solutions were analyzed using the Python-based CCN Analysis
Toolkit (PyCAT 1.0) (Gohil, 2022; Gohil & Asa-Awuku, 2022). PyCAT is a Python version of
SMCA and is available on GitHub for public use. The analysis toolkit calculated the activation
ratio Ncen/New for each dry particle size. The activation ratios were fitted using a sigmoid curve
and the critical diameter (D, 50) was found, at which ~50% of the dry particles activate. A charge
correction is applied in PyCAT using the multi-charge correction algorithm previously described
(Fuchs, 1963; Wiedensohler, 1988). The obtained critical diameter of each solution is then used to
calculate the single hygroscopicity parameter under supersaturated conditions, xccn.

2.3.3. Atomic Force Microscopy (AFM) Morphology

Atomic force microscopy (AFM) measurements were utilized to characterize aerosol phase
morphology. 2-MTS, 2-MTS/AS, and 2-MT/AS particles were collected onto silicon substrates
(Silson Ltd) using a cascade impactor (Sioutas Cascade Impactor, flow rate =9 L min! and stored
at room temperature and relative humidity (40-50% RH) prior to analysis. Imaging followed the
procedure of Zhang et al. (2018). Briefly, particles were imaged in a 5 x 5 um region using a
Dimension ICON® AFM (Bruker) in tapping mode with resonant frequency of 150 kHz and spring
constant of 5.4 N m™.

2.3.4 Viscosity and Diffusion Calculation

The viscosity and the diffusion coefficients of the 2-MT and 2-MTS aerosols were calculated using
a modified Vogel-Tammann-Fulcher (VTF) equation (DeRieux et al., 2018). The dry glass
transition temperature values were determined to be 226 K and 276 K from a previous study by
Zhang et al. (2019b). The Gordon-Taylor coefficient and the fragility coefficient were assigned as
2.5 and 20, respectively. The hygroscopicity values were used from the measurement of H-TDMA
of this study.

3. Traditional x-Kohler theory

Traditionally, water uptake of acrosol particles has been calculated using x-Kohler theory (Kohler,
1936; Petters & Kreidenweis, 2007). Kohler theory considers aerosol physicochemical properties
(e.g., solute density, molecular weight) to describe the equilibrium water vapor saturation ratio at
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a droplet’s surface (Seq). The equilibrium relationship encompasses two competing effects. The
Kelvin effect describes the increase of water vapor saturation as a result of the curvature of the
droplet; the Kelvin effect is represented by droplet surface tension asa. The Raoult (solute) effect
competes by decreasing vapor pressure due to the presence of solute in the aqueous droplet; the
solute effect is represented by the water activity term, aw (Seinfeld & Pandis, 1998; Wex et al.,
2008). For compounds dissolved in water, water activity can be parameterized by the single
hygroscopicity parameter, , as follows (Petters & Kreidenweis, 2007; Sullivan et al., 2009):

1 Vs
E_I—HCE’ (3)

where Vw and Vs are the volume of water and dry solute, respectively. Therefore, the equilibrium
saturation ratio (Seq) over the droplet is described as:

-1
_ D4’ 405aMy
Seq = (1 tK DW3—Dd3) exp (RTpWDW)' 4)
where pw is the density of water, Mw is the molecular weight of water, R is the universal gas
constant and 7 is the temperature.

x describes ability of an aerosol to uptake water assuming full dissolution, and can be calculated
from the intrinsic properties of the solute as xint (Sullivan et al., 2009):

, ()

VsPs My

) ——
int PwMs

where Ms is the molecular weight of solute, vs is the van’t Hoff factor, and ps is the density of the
solute; Armstrong et al. (2025) found 2-MT and 2-MTS density to be 1.4 g cm™ and 2.46 g cm?,
respectively. To estimate x-hygroscopicity of aerosols containing more than one compound, the
Zdanovskii, Stokes, and Robinson (ZSR) mixing rule can be applied to estimate (Petters &
Kreidenweis, 2007):

Kzsr = Li €Ki, (0)
where ¢ is the volume fraction of the individual solute component, i.

Experimental data can be used to derive aerosol x. Under subsaturated (< 100% RH) conditions,
Gr is related to hygroscopicity as follows (Kreidenweis & Asa-Awuku, 2014):

Gp-1
KH.TDMA = % - Gi+1, (7)
40’S/aMW
2T 507
Where xn-tpma is subsaturated hygroscopicity and RH is the relative humidity of the H-TDMA
instrument as a decimal. Similarly, for supersaturated (>100% RH), the critical diameter correlates
to x as follows (Petters & Kreidenweis, 2007):

4 4JS/aMW 3
K — ( RTpw ) (8)
CCN ™ 27D3 In2ss’



340
341
342
343
344
345
346
347

348

349

350

351

352
353
354
355
356

357
358
359
360
361
362
363
364
365
366
367
368

369
370
371
372
373
374
375
376
377
378

Where xcen is supersaturated hygroscopicity. It is assumed that droplet surface tension osa is
equivalent to that of the surface tension of water ~ 72 mN m™!. Kéhler theory also assumes that all
solutes are well mixed within the aqueous phase. The Koéhler/ZSR model does not account for
potential viscosity and diffusivity limitations due to inorganic-organic mixing in the aqueous
phase. Therefore, in this study, x- Kohler values are predicted assuming both 2-MT and 2-MTS
are well mixed within the aqueous phase and fully contribute to droplet growth. The applicability
of these assumptions is discussed in the later sections. Additionally, a list of variable abbreviations
is provided in Table S9.

4. Results
4.1. Surface Tension and Diffusion
Organic Samples

Dynamic pendant drop tensiometer measurements were taken for 2-MT and 2-MTS samples;
measurements were performed by hanging droplets < 10 puL over a period of 300 s. The droplet
curvature was measured every 1 s. Average surface tension values were obtained for 2-MT and 2-
MTS when droplet surface tension values remained constant (at equilibrium) and are listed in
Table S10 and shown in Fig. 1.

In the dilute bulk measurement regime, 2-MT (Fig. 1, orange squares) and 2-MTS (Fig. 1, purple
closed circles) osa values are close to pure water (~ 72 mN m™', Fig. 1, blue dashed line). For
solutions < 53 mM organic concentration, 2-MT and 2-MTS exhibit little to no surface-activity.
Surface-activity is similar to the dilute surface tension of pure AS, a non-surface-active compound,
which remains ~ 72 mN m(Fig. 1, red circles, Pruppacher et al., 1997). However, for organic
solutions > 53 mM, minimal surface tension depression is observed with gy values between ~68—
70 mN m! (Fig. 1 and Table S10); in comparison, AS surface tension increases with concentration,
as observed in Fig. 1 and previous studies (Pruppacher et al., 1997; Hyvérinen et al., 2005;
Mikhailov et al., 2024). Therefore, both synthesized 2-MT and 2-MTS can be classified as weakly
surface-active. A previous study by Riva et al. (2019) observed greater surface tension depression
for [IEPOX SOA/sulfate mixtures. In particular, enhanced surface tension depression was attributed
to organic partitioning and formation of 2-MT and 2-MTS oligomers (Riva et al., 2019).

In comparison to the surface tension of other short-chained particulate organosulfates, such as
sodium ethyl sulfate (Fig.1, black triangles) and sodium methyl sulfate (Fig. 1, grey triangles), 2-
MT and 2-MTS have lower dilute surface values (Peng et al., 2021). However, similar to other
surface-active organosulfates (sodium ethyl sulfate and sodium octyl sulfate), neither 2-MT and
2-MTS surface tension significantly depress aerosol surface tension (Table S11 and S14). For
example, Mikhailov et al. (2024) observed surface tension depression as low as ~ 56 mN m™! for
dilute D-glucose/AS mixtures. Furthermore, moderately surface-active compounds, such as 2-
methylglutaric acid (2-MGA, Fig. 1, green squares) and sodium octyl sulfate (Fig. 1, grey
diamonds) exhibit surface tension depression in the range of ~ 64-68 mN m! for concentrations <
22 mM (Tables S13-S14). Additionally, stronger surface-active organics (surfactants), such as
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sodium dodecyl sulfate (SDS) show surface tension at the droplet surface can be depressed in the
dilute regime. SDS reaches o5 of ~ 39 mN m™ at 9 mM organic (Fig. 1 and Table S15). Sodium
octyl sulfate, SDS, and 2-MGA present noticeable surface tension depression in the dilute bulk
measurement regime (Fig. 1) that affect aerosol properties (Vepsildinen et al., 2023; Zhang et al.,
2023; Kleinheins et al., 2025). However, in comparison to previously studied organics, 2-MT and
2-MTS os/2 remain close to pure water in the dilute bulk regime (Fig. 1). Previous studies by Bain
et al. (2023) and Werner et al. (2025) emphasize the role of surface area-to-volume ratio dictating
aerosol surface tension. Specifically, aerosol surface tension values are best represented by surface
tension measurements of the organic in bulk solutions < 100 mM (Bain et al., 2023; Ferdousi-

80
— ) \
AT N S ?,?'_j_'um Egi?l Sulfate’ (C.H:Na0,5) Sodium Methyl Sulfate® (CH;Ma0,5)
........ e P
E [ N & ﬂ‘b é‘{{—\ i AT ﬂ Water (H,0) at 25°C
= 70 FAmmonium su lfate‘wﬂ_— © {JJ
£ [ ((NH.);S0.)) m--3 = * . 2- Methyltetrol Sulfate £
[ - o (2- MTS, CgH,,0;57) @ )
u"‘ # Sodium Octyl 2-Methyltetrol % a
] » Sulfate® (2=-MT, CcH.,04) @ 2
o600 F [CsHNaO,S ) za
c - * <3
(] Y o o
.a 2
c —
e .
o . _
1] g3
E 40 - *’.0¢"’.” _— g i
(73] Sodium Dodecyl Sulfate (NaC,;H:50,4) i g'
m o
=11
@ 30
=
Q Dilute Bulk .
- Measurement Regime ﬂPengerar..zmﬁ —
<L I Ferdousi-Rokib et al., 2025
20 i i i i M PR
0.001 0.010 0.100

Concentration [M]

Figure 1. Experimental average surface tension oy, values of compounds as a function of concentration.
Average equilibrium surface tension of synthesized 2-MT and 2-MTS are shown as closed orange squares
and closed purple circles, respectively. The surface tension of the organosulfates, including sodium ethyl
sulfate (black open triangles), sodium methyl sulfate (grey closed triangles), and sodium octyl sulfate (grey
closed diamonds) were obtained by Peng et al. (2016). 2-methylglutaric acid (green closed squares) and
ammonium sulfate (red closed circles) oy, were obtained from Ferdousi-Rokib et al., 2025 (in review).
Sodium dodecyl sulfate (SDS) oy, is shown as black diamonds. Pure water oy, at 25°C (~ 72 mN m) is
represented as a dashed blue line. Compounds can be categorized as weak to moderately surface active (65-
65 mN m™") or surface-active (surfactants, < 65 mN m™") for compounds that can depress surface tension
below that of pure water. Bain et al 2023 consider the dilute bulk measurement regime to be less than
100mM.
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Rokib et al., 2025; Werner et al., 2025). Thus, 2-MT and 2-MTS surface activity is negligible for
droplet activation as both dilute organic o is close to that of pure water (~72 mN m™').

It should be noted that the synthesized 2-MTS sample is 73% pure 2-MTS and is likely mixed with
AS and SMS. Both SMS and AS (Fig.1, red circles; Table S16) have surface tension values, > 72
mN m™! in the dilute regime. However, despite the presence of impurities in the mixture,
synthesized 2-MTS surface tension reaches values ~ 68 mN m'. Therefore, the presence of these
additional compounds may counteract possible further surface tension depression exhibited by 2-
MTS. Future surface tension modeling studies for synthesized 2-MTS data may be needed to probe
the surface depressing abilities of the pure organosulfate component (e.g., multicomponent models
of Topping et al., 2007).

Both 2-MT and 2-MTS are considered viscous compounds and may diffuse slowly through the
measured droplets (Reid et al., 2018; Zhang et al., 2019a; Chen et al., 2023). As a result,
equilibrium surface tension is reached after a period of time, #. The rate of diffusion of the organic
through water, also known as the diffusion coefficient Ds, can be calculated from dynamic surface
tension measurements (Eq. 1-2). Diffusion coefficient values for synthesized 2-MT and 2-MTS
samples range between 10 to 10! m? s, with diffusion slowing with increasing sample
concentration. Specifically, Dy for the 2-MT and 2-MTS samples are estimated to be 10 to 107!
m? s and 10° to 10" m? s°!, respectively (Table S17). Additionally, the viscosity-based diffusion
coefficient was calculated and shown in Table S19. 2-MT and 2-MTS diffusion rates are
comparable to rates observed for other previously investigated viscous components in aqueous
solution (Curry et al., 2018; Tandon et al., 2019). For example, methylglyoxal, a known viscous
component, has an aqueous phase diffusion rate ~ 10 m?s™! (Curry et al., 2018). In addition to
the diffusion coefficients in aqueous solution, a study by Chenyakin et al. (2017) average diffusion
coefficients between 107> and 10'*m? s”! for organic molecules in a sucrose-water proxy for SOA.
A study by Renbaum-Wolff et al. (2013) reported diffusion coefficients ranging from 10> and 10°
5'm? 57! for a-pinene-derived SOA between 70-90% RH. Indeed, 2-MT and 2-MTS have been
previously observed to be highly viscous, resulting in slow diffusivity (Wang et al., 2011;
Chenyakin et al., 2017; Tandon et al., 2019; Zhang et al., 2019a; Chen et al., 2023). Furthermore,
at higher viscosity and lower diffusion rates, the diffusion of solute molecules fails to follow the
Stokes-Einstein relationship describing the self-diffusion of solute molecules through a liquid
phase (Einstein, 1905; Chenyakin et al., 2017; Tandon et al., 2019). For viscous material, such as
2-MT and 2-MTS, diffusion in water is self-limited (Chenyakin et al., 2017). Slow diffusion
correlates with the longer time scales needed to reach equilibrium surface tension for more
concentrated sample solutions; the solute molecules are limited in their ability to accumulate to
the surface; thus, time is an important factor in the surface tension measurements. This effect is
more prominent in 2-MT than 2-MTS, as evident in its slower diffusion rates for concentrations
>30 mM (Table S17).
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AS and Synthesized Organic Mixture

Previous studies have observed that inorganic compounds, such as AS, mixed with organics can
enhance surface tension effects (Topping, 2010; El Haber et al., 2023). Additionally, AS can result
in the partitioning of organics to the to the surface (i.e., the movement of organics to the surface is
commonly referred to as salting-out). To determine if partitioning effects are present in organic/AS
mixtures, 2-MT and 2-MTS were mixed with 500 mM AS and dynamic surface tension
measurements were taken; mixture dynamic surface tension measurements are shown in Fig. 2.
Average mixed surface tension values are listed in Table S10.
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Figure 2. Dynamic oy, measurements for (A) 3-94 mM 2-MT/500 mM AS and (B) 3-53 mM 2-MTS/500 mM
AS mixtures. Dynamic oy, was recorded over a duration of 300 seconds.

For mixtures of 3-9 mM 2-MT and 500 mM AS, surface tension remains stable ~ 75 mN m™! and
is higher than pure 2-MT solution surface tension alone (Fig. 2A). Higher ova values indicate a
lack of salting out effects and organic surface partitioning; previous surface tension studies of
organic/AS mixtures observed salting out effects through lower osa values in comparison to pure
organic solutions (Ferdousi-Rokib et al., 2025 (in review)). Thus, for 3-9 mM 2-MT with 500 mM
AS mixtures, organic partitioning is not enhanced, and the droplet surface tension aligns with pure
AS osa (Fig.1. and Table S16). When organic concentration in the mixture is increased to 94 mM,
a stronger time dependence for surface tension is observed (Fig. 2A); an equilibrium surface
tension of ~71.2 mN m™! is reached at ~300 s. This lower surface tension for 94 mM 2-MT with
500 mM AS compared to the previous 2-MT/AS mixture correlates with the higher concentration
of organic in solution. However, the longer equilibrium time is indicative of a slow solute diffusion
in the droplet.

Previous studies have observed diffusion effects within dynamic surface tension measurements
and estimated solute diffusion (Eastoe et al., 1998; Bain et al., 2024). To determine organic
diffusion within AS mixtures, the Ds was calculated using Eqs. 1-2. For 2-MT/AS mixtures, Ds
ranged from 10 to 10!, with diffusion slowing as organic concentration increases (Fig. 2A, Table
S17). 2-MT organic diffusion in AS mixtures is similar to that of the pure organic 2-MT solution
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Ds values. As a result, 2-MT organic diffusion remains relatively unaffected in the presence of AS.
The organic 2-MT molecules do not diffuse fast enough to fully accumulate at the surface and
substantially lower surface tension.

Similar to 2-MT/AS mixtures, 2-MTS/AS mixture surface tension was higher than 2-MTS solution
surface tension alone. 2-MTS/AS mixture gy values ranged from ~ 72.5 to 75 mN m™! and remain
close to surface tension values of pure AS. Furthermore, oy, values remain constant as the 2-MTS
organic concentration increases from 3 to 53 mM; the minimal correlation between organic
concentration and surface tension implies that AS dominates droplet surface tension at the surface-
air interface. In addition to being stable across organic concentrations. 2-MTS/AS osa reaches
equilibrium faster than 2-MT/AS; equilibrium is achieved across the mixtures at < 100 s (Fig. 2B).
Indeed, based on the dynamic surface tension measurements, Ds for 2-MTS within AS mixtures
remains ~10”, indicating slightly faster organic diffusivity through the droplet than 2-MT (Table
S17). In the presence of AS, Ds increases by an order of magnitude. This suggests the presence of
AS increases solubility and dispersion of 2-MTS molecules through the droplet, (Prisle et al., 2010;
Toivola et al., 2017). A similar phenomenon has been observed in glyoxal/AS mixtures as the
presence of the inorganic compound improves dissolution of the organic (Kampf et al., 2013).
Therefore, the higher 2-MTS/AS surface tension values and diffusivity indicate that the organic is
well dispersed within the droplet, but AS dominates droplet surface tension properties. Both 2-MT
and 2-MTS present complex viscous properties that may affect droplet phase and potentially
change in the presence of inorganic compounds, such as AS. It is important to note that for 2-MTS,
the remaining sample mass also contains SMS, which may further influence the estimated
diffusion rates (Vignes, 1966; Guevara-Carrion et al., 2016). Future work should expand upon the
methodology of this study to further understand the influence of SMS on viscous organic
diffusivity, such as 2-MTS diffusion rates. Ultimately, diffusion effects were observed through
dynamic surface tension measurements and may influence 2-MT, 2-MTS, and AS-mixed aerosol
water uptake properties. Therefore, diffusion effects on synthesized organic and organic/AS
aerosol mixtures were probed through water uptake measurements.

4.2. Water Uptake Measurements

In addition to the previous measurements, the droplet growth of 2-MT, 2-MTS samples, and their
respective AS mixtures were measured; hygroscopicity was estimated under both subsaturated and
supersaturated conditions. Mixtures were varied by sample wt% (Table S21); organic wt% of 2-
MTS is estimated by accounting for impurities present in the sample and their respective properties
(e.g., density, hygroscopicity, Table S20). The adjusted mass wt% for 2-MTS/AS mixtures are
listed in Table S21. For subsaturated hygroscopicity, the H-TDMA instrument setup was used to
measure Gr for all experimental solutions at 88.2% RH. Experimental growth factor values for 2-
MT/AS and 2-MTS/AS mixtures are listed in Tables S20-S21. For supersaturated hygroscopicity,
the CCNC instrument setup was used to obtain experimental Dpso values across multiple
supersaturation conditions (0.31, 0.43, 0.65, 0.88, 1.10, 1.32, and 1.54 % SS); the critical diameter
values for 2-MT/AS and 2-MTS/AS mixtures are listed in Tables S22-S23.
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Under subsaturated conditions, both 2-MT and 2-MTS are moderately hygroscopic, with xurpma
values of 0.103 and 0.276, respectively (Fig. 3A). For 2-MT/AS (Fig. 3A, orange open squares)
and 2-MTS/AS (Fig. 3A, purple open circles) aerosol mixtures, subsaturated hygroscopicity values
are similar. For 2-MT/AS mixtures < 45 wt% organic, x values plateau close to pure AS (xint =
0.61) at a xu-toma ~ 0.56. For mixtures > 45 wt% organic, both 2-MT and 2-MTS exhibit lower .
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Figure 3. Experimental x-hygroscopicity measurements derived from (A) H-TDMA measurements and (B)
CCNC measurements. Subsaturated hygroscopicity (ku.tpma) of 2-MT/AS and 2-MTS/AS mixtures are
represented as open orange squares and open purple circles, respectively. Supersaturated hygroscopicity
(xcen) for 2-MT/AS and 2-MTS/AS mixtures are represented as orange squares and purple circles,
respectively. k-Kohler theory (xzsr) was used to predict hygroscopicity of 2-MT/AS (solid orange line) and
2-MTS/AS (solid purple line) via Eq. 6. Organic i, was determined from 100 wt% xcen. 2-MT kin (yellow
dashed line) was determined to be 0.269. 2-MTS xin (blue dashed line) was determined to be 0.139.

toma values, ranging from 0.103-0.505 for 2-MT/AS mixtures and 0.276-0.433 for 2-MTS/AS
mixtures. Previous studies by Malek et al. (2023) and Ferdousi-Rokib et al. (in review) have
observed a plateau in hygroscopicity for AS-dominated organic mixtures prior to a drop in x due
to the presence of phase separated morphology; as a result of phase separation, the inorganic AS
remains dissolved in the aqueous phase and drives hygroscopicity (Malek et al., 2023). After a
threshold composition is reached (45 wt% organic), more organic solute contributes to the aqueous
phase and thus hygroscopicity is lowered.

Under supersaturated conditions, 2-MT and 2-MTS remain moderately hygroscopic, with xcen
being 0.269 and 0.139, respectively. For 2-MT/AS mixtures (Fig. 3B, closed orange squares),
supersaturated x mimics the same trend as subsaturated 2-MT/AS «; for mixtures < 60 wt% 2-MT,
kcen also shows a plateau at ~ 0.53 and then decreases with increased organic aerosol composition.
In comparison, the 2-MTS/AS mixtures (Fig. 3B, purple circles) present a linear hygroscopic
trend; as organic wt% increases, kccn drops in a linear fashion resembling ideal mixing and volume
additivity (Petters & Kreidenweis, 2007). Indeed, 2-MTS/AS xcen correlates with the
hygroscopicity trend predicted by xzsr values (Eqgs. 11-12) (Fig. 3B, purple line). 2-MTS/AS
supersaturated hygroscopicity agrees well with original Kohler theory (R? = 0.972, Table S26),
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suggesting full 2-MTS dissolution and contribution to water uptake. By contrast, 2-MT/AS
mixtures do not agree with x-Kohler theory (R? = 0.787, Table S26), with the greatest discrepancy
observed in the region between the x experimental plateau and xzsr (Fig. 3, orange line);
additionally, subsaturated 2-MTS/AS mixtures deviate from xzsr during the initial hygroscopic
plateau (Fig. 3A, purple line). Thus, for 2-MT/AS mixtures and subsaturated 2-MTS/AS aerosols,
the ideal mixing rule does not apply. This can once again be attributed to limitations to organic
dissolution into the aqueous phase (Malek et al., 2023).

In addition to non-ideal hygroscopic trends, it is noted that overall, kcon values remain lower than
xu-toma vValues for both 2-MT/AS and 2-MTS/AS, contrary to the usual trend of xcen > Ku-toma
(Petters & Kreidenweis, 2007). The observed difference suggests greater organic dissolution and
contribution to hygroscopicity in the supersaturated regime compared to subsaturated conditions.
This suggests potential viscosity and diffusion limitations on hygroscopicity as RH transitions
from sub- to supersaturated. Indeed, the viscosity of the 2-MT and 2-MTS changes under different
conditions. Both compounds remain in the semi-solid phase state before entering the CCNC, and
behave like liquids in the H-TDMA, as shown in Table S18. Additionally, Asa-Awuku and Nenes
(2007) report diffusivity limitation effects on aerosol water uptake for compounds with Ds values
<2.5x 107'°, well within the range of Ds values for 2-MT, and 2-MT/AS. Water uptake was shown
to be driven by the viscous organic phase slowly diffusing into the aqueous phase (Asa-Awuku &
Nenes, 2007). Thus, it is believed that both 2-MT and 2-MTS organics slowly dissolve and phase
separate to form a viscous phase under subsaturated conditions, corresponding to slow diffusion
coefficients. AS is an inorganic compound that is assumed to instantaneously dissolve into the
aqueous phase and thus drives hygroscopicity when the droplet is phase separated, such as for 2-
MT/AS mixtures (Fig. 2). However, lower x values at supersaturated conditions can be attributed
to higher water content; previous studies have found greater water content correlating with
reduced viscosity due to a plasticizing effect and resulting in enhanced organic mixing (O'Meara
et al., 2016; Reid et al., 2018; Jeong et al., 2022). Thus, the organic viscous phase may experience
“cracking” and greater movement of organic molecules through the aqueous phase (Tandon et al.,
2019). Therefore, phase behavior of the organic can have a strong influence on aerosol water
uptake. Additionally, the non-ideal hygroscopic behavior of 2-MT/AS and subsaturated 2-
MTS/AS mixtures versus the ideal hygroscopic behavior of supersaturated 2-MTS/AS aerosols
can be probed through imaging of the aerosol mixture phase behavior.

4.3. Phase Morphology

To further understand the phase state and morphology of 2-MT and 2-MTS mixtures with AS,
AFM images were taken at varied organic wt% (Fig. 4). Dried synthesized 2-MTS presents itself
as a viscous, spherical particle, indicated by its smooth surface (Fig. S4); this agrees with both
shape factor measurement of ~1 (Armstrong et al., 2025 (2025)) and diffusion coefficient values.
As inorganic AS is mixed with 2-MTS, phase behavior changes. At 10 wt% 2-MTS (Fig. 4B),
particles exhibit an engulfed core-shell morphology. A previous study by Cooke et al. (2022)
observed a similar core-shell morphology for AS-seeded IEPOX-derived SOA particles; the study
observed an organic shell, while the inorganic salt was observed to be present in the shell as well
as within an aqueous core (Cooke et al., 2022). With AS dispersed on the outer shell as well as

16



555
556
557
558
559

560
561
562
563
564
565
566
567
568
569
570
571
572
573
574

575
576
577
578
579
580

being present in an aqueous core, the inorganic salt in the shell will likely easily dissolve during
water uptake and drive hygroscopicity, consistent with the results as observed in subsaturated
hygroscopicity measurements. However, AS within the shell may introduce roughness in the outer
edge which can promote “cracking” in the organic phase, which can result in full dissolution in
the presence of higher water content and ideal mixing (Tandon et al., 2019).

(A) Aerosol Droplet Morphology Schematic (B) 10% 2MTS 90% AS (C) 45% 2MTS 55% AS
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Figure 5. (A) Schematic depicting aerosol droplet composed of a viscous organic core and aqueous phase
layer and AFM images of (B) 10 wt% 2-MTS — 90 wt% AS (C) 45 wt% 2-MTS - 55 wt% AS (D) 10 wt%
2-MT — 90 wt% AS and (E) 45 wt% 2-MT — 90 wt% AS. AFM results depict vertical particle height (left)
and phase morphology (right).

As 2-MTS is increased to 45 wt%, the particle morphology shows greater inorganic phase
dispersion, with AS protruding through the viscous organic phase (Fig. 4C). The visualized
morphology and phase state of the particle agrees with behavior inferred from water-uptake and
droplet measurements (Sect. 4.2). In particular, ~45 wt% is the observed threshold for the plateau
in 2-MTS/AS xu.roma values, prior to a linear decrease in xu.tpma values. The dispersion of AS
disrupts the organic network within the viscous phase, giving rise to the observed roughness and
promoting the salting in of 2-MTS. This phenomenon agrees with the results of previously
published literature that show viscous organics mixed with AS; specifically, laboratory-generated
SOA-AS and citric acid-AS mixtures (Saukko et al., 2012; Abramson et al., 2013). Previous
studies have also observed increased diffusion within viscous SOA particles via a disruption of the
hydrogen bonding network between the organic molecules that can promote solute movement in
the droplet (Reid et al., 2018; Jeong et al., 2022; Sheldon et al., 2023). For this reason, it is likely
that greater organic diffusion occurs above 45 wt% organic, resulting in decreasing xu.roma values.
Furthermore, the well dispersed AFM morphology is indicative of ideal mixing under
supersaturated conditions, thereby agreeing with x-Kohler theory of droplet growth.

In comparison, 2-MT mixtures present an engulfed core-shell morphology from 10 to 45 wt%
organic (Fig. 4D-E). At 10 wt% 2-MT, the viscous organic phase dominates the particle
morphology and AS remains dispersed at the surface edge, as shown in Fig. 4D. As organic wt%
increases to 45 wt%, morphology remains unchanged and the organic phase stays intact. The intact
core-shell morphology of 45 wt% 2-MT aerosol mimic contrasts with the well dispersed
morphology observed for 45 wt% 2-MTS aerosol mimic. For 2-MT, the organic diffusion is
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limited under both sub- and supersaturated conditions, likely due to the undissolved viscous
organic phase (Fig. 4A). Specifically, 2-MT viscosity causes slower dissolution compared to AS
and results in the phase separated morphology. Thus, hygroscopicity of the 2-MT/AS mixture is
dominated by AS dissolution from the core and outer shell, corresponding to the hygroscopic
plateau observed for 2-MT/AS sub- and supersaturated water uptake measurements (Fig. 3).
Therefore, particle morphology and viscosity influence the synthesized 2-MT’s ability to diffuse
through the aerosol droplet and can affect aerosol water uptake process. Indeed, a previous study
by Zhang et al. (2018) described the “self-limiting” effect of a core-shell morphology on IEPOX-
SOA reactive uptake and can now be observed in the 2-MT/AS water uptake process. However,
diffusion limitations can also result in the need for longer time periods to reach an equilibrium
state, as observed by dynamic surface tension measurements. Consequently, current
hygroscopicity measurements that occur at fast time scales may not capture the full water uptake
process of the synthesized organics and their mixtures. For example, the residence of aerosols
within DMT CCNC columns is ~ 10 s (Paramonov et al., 2015) while similar H-TDMA instrument
set ups have a residence time ~ 6.5 s (Mikhailov & Vlasenko, 2020). However, a previous study
by Chuang et al. (2003) found atmospheric droplet growth timescales range between 5 to 100 s,
congruent with the timescale of 2-MT and 2-MTS dynamic surface tension change (Fig. 2. and
Chuang, 2003). Therefore, hygroscopicity of viscous organic containing aerosols, such as 2-MT
and 2-MTS, must be studied at greater residence times to observe any possible effects on
hygroscopicity; understanding whether timescale effects CCN activity of organic-inorganic
aerosol mixtures can greatly impact current global models that may assume instantaneous solute
dissolution during the water uptake process. Furthermore, future studies should consider whether
the hygroscopicity approximations of viscous 2-MT/AS and 2-MTS/AS mixtures are time
dependent, as time-dependent droplet formation has been observed for biogenic aerosols (Vizenor
& Asa-Awuku, 2018). Currently, traditional x-Kdhler theory is unable to predict the water uptake
of 2-MT/AS and subsaturated 2-MTS/AS aerosols and does not consider solute and droplet kinetic
effects. However, by accounting for phase morphology and viscosity, x predictions may be
improved.

In addition, size-dependent morphology may also affect x-hygroscopicity estimations. Several
studies observe a relationship between particle size and aerosol phase transitions during water
uptake (Veghte et al., 2013; Cheng et al., 2015; Altaf et al., 2016; Schmedding & Zuend, 2025).
Specifically, Veghte et al. (2013) and Cheng et al. (2015) observe smaller AS-organic particles
favoring a homogeneous liquid phase while larger particles remain in a partially engulfed
morphology; this finding correlates with 2-MT/AS engulfed morphology for particles imaged >
390 nm (Fig. 4). Indeed, for 2-MT/AS mixtures > 60 wt% 2-MT, xccn decreases with increasing
dry activation diameter before plateauing (Fig. S5). This trend may correlate to greater organic
diffusion as particle size and morphology changing before a dissolution limit is reached for > 60
wt% 2-MT/AS mixtures. For mixtures < 60 wt% 2-MT, a similar decrease in xccn 1s observed
before hygroscopicity begins to increase; this may be attributed to the engulfed morphology in
larger particles (Fig. 4D-E) promoting AS dissolution and water uptake contribution while 2-MT
diffusion reaches a limit. However, the water uptake measurements performed in this study do not
account for size-dependent phase morphology in its analysis. Therefore, future work may build
upon the results of this study to better parameterize hygroscopicity based on initial particle size
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and size-dependent phase morphology affecting x-hygroscopicity estimations. In particular, size-
selected CCN measurements can be performed to better probe size-dependent morphology effects
on aerosol activation. By doing so, global models can incorporate these influential
physicochemical properties into predictions of aerosol-cloud interactions.

5. Summary and Implications

In this study, we investigated the influence of solute diffusivity and droplet phase morphology on
the hygroscopicity of synthesized 2-MT, 2-MTS, and their mixtures with AS. Mixtures with AS
were varied by organic wt%. Both 2-MT and 2-MTS were previously observed to be viscous and
glassy, affecting diffusivity through water. Additionally, previous studies found 2-MT to be
weakly surface-active. To determine organic diffusivity and potential surface activity, dynamic
surface tension measurements were taken for aqueous organic and mixed organic-inorganic
solutions. 2-MT and 2-MTS were found to be weakly surface-active. Previous studies by Bain et
al., 2023 and Mikhailov et al., 2024 determined that surface activity in the dilute bulk concentration
range correlates with depressed aerosol surface tension. However, neither 2-MT nor 2-MTS are
sufficiently surface-active to depress droplet surface tension at the air-surface interface. 2-MT and
2-MTS solutes move slowly in droplets and have estimated diffusion rates (Ds) between 10 to 10°
'm? g7, with diffusion slowing as organic concentration is increased. When mixed with AS, 2-
MT diffusivity remains slow (107! m? s') while 2-MTS diffusivity increases by an order of
magnitude (10° m? s!); 2-MTS diffusion in aqueous AS-mixtures is similar to other quickly
dissolving compounds, such as NaCl (Ds = 10, Vitagliano & Lyons, 1956; Leaist & Hao, 1992)
and can result in a well-mixed droplet.

Organic viscosity and diffusion have have been shown to affect aerosol water uptake (Asa-Awuku

& Nenes, 2007; Bones et al., 2012; Tandon et al., 2019). For 2-MT, 2-MTS, and subsequent
mixtures under both sub- and supersaturated conditions, droplet growth is affected by solute
diffusion. Subsaturated droplet growth was measured using a H-TDMA at 88.2% RH and
subsaturated hygroscopicity was parameterized by xn-tpma. For supersaturated conditions, a
CCNC determined the activation ratio of particles at varied supersaturations (0.3-1.4% SS) and
water uptake was parameterized by xcen. 2-MT/AS mixtures exhibit plateaued xn-tpma and xcen
values close to xint of AS (~0.61). A similar plateau behavior is observed for 2-MTS/AS xu-TDM™MA.
However, for supersaturated conditions, 2-MTS/AS mixture xcen follows ideal mixing behavior,
represented by its proximity to x-hygroscopicity predicted by x -Kohler theory and volume additive
ZSR. Additionally, xu-tpma remains higher than xccn; this is a result of increased water content
reducing viscosity effects and enhancing organic dissolution under supersaturated conditions.

The x-hygroscopicity plateau in Fig. 3 has been previously attributed to the presence of phase
separation, resulting in the inorganic, more soluble, and ideal compound (AS) driving water uptake
(Malek et al., 2023). However, for 2-MTS/AS ideal hygroscopic behavior is indicative of a well
dissolved, homogeneous droplet (Petters & Kreidenweis, 2007). To better understand phase
morphology of the synthesized organic-AS mixed particles, AFM measurements of synthesized 2-
MTS, 2-MTS/AS mixtures, and 2-MT/AS mixtures were acquired. 2-MTS aerosols are smooth,
spherical, viscous particles; when mixed with AS at 10 wt%, AS remains in the aqueous core and
is dispersed on the side of the particle, introducing roughness on the aerosol outer shell. As organic
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concentration increases, the AS core is broken up through the particle. The less defined core-shell
morphology may be the result of AS disrupting the interactions between neighboring 2-MTS
particles in the viscous network; as a result, organic dissolution becomes faster as indicated by
greater 2-MTS diffusion rates. Thus, 2-MTS/AS aerosols behave similar to traditional full
dissolution assumptions. In comparison, 2-MT/AS mixture AFM images show an engulfed core-
shell morphology regardless of organic concentration. As a result, the viscous organic phase
remains intact while aqueous AS in the core drives hygroscopicity.

This study demonstrates that viscosity can dictate organic diffusion through aqueous droplets,
resulting in complex phase morphology and water uptake properties. Indeed, hygroscopicity from
the subsaturated to supersaturated regime evolves due to the presence of increased water content.
However, the hygroscopicity measurements performed in this study were on short time scales (6-
10 s); in comparison, dynamic surface tension measurements showed droplet equilibrium being
reached at 100-300 s for aqueous 2-MT, 2-MT/AS, and 2-MTS. Thus, current water uptake
measurements may not capture a potentially evolving hygroscopicity over time. This is critical in
understanding biogenic aerosol influence on cloud formation; a previous study by Chuang (2003)
found that droplet formation can occur within time scales of 5-100 s, well within evolving diffusion
times observed in this study. Therefore, future work must investigate potentially dynamic water
uptake of viscous biogenic aerosols, such as 2-MT, 2-MTS. Furthermore, time dependent x can be
developed to better account for organic diffusion within larger scale cloud parcel and global
models. In addition to time dependency, xk-hygroscopicity estimations may also be affected by size
dependent phase morphology. A study by Veghte et al. (2013) found smaller aerosol particles
preferring a homogenous state, while larger particles have an engulfed core-shell morphology
similar to 2-MT/AS aerosols in this study. Therefore, particle size may influence viscous organic-
AS water uptake due to diffusion and morphological influences. Future work may explore and
parameterize the effect of size-dependent phase separated morphology on aerosol activation
through step size-selected CCN measurements. Ultimately, it is crucial to understand how biogenic
aerosols, such as 2-MT and 2-MTS, properties (viscosity, diffusivity, and phase morphology) alter
cloud formation. The results of this study demonstrate the co-dependency of these properties for
two isoprene derived compounds and thus may improve our overall understanding of how biogenic
aerosols, and their mixtures affect acrosol-cloud interactions.
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