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Abstract

Isoprene-derived secondary organic aerosol (SOA) constituents, such as the 2-methyltetrols (2-
MT) and 2-methyltetrol sulfates (2-MTS), have been readily detected in atmospheric fine-aerosols
(PM2.s)—Iseprene-derived—SOA—compounds—exist) and within aeresel-mixtures containing
inorganie-salts;sueh-as-ammonium sulfate (AS). Despite its prevalence-within-the-atmosphere, the

water uptake of 2-MT, 2-MTS, and their mixtures are not well understood. In this study, we
determine the physicochemical properties (e.g.. surface activity, diffusivity, phase morphology) of
synthesized 2-MT, 2-MTS_samples, and their mixtures with AS. 2-MT and 2-MTS have been
previeusly-identified as surface-active eempounds-and are-beth-censidered-viscous;-thus. Thus,
dynamic surface tension (os2) measurements were taken for-beth-compounds-to determine their
organic diffusion coefficients (Ds). The droplet growth of the-synthesized-organic-compeunds-and
/AS mixtures was measured under subsaturated conditions (<100% RH)-using a humidified
tandem differential mobility analyzer (H-TDMA) and-relative humidity (RH)-was kepteconstant-at
88.2% RH + 1.5%. AereselDroplet activation and-dreplet-growth-was-alsewas measured under
supersaturated (> 100% RH) conditions using a cloud condensation nuclei counter (CCNC);
supersaturation (SS) ranged from 0.3-1.4%. Beth——subsaturated—and—supersaturated
h{y‘gl—eseep-}e}t—yHVLrOSCODICHV in both reglmes were parameterlzed by the smgle hygroscop1c1ty
parameter k. £ a v a a ana a
forecc-microscopy-(AFM)-measurcments:

This study demonstrates how diffusion and salting-in effects influence the water uptake of
synthesized, isoprene-derived SOA mixtures-sueh-as2-MT/AS-and 2-MTS/AS-. Results show that
when mixed with AS, organic diffusion for 2-MTS/AS becomes an order of magnitude greater
thanfor the-organieselute-alonesfaster while 2-MT diffusivity remains unchanged-in-the presence
of-AS.. Both 2-MT/AS and 2-MTS aerosols present a plateau in sub—and—supersaturated
subsaturated x-values close to pure AS:2-MTS/AS-aeresols—exhibitasimilarbehaviorunder
subsaturated-eonditions.. However, under supersaturated conditions, 2-MTS/AS behaves as—an
idealideally, well-mixed aeresel, and can be characterized by traditional—x-Kohler theory.
Isoprene-derived SOA like 2-MT and 2-MTS samples are ubiquitous, and thus, the impact from
biogenic sources and its non-ideal thermodynamic properties must be considered in aerosol-cloud
interactions.
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1. Introduction

Fine aerosol particles (PM2.5) suspended within our atmosphere are a major contributor to Earth’s
radiative forcing and uncertainties in global temperature projections (Intergovernmental Panel on
Climate, 2023). Aerosol-cloud radiative forcing uncertainty is attributed to aerosols’ ability to
form and modify cloud properties, known as aerosol-cloud interactions or the “aerosol indirect
effect” (Kohler, 1936; Twomey, 1959; Twomey, 1974; Albrecht, 1989; Intergovernmental Panel
on Climate, 2023). An aerosol’s ability to alter droplet formation is dependent on its
hygroscopicity or water uptake behavior under supersaturated conditions (RH > 100%). In the
presence of water vapor, aerosols present a surface for condensation; droplet activation depends
on aerosol particle chemical composition and size (Seinfeld & Pandis, 1998; Petters &
Kreidenweis, 2007). The aerosol droplets can reach a point of unstable and uncontrollable growth,
thereby acting as cloud condensation nuclei (CCN) (Kdhler, 1936; Seinfeld & Pandis, 1998).

Droplet models can apply Kohler theory to estimate aerosol droplet growth and CCN activity
(Kohler, 1936). In traditional Kohler theory, it is assumed that all aerosol solutes instantaneously
dissolve and contribute to water uptake (Petters & Kreidenweis, 2007). Aerosol hygroscopicity is
thus parameterized by Kohler theory through the single hygroscopicity parameter x; x of mixed
composition is often estimated by the Zdanovskii-Stokes-Robinson (ZSR) mixing rule and it is
assumed that an individual solute’s contribution to hygroscopicity is scaled by its volume fraction
(Petters & Kreidenweis, 2007). Thus, knowing aerosol composition is critical for understanding
CCN formation. However, x-Kohler predictions of aerosol CCN activity neglect solute
physicochemical properties that may alter droplet growth. Previous studies have shown that
droplet-altering properties may be present within aerosols, such as the presence of complex
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morphologies (e.g., inner core-outer layer), surface-activity, or salting in/salting out effects; as a
result, discrepancies between experimentally-determined x and x-Kohler predictions may occur
(Asa-Awuku & Nenes, 2007; Bertram et al., 2011; Song et al., 2013; Prisle & Mglgaard, 2018;
Riemer et al., 2019; Ott et al., 2020; Malek et al., 2023).

Field studies have observed the presence of internally mixed aerosols containing both inorganic
and organic compounds (Saxena, 1995; Murphy et al., 1998; Pratt & Prather, 2010). Inorganic
aerosols, primarily composed of salts like ammonium sulfate (AS) and sodium chloride have well-
defined hygroscopic properties. The ionic behavior of inorganic compounds promotes
instantaneous dissolution in water and contributes to CCN activation (Cziczo et al., 1997; Seinfeld,
2003; Rose et al., 2008; Laskina et al., 2015). However, fine organic aerosols (OA) pose a greater
challenge to aerosol hygroscopicity predictions. OA constitute 20-50% of atmospheric fine aerosol
mass and are diverse in composition. OA can be directly emitted into the atmosphere, referred to
as primary organic aerosols (POA) (Kanakidou et al., 2005). POA can originate from
anthropogenic (e.g., biomass burning and coal combustion) and biogenic (e.g., pollen) sources
(Seinfeld & Pandis, 1998; Kanakidou et al., 2005). In addition to POA, secondary organic aerosol
(SOA) can be formed through multigeneration gas-phase oxidation reactions of volatile organic
compounds (VOCs) or multiphase reactions of semi-/low-volatility organic compounds
(SVOCs/LVOCs) (Kanakidou et al., 2005). SOA is ubiquitous in the atmosphere, forming a major
component of fine OA mass (Zhang et al., 2007; Srivastava et al., 2022). For example, a study by
Zhang et al. (2007) found that SOA contributed 65% to 95% of OA mass in urban and remote
regions. Furthermore, SOA have been readily detected in mixtures with inorganic components,
such as AS (Yang et al., 2009; Zhu et al., 2017); indeed, a study by Zhu et al. (2017) estimated
66% of SOA as being internally mixed with sulfate. Thus, in addition to understanding pure
organic compounds, it is important to also study organic-inorganic interactions.

Previous studies have determined that a significant contributor to SOA is the aqueous-phase
chemical processing of isoprene-derived oxidation products (Claeys et al., 2004; Kanakidou et al.,
2005). Isoprene is a VOC emitted from biogenic sources and is considered one of the most
abundant biogenic VOCs (BVOCs). Isoprene emissions have been estimated to be ~ 500 Tg C
year’!, rivaling methane emissions (Guenther et al., 2012; Sindelarova et al., 2014). Under alkyl
peroxy radical (RO2) + hydroperoxy radical (HO:) dominant conditions, isoprene is
photochemically oxidized by gas-phase hydroxyl radicals (OH) to form large quantities of
isoprene-derived epoxydiols (IEPOX) (Paulot et al., 2009). IEPOX is then able to partition into
acidic sulfate-containing aerosol particles to produce isoprene-derived SOA (Surratt et al., 2010;
Lin et al., 2012; Gaston et al., 2014; Riva et al., 2019), which consists largely of 2-methyltetrols
(2-MT) and 2-methyltetrol sulfates (2-MTS).

Both 2-MT and 2-MTS were previously detected in atmospheric PM2.s5. For example, a study by
Claeys et al. (2004) found that 2-MT contributed 2% of organic carbon detected in PM2.s collected
from the Amazon rainforest. Additional field studies have also found that 2-MTS can contribute
0.3-16.5% of total organic carbon in both the Amazon rainforest and Southeast US (Chan et al.,
2010; Froyd et al., 2010; Hettiyadura et al., 2019; Riva et al., 2019; Chen et al., 2021; Hughes et
al., 2021). The formation of both compounds can also alter aerosol particle composition and phase



149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
h71
172
173
174
175
176
177
178
179
180
181
182

183
184
185
186
187
188
189
190

state (Zhang et al., 2019a; Zhang et al., 2019b). For example, 2-MT and 2-MTS have been
observed to be in a semisolid or glassy state in aerosol particles (Chen et al., 2023). Highly viscous
SOA can exist in a glassy state; SOA viscosities can range from 10% to 102 Pa-s for ultraviscous
liquids or >10'2 Pa-s for amorphous, extremely viscous compounds (Virtanen et al., 2010;
Renbaum-Wolffet al., 2013; Zhang et al., 2015). Viscosity can influence organic solute dissolution
in droplets by slowing diffusion through the aqueous phase (Renbaum-Wolff et al., 2013). Asa
result, slower organic diffusion rates can influence gas partitioning, particle shape, chemical aging,
multiphase reactions, and aerosol droplet growth (Riipinen et al., 2011; Shiraiwa & Seinfeld, 2012;
Zhang et al., 2015). Furthermore, studies incorporating SOA viscosity and phase state into larger,
global-scale models have observed changes to CCN and ice nuclei (IN) formation predictions
(Riipinen et al., 2011; Shiraiwa et al., 2017; Wolf et al., 2021). Thus, probing the viscosity and
resulting diffusion limitations may be necessary for understanding 2-MT and 2-MTS water uptake
properties (Chen et al., 2023).

Similar to other complex organic mixtures, the water uptake ability of isoprene-derived SOA can
be further complicated when mixed with inorganic components, such as AS. Previous studies have
observed the presence of internally-mixed SOA/AS aerosols in both the southeast US and Amazon;
in both regions a strong presence of 2-MT and 2-MTS has been observed (Chan et al., 2010; Froyd
etal., 2010; Bondy et al., 2018; Riva et al., 2019; Wu et al., 2019). The presence of inorganic salts
in aerosol mixtures can influence phase state based on organic physicochemical properties
(Topping, 2010; Ruehl et al., 2012; Ruehl et al., 2016; Malek et al., 2023). Inorganic compounds
can result in water solubility-limited and/or surface-active organics partitioning to a separated
phase (Ruehl et al., 2012; Ruehl et al., 2016; Freedman, 2017; Kang et al., 2020). As a result, the
partitioned aerosols can exhibit a phase separated morphology (e.g.. but not limited to Ruehl et al.,
2012; Ruehl et al., 2016; Freedman, 2017; Kang et al., 2020; Malek et al., 2023). However,
inorganic salts may also enhance organic dissolution, known as “salting in” (Riva et al., 2019).
For instance, studies have observed increased diffusion in viscous SOA particles through the
aqueous droplet phase in the presence of inorganic salts (Reid et al., 2018; Jeong et al., 2022;
Sheldon et al., 2023). Increased diffusion is a result of salts disrupting the hydrogen bonding
network between neighboring organic molecules (Reid et al., 2018; Jeong et al., 2022; Sheldon et
al., 2023). Therefore, organic physicochemical properties (surface-activity, viscosity) of SOA,
such as 2-MT and 2-MTS, must be better defined to better predict mixed SOA/AS aerosol CCN
activity. To our knowledge there are no studies to date that investigate 2-MT and 2-MTS aerosol
water uptake, water uptake of mixtures with AS, and the potential effect of physicochemical
properties on CCN activity predictions.

In this study, we investigated the surface activity, diffusivity, droplet growth and water uptake of
2-MT, 2-MTS, and their mixtures with AS. 2-MT and 2-MTS surface tension values were
experimentally determined. A previous study by Ekstrom et al. (2009) found 2-MT to be
moderately surface-active. However, the surface activity of 2-MTS has not been characterized and
potential organic surface tension depression in the presence of AS has not been explored for both
organics. In tandem with surface tension measurements, this study estimated diffusion coefficients
of both compounds to explore the effects of viscosity and diffusivity on aerosol water uptake.
Aerosol x-hygroscopicity for pure organic and organic-AS mixtures were experimentally
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determined under both subsaturated conditions (< 100% RH) and supersaturated (> 100% RH)
conditions to observe both droplet growth and CCN activity, respectively. x-hygroscopicity
measurements were then compared to x-Kohler hygroscopicity theory to evaluate the efficacy of
traditional full dissolution and negligible viscosity assumptions in predicting the CCN activity of
both compounds and their mixtures. Lastly, Atomic Force Microscopy (AFM) measurements on
mixed particles were conducted to further understand particle morphology. The following work
provides a comprehensive analysis of the wide range of physicochemical properties that may
influence the droplet growth of 2-MT and 2-MTS mixed with AS.

2. Experimental Methods
2.1. Experimental Chemicals

For this study, ammonium sulfate (AS, (NH4)2SOs; Thermo Fisher Scientific, >99.0%), was
purchased and used without further purification. 2-methyltetrol (2-MT) and 2-methyltetrol sulfate
(2-MTS) samples were synthesized using the published procedure of Cui et al. (2018). 2-MT was
determined to be > 98% pure. The purity of 2-MTS was determined to be ~73 wt%, with remaining
sample mass estimated to be 3 wt% AS and 24 wt% sodium methyl sulfate (SMS). It should be
noted that from hereon 2-MTS sample refers to prescribed synthesized mixture and subsequent
calculations account for the estimated contributions of AS and SMS.

2.2. Surface Tension Measurements

The surface tension of 2-MT, 2-MTS, and their mixtures with AS was measured at atmospherically
relevant aqueous phase concentrations. Due to the limited amounts of synthesized sample, mixed
amounts were judiciously selected to mimic mixture ratios previously reported in the literature.
Specifically, a study by Cope et al. (2021) found that 2-MT concentrations in the atmosphere
reached an upper bound of 300 mM. Therefore, stock solutions of 300 mM 2-MT and 2-MTS were
prepared using deionized (DI) water. Furthermore, it is assumed that surface tension measurements
at dilutions higher than 300 mM are also relevant for droplet growth. A study Bain et al. (2023)
found that aerosol surface tension can be approximated from surface tension measurements of bulk
mixtures composed of < 100 mM organic component. Additionally, recent studies (Mikhailov et
al., 2024; Ferdousi-Rokib et al., 2025) also support the application of more dilute concentration
regimes to predict droplet growth. A recent study by Mikhailov et al. (2024) found that surface
tension depression observed in bulk dilute surface tension measurements was reflective of aerosol
properties. Ferdousi-Rokib et al. (2025) also found that salting out effects can be approximated in
mixtures having < 100 mM organic component. Thus, in this work, the stock solutions were diluted
to a 3-94 mM range; each stock solution and subsequent dilution concentrations are provided in
Supplemental Tables S1-S5.

Droplet surface tension (osa) was measured using a pendant drop tensiometer with a modified
profile analysis tensiometer (SINTERFACE Inc.); the experimental set up has been described in
Fertil et al. (2025). Briefly, the pendant drop tensiometer generates a droplet of solution (< 10 pL)
suspended from a 0.9-mm diameter needle (Beier et al., 2019; Fertil et al., 2025). Droplets remain
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suspended for 300 s to reach equilibrium; at each time step (~1 s), the droplet osa was obtained
from fitting the droplet curvature to the Young-Laplace Equation (Fordham & Freeth, 1948; Spelt,
1996; Padro et al., 2010). Surface tension measurements were run in triplicate; prior to each
measurement, the tensiometer was flushed with DI water and ~ 2 mL of solution. Measurements
were obtained at ambient room conditions, with temperature range of 20.2-22 °C and relative
humidity range of 40-45 % RH.

As the droplet equilibrates, surface tension changes, which is attributed to the accumulation of
solute diffusing to the droplet surface (Joos & Rillaerts, 1981; Eastoe et al., 1998; Chernyshev &
Skliar, 2015). As the solute saturates the surface, surface tension reaches equilibrium (Ross, 1945).
The accumulation of solute at the surface and resulting concentration gradient within the droplet
can be described by Fick’s Second Law:

ac a%c
5= Do (D

. . ac . . L .
where concentration over time P proportional to the second derivative concentration over

2
position ZTS and the diffusion coefficient Ds (m?s™"). The dynamic surface tension can be correlated
with solute diffusion over time as (Joos & Rillaerts, 1981):

6, =0 — 2RTC (%)05 ©)

where oy is the starting surface tension, ot is the surface tension at specified time #, R is the universal
gas constant, 7" is temperature, and C is organic molar concentration. Here, evaporation effects are
negligible during the short suspension times. Therefore, the organic molar concentration C is
equivalent to the droplet solution concentration as Eq. 2 can then be rearranged to solve for Ds
using dynamic surface tension measurements.

2.3. Aerosol Experimental Methods
2.3.1. Aerosol Generation

Solutions of 0.1 g L! total solute (2-MT, 2-MTS, and mixtures with AS) were prepared using
ultra-purified Millipore water (18 MQ-cm). Mixtures compositions are provided in Table S6.
Polydisperse aerosols were then generated by passing each aqueous solution through a constant
output Collison Nebulizer (Atomizer, TSI 3076); the generated aerosols were then dried to < 5%
RH using two silica gel dyers in series. Aerosols were then analyzed for their water uptake
properties under sub- and supersaturated conditions. To determine aerosol phase morphology,
atomic force microscopy (AFM) images were also obtained. In addition to water uptake and AFM
measurements, organic density and shape factor were measured; for details on density and shape
factor measurements, see Armstrong et al. (2025).

2.3.2 Water Uptake Measurements
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A humidified tandem differential mobility analyzer (H-TDMA) measured droplet growth under
subsaturated conditions. Dry, polydisperse aerosols were size selected at 100, 150, and 200 nm by
an electrostatic classifier (DMA 1, TSI 3082; flow rate = 0.3 L min!) and humidified using a
Nafion humidification line (PermaPure M.H. series); particles were humidified at 88.2% + 1.5%
RH. Selected dry diameters are often assumed to be spherical, thus having a shape factor (y) of 1
(DeCarlo et al., 2004). Aerodynamic aerosol classifier (AAC) shape factor measurements
confirmed 2-MT and 2-MTS sphericity (Armstrong et al., 2025). The wet diameter (Dw) was
measured using a second electrostatic classifier (DMA 2, TSI 3082; flow rate = 0.3 L min™!); the
ratio of Dw to the dry-size selected diameter (Dd) is equal to the growth factor (Gr). The
experimental set up is provided in Fig. S1. To calibrate the H-TDMA, a 0.1 g L'! solution of AS
was aerosolized; dried AS aerosols were size selected at 100 and 150 nm. Dried AS aerosol Gr
and instrument RH was measured, with calibration measurements repeated multiple times as
reported in Table S7. The experimental solutions were then aerosolized, and Gr was obtained for
each solution; Gr is used to calculate the hygroscopicity parameter under subsaturated conditions,
xn-tpMa. In addition to subsaturated conditions, water uptake was measured under supersaturated
(SS) conditions using a CCNC-100 (Droplet Measurement Technologies); the experimental set up
is provided in Fig. S2. The theory and operation of the CCNC has been previously described
(Roberts & Nenes, 2005; Lance et al., 2006; Rose et al., 2008). The Scanning Mobility CCN
Analysis (SMCA) protocol was used to measure droplet activation (Moore et al., 2010). Briefly,
the dried polydisperse aerosols were passed through an electrostatic classifier (TSI 3080) in
scanning mode and charged; scanning mode operated from 8-352 nm for 135 s. The DMA operated
at a sheath-to-aerosol flow rate ratio of 10:1, and aerosol sample flow rate of 0.8 L min’!. The
monodisperse, size-selected aerosol stream was then sampled by a condensation particle counter
(CPC, TSI 3776, flow rate = 0.3 L min!) and the CCNC-100 (flow rate = 0.5 L min™') in parallel.
The CPC counted the number concentration of dry particles at a given particle size (condensation
nuclei, Nev). The CCNC exposed the particles to 0.3-1.4%SS and the number concentration of
particles activated (Ncev) were measured. The instrument set up was calibrated using AS (Rose et
al., 2008) and the calibration data are provided in Table S8 and Fig. S3.

The CPC counted the number concentration of dry particles at a given particle size (condensation
nuclei, Nev). The CCNC exposed the particles to 0.3-1.4%SS and the number concentration of
particles activated (Ncev) were measured. The instrument set up was calibrated using AS (Rose et
al., 2008) and the calibration data are provided in Table S8 and Fig. S3.

CCN data of AS and experimental solutions were analyzed using the Python-based CCN Analysis
Toolkit (PyCAT 1.0) (Gohil, 2022; Gohil & Asa-Awuku, 2022). PyCAT is a Python version of
SMCA and is available on GitHub for public use. The analysis toolkit calculated the activation
ratio Ncen/New for each dry particle size. The activation ratios were fitted using a sigmoid curve
and the critical diameter (Dp, s0) was found, at which ~50% of the dry particles activate. A charge
correction is applied in PyCAT using the multi-charge correction algorithm previously described
(Fuchs, 1963; Wiedensohler, 1988). The obtained critical diameter of each solution is then used to
calculate the single hygroscopicity parameter under supersaturated conditions, xccn.

2.3.3. Atomic Force Microscopy (AFM) Morphology
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Atomic force microscopy (AFM) measurements were utilized to characterize aerosol phase
morphology. 2-MTS, 2-MTS/AS, and 2-MT/AS particles were collected onto silicon substrates
(Silson Ltd) using a cascade impactor (Sioutas Cascade Impactor, flow rate =9 L min™! and stored
at room temperature and relative humidity (40-50% RH) prior to analysis. Imaging followed the
procedure of Zhang et al. (2018). Briefly, particles were imaged in a 5 x 5 um region using a
Dimension ICON® AFM (Bruker) in tapping mode with resonant frequency of 150 kHz and spring
constant of 5.4 N m.

2.3.4 Viscosity and Diffusion Calculation

The viscosity and the diffusion coefficients of the 2-MT and 2-MTS aerosols were calculated using
a modified Vogel-Tammann-Fulcher (VTF) equation (DeRieux et al., 2018). The dry glass
transition temperature values were determined to be 226 K and 276 K from a previous study by
Zhang et al. (2019b). The Gordon-Taylor coefficient and the fragility coefficient were assigned as
2.5 and 20, respectively. The hygroscopicity values were used from the measurement of H-TDMA
of this study.

3. Traditional x-Kéhler theory

Traditionally, water uptake of aerosol particles has been calculated using x-Kdhler theory (Kohler,
1936; Petters & Kreidenweis, 2007). Kohler theory considers aerosol physicochemical properties
(e.g., solute density, molecular weight) to describe the equilibrium water vapor saturation ratio at
a droplet’s surface (Seq). The equilibrium relationship encompasses two competing effects. The
Kelvin effect describes the increase of water vapor saturation as a result of the curvature of the
droplet; the Kelvin effect is represented by droplet surface tension asa. The Raoult (solute) effect
competes by decreasing vapor pressure due to the presence of solute in the aqueous droplet; the
solute effect is represented by the water activity term, aw (Seinfeld & Pandis, 1998; Wex et al.,
2008). For compounds dissolved in water, water activity can be parameterized by the single
hygroscopicity parameter, «, as follows (Petters & Kreidenweis, 2007; Sullivan et al., 2009):

1_ Ys
=1t 3)

where Vw and Vs are the volume of water and dry solute, respectively. Therefore, the equilibrium
saturation ratio (Seq) over the droplet is described as:

-1
_ Dd3 4052 My
Seq = (1 + KDW3—Dd3) exp (RprDw)’ @)
where pw is the density of water, Mw is the molecular weight of water, R is the universal gas
constant and 7' is the temperature.

k describes ability of an aerosol to uptake water assuming full dissolution, and can be calculated
from the intrinsic properties of the solute as xint (Sullivan et al., 2009):

VsPs M,

Kint = pW—MSW; Q)
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where M;s is the molecular weight of solute, vs is the van’t Hoff factor, and ps is the density of the
solute; Armstrong et al. (2025) found 2-MT and 2-MTS density to be 1.4 g cm™ and 2.46 g cm?,
respectively. To estimate x-hygroscopicity of aerosols containing more than one compound, the
Zdanovskii, Stokes, and Robinson (ZSR) mixing rule can be applied to estimate (Petters &
Kreidenweis, 2007):

KzsR = Xi €iki (6)
where &; is the volume fraction of the individual solute component, i.

Experimental data can be used to derive aerosol x. Under subsaturated (< 100% RH) conditions,
Gr is related to hygroscopicity as follows (Kreidenweis & Asa-Awuku, 2014):

3_
—ED  _Gian, (7)

( 40'5/aMw )
exp| st m—rs

KH-TDMA =

RTpwDyGF

Where xn-tpma is subsaturated hygroscopicity and RH is the relative humidity of the H-TDMA
instrument as a decimal. Similarly, for supersaturated (>100% RH), the critical diameter correlates
to x as follows (Petters & Kreidenweis, 2007):

o *os/aMw 3
“Catin) (8)

Keen = :
CCN ™ 27p3in2ss

Where xcen is supersaturated hygroscopicity. It is assumed that droplet surface tension osa is
equivalent to that of the surface tension of water ~ 72 mN m™!. K6hler theory also assumes that all
solutes are well mixed within the aqueous phase. The K&hler/ZSR model does not account for
potential viscosity and diffusivity limitations due to inorganic-organic mixing in the aqueous
phase. Therefore, in this study, k- Kohler values are predicted assuming both 2-MT and 2-MTS
are well mixed within the aqueous phase and fully contribute to droplet growth. The applicability
of these assumptions is discussed in the later sections. Additionally, a list of variable abbreviations
is provided in Table S9.

4. Results
4.1. Surface Tension and Diffusion
Organic Samples

Dynamic pendant drop tensiometer measurements were taken for 2-MT and 2-MTS samples;
measurements were performed by hanging droplets < 10 puL over a period of 300 s. The droplet
curvature was measured every 1 s. Average surface tension values were obtained for 2-MT and 2-
MTS when droplet surface tension values remained constant (at equilibrium) and are listed in
Table S10 and shown in Fig. 1.

In the dilute bulk measurement regime, 2-MT sample (Fig. 1, orange squares) and 2-MTS sample
(Fig. 1, purple closed circles) gy values are close to pure water (~ 72 mN m™!, Fig. 1, blue dashed
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line). For solutions < 53 mM organic concentration, 2-MT and 2-MTS samples exhibit little to no
surface-activity. Surface-activity is similar to the dilute surface tension of pure AS, a non-surface-
active compound, which remains ~ 72 mN m™'(Fig. 1, red circles, Pruppacher et al., 1997).
However, for organic solutions > 53 mM, minimal surface tension depression is observed with os/a
values between ~68-70 mN m™' (Fig. 1 and Table S10); in comparison, AS surface tension
increases with concentration, as observed in Fig. 1 and with previous studies (namely, Pruppacher
et al., 1997; Hyvirinen et al., 2005; Mikhailov et al., 2024). Therefore, both synthesized 2-MT and
2-MTS sample mixtures can be classified as weakly surface-active. A previous study by Riva et
al. (2019) observed greater surface tension depression for IEPOX SOA/sulfate mixtures. In
particular, enhanced surface tension depression was attributed to organic partitioning and
formation of 2-MT and 2-MTS oligomers (Riva et al., 2019).

In comparison to the surface tension of other short-chained particulate organosulfates, such as
sodium ethyl sulfate (Fig.1, black triangles) and sodium methyl sulfate (Fig. 1, grey triangles), 2-
MT and 2-MTS have lower dilute surface values (Peng et al., 2021). However, similar to other
surface-active organosulfates (sodium ethyl sulfate and sodium octyl sulfate), neither 2-MT
sample and 2-MTS sample surface tension significantly depress aerosol surface tension (Table S11
and S14). For example, Mikhailov et al. (2024) observed surface tension depression as low as ~
56 mN m! for dilute D-glucose/AS mixtures. Furthermore, moderately surface-active compounds,
such as 2-methylglutaric acid (2-MGA, Fig. 1, green squares) and sodium octyl sulfate (Fig. 1,
grey diamonds) exhibit surface tension depression in the range of ~ 64-68 mN m™ for
concentrations < 22 mM (Tables S13-S14). Additionally, stronger surface-active organics
(surfactants), such as sodium dodecyl sulfate (SDS) show surface tension at the droplet surface
can be depressed in the dilute regime. SDS reaches ova of ~ 39 mN m™! at 9 mM organic (Fig. 1
and Table S15). Sodium octyl sulfate, SDS, and 2-MGA present noticeable surface tension
depression in the dilute bulk measurement regime (Fig. 1) that affect aerosol properties
(Vepsildinen et al., 2023; Zhang et al., 2023; Kleinheins et al., 2025). However, in comparison to
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|399 previously studied organics, 2-MT and 2-MTS 65 samples remain close to pure water in the dilute
400  bulk regime (Fig. 1). Previous studies by Bain et al. (2023) and Werner et al. (2025) emphasize
401  the role of surface area-to-volume ratio dictating aerosol surface tension. Specifically, aerosol
|402 surface tension values are best represented by surface tension measurements of the organic in bulk
403  solutions < 100 mM (Bain et al., 2023; Ferdousi-Rokib et al., 2025; Werner et al., 2025). Thus, 2-
|404 MT and 2-MTS sample mixture surface activity is negligible for droplet activation as both dilute
405  organic ova is close to that of pure water (~72 mN m").

|406 It should be reiterated and noted that the synthesized 2-MTS sample is 73% pure 2-MTS and is
407  likely mixed with AS and SMS. Both SMS and AS (Fig.1, red circles; Table S16) have surface
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tension values, > 72 mN m' in the dilute regime. However, despite the presence of impurities in
the mixture, synthesized 2-MTS sample mixture surface tension reaches values ~ 68 mN m™.
Therefore, the presence of these additional-cempeundsimpurities may counteract possible further
surface tension depression exhibited by pure 2-MTS. Future work can better probe surface tension
modelingstudies-for synthesizedof the pure organic 2-MTS data-may-be-needed-to-probe-theand
effects of SMS by applying a multicomponent surface depressing—abilities—of—the—pure

organosulfate-compenenttension model (e.g., multicomponent models of Topping et al., 2007)- to
dynamic surface tension measurements.

Both 2-MT and 2-MTS are considered viscous compounds and may diffuse slowly through the
measured droplets (Reid et al., 2018; Zhang et al., 2019a; Chen et al., 2023). As a result,
equilibrium surface tension is reached after a period of time, ¢. The rate of diffusion of the organic
through water, also known as the diffusion coefficient Ds, can be calculated from dynamic surface
tension measurements (Eq. 1-2). Diffusion coefficient values for synthesized 2-MT and 2-MTS
samples range between 10 to 10! m? s, with diffusion slowing with increasing sample
concentration. Specifically, Ds for the 2-MT and 2-MTS samples are estimated to be 10° to 107!
m?s!and 107 to 101 m? 57!, respectively (Table S17). Additionally, the viscosity-based diffusion
coefficient was calculated and shown in Table S19. 2-MT and 2-MTS diffusion rates are
comparable to rates observed for other previously investigated viscous components in aqueous
solution (Curry et al., 2018; Tandon et al., 2019). For example, methylglyoxal, a known viscous
component, has an aqueous phase diffusion rate ~ 10° m?2s™! (Curry et al., 2018). In addition to
the diffusion coefficients in aqueous solution, a study by Chenyakin et al. (2017) average diffusion
coefficients between 10713 and 10" m? s°! for organic molecules in a sucrose-water proxy for SOA.
A study by Renbaum-Wolff et al. (2013) reported diffusion coefficients ranging from 10> and 10-
1 m? s! for a-pinene-derived SOA between 70-90% RH. Indeed, 2-MT and 2-MTS have been
previously observed to be highly viscous, resulting in slow diffusivity (Wang et al., 2011;
Chenyakin et al., 2017; Tandon et al., 2019; Zhang et al., 2019a; Chen et al., 2023). Furthermore,
at higher viscosity and lower diffusion rates, the diffusion of solute molecules fails to follow the
Stokes-Einstein relationship describing the self-diffusion of solute molecules through a liquid
phase (Einstein, 1905; Chenyakin et al., 2017; Tandon et al., 2019). For viscous material, such as
2-MT and 2-MTS_sample, diffusion in water is self-limited (Chenyakin et al., 2017). Slow
diffusion correlates with the longer time scales needed to reach equilibrium surface tension for
more concentrated sample solutions; the solute molecules are limited in their ability to accumulate
to the surface; thus, time is an important factor in the surface tension measurements. This effect is
more prominent in 2-MT than 2-MTS_sample, as evident in its slower diffusion rates for
concentrations >30 mM (Table S17).,

AS and Synthesized Organic Mixture
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|447 Previous studies have observed that inorganic compounds, such as AS, mixed with organics can
448  enhance surface tension effects (Topping, 2010; El Haber et al., 2023). Additionally, AS can result
449  in the partitioning of organics to the to the surface (i.e., the movement of organics to the surface is
450  commonly referred to as salting-out). To determine if partitioning effects are present in organic/AS
|451 mixtures, synthesized 2-MT and 2-MTS_samples were mixed with 500 mM AS and dynamic
452  surface tension measurements were taken; mixture dynamic surface tension measurements are
453  shown in Fig. 2. Average mixed surface tension values are listed in Table S10.

74 ¥
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E
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¢ 72
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" W y
c T e g
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©
g ) mM 2-MT, D, 9 x 10
7]
70 + + 67 + +
1 10 100 1000 1 10 100 1000
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dynamic surface tension measurements and overall sample diffusivity.

454  For mixtures of 3-9 mM 2-MT and 500 mM AS, surface tension remains stable ~ 75 mN m™' and
|455 is higher than pure-2-MT (>98 wt% purity) solution surface tension alone (Fig. 2A). Higher osa
456  values indicate a lack of salting out effects and organic surface partitioning; previous surface
457  tension studies of organic/AS mixtures observed salting out effects through lower ova values in
458  comparison to pure organic solutions (Ferdousi-Rokib et al., 2025 (in review)). Thus, for 3-9 mM
459  2-MT with 500 mM AS mixtures, organic partitioning is not enhanced, and the droplet surface
460  tension aligns with pure AS os/a (Fig.1. and Table S16). When organic concentration in the mixture
461  is increased to 94 mM, a stronger time dependence for surface tension is observed (Fig. 2A); an
462  equilibrium surface tension of ~71.2 mN m! is reached at ~300 s. This lower surface tension for
463 94 mM 2-MT with 500 mM AS compared to the previous 2-MT/AS mixture correlates with the
464  higher concentration of organic in solution. However, the longer equilibrium time is indicative of
465  a slow solute diffusion in the droplet.

466  Previous studies have observed diffusion effects within dynamic surface tension measurements
467 and estimated solute diffusion (Eastoe et al., 1998; Bain et al., 2024). To determine organic
468  diffusion within AS mixtures, the Ds was calculated using Eqs. 1-2. For 2-MT/AS mixtures, Ds
469  ranged from 107 to 10'!!, with diffusion slowing as organic concentration increases (Fig. 2A, Table
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S17). 2-MT organic diffusion in AS mixtures is similar to that of the pure-organic 2-MT solution
(with > 98% purity) Ds values. As a result, 2-MT organic diffusion remains relatively unaffected
in the presence of AS. The organic 2-MT molecules do not diffuse fast enough to fully accumulate
at the surface and substantially lower surface tension.

Similar to 2-MT/AS mixtures, 2-MTS/AS mixture surface tension was higher than 2-MTS sample
solution surface tension alone. 2-MTS/AS mixture oss values ranged from ~ 72.5 to 75 mN m’!
and remain close to surface tension values of pure AS. Furthermore, os/x values remain constant as
the 2-MTS organic concentration increases from 3 to 53 mM; the minimal correlation between
organic concentration and surface tension implies that AS dominates droplet surface tension at the
surface-air interface. In addition to being stable across organic concentrations. 2-MTS/AS o5/
reaches equilibrium faster than 2-MT/AS; equilibrium is achieved across the mixtures at < 100 s
(Fig. 2B). Indeed, based on the dynamic surface tension measurements, Ds for 2-MTS within AS
mixtures remains ~107, indicating slightly faster organic diffusivity through the droplet than 2-
MT (Table S17). In the presence of AS, Ds increases by an order of magnitude. This suggests the
presence of AS increases solubility and dispersion of 2-MTS molecules through the droplet, (Prisle
etal., 2010; Toivolaetal.,2017). A similar phenomenon has been observed in glyoxal/AS mixtures
as the presence of the inorganic compound improves dissolution of the organic (Kampf et al.,
2013). Therefore, the higher 2-MTS/AS surface tension values and diffusivity indicate that the
organic is well dispersed within the droplet, but AS dominates droplet surface tension properties.
Both 2-MT and 2-MTS present complex viscous properties that may affect droplet phase and
potentially change in the presence of inorganic compounds, such as AS. It is important to note that
for 2-MTS, the remaining sample mass also contains SMS, which may further influence the
estimated diffusion rates (Vignes, 1966; Guevara-CarrionWallace et al., 2016202 1)—Futare-weork

he infliioneco AV n
060610 S S ay-to+a H ahd = S vV S

. s s s-. Diffusion coefficients within aerosols
may be sensitive to mixture ratio, as observed by Wallace et al. (2021). Thus, the presence of SMS
may affect the 2-MTS sample/AS diffusion rates observed in this study. Future work should
explore the influence of SMS on viscous organic diffusivity by applying this study’s methodology
to a range of 2-MTS sample/SMS mixtures with 2-MTS contribution greater than 73 wt%.
Ultimately, diffusion effects were observed through dynamic surface tension measurements and
may influence 2-MT, 2-MTS, and AS-mixed aerosol water uptake properties. Therefore, additional
diffusion effects on synthesized organic and organic/AS aerosol mixtures were probed through the
lens of water uptake measurements.

4.2. Water Uptake Measurements

In addition to the previous measurements, the droplet growth of 2-MT, 2-MTS samples, and their
respective AS mixtures were measured; hygroscopicity was estimated under both subsaturated and
supersaturated conditions. Mixtures were varied by sample wt% (Table S21); organic wt% of 2-
MTS is estimated by accounting for impurities present in the sample and their respective properties
(e.g., density, hygroscopicity, Table S20). The adjusted mass wt% for 2-MTS/AS mixtures are
listed in Table S21. For subsaturated hygroscopicity, the H-TDMA instrument setup was used to
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measure Gr for all experimental solutions at 88.2% RH. Experimental growth factor values for 2-
MT/AS and 2-MTS/AS mixtures are listed in Tables S20-S21. For supersaturated hygroscopicity,
the CCNC instrument setup was used to obtain experimental Dpso values across multiple
supersaturation conditions (0.31, 0.43, 0.65, 0.88, 1.10, 1.32, and 1.54 % SS); the critical diameter
values for 2-MT/AS and 2-MTS/AS mixtures are listed in Tables S22-S23. For 100 wt% 2-MTS
hygroscopicity, impurity (SMS and additional AS) hygroscopicity are accounted for by applying
ZSR mixing rule (Eq. 6) to solve for pure organic hygroscopicity; SMS x was assumed to be ~0.459
based on Peng et al. (2021).

Under subsaturated conditions, both 2-MT and 2-MTS are moderately hygroscopic, with xu.tpma
values of 0.103 and 0.276, respectively (Fig. 3A). For 2-MT/AS (Fig. 3A, orange open squares)
and 2-MTS/AS (Fig. 3A, purple open circles) aerosol mixtures, subsaturated hygroscopicity values
are similar. For 2-MT/AS mixtures < 45 wt% organic, x values plateau close to pure AS (kint =
0.61) at a xutoma ~ 0.56. For mixtures > 45 wt% organic, both 2-MT and 2-MTS exhibit lower x.
toma values, ranging from 0.103-0.505 for 2-MT/AS mixtures and 0.276-0.433 for 2-MTS/AS
mixtures. Prev1ous studies by Malek et al. @O%Q—aﬂd—Ferdeﬁﬁ—Reklb—et—lﬂ—(—m—fwew)—Me

drep(2023) and

F CIdOUSl Rokib et al. ( 2025) have observed a pldtcau in hV;,IOSCOl’)lCltV for AS dominated organic
mixtures prior to a decrease in x due to the presence of phase separated morphology; as a result of
phase separation, the inorganic AS remains dissolved in the aqueous phase and drives
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hygroscopicity (Malek et al., 2023). After a threshold composition is reached (45 wt% organic),
more organic solute contributes to the aqueous phase and thus hygroscopicity is lowered.

Under supersaturated conditions, 2-MT and 2-MTS samples remain moderately hygroscopic, with
kcen being 0.269 and 0.139, respectively. For 2-MT/AS sample mixtures (Fig. 3B, closed orange
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purple line) via Eq. 6. Organic ki, was determined from 100 wt% xcen. 2-MT king (vellow dashed line) was

determined to be 0.269. 2-MTS kin (blue dashed line) was determined to be 0.139.

squares), supersaturated x mimics the same trend as subsaturated 2-MT/AS «; for mixtures < 60
wt% 2-MT, kccn also shows a plateau at ~ 0.53 and then decreases with increased organic aerosol
composition. In comparison, the 2-MTS/AS sample mixtures (Fig. 3B, purple circles) present a
linear hygroscopic trend; as organic wt% increases, xccn drops in a linear fashion resembling ideal
mixing and volume additivity (Petters & Kreidenweis, 2007). Indeed, 2-MTS/AS kccn correlates
with the hygroscopicity trend predicted by xzsr values (Eqs. 11-12) (Fig. 3B, purple line). 2-
MTS/AS supersaturated hygroscopicity agrees well with original Kéhler theory (R? = 0.972, Table
S26), suggesting full 2-MTS dissolution and contribution to water uptake. By contrast, 2-MT/AS
mixtures do not agree with x-Kéhler theory (R’ = 0.787, Table S26), with the greatest discrepancy
observed in the region between the x experimental plateau and xzsr (Fig. 3, orange line);
additionally, subsaturated 2-MTS/AS mixtures deviate from xzsr during the initial hygroscopic
plateau (Fig. 3A, purple line). Thus, for 2-MT/AS mixtures and subsaturated 2-MTS/AS aerosols,
the ideal volume additive mixing rule does not apply. This can once again be attributed to
limitations to organic dissolution into the aqueous phase (Malek et al., 2023)._For 2-MTS/AS
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sample mixtures, both subsaturated and supersaturated hygroscopic trends may be further
impacted by the presence by SMS. The contributions of AS and SMS hygroscopicity are accounted
for 2-MTS sample mixture. x was estimated using ZSR mixing rule, which assumes ideal
interactions between SMS, AS, and 2-MTS. However, non-idealities (e.g., phase separation,
salting in) may result in SMS having a greater influence on hygroscopicity and can be the focus of

future exploration.

In addition to non-ideal hygroscopic trends, it is noted that overall, kccn values remain lower than
xn-toma vValues for both 2-MT/AS and 2-MTS/AS sample mixtures, contrary to the usual trend of
xeon > kutoma (Petters & Kreidenweis, 2007). The observed difference suggests greater organic
dissolution and contribution to hygroscopicity in the supersaturated regime compared to
subsaturated conditions. This suggests potential viscosity and diffusion limitations on
hygroscopicity as RH transitions from sub- to supersaturated. Indeed, the viscosity of the 2-MT
and 2-MTS changes under different conditions. Both compounds remain in the semi-solid phase
state before entering the CCNC, and behave like liquids in the H-TDMA, as shown in Table S18.
Additionally, Asa-Awuku and Nenes (2007) report diffusivity limitation effects on aerosol water
uptake for compounds with Ds values < 2.5 x 107'%, well within the range of Ds values for 2-MT,
and 2-MT sample/AS. Water uptake was shown to be driven by the viscous organic phase slowly
diffusing into the aqueous phase (Asa-Awuku & Nenes, 2007). Thus, it is believed that both 2-MT
and 2-MTS—erganies slowly dissolve and phase separate to form a viscous phase under
subsaturated conditions, corresponding to slow diffusion coefficients. AS is an inorganic
compound that is assumed to instantaneously dissolve into the aqueous phase and thus drives
hygroscopicity when the droplet is phase separated, such as for 2-MT/AS mixtures (Fig. 2).
However, lower x values at supersaturated conditions can be attributed to higher water content;
previous studies have found greater water content correlating with reduced viscosity due to a
plasticizing effect and resulting in enhanced organic mixing (O'Meara et al., 2016; Reid et al.,
2018; Jeong et al., 2022). Thus, the organic viscous phase may experience “cracking” and greater
movement of organic molecules through the aqueous phase (Tandon et al., 2019). Therefore, phase
behavior of the organic can have a strong influence on aerosol water uptake. Additionally, the non-
ideal hygroscopic behavior of 2-MT/AS and subsaturated 2-MTS/AS mixtures versus the ideal
hygroscopic behavior of supersaturated 2-MTS/AS aerosols can be probed through imaging of the
aerosol mixture phase behavior.

4.3. Phase Morphology

To further understand the phase state and morphology of 2-MT and 2-MTS sample mixtures with
AS, AFM images were taken at varied organic wt% (Fig. 4). Dried synthesized 2-MTS presents
itself as a viscous, spherical particle, indicated by its smooth surface (Fig. S4); this agrees with
both shape factor measurement of ~1 (Armstrong et al., 2025 (2025)) and diffusion coefficient
values. As inorganic AS is mixed with 2-MTS sample, phase behavior changes. At 10 wt% 2-MTS
sample (Fig. 4B), particles exhibit an engulfed core-shell morphology. A previous study by Cooke
et al. (2022) observed a similar core-shell morphology for AS-seeded IEPOX-derived SOA
particles; the study observed an organic shell, while the inorganic salt was observed to be present
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in the shell as well as within an aqueous core (Cooke et al., 2022). With AS dispersed on the outer
shell as well as being present in an aqueous core, the inorganic salt in the shell will likely easily
dissolve during water uptake and drive hygroscopicity, consistent with the results as observed in
subsaturated hygroscopicity measurements. However, AS within the shell may introduce
roughness in the outer edge which can promote “cracking” in the organic phase, which can result
in full dissolution in the presence of higher water content and ideal mixing (Tandon et al., 2019).

(A) Aerosol Droplet Morphology Schematic (B) 10% 2MTS 90% AS (C) 45% 2MTS 55% AS
- Wl‘iw . i
5000 nm 400
(E) 45% 2MT 55% AS
- (m‘i’m

Aqueous-phase layer
(influences )

As 2-MTS is increased to 45 wt%, the particle morphology shows greater inorganic phase
dispersion, with AS protruding through the viscous organic phase (Fig. 4C). The visualized
morphology and phase state of the particle agrees with behavior inferred from water-uptake and
droplet measurements (Sect. 4.2). In particular, ~45 wt% is the observed threshold for the plateau
in 2-MTS/AS ku.toma values, prior to a linear decrease in xu.tpma values. The dispersion of AS
disrupts the organic network within the viscous phase, giving rise to the observed roughness and
promoting the salting in of 2-MTS. This phenomenon agrees with the results of previously
published literature that show viscous organics mixed with AS; specifically, laboratory-generated
SOA-AS and citric acid-AS mixtures (Saukko et al., 2012; Abramson et al., 2013). Previous
studies have also observed increased diffusion within viscous SOA particles via a disruption of the
hydrogen bonding network between the organic molecules that can promote solute movement in
the droplet (Reid et al., 2018; Jeong et al., 2022; Sheldon et al., 2023). For this reason, it is likely
that greater organic diffusion occurs above 45 wt% organic, resulting in decreasing xu.tpma values.
Furthermore, the well dispersed AFM morphology is indicative of ideal mixing under
supersaturated conditions, thereby agreeing with x-K6hler theory of droplet growth.

In comparison, 2-MT mixtures present an engulfed core-shell morphology from 10 to 45 wt%
organic (Fig. 4D-E). At 10 wt% 2-MT, the viscous organic phase dominates the particle
morphology and AS remains dispersed at the surface edge, as shown in Fig. 4D. As organic wt%
increases to 45 wt%, morphology remains unchanged and the organic phase stays intact. The intact
core-shell morphology of 45 wt% 2-MT aerosol mimic contrasts with the well dispersed
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morphology observed for 45 wt% 2-MTS aerosol mimic. For 2-MT, the organic diffusion is
limited under both sub- and supersaturated conditions, likely due to the undissolved viscous
organic phase (Fig. 4A). Specifically, 2-MT viscosity causes slower dissolution compared to AS
and results in the phase separated morphology. Thus, hygroscopicity of the 2-MT/AS mixture is
dominated by AS dissolution from the core and outer shell, corresponding to the hygroscopic
plateau observed for 2-MT/AS sub- and supersaturated water uptake measurements (Fig. 3).
Therefore, particle morphology and viscosity influence the synthesized 2-MT’s ability to diffuse
through the aerosol droplet and can affect aerosol water uptake process. Indeed, a previous study
by Zhang et al. (2018) described the “self-limiting” effect of a core-shell morphology on IEPOX-
SOA reactive uptake and can now be observed in the 2-MT/AS water uptake process. However,
diffusion limitations can also result in the need for longer time periods to reach an equilibrium
state, as observed by dynamic surface tension measurements. Consequently, current
hygroscopicity measurements that occur at fast time scales may not capture the full water uptake
process of the synthesized organics and their mixtures. For example, the residence of aerosols
within DMT CCNC columns is ~ 10 s (Paramonov et al., 2015) while similar H-TDMA instrument
set ups have a residence time ~ 6.5 s (Mikhailov & Vlasenko, 2020). However, a previous study
by Chuang et al. (2003) found atmospheric droplet growth timescales range between 5 to 100 s,
congruent with the timescale of 2-MT and 2-MTS dynamic surface tension change (Fig. 2. and
Chuang, 2003). Therefore, hygroscopicity of viscous organic containing aerosols, such as 2-MT
and 2-MTS, must be studied at greater residence times to observe any possible effects on
hygroscopicity; understanding whether timescale effects CCN activity of organic-inorganic
aerosol mixtures can greatly impact current global models that may assume instantaneous solute
dissolution during the water uptake process. Furthermore, future studies should consider whether
the hygroscopicity approximations of viscous 2-MT/AS and 2-MTS/AS mixtures are time
dependent, as time-dependent droplet formation has been observed for biogenic aerosols (Vizenor
& Asa-Awuku, 2018). Currently, traditional x-Kohler theory is unable to predict the water uptake
of 2-MT/AS and subsaturated 2-MTS/AS aerosols and does not consider solute and droplet kinetic
effects. However, by accounting for phase morphology and viscosity, x predictions may be
improved.

In addition, size-dependent morphology may also affect x-hygroscopicity estimations. Several
studies observe a relationship between particle size and aerosol phase transitions during water
uptake (Veghte et al., 2013; Cheng et al., 2015; Altaf et al., 2016; Schmedding & Zuend, 2025).
Specifically, Veghte et al. (2013) and Cheng et al. (2015) observe smaller AS-organic particles
favoring a homogeneous liquid phase while larger particles remain in a partially engulfed
morphology; this finding correlates with 2-MT/AS engulfed morphology for particles imaged >
390 nm (Fig. 4). Indeed, for 2-MT/AS mixtures > 60 wt% 2-MT, xccen decreases with increasing
dry activation diameter before plateauing (Fig. S5). This trend may correlate to greater organic
diffusion as particle size and morphology changing before a dissolution limit is reached for > 60
wt% 2-MT/AS mixtures. For mixtures < 60 wt% 2-MT, a similar decrease in xccn is observed
before hygroscopicity begins to increase; this may be attributed to the engulfed morphology in
larger particles (Fig. 4D-E) promoting AS dissolution and water uptake contribution while 2-MT
diffusion reaches a limit. However, the water uptake measurements performed in this study do not
account for size-dependent phase morphology in its analysis. Therefore, future work may build
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upon the results of this study to better parameterize hygroscopicity based on initial particle size
and size-dependent phase morphology affecting x-hygroscopicity estimations. In particular, size-
selected CCN measurements can be performed to better probe size-dependent morphology effects
on aerosol activation. By doing so, global models can incorporate these influential
physicochemical properties into predictions of aerosol-cloud interactions.

5. Summary and Implications

In this study, we investigated the influence of solute diffusivity and droplet phase morphology on
the hygroscopicity of synthesized 2-MT _sample, 2-MTS_sample, and their mixtures with AS.
Mixtures with AS were varied by organic wt%. Both 2-MT and 2-MTS were previously observed
to be viscous and glassy, affecting diffusivity through water. Additionally, previous studies found
2-MT to be weakly surface-active. To determine organic diffusivity and potential surface activity,
dynamic surface tension measurements were taken for aqueous organic and mixed organic-
inorganic solutions. 2-MT and 2-MTS were found to be weakly surface-active. Previous studies
by Bain et al., 2023 and Mikhailov et al., 2024 determined that surface activity in the dilute bulk
concentration range correlates with depressed aerosol surface tension. However, neither 2-MT
sample nor 2-MTS sample are sufficiently surface-active to depress droplet surface tension at the
air-surface interface. 2-MT and 2-MTS sample solutes move slowly in droplets and have estimated
diffusion rates (Ds) between 107 to 107! m? 5!, with diffusion slowing as organic concentration is
increased. When mixed with AS, 2-MT diffusivity remains slow (107'° m? s') while 2-MTS
diffusivity increases by an order of magnitude (10° m? s'); 2-MTS diffusion in aqueous AS-
mixtures is similar to other quickly dissolving compounds, such as NaCl (Ds = 10”°, Vitagliano &
Lyons, 1956; Leaist & Hao, 1992) and can result in a well-mixed droplet.

-Organic viscosity and diffusion-have-have beenshewn-te affect aerosol water uptake (Asa-Awuku
& Nenes, 2007; Bones et al., 2012; Tandon et al., 2019). For 2-MT, 2-MTS sample, and subsequent
mixtures under both sub- and supersaturated conditions, droplet growth is affected by solute
diffusion. Subsaturated droplet growth was measured using a H-TDMA at 88.2% RH and
subsaturated hygroscopicity was parameterized by xn-tpma. For supersaturated conditions, a
CCNC determined the activation ratio of particles at varied supersaturations (0.3-1.4% SS) and
water uptake was parameterized by xcen. 2-MT/AS mixtures exhibit plateaued xu-tpma and xcen
values close to xint of AS (~0.61). A similar plateau behavior is observed for 2-MTS/AS xn-TpMmA.
However, for supersaturated conditions, 2-MTS/AS mixture xcen follows ideal mixing behavior,
represented by its proximity to x-hygroscopicity predicted by x—-Kohler theory and volume additive
ZSR. Additionally, xn-tpma remains higher than xccn; this is a result of increased water content
reducing viscosity effects and enhancing organic dissolution under supersaturated conditions.

The x-hygroscopicity plateau in Fig. 3 has been previously attributed to the presence of phase
separation, resulting in the inorganic, more soluble, and ideal compound (AS) driving water uptake
(Malek et al., 2023). However, for 2-MTS /AS ideal hygroscopic behavior is indicative of a well
dissolved, homogeneous droplet (Petters & Kreidenweis, 2007). To better understand phase
morphology of the synthesized organic-AS mixed particles, AFM measurements of synthesized 2-
MTS, 2-MTS/AS mixtures, and 2-MT/AS mixtures were acquired. 2-MTS aerosols are smooth,
spherical, viscous particles; when mixed with AS at 10 wt%, AS remains in the aqueous core and
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is dispersed on the side of the particle, introducing roughness on the aerosol outer shell. As organic
concentration increases, the AS core is broken up through the particle. The less defined core-shell
morphology may be the result of AS disrupting the interactions between neighboring 2-MTS
particles in the viscous network; as a result, organic dissolution becomes faster as indicated by
greater 2-MTS diffusion rates. Thus, 2-MTS sample/AS aerosols behave similar to traditional full
dissolution assumptions. In comparison, 2-MT/AS mixture AFM images show an engulfed core-
shell morphology regardless of organic concentration. As a result, the viscous organic phase
remains intact while aqueous AS in the core drives hygroscopicity. A caveat to these results is the
presence of SMS, an organosulfate, being present within the 2-MTS sample at ~24 wt%. Therefore,
SMS may have an effect on surface tension, diffusivity, and hygroscopic trends observed for the
2-MTS sample/AS mixtures that is currently unknown in this study. Future work may utilize the
methodology laid out in this work to more deeply probe the influence of SMS and any additional
mixture component on viscous organic properties and water uptake.

This study demonstrates that viscosity can dictate organic diffusion through aqueous droplets,
resulting in complex phase morphology and water uptake properties. fndeedFurthermore, the
synthesized samples studied in this work a representative of the hygroscopic properties of IEPOX-
SOA mixtures. A recent study by Armstrong et al. (2025) determined that the IEPOX-SOA
composition is composed of a range of 2-MT, 2-MTS,. and additional components that vary with
aerosol acidity. Thus, the synthesized samples present in this work may present a subset of SOA
aerosols generated and this study provides insight into its potential diffusive, hygroscopic, and
phase behavior. For example, as shown by this study’s water uptake measurements, hygroscopicity
from the subsaturated to supersaturated regime evolves due to the presence of increased water
content. However,_it is also noted that the hygroscopicity measurements performed in this study
were on short time scales (6-10 s); in comparison, dynamic surface tension measurements showed
droplet equilibrium being reached at 100-300 s for aqueous 2-MT, 2-MT/AS, and 2-MTS. Thus,
current water uptake measurements may not capture a potentially evolving hygroscopicity over
time. This is critical in understanding biogenic aerosol influence on cloud formation; a previous
study by Chuang (2003) found that droplet formation can occur within time scales of 5-100 s, well
within evolving diffusion times observed in this study. Therefore, future work must investigate
potentially dynamic water uptake of viscous biogenic aerosols, such as 2-MT, 2-MTS.
Furthermore, time dependent x can be developed to better account for organic diffusion within
larger scale cloud parcel and global models. In addition to time dependency, x-hygroscopicity
estimations may also be affected by size dependent phase morphology. A study by Veghte et al.
(2013) found smaller aerosol particles preferring a homogenous state, while larger particles have
an engulfed core-shell morphology similar to 2-MT/AS aerosols in this study. Therefore, particle
size may influence viscous organic-AS water uptake due to diffusion and morphological
influences. Future work may explore and parameterize the effect of size-dependent phase separated
morphology on aerosol activation through step size-selected CCN measurements. Ultimately, it is
crucial to understand how biogenic aerosols, such as 2-MT and 2-MTS, properties (viscosity,
diffusivity, and phase morphology) alter cloud formation. The results of this study demonstrate
the co-dependency of these properties for two isoprene derived compounds and thus may improve
our overall understanding of how biogenic aerosols, and their mixtures affect aerosol-cloud
interactions.
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IS1. Surface Tension Solution Concentrations

Table S1. Stock solution concentrations for dilutions.

Compound Mass (mg) Water (mL) Molarity (M)
2-MT 87.1 2 0.319
2-MTS 134.7 2 0.313

Table S2. Dilutions of 2-MT solutions for surface tension measurements.

Target 2-MT Volume of 0.3 M 2-MT Volume of UPF Water
Concentration (M) Stock (pL) (nL)
0.003 20.0 1980.0
0.005 333 1966.7
0.009 60.0 1940.0
0.016 106.7 1893.3
0.030 200.0 1800.0
0.094 626.7 1373.3

Table S3. Dilutions of 2-MTS solutions for surface tension measurements.

Target 2-MTS Volume of 0.3 M 2-MT Volume of UPF Water

COIICE(!II\I/H‘QHOH Stock (uL) (L)
0.003 20.0 1980.0
0.009 60.0 1940.0
0.03 200.0 1800.0
0.053 353.3 1646.7
0.094 626.7 1373.3

Table S4. Concentrations of 2-MT/AS mixture dilutions for surface tension measurements.



Target 2-MT Target AS Volume of 0.3 M  Volume of Volume of

Concentration Concentration 2-MTS Stock 3.5 MAS UPF Water
(mM) (mM) (uL) Stock (uL) (uL)
0.003 0.5 20 285.7 1694.3
0.009 0.5 63.2 285.7 1651.1

0.03 0.5 200 285.7 1514.3
0.09 0.5 632 285.7 1082.3

Table S5. Concentrations of 2-MTS/AS mixture dilutions for surface tension measurements.

Target 2-MTS Target AS Volume of 0.3 M Volume of Volume of

Concentration Concentration 2-MTS Stock 35MAS UPF Water
(mM) (mM) (nL) Stock (uL) (nL)
0.003 0.5 20 285.7 1694.3
0.009 0.5 63.2 285.7 1651.1

0.03 0.5 200 285.7 1514.3
0.05 0.5 355.7 285.7 1358.6

HS2. Experimental Solutions for Aerosol Measurements

Table S6. Solution compositions.

Mass wt% Organic

(2-MT or 2-MTS Mass of Organic Mass of AS (mg)
sample) Sample (mg)

100 10 0

90 9

75 7.5 2.5

60 6 4

50 5 5

40 4 6

25 2.5 7.5




HIS3. H-TDMA Set Up and Calibration

Filtered e C——,
Air .fsleroslo\ Differential Differential 03 Condensation
ample - m i L min?t
. silica Gel Mobility Mobility I Particle
. Dryers Analyzer 1 YOIl Analyzer2 Counter (CPC)
i {DMA) Humidifier (DMA)

Size Selected (88.2% RH + 1.5%)
Dry Diameter

Wet Diameter
(Dp, ary,100-200

(Dp, wet]

nm)

Figure S1. Experimental set up for H-TDMA measurements; dry, polydisperse acrosols were size
selected through DMA1 at a 10:1 aerosol to sheath flow rate. The size selected particles are passed
through a Nafion tube and humidified to 89.4% + 2% RH. Droplet growth factor was measured
using DMA?2 and CPC.

Table S7. H-TDMA Ammonium Sulfate Calibration.

Size Selected Dry

Diameter (nm) Measured Gr Relative Humidity
100 1.70 0.86
100 1.70 0.87
100 1.71 0.87
100 1.71 0.87
100 1.71 0.87
100 1.85 0.90
100 1.85 0.90
100 1.72 0.87
100 1.71 0.87
100 1.71 0.87
150 1.75 0.88
150 1.75 0.88

150 1.77 0.88



150
150
150
150
150
150
150
150

1.76
1.89
1.89
1.76
1.76
1.77
1.93
1.93

0.88
0.90
0.90
0.88
0.88
0.88
0.91
0.91

FVS4. CCNC Set Up and Calibration

Filtered
Air Aerosol
Sample

1 i

Figure S2. Experimental set up for Cloud Condensation Nuclei Counter (CCNC) experiments; dry,
polydisperse aerosols were passed through the DMA at a 10:1 aerosol to sheath flow rate; aerosols
were flowed into the CPC and CCN in parallel at 0.3 L min' and 0.5 L min’!, respectively. The

Silica Gel
Dryers

Differential

v

Mobility Analyzer
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03L min'll

Cloud Condensation
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Particle Size and
Concentration (NCN)

CPC was used to obtain NCN and the CCNC was used to obtain NCCN.

Table S8. CCNC Ammonium Sulfate Calibration.

Activation diameter (nm)

Calibrated supersaturation (%)

58.697
57.013
58.697
58.697
60.382

0.338
0.353
0.338
0.338
0.324




58.697
56.451
57.574
57.574
58.136
57.574
57.574
58.136
47.466
49.151
51.397
49.713
49.713
49.713
50.274
37.359
40.166
40.166
38.482
38.482
38.482
32.866
32.866
32.866
32.866
26.689
27.812
27.812
27.812
27.812
21.636
23.882
25.005
24.443
25.005
25.005
21.636
22.759
21.636
22.197
22.197
21.636
21.636

0.338
0.358
0.343
0.343
0.338
0.343
0.343
0.338
0.465
0.441
0.412
0.433
0.433
0.433
0.421
0.666
0.597
0.597
0.637
0.637
0.637
0.808
0.808
0.808
0.808
1.105
1.039
1.039
1.039
1.039
1.518
1.307
1.22
1.262
1.22
1.22
1.518
1.406
1.518
1.46
1.46
1.518
1.518
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Figure S3. Ammonium sulfate (AS) CCNC instrument calibration.




VS5. Abbreviations

Table S9. Variable abbreviations and definitions.

measurements

Abbreviation Definition
Organic diffusion coefficient within solvent
Dy 2 -1
(water) (m”s™)
Dy Droplet wet diameter (m)
Dy Aerosol dry diameter (m)
D Critical dry diameter size where ~50% of particles
P30 activate
SS Supersaturation (%)
. Intrinsic hygroscopicity based on solute
ot physicochemical properties
KZzSR Mixture hygroscopicity based on ZSR mixing rule
Subsaturated hygroscopicity based on H-TDMA
KH-TDMA
measurements
p Supersaturated hygroscopicity based on CCNC
CCN

VIS6. Surface Tension Results

Table S10. Average Surface Tension Results for 2-MT, 2-MTS, and mixtures with 500 mM AS.

Sample

Concentration

(mM)

2-MT

Average Surface Tension (mN m’)

2-MT/AS w/
500 mM AS

2-MTS

2-MTS/AS w/
500 mM AS

3
5
9
16
30
53
94

72.048 +0.130
71.753 +0.029
73.512 +1.242
72.321 +0.036
70.713 £ 0.479

71.279 + 0.004

75.296 £ 0.108

74.942 + 0.360

74.314 +£0.430

72.109 + 0.067

73.027+ 0.035

72.184 £ 0.012

71.426 + 0.067

69.835+0.124
67.950 + 0.241

75.131 £ 0.246

72912 +0.177

72.514+0.144
74.177+0.173




Table S11. Sodium Ethyl Sulfate Surface Tension Measurements from Peng et al., 2016.

Solute Average Surface Tension Std Dev
Concentration (M) (mN m™)
0.001 76.329 0.199
0.002 75.805 0.372
0.003 75.212 0.188
0.007 74.789 0.119
0.010 74.460 0.131
0.014 74.090 0.089
0.017 73.668 0.203
0.020 72.970 0.198
0.024 73.248 0.446
0.030 73.729 0.264

Table S12. Sodium Methyl Sulfate Surface Tension Measurements from Peng et al., 2016.

Solute Average Surface Tension Std Dev
Concentration (M) (mN m™)
0.001 75.212 0.341
0.002 74.967 0.412
0.004 74.768 0.508
0.007 74.142 0.368
0.011 73.004 0.347
0.015 72.540 0.782
0.019 71.618 0.433
0.022 73.896 0.374
0.026 72.411 0.446
0.030 72.744 0.533
0.034 73.354 0.577

Table S13. 2-methylglutaric Acid Surface Tension Measurements from Ferdousi-Rokib et al.,
2025 (in review).

Solute Average Surface Tension Std Dev
Concentration (M) (mN m™)

0.003 68.056 0.435

0.003 68.446 0.112

0.007 68.699 0.491

0.009 67.621 0.628

0.014 67.899 0.835




Table S14. Sodium Octyl Sulfate Surface Tension Measurements from Peng et al., 2016.

Solute Average Surface Tension

Concentration (M) (mN m™) Std Dev
0.000 74.210 1.197
0.001 73.161 0.964
0.002 72.159 0.789
0.004 70.761 0.674
0.006 70.947 0.334
0.009 71.238 0.349
0.011 69.119 0.312
0.013 67.416 0.062
0.015 66.515 0.155
0.019 65.908 0.374
0.022 64.825 0.166
0.024 63.173 0.106
0.026 62.085 0.114

Table S15. Sodium Doedcyl Sulfate Surface Tension Measurements.
Solute Average Surface Tension

Concentration (M) (mN m™) Std Dev
0.001 70.983 0.395
0.001 65.885 0.832
0.002 65.945 0.359
0.003 63.815 0.240
0.003 61.186 0.406
0.003 58.065 0.328
0.004 48.992 0.442
0.005 46.791 0.313
0.006 46.715 0.526
0.007 44.460 0.523
0.009 39.464 0.385
0.010 38.905 0.097
0.010 39.942 0.075
0.014 39.919 0.064
0.017 39.347 0.047
0.021 39.157 0.049
0.024 38.816 0.049
0.028 39.190 0.030
0.031 39.165 0.052

0.035 38.917 0.032




Table S16. Ammonium Sulfate Surface Tension Measurements from Ferdousi-Rokib et al., 2025
(in review).

Solute Average Surface Tension Std Dev
Concentration (M) (mN m™)

0.015 71.993 0.222

0.009 70.482 0.622

0.008 70.032 0.303

0.004 71.517 0.221

0.003 70.690 0.227

VHS7. Diffusion Coefficients and Viscosities
Table S17. Diffusion coefficients of 2-MT and 2-MTS in water and aqueous mixture with 500 mM AS.

Diffusion Coefficient (m’ s™*)

Sample
Concentration 2-MT/AS w/ 2-MTS/AS w/
(mM) 2-MT 500 mM AS 2-MTS 500 mM AS

3 1.03E-09 8.53E-09 3.88E-09 6.57E-09

5 4.83E-09

9 2.15E-10 7.72E-10 1.45E-10 7.7E-09

16 2.43E-10

30 4.72E-10 1.43E-10 1.37E-10 2.75E-09

53 1.63E-10 3.88E-09

94 1.39E-11 1.091E-10 1.04E-10

Table S18. Estimated Viscosity of 2-MT and 2-MTS at Different Conditions

H-TDMA Before Entering the CCNC

2-MT 0.27-0.63 8.9E4
2-MTS 22-14 3.1E8




Table S19. Estimated Diffusion Coefficient of 2-MT and 2-MTS at Different Conditions

Diffusion (cm? s™1) H-TDMA Before Entering the CCNC
2-MT 3.5-8.1 E-8 2.5E-13
2-MTS 1.6-4.9 E-8 1.2E-16

VHISS. Information on Additional Compounds

Table S20. Calibration and compound information for additional compounds

A
Molecular . verage
R Density surface
Compound Weight 3 .
(g mol") (g cm™) tension
g (mN m?)
Ammonium
Sulfate 132.14° 1.77% 73.8 0.61
((NH4)2S04)
Sodium Methyl
Sulfate 134.08° 1.60% 72.80% 0.459%
(CH3NaO4S)

2Sigma Aldrich
SPeng et al 2021

Table S21. Adjusted mass wt% of organic based on impurities

Mass wt% Organic Mass wt% of
(2-MTS sample) Pure 2-MTS

90 65.7

75 54.75

60 43.8

50 36.5

40 29.2

25 18.25

10 7.3




EXS9. Subsaturated Hygroscopicity Results

Table S22. Growth factor and subsaturated hygroscopicity results for 2-MT and 2-MT/AS
mixtures.

0
M;siwat ”  Duym)  GF StdDev K StdDev
100 1.39 0.002 0.076 0.002
100 150 1.419 0.004 0.106 0.003
200 1.436 0.006 0.128 0.005
100 1518 0.001 0353 0.001
90 150 1534 0.002 0.369 0.002
200 1561 0.001 0.396 0.001
100 1614 0.001 0.453 0.001
75 150 1.636 0.000 0.477 0.001
200 1.650 0.004 0.494 0.004
100 1717 0.002 0.482 0.002
60 150 1.702 0.002 0.466 0.002
200 1715 0.003 0.479 0.003
100 1.625 0.002 0.500 0.002
50 150 1.625 0.009 0.500 0.011
200 1.643 0.002 0523 0.002
100 1.689 0.002 0.586 0.003
40 150 1.705 0.001 0.606 0.002
200 1.699 0.003 0.598 0.004
100 1.809 0.003 0.602 0.003
25 150 1.808 0.002 0.601 0.002
200 1.839 0.003 0.587 0.003
100 1.877 0.000 0.608 0.004
10 150 1.872 0.027 0.627 0.007
200 1.859 0.000 0.623 0.004




Table S23. Growth factor and subsaturated hygroscopicity results for 2-MTS and 2-MTS/AS

mixtures.
0,
M;SI\S/IVTVE/ ®  Duy(nm) GF StdDev " StdDev
100 1455 0.003 0.134 0.004
100 150 1538 0.007 0.250 0.010
200 1.588 0.022 0326 0.005
100 1.538 0.003 0356 0.003
65.7 150 1.625 0.004 0.403 0.004
200 1.625 0.005 0.445 0.005
100 1.560 0.001 0389 0.001
548 150 1.605 0.003 0.435 0.003
200 1.641 0.001 0.476 0.001
100 1.674 0.001 0513 0.001
438 150 1.694 0.008 0.566 0.010
200 1.730 0.001 0.592 0.001
100 1.702 0.001 0.546 0.001
36.5 150 1.746 0.005 0.581 0.000
200 1771 0.004 0.581 0.000
100 1.747 0.011 0.602 0.000
292 150 1.730 0.003 0.581 0.000
200 1.794 0.006 0.501 0.000
100 1811 0.000 0.529 0.008
18.25 150 1.846 0.026 0.584 0.004
200 1.860 0.042 0.598 0.009
100 1.868 0.001 0.580 0.001
7.30 150 1917 0.001 0.583 0.001
200 1.933 0.008 0.600 0.008




XS10. Supersaturated Hygroscopicity Results

Table S24. Supersaturated hygroscopicity results for 2-MT and 2-MT/AS mixtures.

Mass wt%

Instrument

2-MT SS Dps0 StdDev K StdDev
0.318 81.300 1.337 0.102 0.020
0.43 67.832 1.888 0.086 0.027
0.653 50.528 0.852 0.105 0.018
100 0.876 41.218 0.722 0.105 0.019
1.099 34.767 0.000 0.138 0.000
1.323 29.928 0.000 0.171 0.000
1.546 25.694 1.075 0.221 0.029
0.324 75.859 1.294 0.300 0.016
0.427 62.040 0.693 0.316 0.010
0.633 46.810 2.240 0.341 0.061
90 0.839 38.638 0.866 0.343 0.023
1.045 32.831 0.000 0.360 0.000
1.251 27.412 0.474 0.433 0.022
1.458 23.517 0.469 0.505 0.030
0.324 72.509 0.930 0.344 0.014
0.427 60.412 0.780 0.342 0.014
0.633 45.950 1.031 0.355 0.022
75 0.839 36.702 0.000 0.398 0.000
1.045 29.928 0.000 0.475 0.000
1.251 27.267 0.419 0.439 0.020
1.458 23.431 0.437 0.511 0.028
0.324 63.155 0.994 0.520 0.023
0.427 52.626 0.482 0.517 0.016
0.633 40.036 0.663 0.536 0.027
60 0.839 33.799 0.866 0.512 0.039
1.045 28.315 0.456 0.561 0.026
1.251 25.283 0.387 0.551 0.024
1.458 22.186 0.000 0.601 0.000
0.324 63.509 0.619 0.517 0.020
0.427 53.584 1.217 0.495 0.034
0.633 41.541 0.838 0.486 0.026
50 0.839 34.961 0.387 0.470 0.015
1.045 29.283 0.456 0.517 0.024
1.251 26.057 0.000 0.512 0.000
1.458 22.463 0.437 0.591 0.033
0.324 60.808 0.964 0.581 0.031
40 0.427 51.509 0.619 0.550 0.019
0.633 40.670 0.677 0.509 0.026
0.839 33.993 0.387 0.501 0.017




1.045 29.928 0.000 0.473 0.000
1.251 26.057 0.000 0.502 0.000
1.458 22.401 0.402 0.583 0.030
0.324 60.654 0.640 0.585 0.017
0.427 50.735 0.484 0.577 0.014
0.633 40.397 0.556 0.521 0.023
25 0.839 34.041 0.803 0.499 0.036
1.045 28.960 0.000 0.524 0.000
1.251 25.250 0.361 0.553 0.023
1.458 23.033 0.320 0.537 0.022
0.324 59.848 1.004 0.610 0.031
0.427 50.832 0.474 0.573 0.017
0.633 40.159 0.479 0.530 0.018
10 0.839 32.831 0.000 0.555 0.000
1.045 28.960 0.000 0.522 0.000
1.251 25.283 0.387 0.550 0.024
1.458 22.831 0.456 0.551 0.034




Table S25. Supersaturated hygroscopicity results for 2-MT and 2-MT/AS mixtures.

Mass wt%

Instrument

2-MTS SS Dps0 StdDev K StdDev
0.318 78.688 1.289 0.164 0.020
0.430 65.654 1.830 0.135 0.028
0.653 49.864 1.313 0.132 0.027
100.0 0.876 42.348 0.361 0.102 0.010
1.099 35.735 0.000 0.123 0.000
1.323 30.702 1.129 0.143 0.032
1.546 27.872 0.320 0.151 0.015
0.318 73.638 0.954 0.342 0.015
0.430 61.248 0.622 0.325 0.011
0.653 47.670 0.456 0.299 0.008
65.7 0.876 39.606 0.000 0.292 0.000
1.099 32.638 0.387 0.333 0.012
1.323 29.202 0.419 0.321 0.013
1.546 26.178 0.320 0.327 0.011
0.318 72.286 1.084 0.364 0.016
0.430 59.638 1.064 0.353 0.016
0.653 47.133 0.402 0.312 0.008
54.8 0.876 38.396 0.419 0.325 0.011
1.099 33.799 0.000 0.303 0.000
1.323 28.960 0.000 0.333 0.000
1.546 25.694 0.674 0.351 0.026
0.318 67.231 0.634 0.446 0.011
0.430 56.585 1.041 0.410 0.022
0.653 44.251 0.843 0.372 0.021
43.8 0.876 35.735 0.000 0.395 0.000
1.099 30.896 0.000 0.389 0.000
1.323 27.025 0.000 0.402 0.000
1.546 24.122 0.000 0.415 0.000
0.318 66.461 1.318 0.459 0.029
0.430 56.272 0.608 0.412 0.011
0.653 44.030 0.874 0.377 0.020
36.5 0.876 35.735 0.000 0.394 0.000
1.099 31.283 0.474 0.374 0.017
1.323 27.025 0.000 0.401 0.000
1.546 23.517 0.469 0.448 0.026
0.318 63.638 1.415 0.523 0.032
0.430 53.832 0.620 0.472 0.019
9.2 0.653 41.420 0.756 0.450 0.026
0.876 34.961 0.022 0.418 0.022
1.099 29.154 0.387 0.462 0.018
1.323 26.057 0.000 0.447 0.000




1.546 22.428 0.419 0.515 0.027
0318 64.203 1.149 0.517 0.025
0.430 52.802 0.622 0.508 0.021
0.653 42.785 1.123 0.418 0.029
18.3 0.876 34.767 0.000 0.436 0.000
1.099 29.686 0.803 0.447 0.035
1.323 26.057 0.000 0.456 0.000
1.546 22.186 0.000 0.542 0.000
0.318 59.840 0.767 0.632 0.024
0.430 51.219 0.433 0.553 0.013
0.653 40.358 0.887 0.491 0.033
7.3 0.876 32.831 0.000 0.510 0.000
1.099 29.154 0.387 0.464 0.018
1.323 25.089 0.000 0.503 0.000
1.546 22.186 0.000 0.534 0.000
XIS11. Goodness of Fit
Table $26. Kohler Theory R*.
KzsrR R2
Mixture H-TDMA CCN
2-MT/AS 0.686 0.787
2-MTS/AS 0.913 0.972




XHS12. Additional AFM Figures

PURE 2-MTS

300.0 nm < 40.0°

-300.0 nm % -40.0 ° -30.0 pm

520.0 nm 520.0 nm

Figure S4. AFM Image of 100wt% synthesized 2-MTS and visualization. The figure shows the
height, phase, and amplitude error from left to right.




XHHS13. 2-MT Dg Vs Kcen
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Figure S5. 2-MT Davs kcen of all mixtures and 100 wt% 2-MT aerosols.

20



	MTS_Manuscript_Revisions_81925.pdf
	MTS_Supplement_Update.pdf

