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Abstract. The global land carbon sink has increased since the preindustrial
:::::::::::
pre-industrial

:
period, driven by

:::
the

:
increasing

atmospheric CO2 concentration and
:::::::
physical

::::::::
processes

:::::::::
influenced

::
by

:
climate change. However, detecting these anthropogenic

signals in the global land carbon sink is challenging due to the large year–to–year variability, which can mask or amplify

long-term trends, particularly on regional and decadal scales. This study aims to detect the time it takes for long-term trends

driven mostly by anthropogenic signal to dominate over natural variations, that is, the "time of emergence", in the land carbon5

sink.

For this, we use five large ensembles of historical simulations (1851–2014) and future scenarios (2016–2100) by
::::
from Earth

system models
::::::
(ESMs). Our results show that, firstly, the anthropogenic signal in the global net land carbon sink emerges from

26 to 66 years in the period 1960–2019
::::
2009

:
(relative to the natural variations in the period of 1930–1959), depending on the

ESM considered. The time of emergence is considerably shorter for the two major gross carbon fluxes: 8–13 years for gross10

primary productivity and 6–10 years for total ecosystem respiration. Furthermore, we find that long-term trends of
::
in

:::
the net

land carbon sink on
::
at most regional scales take at least 20 years more to emerge

:::::
longer

::
to

::::::
emerge

::::
than

::
at

:::
the

:::::
global

:::::
scale, due

to
:::
the

:
larger contributions from internal climate variability at smaller scales.

Secondly, future scenarios show delayed signal detection compared to historical trends, due to a
:
.
::::
This

:::::
delay

:
is
::::::
mainly

::::
due

::
to

::::::
weaker

::::::::::::
anthropogenic

:::::
signal

:::::
trends

:::::
rather

::::
than

:::::::
stronger

::::::
natural

:::::::::
variability.

::::
The

::::::
weaker

:::::
signal

:::::::
reflects

::::::::
primarily

::
the

:
slow-down15

of the increasing net land carbon sink in response to emission mitigation, compared to the higher natural variability.

Thirdly, we apply dynamical adjustment to filter out the year–to–year circulation induced
::::::::::::::::
circulation-induced variability in

both the historical and future simulations. This approach allows to substantially shorten
::::::::::
substantially

::::::::
shortens the detection

time for the global net land carbon sink: between 34–39% for the historical period and 27
::
29–54

::
55% for the future simulations.

This approach can , in principle, be applied to
::::
also

::::::
shorten

:::
the

::::::::
detection

::::
time

:::
for observational based datasets

:::::
(30%

::::::::
reduction20

::
in

:::
the

:::::
period

::::::::::
1960-2009), thereby improving our ability to detect long-term trends on

::
of

:
land carbon sink variability. Given

that long-term trends are mostly associated with human impacts on the land carbon cycle, our proposed approach can offer

valuable insights on the effectiveness of policy decisions and their implementation.

1



1

The global land carbon sink has been increasing since the pre-industrial period (Friedlingstein et al., 2022; Ruehr et al.,25

2023), mainly driven by
:::
the increasing atmospheric CO2 and mid- to high-latitude warming caused by human activities

(O’Sullivan et al., 2022). Detecting such anthropogenic signals in observations of annual atmospheric CO2 concentration

remains challenging due to the large year–to–year natural variations, which can obscure or enhance long-term trends, especially

at regional scales and for shorter periods (Deser et al., 2012b; Kay et al., 2015; Maher et al., 2019; Chen et al., 2021; Bonan

et al., 2021).30

The global net land carbon sink refers to the balance between carbon absorption through gross primary productivity (GPP,

photosynthesis at large scale) and carbon release through total ecosystem respiration (TER), but also through fires and other

disturbances (Canadell et al., 2021; Ciais et al., 2022). GPP and TER are directly driven by local climate variability, such

as temperature ,
:::
and

:
precipitation (Jung et al., 2017; Piao et al., 2020; Canadell et al., 2021). Elevated atmospheric CO2

concentrations have contributed to an increase in the global land carbon sink (Ruehr et al., 2023) through increasing GPP35

(Walker et al., 2021). Warming temperatures, particularly at high latitudes, have also contributed to increasing GPP (Ruehr

et al., 2023).

The long-term trends in
::
of the global carbon cycle are superimposed by

::::
with substantial year–to–year variations (Piao et al.,

2020). These variations mostly stem
::::::::
originate from natural processessuch as

:
,
::::::::
including internal climate variability, variability

on
:::::::::::
—fluctuations

::::::
across a continuum of time scalesunrelated to external effects,

::
—as well as from influences from natural40

forcing
::::::
natural

:::::::
external

::::::
forcings

:
such as volcanic eruptions and solar radiation (Deser et al., 2012b; Canadell et al., 2021; Eyring

et al., 2021; Mercado et al., 2009; Zhang et al., 2021). Internal climate variability is often referred to
:::::::
regarded

:
as an irreducible

noise in
:::::
within

:
the signal of long-term forced climatic trends, and arises

::::::
arising from internal atmospheric dynamics and

interactions between the atmosphere and oceans
::::
from

:::::::::::::::
atmosphere-ocean

::::::::::
interactions (Deser et al., 2012a, 2020; Lehner et al.,

2017; Bonan et al., 2021). Internal climate variability emerges
::::
Such

::::::::
variability

::::::::
manifests

::::
both

:
as short-term weather events and45

long-term
::
as

:
low-frequency climate variability patternslike

:::::::
patterns,

::::
such

::
as

:::
the

:
El Niño/Southern Oscillation (ENSO) which

are known to influenced
::::::
strongly

::::::::
influence

:
global land carbon sink variations through local

:::::::::
associated changes in temperature

and precipitation (Bacastow, 1976; Keeling et al., 1995; IPCC, 2021; Li et al., 2022).

The detection of anthropogenic signals in the global land carbon sink is important for improving our understanding of

carbon-climate feedback and refining future carbon projections (Friedlingstein et al., 2014). Detection involves identifying a50

statistically significant "signal" of long-term forced changes against the "noise" of natural variability in the system (Chen et al.,

2021) and is important for improving our understanding of carbon-climate feedback and refining future carbon projections

(Friedlingstein et al., 2014). However, several fundamental challenges remain:

First, internal climate variability can differ substantially
::
be

:::::::
realized

:::::::::
differently

::
in
::::::::

multiple
::::::::::
simulations

:::::
under

::::
the

:::::
same

::::::
external

::::::::
forcings, which may be seen as random and difficult to predict (Frankcombe et al., 2015; Deser et al., 2020; Doblas-55

Reyes et al., 2021; Bonan et al., 2021). Since observations only represent one unique realization of internal climate variability,

they are insufficient to characterize the full range of physically plausible internal climate variability. Moreover, internal
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climate variability is sensitive to the choice and length of the study period (Kumar et al., 2016; Doblas-Reyes et al., 2021)

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kumar et al., 2016; Doblas-Reyes et al., 2021; Maher et al., 2024), making it harder to separate natural fluctuations from forced

signals (Bonan et al., 2021; Frankcombe et al., 2015; Doblas-Reyes et al., 2021). Short-term observational records may not60

::::
This

:::::
makes

::
it

::::::::::
challenging

::
to capture the full dynamics of internal climate variability,

::::::::::
particularly

::::
due

::
to

:::
the

::::::
limited

::::::
length

::
of

:::::::::
observation

:::::::
records (Maher et al., 2019; Chen et al., 2021).

Second, ecosystem responses vary across geographic regions and timescales of natural climate variations and forcing

(Lombardozzi et al., 2014). Regions with high natural climate variability might not show high land carbon sink variability

(Lombardozzi et al., 2014). The detection and attribution of anthropogenic signals thus strongly depend on the specific regions65

of interest (Deser et al., 2012b; Hawkins and Sutton, 2012; Deser et al., 2012a; Mahlstein et al., 2012; Lombardozzi et al.,

2014). On decadal time scales, internal climate variability in land-atmosphere CO2 flux often mask the anthropogenic signals

in many regions (Lombardozzi et al., 2014; Kumar et al., 2016; Doblas-Reyes et al., 2021; Bonan et al., 2021).

Large ensembles of Earth System Model
::::::
system

:::::
model

:
(ESM) simulations with perturbed initial conditions are effective

tools to address these challenges (Deser et al., 2020; Bonan et al., 2021). By running sufficient simulations in a single70

model with slightly different initial conditions, and under the same physical process representation and external forcing,

the distribution of internal climate variability is sampled much better than in
::::
more

:::::::::
effectively

::::
than

:::::
with a single realization

(Milinski et al., 2020; Chen et al., 2021). The externally perturbed signal (
::::::::
dominated

:::
by anthropogenic signal) emerges as the

ensemble mean, that is, a deterministic signal. The residual after removing the ensemble mean can thus be regarded as mostly

internal natural variability in the climate system (Milinski et al., 2020; Deser et al., 2020; Bonan et al., 2021). Based on such75

large ensembles of ESM simulations, the "time of emergence (ToE)" can be determined as the time required for an external

perturbed signal (
:::::
mostly

:
anthropogenic-caused climate change) to become larger than the amplitude of natural variations

(Lehner et al., 2017; Bonan et al., 2021)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Hawkins and Sutton, 2012; Lehner et al., 2017; Schlunegger et al., 2020; Bonan et al., 2021)

. The ToE metric helps to identify climate change impacts on regional and global scales, and attribute changes to particular

causes (Chen et al., 2021). However, due to large year–to–year variations, the anthropogenic signal may remain within the80

range of natural variability for multiple decades (Lombardozzi et al., 2014; Bonan et al., 2021; Ranasinghe et al., 2021).

Here, we evaluate how long
:
it
:::::
takes

:::
for

:
long-term trends in the global land carbon sink, mostly

:::::::::
—primarily

:
driven by

anthropogenic perturbationsneed
::
—to be detected from local to global scales, by estimating

:
at
::::::::

different
::::::
spatial

::::::
scales.

:::
To

::::::
achieve

::::
this,

:::
we

:::::::
estimate the ToE in ESM simulations under historical and future scenarios. Our key objectives are to: 1) detect

the anthropogenic perturbed signal in global land carbon sink in historical simulations (1851-2014); 2) examine the spatial85

effects in the ToE on regional scales; 3) estimate the ToE under various future scenarios (2016-2100) and 4) test approaches to

separate circulation induced
:::::::::::::::
circulation-induced

:
variability in the ToE in the global land carbon sink.

2 Methods and dataset

In this study, we use five ESM large ensembles to investigate the time to detect anthropogenic perturbed signals in global and

regional land carbon sinks.90
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2.1 Dataset

We use outputs from historical simulations by ESMs with at least 30 realizations to investigate the ToE in the land carbon

sink. The models selected include the CESM2-LE
::::
with

:::
90

:::::::::
simulations

:
(Danabasoglu et al., 2020; Rodgers et al., 2021) and

four models in CMIP6 (Eyring et al., 2016; Brunner et al., 2020): ACCESS-ESM1-5
::::
with

:::
38

:::::::::
simulations

:
(Ziehn et al., 2020),

CanESM5
::::
with

::
40

::::::::::
simulations

:
(Swart et al., 2019), IPSL-CM6A-LR

::::
with

::
33

::::::::::
simulations

:
(Boucher et al., 2020), and MPI-95

ESM1-2-LR
::::
with

:::
41

:::::::::
simulations

:
(Mauritsen et al., 2019). All historical simulations are conducted under the CMIP6 historical

forcing, including volcanic eruptions and changes in atmospheric composition due to human activities (Eyring et al., 2016).

:::
The

:::::
future

::::::::
scenario

:::::::::
simulations

:::
are

::::::::
modeled

:::::
under

:::::::
different

::::::
Shared

:::::::::::::
Socioeconomic

::::::::
Pathways

:::::::
(SSPs),

:::::
based

::
on

:::::::
varying

:::::
levels

::
of

::::::::::::
human-emitted

:
CO2 :::

and
:::::::::
mitigation

:::::
efforts

::::::::::::::::::::::::::::::::::::::::::::::
(Chen et al., 2021; Lee et al., 2021; O’Neill et al., 2016).

:

The historical simulations covers the period of 1851-2014 and the future scenario simulations cover the period from 2015 to100

2100. The spatial resolution of CESM2-LE outputs is 0.9375◦× 1.25◦, and four CMIP6 models is 2.5◦×2.5◦ (pre-processed by

Brunner et al. (2020) from their native spatial resolution). We select the net biome production (NBP), gross primary production

(GPP), and total ecosystem respiration (TER) from the above five Earth system models
:::::
ESMs. Note that the TER in CESM2-

LE is calculated according to Eq. (1)
:
1, where TER is estimated as the difference between GPP, primary production (NPP),

corresponding to autotrophic respiration, soil respiration (SR), and litter respiration (LR) (Eq. (1)
:
1).105

TER=GPP −NPP +SR+LR (1)

The TER in four CMIP6 models is calculated based on the sum of autotrophic (ra) and heterotrophic respiration (rh)

(Eq. (2)
:
2).

TER= ra+ rh (2)

CESM2-LE outputs of NBP, GPP, NPP, SR, and LR are downloaded from https://www.earthsystemgrid.org/dataset/ucar.cgd.110

cesm2le.lnd.proc.monthly_ave.html, last accessed on July 11, 2024. For the other four CMIP6 models, NBP, GPP, ra and rh are

downloaded (originally from https://esgf-node.llnl.gov/projects/cmip6/) then pretreated by Brunner et al. (2020), last accessed

on July 11, 2024. We further download the monthly mean sea level pressure (SLP) from the five models from their respective

sources.

For the regional analysis, we use the regional carbon cycle assessment and processes (RECCAP-2) (Ciais et al., 2022) map115

(https://www.bgc-jena.mpg.de/geodb/projects/Data.php) that categorizes the global land surface into10distinct
:::
into

::
10

:::::::
distinct

domains, with resolution of 0.5◦× 0.5◦.

The future scenario simulations are modeled under different Shared Socioeconomic Pathways (SSPs) for the period 2015-2100,

based on varying levels of human-emitted
:::
We

::::
also

:::::::
included

::::
the

::::::::::
observations

:::
of

::::::::::
atmospheric

:
CO2 and mitigation efforts

(Chen et al., 2021; Lee et al., 2021; O’Neill et al., 2016):
::::::
growth

::::
rate

::::::
(AGR)

::
at
:::::::

Mauna
::::
Loa

:::::::::::::::
(Lan et al., 2025)

::::
from

::::
1960

:::
to120

:::::
2009,

::::::::::
downloaded

::::
from

:
https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_gr_gl.txt,

::::
last

:::::::
accessed

:::
on

::::::
August

:::::
18th,

:::::
2025.

:::
We

4
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https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_gr_gl.txt


::::
used

:::::::
monthly

:::::
mean

:::
SLP

:::::
from

:::
the

:::::
ERA5

::::::::
reanalysis

::::::
dataset

::::::::::::::::::::
(Hersbach et al., 2023)

::
for

:::
the

:::::
period

::::::::::
1959–2009,

::::
with

:::::::::
resolution

::
of

::::::
0.25◦×

:::::
0.25◦,

::::::::::
downloaded

:::::
from https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels-monthly-means?tab=

overview
:
,
:::
last

::::::::
accessed

::
on

::::::
August

:::::
18th,

:::::
2025.

1. SSP1-2.6, emissions decrease and reach net zero by 2050. Global surface air temperature averaged over 2081-2100 is125

0.5◦-1.5◦ higher than in 1995-2014 (Chen et al., 2021; Lee et al., 2021; O’Neill et al., 2016).

2. SSP2-4.5, emissions remain steady until 2050, with global surface air temperature averaged over 2081-2100 is 1.2◦-2.6◦

higher than in 1995-2014 (Chen et al., 2021; Lee et al., 2021; O’Neill et al., 2016).

3. SSP3-7.0, without additional climate policies, emissions doubled by 2100, leading to the global surface air temperature

averaged over 2081-2100 increase of 2.0◦-3.7 ◦ relative to 1995-2014 (Chen et al., 2021; Lee et al., 2021; O’Neill et al., 2016)130

.

4. SSP5-8.5 Without additional climate policies, emissions doubled by 2050, with global surface air temperature averaged

over 2081-2100 rising by 2.4◦-4.8◦ relative to 1995-2014 (Chen et al., 2021; Lee et al., 2021; O’Neill et al., 2016).

2.2 Date
::::
Data

:
pretreatment

NBP, GPP, and TER from CESM2-LE are provided in the unit of gC ·m-2 · s-1, from which an annual sum is calculated. NBP,135

GPP, and TER from four CMIP6 models are in unit of kgC·m-2·s-1 and converted to annual sums in gC ·m-2 · year-1
:::::::::::
gC ·m-2 · yr-1.

TER is calculated according to Eq. (1 )
:
1
:

for CESM2-LE and according to Eq. (2 )
:
2
:
in the four CMIP6 models. In order to

have consistent sign with GPP, TER here is multiplied by –1. In the historical simulations (1851–2014), NBP, GPP, and

TER of the five model datasets are area–weighted and aggregated to domain mean with the
::::::
spatial resolutions of 2.5◦×2.5◦,

5◦×5◦, 10◦×10◦, 20◦×20◦, 30◦×30◦, 45◦×45◦, 60◦×60◦, and global mean. The global mean of NBP, GPP, and TER is also140

calculated for the four future scenarios, with period of 2016–2100 selected (in CMIP6 models the time series starts at July 2015,

so we select from 2016 instead). Note that CESM2-LE only includes one future scenario (SSP3-7.0). Sea level pressure ,
::::
and

::::
other

::::::
models

::::::::
included

:::
all

:::
four

::::::
future

::::::::
scenarios.

::::
SLP

:
from all five Earth system models

:::::
ESMs is aggregated to the resolution

of 10◦×10◦.
::::
Data

:::::::::::::
pre-processing,

::::::::
including

::::
unit

:::::::::
conversion

::::
and

::::::
spatial

::::::::::
aggregation,

::::
was

:::::::::
performed

::::
with

:::
the

:::::::
Climate

:::::
Data

::::::::
Operators

:::::::
software

:::::::::::::::::::::::
(Schulzweida, 2023, CDO).

:
145

The RECCAP-2 map is area–weighted and aggregated to 2.5◦×2.5◦, then categorize the NBP, GPP, and TER to 10 RECCAP-

2 regions.

:::
The

:::::::::::
pretreatment

::::
steps

::
of
:::::::::::

atmospheric CO2 :::::
growth

::::
rate

::::::
(AGR)

::
at

::::::
Mauna

:::
Loa

:::::
from

::::
1960

::
to
:::::
2009

:::::::::::::::
(Lan et al., 2025)

::::::
follows

::::::::::::
Li et al. (2022).

::::
We

:::
first

:::::::
remove

:::
five

::::::::
volcanic

:::::
years

:::::
(1963,

:::::
1982,

:::::
1983,

:::::
1991,

::::
and

::::::
1992),

::::
then

::::
fitted

:::
the

:::::::::
long-term

:::::
trend

::::
with

:::::
locally

::::::::
weighted

:::::::::
scatterplot

:::::::::
smoothing

::::::::::::::::::::::::::::
(Cleveland et al., 1991, LOWESS)

:
.
::::
SLP

::::
from

::::::
ERA5

:::::::::::::::::::
(Hersbach et al., 2023)

:::
also

:::::
have150

:::
five

:::::::
volcanic

:::::
years

::::::::
removed,

::::
then

::::::::::::
area–weighted

:::
and

::::::::::
aggregated

::
to

:::
the

:::::
spatial

:::::::::
resolution

::
of

::::::
9◦×9◦.

:

5
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2.3 Methods

2.3.1 Time of emergence

To determine the time of emergence (ToE), we apply the noise–to–signal ratio approach, following Bonan et al. (2021). The

signal (S) refers to the anthropogenic perturbation driven response, which is given by the linear trend
:::
the

:::::
linear

:::::::::
regression155

::::
slope

:
of the ensemble mean of the simulations for each model (Bonan et al., 2021).

:::
For

:::
the

:::::::::
calculation

::
of

:::
N,

:::
we

::::
first

:::::
select

::
all

:::::
years

:::::
across

:::
all

:::::
model

::::::::::
simulations

::::
over

:::
the

:::::::
selected

::::::
period,

::::
then

::::
mix

:::
the

:::
data

:::::
from

::
all

:::::
years

::
in

:::
the

:::::::
selected

::::::
period

:::::::
together

:::
and

::::::::
calculate

:::
the

:::::::
standard

:::::::::
deviation. In the historical simulations, the noise (N) corresponds to the standard deviation of the

ensemble before the 1950s
:::::
1960s

:::::
(here

:
is
::::::::::
1930–1959), a period less affected by human activities compared to more recent ones,

and used as the baseline for natural variability (Bonan et al., 2021). ToE (
::
In

:::
the

:::::
future

::::::::
scenarios,

:::
we

::::::::
calculate

:::
the

:::
ToE

:::
for

:::::
NBP,160

::::
GPP,

:::
and

:::::
TER,

::::
with

:::
the

::::::
signal

::::::
period

::
in

:::::::::
2020–2070

::::
and

:::
the

:::::
noise

:::::
period

:::
in

:::::::::
2020–2070

:::::
(with

:::
the

::::::::
ensemble

:::::
mean

:::::::::
removed).

:::
ToE

::
(Eq. (3)

:
3) represents the time needed for the anthropogenic perturbed signal to become larger than the amplitude of the

noise (Bonan et al., 2021).

ToE (years) = 2N/S (3)

::::
Here

:::
we

:::
use

::
a
:::::
linear

:::::::::
regression

:::::
slope

::::::
rather

::::
than

::
a
::::::::
nonlinear

::::::::
approach

:::
to

::::::::
represent

:::
the

::::::
signal

:::::
trend,

::::
this

::
is

::
to

:::::::
capture165

::
the

:::::::::
dominant

::::::
forced

:::::
signal

:::
in

:::
the

:::::::
selected

::::::
signal

::::::
period.

::::
The

:::::::::
ensemble

:::::
mean

::
of

:::::
NBP,

:::::
GPP

:::
and

:::::
TER

:::::::
reflects

:::
the

::::::
forced

::::::::
ecosystem

:::::::::
response,

::::::::
including

::::::::::::
anthropogenic

:::::::
forcing,

:::::::::::
short-period

::::::
natural

:::::::
forcings

:::::
(e.g.,

::::::::
volcanic

:::::::::
eruptions),

::::
and

:::::::
decadal

::::::
internal

:::::::::
variability

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Deser et al., 2012b; Canadell et al., 2021; Eyring et al., 2021; Mercado et al., 2009; Zhang et al., 2021).

::::
The

:::::
linear

::::
trend

:::::::
captures

:::
the

:::::::::
first-order

:::::::::::::::::
(Hasselmann, 1979)

::::::::
long-term

::::::::::::
anthropogenic

::::::::
influence,

:::::::
whereas

::::::::
nonlinear

::::::::
methods

:::::
could

:::
risk

:::::::::
overfitting

:::
and

:::::::::::::
mis-attributing

::::::
natural

::::::
forcing

::
or

:::::::
internal

::::::::
variability

::
to
::::::::::::
anthropogenic

:::::::
signals,

::::::::
especially

::
at
:::::::
regional

::::::
scales170

:::::
where

:::::::::
variability

:
is
::::::
larger

:::
(see

::::
Fig.

:
3
::::
and

::::::::
appendix

::
A

:::
Fig.

:::::
A.1).

2.3.2 Noise filtering based on dynamical adjustment

To shorten the detection time, we use a dynamical adjustment technique to estimate circulation induced
::::::::::::::::
circulation-induced

variability in NBP. Dynamical adjustment is a technique in climate science, which aims to isolate circulation induced
::::::::::::::::
circulation-induced

variability (such as in temperature and precipitation); where the residual time series in those climate variables is thought to175

contain the forced response (Smoliak et al., 2015; Deser et al., 2016; Sippel et al., 2019). circulation induced
::::::::::::::::
Circulation-induced

variability is generally expected to reflect internal climate variability to the largest extent (Deser et al., 2016; Smoliak et al.,

2015; Sippel et al., 2019). Therefore, dynamical adjustment allows
:::
one to obtain a higher signal–to–noise ratio in the residual,

that is circulation filtered, time series(the residual is
:::::::::::::::
circulation-filtered

:::::::
residual

::::
time

::::::
series,

::::::
where

:::
the

:::::::
residual

:::::::::
represents

the remainder after subtraction of the estimated circulation induced variability in a target variable)
:::::::::
subtracting

:::
the

:::::::::
estimated180

::::::::::::::::
circulation-induced

::::::::
variability

:::::
from

:::
the

:::::
target

::::::
variable.

6



Here, we employ ridge regression, a linear statistical learning
:::::::::
dynamical

:::::::::
adjustment

:
technique, to estimate circulation

induced-variability
:::::::::::::::
circulation-induced

:::::::::
variability

:
(Sippel et al., 2019). In our model, the sea level pressure (SLP) field is

used as
:
a
:
predictor and proxy of circulation induced variability to predict the circulation induced variability

::::::::::::::::
circulation-induced

::::::::
variability

:
(Sippel et al., 2019). As a regularized linear regression

::::::
method, ridge regression allows for including full spatiotemporal185

dynamics of circulation variations while overcoming multicollinearity and overfitting, normally raising
:::::
which

:::::::
typically

:::::
arise

from a large number of predictors and relatively short study period (Hastie et al., 2009; Sippel et al., 2019). This approach was

adapted by Li et al. (2022) to evaluate the fraction of atmospheric circulation induced
::::::::::::::::
circulation-induced variations in global

carbon cycle variability. The key steps include (Sippel et al., 2019; Li et al., 2022): 1) Selecting
:::::
Select

:
pixel based time series of

global SLPto predict ,
::
to

:::
be

::::
used

::::
later

::
for

:::::::::
predicting global carbon cycle variability; here the full global domain. Then

:
.
:::
We

::::
then190

calculate the mean seasonal SLP. Since DJF (December, January, and February) SLP has
:::::::
Because

:::
DJF

:::::::::::::::::::
(December–February)

:::
SLP

::::::::
provides

:
the highest predictability of annual NBP (details please check Li et al. (2022) ), here we select DJF SLP

:::
see

::::::::::::
Li et al. (2022)

:::
for

:::::::
details),

:::
we

:::
use

::::
DJF

::::
SLP

::
in

:::
this

:::::
study. 2) Selecting

:::::
Select

:
the time series to represent global carbon cycle

variabilityas target variable
:::::::::
representing

::::::
global

::::
land

::::::
carbon

::::::::
variability; here, this corresponds to the global annual NBP with

:::
the

ensemble mean removed. 3) Splitting the dataset into training and testinggroups; here, we select
::::::
Training

::::
and

::::::
testing.

:::::
Here, the195

first half period of the dataset as the training group
:
is

::::
used

:::
for

:::::::
training and the second half as the testinggroup

::
for

::::::
testing. For

example in historical simulations, the training data is the time series from 1851 to 1932, and the testing data is in 1933–2014.

4) Switch the training and testing data to start a new round of model training and prediction. This means, the training data from

step 3 is used as testing data, and the testing data from step 3 is used as training data. Then we have the full time series of NBP

that is predicted by DJF SLP. Detailed model design can be found in Sippel et al. (2019); Li et al. (2022).200

By using DJF SLP to predict NBP
::::
(with

:::
the

::::::::
ensemble

:::::
mean

:::::::::
removed), we estimate the fraction of circulation induced

::::::::::::::::
circulation-induced variability in global NBP time series. The residual, after removing the DJF SLP predicted NBP, reflects

mostly the influence of natural forcing (e.g., volcanic eruptions or solar radiation variability), disturbances (fires, when simulated

by models), and unpredictable high frequency internal climate variability (Sippel et al., 2019; Piao et al., 2020; Canadell et al.,

2021). We hypothesize that this method reduces noise levels in NBP and allows for an earlier detection of the anthropogenic205

signal.

2.4 Statistical analysis

We perform four statistical analyses: 1) ToE in land carbon fluxes from historical simulations:
:
. We analyse the time to detect

:::
ToE

::
of

:::
the

:
anthropogenic perturbed signal in NBP, GPP, and TER in the historical simulations. Following Bonan et al. (2021),

the signal (S) is the linear regression slope of the ensemble mean in the period of 1960–2009, and noise (N) is the standard210

deviation of all simulations in the period 1930–1959. We first compare the historical time series of NBP, GPP, and TER, and

then calculate the ToE according to Eq. (3)
:
3. 2) Spatial effects on ToE: .

:
We examine how the ToE varies globally and across

:::
the

10 RECCAP-2 regions. Additionally
:
In

:::::::
addition, we evaluate the impact

::::::::
influence of spatial resolution on ToEby calculating

:
.

:::
We

:::::::
calculate

:
pixel-based ToE at various

:::::
values

::
at

:::::::
multiple

::::::
spatial scales (ranging from 2.5

:
5◦×2.5

:
5◦ to 60◦×60◦) and compare

these with the global scale. 3) ToE in future projections of the land carbon fluxes: .
:
We calculate the ToE for NBP, GPP, and215
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TER, with the signal period in 2020–2070 and the noise period in 2020–2050
::::
2070

:
(with the ensemble mean removed). 4)

Noise reduction through dynamical adjustment: .
:

Given the large year–to–year variability in NBP, we use ridge regression to

remove the circulation induced variability
:::::::::::::::
circulation-induced

:::::::::
variability

::
in
::::::

global
:::::
NBP. To assess the effectiveness of ToE

reduction
::
on

:
a
::::::
global

::::
scale

:
through dynamical adjustment, we calculate the relative reduction (dS) according to Eq. (4)

:
4.

Note that only the calculated signal (regression slope) with significance value P < 0.05 is selected. If the calculated signal220

(regression slope) is negative, we then take the absolute signal value to get a positive ToE.
::::
Here

:::
we

:::::
select

::
to

:::::
show

:::
the

:::::
ToEs

:::
less

::::
than

:::
150

::::::
years.

dS = 100% ∗ (VO −VR)/VO (4)

Note that VO represents the original value
::::
(ToE

::
or

:::
N) and VR is the residual after the circulation induced

::::
(ToE

::
or

:::
N)

::::::::
estimated

::::
from

:::
the

:::::::
original

::::
time

:::::
series

::::::
(NBP

::
or

:::::
GPP)

::::
after

:::::::::
removing

:::
the

::::::::::::::::
circulation-induced

:
variability estimated by

:::::
using the ridge225

regression modelis removed..
:

:::
We

:::
also

:::::::::
calculated

:::
the

::::::::::
contribution

:::
of

::
N

:::
and

::
S

::
to

::::
ToE

:::::::
changes

::
in

::::
each

::::::::::
RECCAP-2

::::::
region,

:::::::
relative

::
to

:::
the

::::::
global

:::::
scale,

:::
for

::::
NBP,

:::::
GPP,

:::
and

:::::
TER.

:::
Eq.

::
5

:
is
:::
the

::::::
natural

::::::::::
logarithmic

::::
form

:::
of

:::::::
equation

:::
Eq.

::
3.

:::
We

::::
first

::::::::
calculate

:::
the

:::::::::
logarithmic

:::::::
changes

:::
on

:::
the

:::::
global

::::
and

:::::::
regional

::::::
scales,

::::
and

::::
then

:::::::
calculate

:::
the

:::::::::
differences

::::::::
between

::::
each

:::::
region

::::
and

:::
the

:::::
global

:::::
mean

::::
(Eq.

:::
6).

ln(ToE) = ln(2×N)+ ln(1/S)
:::::::::::::::::::::::::::

(5)230

ln(ToEregion)− ln(ToEglobal) = ln(2×Nregion)− ln(2×Nglobal)+ ln(1/Sregion)− ln(1/Sglobal)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(6)

:::
The

::::::::::
contribution

:::
of

::::::
changes

:::
in

:
N
::::
and

:
S
::::
are:

Ncontri = 100%× ln(2×Nregion)− ln(2×Nglobal)

ln(ToEregion)− ln(ToEglobal)
:::::::::::::::::::::::::::::::::::::::::::

(7)

Scontri = 100%× ln(1/Sregion)− ln(1/Sglobal)

ln(ToEregion)− ln(ToEglobal)
:::::::::::::::::::::::::::::::::::::::::

(8)

::::
Note

:::
that

:::
for

:::::
future

:::::::::
scenarios,

:::
we

::::::::
substitute

:::
the

:::::::
region’s

:::::
value

::
to

::::
each

:::::
future

:::::::::
scenario’s

:::::
value.235

3 Results and discussion

3.1 Detection of anthropogenic signal in historical simulations

We first examine the NBP time series for the historical simulations from 1851 to 2014 (Fig. 1). Before the 1960s, the ensemble

mean (long-term trend) for each model remains relatively stable with slight variations. After the 1960s, the ensemble mean
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shows a noticeable increase. Despite this, the magnitude of NBP variability remains consistent or slightly increase throughout240

the historical period, for all models. In individual simulations, we observe that the year–to–year variations are considerably

larger than the changes in the ensemble mean, enhancing or offsetting the long-term NBP trend .
::::
(Fig.

::
1).

:

We then examine the time series of GPP and TER in the historical simulations (Appendix A Fig.( A.1))
:::
Fig.

:::
1).

:
Both GPP

and TER show similar trends across models, though ACCESS-ESM1-5 shows a larger magnitude difference .
::::
(Fig.

:::
1).

:
The

ensemble mean of GPP and TER are similar until the 1960s, after which GPP slightly surpassed TER .
::::
(Fig.

:::
1). Year–to–year245

variations are minor compared to the long-term trend in the ensemble mean, suggesting that photosynthesis and respiration

are strongly influenced by anthropogenic perturbations. As
::::::
Because

::::
the

:::::
trends

::
in
:

GPP and TER trends
::::::
largely compensate

when combined to calculate NBP, NBP shows
:::
the

:::::::
resulting

::::
NBP

:::::::
exhibits

:
smaller long-term trends but significant year–to–year

:::::::::
pronounced

::::::::::
interannual variability.

3.2 Spatial effects of ToE250

We then examine how long it takes for the anthropogenic signal (ensemble mean of each model) to emerge from year–to–year

variations of NBP in global scale and across 10 RECCAP-2 regions (Fig. 2
:
b). Globally, CESM2-LE has the shortest detection

time at 26 years, while CanESM5 takes the longest at 66 years .
:::
(Fig.

::::
2b).

::::
The

::::::::
detection

::::
time

::
in ACCESS-ESM1-5 stands out

with a much longer detection time of 289 years
:
is

:::
not

::::::::
available, due to a flat trend of ensemble mean after 1960s.

:::
We

:::
first

::::::
check

:::
the

::::::::
ensemble

:::::
mean

::
of

:::::
NBP

::
in

:::::
global

:::::
scale

::::
and

::
10

::::::::::
RECCAP-2

:::::::
regions

:::::::::
(Appendix

::
A

::::
Fig.

::::
A.1).

::::
The

::::::
trends255

::
of

::::::::
ensemble

:::::
mean

::
in

::::
NBP

:::::::
subjects

::
to

::::::
larger

:::::::::
interannual

:::::::::
variability

::
in

:::::::
regional

::::
than

::
in

::::::
global

:::::
scales,

::::::::::
particularly

::
in
:::::::::
Southeast

::::
Asia

:::
and

::::::
Africa.

:
Comparing noise (N) and signal (S) (Appendix A Fig. A.2

:::
A.4 and Eq. (3)

:
3), we found that the variation in

detection time across models is mainly due to differences in year–to–year variability
:::
and

:::::
signal

::::::
trends.

In most of the 10 RECCAP-2 domains, ToE detection in NBP takes longer than at the global scale (Fig. 2B). The exception

is ACCESS-ESM1-5, where a flat global trend after the 1960s causes a much longer detection time. The regional noise tends260

to be larger than at the global scale, leading to delayed
::
b).

:::
We

::::::::
calculate

:::
the

::::::::::
contribution

:::
of

:::::::
changes

::
in

::
N

::::
and

:
S
:::
to

:::::::
regional

::::
ToE,

::::::::
compared

::::
with

:::::::::
historical

:::::
global

:::::
scale

::::
NBP

:::::::::
(Appendix

:::
A

:::
Fig.

:::::
A.5).

::
In

:::::::
regions

::::
such

::
as

::::::
South

::::
Asia

::::
and

::::::::::
Australasia,

:::
the

:::::
longer

:::::::
regional

::::
ToE

::
is

::::::
mainly

::::
due

::
to

:::::
larger

:::::::
regional

:::::
noise

:::::::::
(Appendix

::
A

::::
Fig.

:::::
A.5).

:::::
While

::
in

:::::
other

::::::
regions

:::::
such

::
as

::::
East

:::::
Asia,

::
the

::::::
longer

:::::::
regional

::::
ToE

::
is

::::::
mainly

::::::::::
attributable

::
to

::::::
smaller

:::::::
regional

::
S
:::::::::
(Appendix

::
A
::::
Fig.

:::::
A.5).

:::::
These

::::::
effects

:::::
delay

:::
the detection

of anthropogenic signals. We refer to this difference
:
,
:
a
:::::::::::
phenomenon

:::
we

::::
refer

::
to as "spatial delay".265

The spatial delay
::
in

::::
NBP

:
can be explained by

::
the

:
reduced noise from internal climate variability when aggregating fluxes

:::::
fluxes

:::
are

:::::::::
aggregated globally, while the signal remains relatively stable

::::
trend

::::
may

:::
be

:::::
either

::::::::
enhanced

::
or

:::::::::
diminished

:::::::::
depending

::
on

:::
the

:::::::
specific

:::::
region

::::::::::
considered.

:
(Appendix A Fig. A.2

:::
A.4,

::::
A.5). This is a well-known pattern in detection and emergence

studies in the climate literature (Mahlstein et al., 2011; Lehner et al., 2017). Southeast Asia and Australasia, show the largest

noise, and therefore also the longest ToE across the 10 RECCAP-2 domains. However, the spatial delay does not apply270

everywhere. In Russia, models like ACCESS-ESM1-5, CanESM5, and IPSL-CM6A-LR show shorter detection time compared

to the global scale . This is
::::::::
(Appendix

::
A

::::
Fig.

::::
A.4,

::::
A.5).

::::
This

::
is

::::::
mainly

:
due to apparent smaller noise in Russia of the three

:::
two

models, compared with other regions and global scale
:::::
global

::::
scale

:::
and

:::::
other

::::::
regions

:::::::::
(Appendix

::
A
:
Fig. A.2

:::
A.4,

:::
A.5).
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Figure 1. Time series of NBP

:
,
:::
GPP,

:::
and

::::
TER

:
from 1851 to 2014 in five ESM large ensembles. The thin lines represent individual simulations,

while the bold lines represent the ensemble mean. The
:::
gray

::::
lines

:::::
show

::::
NBP,

:::::::::::
corresponding

::
to
:::

the
:::

left
::::::

y-axis.
:::
The

::::
blue

::::
and

:::
red

::::
lines

:::::::::
corresponds

::
to

::
the

::::
right

:::::
y-axis

:::
and

:::::::
represent

::::
GPP

:::
and

:::::
TER,

:::::::::
respectively.

:::
The

:
number of simulations for each model is listed in the legend

next to the model name.
:::
Note

:::
that

::::
TER

::
in

:::::
model

::::::::::::::
ACCESS-ESM1-5

::::
only

::::::
included

:::
24

:::::::::
simulations,

:::
due

::
to

:::::
limited

::::
data

::::::::
availability.

We then evaluate the ToE for GPP and TER (Fig. 2C, D), which
:
c,

:::
d),

::::
both

:
show similar patterns in detection time, and

the relative importance of noise and signal at regional scale (Appendix A Fig. A.3, A.4
::::
A.6,

::::
A.7,

::::
A.8,

:::
A.9). Globally, it takes275
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around 8 to 13 years to detect anthropogenic signal in GPP and 6 to 10 years for TER .
::::
(Fig.

:::
2c,

:::
d). As found for NBP, both

GPP and TER show a spatial delay from global scale to regional scale .
::::
(Fig.

:::
2c,

:::
d).

:::
For

::::
GPP

::::
and

::::
TER,

::::::
longer

:::::::
regional

:::::
ToEs

::
are

::::::
mostly

::::
due

::
to

:::::
larger

:::::::
regional

:::::
noise

:::::
rather

::::
than

:::::::
weaker

:::::
signal

::::::
trends,

::::::
except

::
in

::::
West

:::::
Asia,

:::::
where

::
it
::
is

::::::
mainly

::::::
driven

::
by

:::
an

:::::::
apparent

::::::
weaker

:::::
signal

:::::
trend

:::::::::
(Appendix

::
A

::::
Fig.

::::
A.7,

::::
A.9).

:
Australasia in GPP and TER both have generally

::::::::
generally

::::
have the

longest detection time, due to high
:::::
higher noise compared to low signal levels ,

:::::
lower

:::::
signal

:::::
levels

:::::::::
(Appendix

::
A

:::
Fig.

::::
A.6,

:::::
A.8),280

indicating higher internal climate variability. In both GPP and TER, South America and Southeast Asia experience high level

:::::
levels of noise and signal, while West Asia has relatively low level

::::
levels

:
of noise and signal .

:::::::::
(Appendix

::
A

:::
Fig.

::::
A.6,

:::::
A.8).

Compared with the land carbon sink (NBP), photosynthesis (GPP) and ecosystem respiration (TER) individually show a

much shorter detection time of the anthropogenic signal (Fig. 2). This is likely due to the fact that GPP and TER trends

are strongly influenced by anthropogenic perturbations, with the magnitude of the trend exceeding the magnitude of internal285

climate variability in a much shorter time. However, when calculating NBP, the long-term trends of GPP and TER offset each

other, leaving NBP with weaker long-term trends relative to the year–to–year natural variations, thus making it harder to detect

the anthropogenic signal in NBP.

To further analyse the spatial delay effect, we calculate the distribution of pixel based ToE for NBP, GPP, and TER under

varying resolutions in the historical simulations. For NBP, as the resolution becomes coarser, the spread of the ToE distribution290

decreases substantially (Fig. 3), though the median remains similar. This supports the
::::
might

:::
be

:::
due

::
to noise reduction by spatial

aggregation through offsetting internal climate variability (Lombardozzi et al., 2014) (Fig. 3). A similar pattern is observed in

GPP and TER, where aggregation reduces the spreads of ToE without substantially altering the medians (Appendix A Fig. A.5

and A.6
::::
A.10

::::
and

::::
A.11).

We found that on a global scale , it takes shorter
:::::
global

::::
scale

:::::
takes

:::::::
shorter

::::
time

:
to detect long-term trends induced by295

anthropogenic effects than at smaller
:::::::
regional scales, with ToE

::::
ToEs increasing for smaller domains as reported by Lombardozzi

et al. (2014), though their study used fewer models and less than 10 simulations.
:
A

::::
few

:::::::
regions,

:::::::
however,

:::::
show

::::::
shorter

:::::
ToEs

:::
than

::::
the

:::::
global

:::::
scale.

::::
For

::::::::
example,

::
in

:::::::
Russia,

:::::::::
CanESM5

:::
and

::::::::::::::
IPSL-CM6A-LR

::::::::
simulate

::::::::
relatively

:::::
small

:::::
noise

:::
and

::::::::
stronger

:::::
signal

::::::
trends,

::::::
leading

:::
to

::::::
shorter

:::::
ToEs.

::::
This

:::::::
maybe

:::::
relate

::
to

:::
the

:::::::
sparsely

::::::::::
distributed

:::::::::
ecosystems

::::::::
included

::
in

:::::::
models,

::::::
which

::
are

::::
less

::::::::
sensitive

::
to

:::::::
changes

::
in

:::::::
climate

::::::
drivers.

::::
We

:::::
found

::::
that,

:::
for

:::::::
regional

:::::
NBP,

:::::
larger

::::::::::
interannual

:::::::::
variability

::
in

:::
the

::::::
signal300

::::
trend

::::
also

:::::::::
contributes

:::
to

:::::
longer

::::::::
detection

:::::
time,

:::::
likely

::::::::
reflecting

:::::::
different

::::::::
regional

::::::
climate

::::::
drivers

:::::
(e.g.,

::::
fires,

:::::::
decadal

:::::::
internal

:::::::::
variability,

::::
land

:::
use

:::::::
changes

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Deser et al., 2012b; Canadell et al., 2021; Eyring et al., 2021; Mercado et al., 2009).

:::::
Such

:::::
large

:::::
signal

:::::::::
variability

::
in

:::::::
regions

::::
like

::::::::
Southeast

:::::
Asia

:::
and

::::::
Africa

::::::::
therefore

::::::::::
introduces

:::::::::
substantial

:::::::::::
uncertainties

::
in

::::::::
detecting

::::
the

:::::::::::
anthropogenic

::::::
signal

::
on

:::::::
decadal

:::::::::
timescales.

:

:::
The

:::::
large

:::::::::
interannual

:::::::::
variations

::
in

:::::
NBP

::::::
largely

::::
arise

:::::
from

::::::::
variations

::
in

:::::
GPP

:::
and

::::::::::
respiration.

:::
As

:::::::
regional

::::::::::
ecosystems

:::
are305

::::
more

:::::::
sensitive

::
to

:::::::::::
precipitation

::::
than

::
to

::::::::::
temperature

::::::::::::::
(Jung et al., 2017)

:
,
:::::
much

::
of

:::
this

:::::::::
variability

:::::
maybe

:::::::::
influenced

::
by

:::::::::::
precipitation

::::::::::::::::::::::::
(Humphrey et al., 2018, 2021)

:
.
:
However, this spatial delay does not always apply, particularly in regions like Russia, the

interannual natural variability in three CMIP6 modelsis apparently low compared with global scale.
:::::::::::
anthropogenic

:::::::
signals

::
in

::::::::::
precipitation

::::
are

::::
less

:::::
robust

::::
and

::::::::
emerged

::::
later

::::
than

:::::
those

:::
in

::::::::::
temperature

:::::::::::::::::::::::
(Doblas-Reyes et al., 2021).

::::::::::
Identifying

:::::
these

11



(a) RECCAP-2 map (b) NBP

(c) GPP (d) TER

Ciais et al., 2022

Figure 2. ToE of NBP on a global scale and across 10 RECCAP-2 regions, under historical simulations of five ESM large ensembles. Note

that ToE is
::
the

::::
years

::::::::
detectable

::::
after

::::
1960,

:::
and

::
is calculated with signal period of 1960-2009 relative to the noise period of 1930-1959, details

please check Sect. 2.4. (a) RECCAP-2 map (duplicated from Ciais et al. (2022) Fig. 1) that divides the global continents into 10 domains.

Note that the RECCAP-2 map is aggregated from 0.5◦×0.5◦ to 2.5◦×2.5◦, the spatial domains are slightly changed (b) Heat map of the ToE

in global and each spatial domain of NBP. (c) and (d) are heat maps of the ToE in global and each spatial domain of GPP and TER separately.

Domains with no significant signal (P > 0.05)
::
or

:::
ToE

:::::
longer

::::
than

:::
150

::::
years

:
are shown as empty squares.

::::::
signals

:::
and

::::
their

:::::::
impacts

::
on

:::::::
regional

:::::::::
ecosystem

::::::
activity

:::::
could

::::::::
therefore

:::::
enable

::
a
::::::
cleaner

:::
and

::::::
earlier

::::::::
detection

::
of

::::::::::::
anthropogenic310

::::::::
influences

:::
on

::::
land

:::::
carbon

::::::
sinks.

In the historical simulations, the land carbon sink (NBP) shows large year–to –year variability, delaying the detection of

anthropogenic signals. In contrast, GPP and TER are primarily driven by anthropogenic perturbations, with relatively lower

natural variability . The compensating trends of TER and GPP delay NBP detection, explaining why GPP and TER detect the

signal in around 10 years, while NBP takes around 26 to 66 years. Next, we explore how the different future climate scenarios315

impact ToE.
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Figure 3. Spatial effect in NBP historical simulations across five ESM large ensembles. The distribution of ToE are
::::
(years

::::
after

:::::
1960)

::
is

shown for varying
::::
spatial

:
resolutions.

::
We

::::::::
aggregate

::
the

:::::
global

::::
data

:::
per

::::
pixel

::
to

::::::
different

:::::::::
resolutions,

::::
then

:::::::
calculate

:::
the

:::
ToE

:::
per

::::
pixel.

::::
The

:::
line

:::::
within

:::
each

::::
box

::::::
indicates

:::
the

::::::
median.

:
Note that all the signals are in absolute values, so the calculated ToE

::::
ToEs

:
are all positive.

3.3 ToE in future projections

We examine the time series of NBP under various future scenarios from 2016 to 2100 (Fig. 4). While NBP trends are similar

in the two low emission scenarios (SSP1-2.6 and SSP2-4.5), the highest emission scenario (SSP5-8.5) shows
::::
NBP

:::::
trends

:::
of

::::::::
ensemble

::::
mean

:::::
show

:
large deviations across models .

::::
(Fig.

:::
4).320

In CESM2-LE, the SSP3-7.0 scenario shows a steady increase in NBP until around 2040, followed by stable values until

2100.
::::
trend

:::::
until

::::
2100

:::::
(Fig.

:::
4). ACCESS-ESM1-5 and IPSL-CM6A-LR exhibit mixed NBP trends in all scenarios, with a

relatively stable trend before 2050 and a gradual decline afterwards—ACCESS-ESM1-5 even shifted to a net carbon source

.
::::
(Fig.

:::
4).

:
In CanESM5, all scenarios are mixed and together increasing until 2050.

::::
2050

:::::
(Fig.

:::
4). After that, all scenarios

diverged according to different emission scenarios .
::::
(Fig.

::
4).

:
MPI-ESM1-2-LR also have all scenarios mixed before around325

2050, then diverge clearly with a lower overall trend .
::::
(Fig.

:::
4).

:
Except CanESM5, the large year–to–year variability in NBP

makes it challenging to distinguish long-term trends across scenarios.

13



(a) (b) (c)

(d) (e)

Figure 4. The time series of future NBP from 2016 to 2100 across five ESM large ensembles. The four future scenarios include SSP1-2.6

(red line), SSP2-4.5 (yellow line), SSP3-7.0 (green line), and SSP5-8.5 (purple line). Thin lines represent individual simulations, while thick

lines represent the ensemble mean for each scenario. The number of simulations for each model scenario is indicated in the legend next to

the scenario label.

We then examine the time series of GPP and TER under future scenarios (Appendix A Fig. A.7 and A.8
:::
A.12

::::
and

:::::
A.13).

GPP continues to rise in all models until 2100, except for SSP1-2.6, in which GPP slightly decreases after ca. 2060 (Appendix

A Fig. A.7
::::
A.12). TER follows a similar pattern, with an increasing trend in line with the different CO2 emission scenarios330

(Appendix A Fig. A.8
::::
A.13). The increase in GPP is likely due to the enhanced CO2 fertilization and warming in mid-to-high

latitudes (Ruehr et al., 2023; O’Sullivan et al., 2022).

Distinguishing the ToE for NBP from different future scenarios is challenging, due to smaller anthropogenic signal and larger

year–to–year variations across four future scenarios (Appendix A Fig. A.9
:
5). Only CanESM5 shows a clear separation between

scenarios, with ToE of 144
:::
147

:
years for SSP1-2.6, 57

::
60 years for SSP2-4.5, 33

::
35

:
years for SSP3-7.0, and 17

::
19

:
years for335

SSP5-8.5. Other models take over 44 years to detect the anthropogenic signal among all scenarios .
::::
(Fig.

:::
5). In contrast, GPP

and TER trends are more distinct and separated according to different scenarios, resulting in much shorter ToE (Appendix A

Fig. A.10,A.11
:::::
A.15,

::::
A.17). This might be due to an increase in the CO2 emission level, or a stronger anthropogenic signal

that outweighs the increased noise level, making the detection time more driven by impacts from anthropogenic perturbations

rather than internal climate variability .
::::::::
(Appendix

::
A
::::
Fig.

:::::
A.16,

:::::
A.18).

:
340
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Figure 5.
::::
Heat

:::
map

::
of

::::
ToE,

::::
noise

::::
(N),

:::
and

:::::
signal

::
(S)

::
of

:::::
global

::::
mean

::::
NBP

:::::
under

:::::
future

:::::::
scenarios.

:::
The

:::::::::
divergence

:::
of

::::
NBP

::::::
across

::::::
models

::
is
:::::
much

:::::
larger

:::
in

:::::
future

::::::::
scenarios

::::
than

::
in

::::::::
historical

:::::::::::
simulations.

:::::
While

:::::::
models

:::
are

::::::::
inherently

::::::::
different,

:::::
these

:::::::::
differences

::
in
::::

the
::::::::
historical

:::::
period

::::
may

:::
be

::::::::
amplified

::
in

::::::
future

::::::::
scenarios

:::
due

:::
to:

:::
(a)

:::
the

:::::::::
increasing

:::::::
influence

::
of

:
CO2 :::::::::

fertilization
:::
and

::::
land

:::
use

::::::
change

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(van Vuuren et al., 2011; O’Neill et al., 2016; Christensen et al., 2018; Arora et al., 2020; Lee et al., 2021; Ciais et al., 2013)

:
;
:::
and

:::
(b)

:::::
Rising

::::::::::
temperature

:::
and

:::::
more

:::::::
frequent

:::::::
extreme

:::::
events

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Friedlingstein et al., 2014; Fischer and Knutti, 2015; Hewitt et al., 2016; Kharin et al., 2018; Vogel et al., 2020; Li et al., 2021; Seneviratne et al., 2021)

:
.
::::
Both

::::
may

:::::::
intensify

:::::::::
differences

::
in

::::::::::::
climate-carbon

:::::::::
feedbacks

::::::
among

::::::
models

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Friedlingstein et al., 2014; Hewitt et al., 2016; Seneviratne et al., 2021)345

:
.

In future scenarios, it takes longer to detect the anthropogenic signal in NBP, when compared to historical simulations. This

delay is likely
:::::
mainly

:
due to the small anthropogenic signal caused by the compensation effect of GPP and TER, and

:::::
whose

:::::::::
differences

:::
are

::::::
smaller

::::
than

:::::
those

::
in
::::::::

historical
::::::::::

simulations
:::::
(Fig.

:
5
::::
and

::::::::
Appendix

::
A
::::
Fig.

::::::::::
A.14-A.18).

:::::
This

::::
may

:::::
result

::::
from

::
a

::::::::
slowdown

::
in

:::
the

::::::::
long-term

::::
GPP

:::::
trend

:::::
under

::::::
warmer

:::::::
climate

:::
and

:::::::::
increasing CO2 ::::::::::::

concentrations
::
in

:::::
future

::::::::
scenarios.

::
In

::::::::
addition,350

larger noise levels that
:::::::::
(Appendix

::
A

:::
Fig.

:::::
A.14)

::::
that

:::::
might driven by more frequent extreme events in a warming climate (Arias

et al., 2021) , which amplifies year–to–year variations in the land carbon sink. Reducing these year–to–year variations is crucial

for reducing the ToE in NBP. In the next section, we apply dynamical adjustment to filter out the atmospheric circulationinduced

variability in NBP
:::::::::::::::
circulation-induced

:::::::::
variability

::
in

:::::
global

:::::
NBP

::::
time

:::::
series, and assess whether it can contribute to reduce ToE

in both historical simulations and future scenarios.355

3.4 Dynamical adjustment for noise reduction

We use the ridge regression to filter out atmospheric circulation induced
::::::::::::::::
circulation-induced variability in year–to–year

:::::
global

NBP variability (Fig. 5
:
6). By applying the ridge regression model that based on sea level pressure as covariates, the circulation

induced
:::::::::::::::
circulation-induced

:
variability in the respective carbon flux is predicted. The predicted circulation induced

:::::::::::::::
circulation-induced

variability is assumed to contain direct influences (via thermodynamics or CO2 fertilization) of climate change (Sippel et al.,360

2019). Because circulation induced
::::::::::::::::
circulation-induced variability is highly variable and often assumed to be largely internal

variability, the residual can be expected to show a higher signal-to-noise ratio (e.g., Deser et al. (2016); Sippel et al. (2019)).

The noise of
:::::
global

:
NBP is substantially reduced after filtering out circulation induced

:::::::::::::::
circulation-induced

:
variability, so

that ToE is reduced in both historical simulations and future scenarios (Fig. 5
:
6, Appendix A Table. A.1). In the historical
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(a) (b) (c)

(d) (e)

Figure 6. ToE of NBP from historical simulations to future scenarios. Note that ToE in historical simulations is calculated with signal

period of 1960–2009 relative to the noise period of 1930–1959, and ToE in future scenarios is calculated with signal period of 2020–2070

relative to the noise period of 2020–2050
::::
2070, details please check Sect. 2.4. The light colored

::::
solid boxes represent the ToE of NBP,

while the neighboring darker shaded, black framed
::::::
hatched boxes represent the ToE of the NBP residual with the circulation induced

::::::::::::::
circulation-induced

:
variability removed. In cases where both boxes are missing, the respective simulation was

::::
signal

::
is not available

:::
(no

:::::::::
significance

::
of

::::
linear

::::
trend

::::::
slope),

:
or
:::

the
::::
ToEs

:::
are

:::::
longer

:::
than

::::
150

::::
years.

simulations, the relative reduction in ToE ranges from 34.0
::
34% (CESM2-LE) to 38.6

::
39% (CanESM5). ,

::::::::::::
corresponding

::
to

:
9
::::
and365

::
26

:::::
years,

::::::::::
respectively

:::::
(Fig.

::
6,

::::::::
Appendix

::
A

:::::
Table.

:::::
A.1).

:
For future scenarios, the reduction ranges from 27.1% to 54.3% ,

::::
29%

::
to

::::
55%

:::
(42

:::
and

:::
19

:::::
years

::::::::
reduction,

:::::::::::
respectively),

:
except for ACCESS-ESM1-5, where reductions are mostly less pronounced

(Appendix A Table A.1). For GPP, the relative reduction in ToE is smaller (Appendix A Fig. A.12
::::
A.19

:
and Table. A.3). In the

historical simulations, it ranges from 12.7
::
13% (CanESM5) to 32.1

::
32% (ACCESS-ESM1-5), and for

:::::::::::
corresponding

::
to

::
1
:::
and

::
4

:::::
years,

::::::::::
respectively

:::::::::
(Appendix

::
A

::::
Fig.

::::
A.19

::::
and

:::::
Table.

:::::
A.3).

:::
For

:
future scenarios, the relative reduction ranges from 19.2% to370

59.1% .
:::
19%

:::
to

::::
60%

::
(1

:::
and

:::
67

:::::
years

::::::::
reduction,

:::::::::::
respectively)

:::::::::
(Appendix

::
A
::::
Fig.

:::::
A.19

:::
and

::::::
Table.

::::
A.3).

:
The large reduction of

ToE indicates that NBP and GPP are both substantially affected by circulation induced
:::::::::::::::
circulation-induced

:
variability.

:::
We

::::
then

:::
test

:::
the

:::::::::::
observations

::
of

:::::::::::
Atmospheric

:
CO2 ::::::

growth
::::
rate

::::::
(AGR)

::::
from

:::::::
Mauna

:::
Loa

:::::::::::::::
(Lan et al., 2025)

:::
for

:::
the

::::::
period

::::::::::
1960–2009,

::::::::
matching

:::
the

::::::
period

::
of

::::::
signal

:::
for

:::
the

:::::
ESM

:::::::
analysis

::::
(Fig.

:::
7).

::::
The

::::
ToE

::
of

:::
the

::::::::
observed

:::::
AGR

::
is
:::

33
:::::
years,

:::::
with

::::
noise

::
of

::::
0.87

::::::::
gC · yr-1

::::
and

:::::
signal

::
of

::::
0.05

::::::::
gC · yr-2

::::
(Fig.

:::
7).

::::
After

:::::::::
removing

::::::::::::::::
circulation-induced

::::::::
variations

:::::::
through

:::::::::
dynamical375

:::::::::
adjustment,

:::
the

::::
ToE

::
of

:::
the

:::::::
adjusted

::::
new

:::::
AGR

::
is

:::::::
reduced

::
to

::
23

:::::
years,

:::::
with

::::
noise

:::
of

::::
0.70

:::::::
gC · yr-1

::::
and

:::::
signal

::
of

::::
0.06

::::::::
gC · yr-2

::::
(Fig.

::
7).

:::::
This

::::::::
represents

:::
an

::::::
overall

::::::::
reduction

::
of

:::::
about

::::
30%,

::::::::::
contributed

::
by

:::::
19%

::::::::
reduction

::
in

::::
noise

::::
and

::::
20%

:::::::
increase

::
in

::::::
signal.
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Figure 7.
::::
Time

:::::
series

::
of

:::
the

:::::::::
atmospheric CO2 :::::

growth
:::
rate

::::::
(AGR)

::
at

:::::
Mauna

::::
Loa

::::
from

::::
1960

::
to

::::
2009

:::::::::::::
(Lan et al., 2025).

::::
Five

::::::
volcanic

:::::
years

:::::
(1963,

::::
1982,

:::::
1983,

::::
1991,

:::
and

:::::
1992)

::
are

:::::::
removed.

::::
The

::
red

:::
line

::
is

:::
the

::::::
observed

:::::
AGR.

:::
The

:::::
black

:::
line

:
is
:::
the

:::::::
long-term

::::
trend

:::::
fitted

:::
with

:
a
::::::
locally

:::::::
weighted

:::::::
scatterplot

::::::::
smoothing

::::::::::::::::::::::::::
(Cleveland et al., 1991, LOWESS)

::::::
(signal).

:::
The

::::::
residual

:::::
(AGR

::
−

::::
fitted

::::::::
long-term

::::
trend)

:::
was

:::::::
predicted

:::::
using

:::
SLP

::::::
through

::::
ridge

::::::::
regression

:::
with

:::::::::::
leave-one-out

::::
cross

:::::::
validation

::::
(blue

::::
line).

::::
This

:::
SLP

::::::::
predicted

::::::
residual

:
is
::::
then

:::::::
subtracted

::::
from

:::
the

:::::::
observed

::::
AGR

::
to

:::::
obtain

:
a
:::
new

:::::
AGR

:::
time

:::::
series

:::
with

:::::::::::::::
circulation-induced

::::::::
variations

::::::
removed

::::::::
(observed

::::
AGR

::
−

::::
SLP

:::::::
predicted

:::::::
residual).

:::
The

::::::
dashed

::::
black

:::
line

::
is

:::
the

:::
new

::::::::
long-term

:::::
trend.

:::
Data

::::::::::
pretreatment

:::
and

:::
the

::::
ridge

::::::::
regression

:::::
model

:::::
follow

:::::
paper

:::::::::::
Li et al. (2022)

:
.
::::
Note

:::
that

:::
the

:::::
signal

:::::
period

:
is
:::
the

::::
same

::
as

::
in

::::::
models

::::::::::
(1960–2009).

::::
Due

::
to

:::::
limited

::::::
records

::
of

:
CO2::::::::::

observations
:::::
before

::::
1958,

::::
here

::
we

:::::::
calculate

:::
the

::::
noise

::::
also

::
in

::
the

:::::
period

:::::::::
1960–2009.

:::
The

::::::
results

::::
show

::::
that

:::
this

::::::::
approach

:::
can

::
be

:::::::
applied

::
in

:::::::::::
observations,

:::::::
enabling

::::::
earlier

:::::::
detection

::
of

::::::::::::
anthropogenic

::::::
signals

::
in

::::::
global

:::::
carbon

:::::
cycle

:::::::::
variability.

:

4 Conclusions380

This study examines the detection of long-term trends driven by anthropogenic signals in the global land carbon sink. Using

five ESM large ensembles, we analyze both the historical period (1851–2014) and future scenarios (2016–2100), and find that:

:
.

In the historical period, the global land carbon sink (NBP) shows large year–to–year variations, which can enhance or

obscure long-term anthropogenic trends. While both carbon uptake (GPP) and ecosystem respiration (TER) show apparent385

trends influenced by anthropogenic perturbations, their year–to–year variations are relatively small. Since NBP corresponds to

the balance between carbon absorption (photosynthesis) and release (ecosystem respiration), as well as other fluxes such as

fires, the long-term trend of NBP is in most cases smaller due to this compensation, leaving NBP with a smaller long-term

trend and relatively larger year–to–year variations.
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We find that the ToE is smaller at global scale compared to regional scales, that is, the anthropogenic signal can be detected390

earlier at global scale. In the period of 1960-2009, it takes over 26 years for NBP signals to emerge from internal variability,

and around 10 years for GPP and TER. At the regional scale, ToE is longer, which might
::
be due to larger noise from natural

climate variability in most regions
:
,
::
as

::::
well

::
as

:::::::
detected

::::::
weaker

::::::
signal

:::::
trends. Coarser resolutions reduce the detection time, but

the spatial delay is not universal—some high-latitude regions, for example Russia, is found in three
:::
two

:
CMIP6 models having

a shorter detection time of NBP. This is due partly to a smaller noise compared with other regions and the global scale, and395

partly due to a high signal relative to the small average carbon flux at present in those northern regions. The smaller noise may

be also due to the small average carbon flux, and associated small variability.

In future scenarios, it takes longer to detect
::
the

:
anthropogenic signal in NBP, due to lower anthropogenic signal level caused

by the compensation effect of GPP and TER, as well as higher noise levels
:::
that

::::
may

:::::
result

:
from more frequent extreme events

under a warming climate (Arias et al., 2021)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Friedlingstein et al., 2014; Fischer and Knutti, 2015; Hewitt et al., 2016; Kharin et al., 2018; Vogel et al., 2020; Li et al., 2021; Seneviratne et al., 2021; Arias et al., 2021)400

. The future trends of global land carbon sink differs
:::::
differ significantly across models. While some models have time series

separated by emissions after 2050, others remain mixed through 2100. This might be due to the large uncertainty in projections

of the global land carbon sink (Friedlingstein et al., 2014; Padrón et al., 2022). For high CO2 emission scenarios of SSP3-7.0

and SSP5-8.5, CanESM5 continued increasing
:::::::
continues

:::
to

:::::::
increase

:
after around 2050, while other models show a carbon

saturation, which might be due to model uncertainties in
:::
may

:::::
result

:::::
from

:::::
model

:::::::::::
uncertainties

::::::
related

::
to
:

climate change and405

nutrient limitations (Arora et al., 2020). Uncertainty in ToE in future projections is closely linked to uncertainties across the

model projections of the land carbon sink in the future. In contrast, GPP and TER increase consistently and are well separated

by different CO2 emission scenarios.

NBP exhibits larger year–to–year variability and it is difficult to detect the anthropogenic signal. After removing atmospheric

circulation induced
:::::::::::::::
circulation-induced

:
variability from NBP, the time of emergence of the anthropogenic signal is significantly410

reduced. In the historical simulations, the relative reduction in the ToE ranges from 34.0 to 38.6
::
34

::
to

:::
39%, while in future

scenarios it ranges between 27.1 to 54.3
::
29

::
to

::
55%. Future NBP is more influenced by anthropogenic perturbations and natural

variations , with increasing extreme events contributing to the noise (Arias et al., 2021). However, anthropogenic perturbations

remain the dominant factor of GPP trends, which determine the time of emergence under all future scenarios. This approach

can be
:::
has

::::
been

:
applied in observations to facilitate

:::
and

::::::
shows an early detection of anthropogenic signal in global carbon415

cycle variability.

:::
The

:::::::::
emergence

::::::::
approach

::::
used

::
in

::::
this

:::::
study

:
is
::::::::
sensitive

::
to

:::
the

::::::
choice

::
of

:::
the

::::::
periods

:::
for

:::::::
defining

:::::
noise

:::
and

::::::
signal.

:::::::::
Moreover,

::
the

:::::
fitted

:::::
linear

:::::
slope

::
of

:::
the

::::::::
ensemble

:::::
mean

::::
may

::::::::::
misrepresent

:::
the

::::
true

:::::
signal

:::::
trend,

::::::::::
particularly

::
at

:::::::
regional

::::::
scales,

:::
due

::
to

:::::
large

:::::
forced

:::::::::
variability

::
in
::::

the
::::::::
ensemble

:::::
mean

::::::::::::::::::::::::::::::::::::::
(Lombardozzi et al., 2014; Bonan et al., 2021).

:::
A

:::::
better

::::::::::::
understanding

::
of

::::::::
regional

::::::::
ecosystem

:::::::::
responses

::
to

:::::::::::
anthropogenic

:::::::
signals,

:::::
along

::::
with

::::::::
improved

:::::::
methods

::::
that

:::
are

:::
less

:::::::
sensitive

::
to

:::::
large

:::::::
regional

:::::::::
variability,420

:::
may

::::
help

::::::
reduce

:::
the

:::::::
detected

:::::::::
emergence

:::::
time.

:

This study highlights how early the anthropogenic impacts on the global land carbon sink can be detected. By using ridge

regression
:
a
:::::::::
dynamical

:::::::::
adjustment

:::::::::
technique to remove atmospheric circulation induced

:::::::::::::::
circulation-induced

:
variability, the

detection time can be largely reduced. However, there are still substantial uncertainties across models, with differing patterns

18



and large year–to–year variations (Friedlingstein et al., 2014; Arora et al., 2020). Our proposed approach to use dynamical425

adjustment to reduce ToE can contribute to enhance our ability to monitor human impacts on land carbon variability and thus

support decision making. This approach is particularly helpful in detecting if
::
for

::::::::
detecting

:::::::
whether recent regional carbon flux

trend is
::::
trends

:::
are

::::::
driven

:::
by internal climate variability or forced by climate change. Internally driven trend

:::::
trends

:
might not

going to be sustained in
:::
the near-future, while trends forced by climate change can be expected to be the continuation of present

trends
::
are

::::::::
expected

::
to

:::::::
continue.430

. The python scripts used for this study is available at Li (2025)

. Please check Section. 2.1 for details.
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Figure A.1. Time series of GPP (
:::
NBP

:::::::
ensemble

:::::
mean

::::
from

:::
five

:::::
ESMs.

::::
The

::::
thick black lines)

:::
line

::
is

::
the

:::::
global

::::::::
ensemble

:::::
mean, and TER

(red
:::
the

:::::
colored

:
lines )

::::::
represent

::::::::
ensemble

:::::
means

::
for

:::
the

::
10

:::::::::
RECCAP-2

::::::
regions.
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Figure A.2.
::::
Time

::::
series

::
of
::::

GPP
::::::::
ensemble

::::
mean from 1851 to 2014 in five Earth system model large ensembles

::::
ESMs. Thin lines represent

individual simulations
:::
The

::::
thick

::::
black

::::
line

:
is
:::
the

:::::
global

:::::::
ensemble

:::::
mean, while

:::
and the bold

:::::
colored

:
lines represent

::::::
ensemble

:::::
means

:::
for

:
the

::
10

:::::::::
RECCAP-2

::::::
regions.
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Figure A.3.
::::
Time

::::
series

::
of
::::
TER

:
ensemble mean

::::
from

:::
five

:::::
ESMs. The number of simulations for each model

::::
thick

::::
black

:::
line

:
is listed in the

legend next to
::::
global

:::::::
ensemble

:::::
mean,

:::
and

:
the model name

:::::
colored

::::
lines

:::::::
represent

::::::::
ensemble

:::::
means

::
for

:::
the

::
10

:::::::::
RECCAP-2

::::::
regions.In order to

have consistent sign with GPP, TER here is multiplied by –1.
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(a) N (b) S

Figure A.4. Heat map of noise and signal of NBP in historical simulations across five Earth system model
::::
ESM large ensembles.

(a) N (b) S

Figure A.5.
:::::::::
Contribution

::
of

::
N

:::
and

:
S
::
to

::::
each

:::::::::
RECCAP-2

::::::
region’s

:::
ToE

::::::
change

::
in

::::
NBP,

::::::::
compared

:::
with

:::::
global

:::::
scale,

:
in
::::::::
historical

:::::::::
simulations.

:::
Note

::::
that

::
we

::::
only

::::
show

:::
the

:::::
values

:::
with

::::
N/S

:::::
change

::
as

:::
the

:::::::
dominant

:::::::::
contributor.

(a) N (b) S

Figure A.6. Heat map of noise and signal of GPP in historical simulations across five Earth system model
:::
ESM

:
large ensembles.
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(a) N (b) S

Figure A.7.
:::::::::
Contribution

::
of

::
N

:::
and

:
S
::
to
::::
each

:::::::::
RECCAP-2

::::::
region’s

::::
ToE

:::::
change

::
in

::::
GPP,

:::::::
compared

::::
with

:::::
global

:::::
scale,

:
in
::::::::
historical

:::::::::
simulations.

:::
Note

::::
that

::
we

::::
only

::::
show

:::
the

:::::
values

:::
with

::::
N/S

:::::
change

::
as

:::
the

:::::::
dominant

:::::::::
contributor.

(a) N (b) S

Figure A.8. Heat map of noise and signal in TER in historical simulations across five Earth system model
:::
ESM

:
large ensembles.
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(a) N (b) S

Figure A.9.
:::::::::
Contribution

::
of

::
N

:::
and

:
S
::
to

::::
each

:::::::::
RECCAP-2

::::::
region’s

:::
ToE

::::::
change

::
in

::::
TER,

::::::::
compared

:::
with

:::::
global

:::::
scale,

:
in
::::::::
historical

:::::::::
simulations.

:::
Note

::::
that

::
we

::::
only

::::
show

:::
the

:::::
values

:::
with

::::
N/S

:::::
change

::
as

:::
the

:::::::
dominant

:::::::::
contributor.
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Figure A.10. Spatial effect in GPP historical simulations (1851–2014) across five Earth system model
::::
ESM large ensembles. The distribution

of time of emergence are shown for varying resolutions.
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Figure A.11. Spatial effect in TER historical simulations (1851–2014) across five Earth system model
::::
ESM large ensembles. The distribution

of time of emergence are shown for varying resolutions.
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(a) (b) (c)

(d) (e)

Figure A.12. The time series of future GPP from 2016 to 2100 across five Earth system model
::::
ESM large ensembles. The four future

scenarios include SSP1-2.6 (red line), SSP2-4.5 (yellow line), SSP3-7.0 (green line), and SSP5-8.5 (purple line). Thin lines represent

individual simulations, while thick lines represent the ensemble mean for each scenario. The number of simulations for each model scenario

is indicated in the legend next to the scenario label.
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The time series of future TER from 2016 to 2100 across five Earth system model large ensembles. The four future scenarios include

SSP1-2.6 (red line), SSP2-4.5 (yellow line), SSP3-7.0 (green line), and SSP5-8.5 (purple line). Thin lines represent individual simulations,

while thick lines represent the ensemble mean for each scenario. The number of simulations for each model scenario is indicated in the

legend next to the scenario

label.

(a) (b) (c)

(e)(d)

Figure A.13.
:::
The

:::
time

:::::
series

::
of

::::
future

::::
TER

::::
from

::::
2016

::
to

::::
2100

:::::
across

:::
five

::::
ESM

::::
large

::::::::
ensembles.

::::
The

:::
four

:::::
future

:::::::
scenarios

::::::
include

:::::::
SSP1-2.6

:::
(red

::::
line),

:::::::
SSP2-4.5

::::::
(yellow

::::
line),

:::::::
SSP3-7.0

::::::
(green

::::
line),

:::
and

:::::::
SSP5-8.5

::::::
(purple

::::
line).

::::
Thin

:::
lines

:::::::
represent

::::::::
individual

:::::::::
simulations,

:::::
while

::::
thick

:::
lines

::::::::
represent

::
the

::::::::
ensemble

::::
mean

:::
for

:::
each

:::::::
scenario.

::::
The

::::::
number

::
of

:::::::::
simulations

::
for

::::
each

:::::
model

::::::
scenario

::
is
:::::::
indicated

::
in
:::
the

:::::
legend

::::
next

::
to

::
the

:::::::
scenario

::::
label.

Heat map of ToE, noise, and signal of NBP under future

scenarios.

(a) N (b) S

Figure A.14.
:::::::::
Contribution

::
of

::
N

:::
and

:
S
::
to

:::
ToE

:::::::
changes

:
in
::::

NBP
:::
for

:::::
future

:::::::
scenario,

:::::::
compared

::::
with

:::::
global

::::
scale

:
in
::::::::

historical
:::::::::
simulations.

::::
Note

:::
that

:::
only

:::::
values

:::::
where

::::::
changes

::
in
::
N

::
or

:
S
:::
are

:::
the

:::::::
dominant

::::::::
contributor

:::
are

::::::
shown.
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Heat map of ToE, noise, and signal of GPP under future

scenarios.
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Figure A.15.
:::
Heat

::::
map

::
of

::::
ToE,

::::
noise,

:::
and

:::::
signal

::
of

::::
GPP

::::
under

:::::
future

::::::::
scenarios.

Heat map of ToE, noise, and signal of TER under future

scenarios.

(a) N (b) S

Figure A.16.
:::::::::
Contribution

::
of

::
N

:::
and

:
S
::
to

::::
ToE

::::::
changes

::
in

:::
GPP

:::
for

::::
each

::::
future

:::::::
scenario,

::::::::
compared

::::
with

::::
global

:::::
scale

:
in
::::::::
historical

:::::::::
simulations.

:::
Note

::::
that

:::
only

:::::
values

:::::
where

::::::
changes

::
in
::
N

::
or

:
S
:::
are

:::
the

:::::::
dominant

::::::::
contributor

:::
are

::::::
shown.

ToE of GPP from historical simulations to future scenarios. The light colored boxes represent the ToE of GPP, while the neighboring darker

shade, black framed boxes represent the ToE of the GPP residual, which has the circulation induced variability

removed.
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Figure A.17.
:::
Heat

::::
map

::
of

::::
ToE,

::::
noise,

:::
and

:::::
signal

::
of

::::
TER

:::::
under

::::
future

::::::::
scenarios.
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(a) N (b) S

Figure A.18.
:::::::::
Contribution

::
of

::
N

:::
and

:
S
::
to

::::
ToE

::::::
changes

::
in

:::
TER

:::
for

::::
each

::::
future

:::::::
scenario,

::::::::
compared

::::
with

:::::
global

::::
scale

:
in
::::::::
historical

:::::::::
simulations.

:::
Note

::::
that

:::
only

:::::
values

:::::
where

::::::
changes

::
in
::
N

::
or

:
S
:::
are

:::
the

:::::::
dominant

::::::::
contributor

:::
are

::::::
shown.

(a) (b) (c)

(d) (e)

Figure A.19.
:::
ToE

:::
of

:::
GPP

:::::
from

:::::::
historical

:::::::::
simulations

::
to

:::::
future

::::::::
scenarios.

:::
The

::::
light

::::::
colored

:::::
boxes

:::::::
represent

:::
the

::::
ToE

::
of

::::
GPP,

:::::
while

:::
the

:::::::::
neighboring

:::::
darker

:::::
shade,

::::
black

::::::
framed

::::
boxes

:::::::
represent

:::
the

:::
ToE

::
of

:::
the

::::
GPP

::::::
residual,

:::::
which

:::
has

::
the

:::::::::::::::
circulation-induced

::::::::
variability

:::::::
removed.
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Relative change (%
:
%
:::::
(Years) CESM2-LE ACCESS-ESM1-5 CanESM5 IPSL-CM6A-LR MPI-ESM1-2-LR

Historical 34.0
:::
34%

:::
(9) - 38.6

:::
39%

:::
(26) 35.0

:::
35%

:::
(16) 35.5

:::
36%

:::
(19)

:

SSP1-2.6 - 1.0
::
2%

::
(2)

:
43.7

:::
43%

:::
(64) 32.1

:::
34%

:::
(29) 30.6

:::
31%

:::
(30)

:

SSP2-4.5 - 3.3-
:

50.4
:::
53%

:::
(32) - -

SSP3-7.0 38.1
:::
35%

:::
(15) 32.2

:::
34%

:::
(34) 54.3

:::
55%

:::
(19) - -

SSP5-8.5 - - 48.2
:::
52%

:::
(10) 27.1

:::
29%

:::
(42) 38.8

:::
37%

:::
(26)

Table A.1. ToE reduction in NBP, calculated according to Eq. (4).

Relative change (% )
:
%
:

CESM2-LE ACCESS-ESM1-5 CanESM5 IPSL-CM6A-LR MPI-ESM1-2-LR

Historical 35.5
:::
35% 34.1

:::
34% 48.3

:::
48%

:
39.2

:::
39%

:
39.1

:::
39%

SSP1-2.6 - 35.8
:::
37% 53.8

:::
53%

:
25.9

:::
28%

:
34.9

:::
35%

SSP2-4.5 - 39.1
:::
38% 52.2

:::
54%

:
32.8

:::
32%

:
40.0

:::
38%

SSP3-7.0 36.9
:::
34% 37.0

:::
38% 54.7

:::
55%

:
34.7

:::
31%

:
36.7

:::
36%

SSP5-8.5 - 39.0
:::
39% 48.6

:::
53%

:
18.3

:::
20%

:
38.0

:::
37%

Table A.2. Noise reduction in NBP, calculated according to Eq. (4).

Relative change (%
:
%
:::::
(Years) CESM2-LE ACCESS-ESM1-5 CanESM5 IPSL-CM6A-LR MPI-ESM1-2-LR

Historical 24.8
:::
25%

::
(2)

:
32.1

:::
32%

::
(4) 12.7

:::
13%

::
(1)

:
26.4

:::
26%

::
(2)

:
24.8

:::
25%

::
(2)

SSP1-2.6 - 59.1
:::
60%

:::
(67)

:
34.3

:::
34%

::
(3)

:
25.6

:::
26%

::
(4)

:
36.5

:::
38%

::
(7)

SSP2-4.5 - 47.5
:::
45%

:::
(17)

:
32.4

:::
34%

::
(2)

:
27.8

:::
28%

::
(3)

:
39.5

:::
38%

::
(4)

SSP3-7.0 22.6
:::
21%

::
(1)

:
39.2

:::
41%

:::
(11)

:
39.9

:::
41%

::
(2)

:
30.3

:::
30%

::
(2)

:
35.8

:::
36%

:::
(3)

SSP5-8.5 - 42.9
:::
43%

::
(9) 29.6

:::
34%

::
(1)

:
19.2

:::
19%

::
(1)

:
37.6

:::
37%

:::
(2)

Table A.3. ToE reduction in GPP, calculated according to Eq. (4).
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Relative change (% )
:
%
:

CESM2-LE ACCESS-ESM1-5 CanESM5 IPSL-CM6A-LR MPI-ESM1-2-LR

Historical 25.8
:::
26% 32.5

:::
33% 14.4

:::
14%

:
28.0

:::
28%

:
26.7

:::
27%

SSP1-2.6 - 38.0
:::
39% 34.1

:::
34%

:
26.1

:::
27%

:
36.1

:::
37%

SSP2-4.5 - 41.3
:::
39% 32.7

:::
34%

:
27.9

:::
29%

:
39.1

:::
38%

SSP3-7.0 22.4
:::
21% 38.6

:::
40% 40.0

:::
42%

:
30.5

:::
30%

:
36.2

:::
36%

SSP5-8.5 - 41.5
:::
42% 29.7

:::
34%

:
18.8

:::
18%

:
37.9

:::
37%

Table A.4. Noise reduction in GPP, calculated according to Eq. (4).

32



References

Arias, P. A., Bellouin, N., Coppola, E., Jones, R. G., Krinner, G., Marotzke, J., Naik, B., Palmer, M. D., Plattner, G. K., Rogelj, J., Rojas,440

M., Sillmann, J., Storelvmo, T., Thorne, P. W., Trewin, B., Achuta Rao, K., Adhikary, B., Allan, R. P., Armour, K., Bala, G., Barimalala,

R., Berger, S., Canadell, J. G., Cassou, C., Cherchi, A., Collins, W., Collins, W. D., Connors, S. L., Corti, S., Cruz, F., Dentener, F. J.,

Dereczynski, C., Di Luca, A., Diongue Niang, A., Doblas-Reyes, F. J., Dosio, A., Douville, H., Engelbrecht, F., Eyring, V., Fischer, E.,

Forster, P., Fox-Kemper, B., Fuglestvedt, J. S., Fyfe, J. C., Gillett, N. P., Goldfarb, L., Gorodetskaya, I., Gutierrez, J. M., Hamdi, R.,

Hawkins, E., Hewitt, H. T., Hope, P., Islam, A. S., Jones, C., Kaufman, D. S., Kopp, R. E., Kosaka, Y., Kossin, J., Krakovska, S., Lee,445

J. Y., Li, J., Mauritsen, T., Maycock, T. K., Meinshausen, M., Min, S. K., Monteiro, P. M. S., Ngo-Duc, T., Otto, F., Pinto, I., Pirani,

A., Raghavan, K., Ranasinghe, R., Ruane, A. C., Ruiz, L., Sallée, J. B., Samset, B. H., Sathyendranath, S., Seneviratne, S. I., Sörensson,

A. A., Szopa, S., Takayabu, I., Tréguier, A. M., van den Hurk, B., Vautard, R., von Schuckmann, K., Zaehle, S., Zhang, X., and Zickfeld,

K.: Technical Summary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment

Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY,450

USA, doi:10.1017/9781009157896.002, p33-144, 114-115, 2021.

Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V., Friedlingstein, P., Schwinger, J., Bopp, L., Boucher, O., Cadule, P.,

Chamberlain, M. A., Christian, J. R., Delire, C., Fisher, R. A., Hajima, T., Ilyina, T., Joetzjer, E., Kawamiya, M., Koven, C. D., Krasting,

J. P., Law, R. M., Lawrence, D. M., Lenton, A., Lindsay, K., Pongratz, J., Raddatz, T., Séférian, R., Tachiiri, K., Tjiputra, J. F., Wiltshire,

A., Wu, T., and Ziehn, T.: Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models,455

Biogeosciences, 17, 4173–4222, https://doi.org/10.5194/bg-17-4173-2020, 2020.

Bacastow, R. B.: Modulation of atmospheric carbon dioxide by the Southern Oscillation, Nature, 261, 116–118,

https://doi.org/10.1038/261116a0, 1976.

Bonan, G., Lombardozzi, D. L., and Wieder, W. R.: The signature of internal variability in the terrestrial carbon cycle, Environ. Res. Lett.,

16, 034 022, https://doi.org/10.1088/1748-9326/abd6a9, 2021.460

Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y., Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot,

P., Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., D’Andrea, F., Davini, P., de Lavergne, C., Denvil,

S., Deshayes, J., Devilliers, M., Ducharne, A., Dufresne, J.-L., Dupont, E., Éthé, C., Fairhead, L., Falletti, L., Flavoni, S., Foujols, M.-A.,

Gardoll, S., Gastineau, G., Ghattas, J., Grandpeix, J.-Y., Guenet, B., Guez, Lionel, E., Guilyardi, E., Guimberteau, M., Hauglustaine, D.,

Hourdin, F., Idelkadi, A., Joussaume, S., Kageyama, M., Khodri, M., Krinner, G., Lebas, N., Levavasseur, G., Lévy, C., Li, L., Lott, F.,465

Lurton, T., Luyssaert, S., Madec, G., Madeleine, J.-B., Maignan, F., Marchand, M., Marti, O., Mellul, L., Meurdesoif, Y., Mignot, J., Musat,

I., Ottlé, C., Peylin, P., Planton, Y., Polcher, J., Rio, C., Rochetin, N., Rousset, C., Sepulchre, P., Sima, A., Swingedouw, D., Thiéblemont,

R., Traore, A. K., Vancoppenolle, M., Vial, J., Vialard, J., Viovy, N., and Vuichard, N.: Presentation and evaluation of the IPSL-CM6A-LR

Climate Model, Journal of Advances in Modeling Earth Systems, 12, e2019MS002 010, https://doi.org/10.1029/2019MS002010, 2020.

Brunner, L., Hauser, M., Lorenz, R., and Beyerle, U.: The ETH Zurich CMIP6 next generation archive: technical documentation., Zenodo,470

https://doi.org/10.5281/zenodo.3734128, 2020.

Canadell, J. G., Monteiro, P. M. S., Costa, M. H., Cotrim da Cunha, L., Cox, P. M., Eliseev, A. V., Henson, S., Ishii, M., Jaccard, S., Koven,

C., Lohila, A., Patra, P. K., Piao, S., Rogelj, J., Syampungani, S., Zaehle, S., and Zickfeld, K.: Global Carbon and other Biogeochemical

Cycles and Feedbacks. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment

33

doi:10.1017/9781009157896.002
https://doi.org/10.5194/bg-17-4173-2020
https://doi.org/10.1038/261116a0
https://doi.org/10.1088/1748-9326/abd6a9
https://doi.org/10.1029/2019MS002010
https://doi.org/10.5281/zenodo.3734128


Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY,475

USA, https://doi.org/10.1017/9781009157896.007, chapter 5, p732, 2021.

Chen, D., Rojas, M., Samset, B. H., Cobb, K., Diongue Niang, A., Edwards, P., Emori, S., Faria, S. H., Hawkins, E., Hope,

P., Huybrechts, P., Meinshausen, M., Mustafa, S. K., Plattner, G.-K., and Tréguier, A.-M.: Framing, Context, and Methods. In

Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the

Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,480

https://doi.org/10.1017/9781009157896.003, chapter 1, p194, 233, 2021.

Christensen, P., Gillingham, K., and Nordhaus, W.: Uncertainty in forecasts of long-run economic growth, Proceedings of the National

Academy of Sciences, 115, 5409–5414, https://doi.org/10.1073/pnas.1713628115, 2018.

Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré,

C., Myneni, B. R., Piao, S., and Thornton, P.: Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science485

Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change., Cambridge

University Press, Cambridge, United Kingdom and New York, NY, USA, https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_all_

final.pdf, last access: 20 March 2022, 2013.

Ciais, P., Bastos, A., Chevallier, F., Lauerwald, R., Poulter, B., Canadell, J. G., Hugelius, G., Jackson, R. B., Jain, A., Jones, M., Kondo,

M., Luijkx, I. T., Patra, P. K., Peters, W., Pongratz, J., Petrescu, A. M. R., Piao, S., Qiu, C., Von Randow, C., Regnier, P., Saunois, M.,490

Scholes, R., Shvidenko, A., Tian, H., Yang, H., Wang, X., and Zheng, B.: Definitions and methods to estimate regional land carbon fluxes

for the second phase of the regional Carbon Cycle Assessment and Processes Project (RECCAP-2), Geoscientific Model Development,

15, 1289–1316, https://doi.org/10.5194/gmd-15-1289-2022, 2022.

Cleveland, W., Grosse, E., and Shyu, W. M.: Local regression models. Statistical models in S, Chapman Hall, ISBN 9780412830402,

309–376, 1991.495

Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R.,

Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M., Lenaerts, J. T. M., Lindsay, K., Lipscomb,

W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van Kampenhout, L., Vertenstein,

M., Bertini, A., Dennis, J., Deser, C., Fischer, C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E., Long, M. C.,

Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch, P. J., and Strand, W. G.: The Community Earth System Model Version 2500

(CESM2), Journal of Advances in Modeling Earth Systems, 12, e2019MS001 916, https://doi.org/10.1029/2019MS001916, 2020.

Deser, C., Phillips, A., Bourdette, V., and Teng, H.: Uncertainty in climate change projections: the role of internal variability, Climate

Dynamics, 38, 527–546, https://doi.org/10.1007/s00382-010-0977-x, 2012a.

Deser, C., Knutti, R., Solomon, S., et al.: Communication of the role of natural variability in future North American climate, Nat. Clim.

Change, 2, 775–779, https://doi.org/10.1038/nclimate1562, 2012b.505

Deser, C., Terray, L., and Phillips, A. S.: Forced and Internal Components of Winter Air Temperature Trends over North America during the

past 50 Years: Mechanisms and Implications, Journal of Climate, 29(6), 2237–2258, https://doi.org/10.1175/JCLI-D-15-0304.1, 2016.

Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L., DiNezio, P. N., Fiore, A., Frankignoul, C., Fyfe, J. C., Horton, D. E.,

Kay, J. E., Knutti, R., Lovenduski, N. S., Marotzke, J., McKinnon, K. A., Minobe, S., Randerson, J., Screen, J. A., Simpson, I. R., and

Ting, M.: Insights from Earth system model initial-condition large ensembles and future prospects, Nature Climate Change, 10, 277–286,510

https://doi.org/10.1038/s41558-020-0731-2, 2020.

34

https://doi.org/10.1017/9781009157896.007
https://doi.org/10.1017/9781009157896.003
https://doi.org/10.1073/pnas.1713628115
https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_all_final.pdf
https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_all_final.pdf
https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_all_final.pdf
https://doi.org/10.5194/gmd-15-1289-2022
https://doi.org/10.1029/2019MS001916
https://doi.org/10.1007/s00382-010-0977-x
https://doi.org/10.1038/nclimate1562
https://doi.org/10.1175/JCLI-D-15-0304.1
https://doi.org/10.1038/s41558-020-0731-2


Doblas-Reyes, F. J., Sörensson, A. A., Almazroui, M., Dosio, A., Gutowski, W. J., Haarsma, R., Hamdi, R., Hewitson, B., Kwon, W. T.,

Lamptey, B. l., Maraun, D., Stephenson, T. S., Takayabu, I., Terray, L., Turner, A., and Zuo, Z.: Linking Global to Regional Climate

Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of

the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,515

https://doi.org/10.1017/9781009157896.012, iPCC,2021, chapter 10, p1363-1512, 2021.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model

Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geoscientific Model Development, 9, 1937–1958,

https://doi.org/10.5194/gmd-9-1937-2016, 2016.

Eyring, V., Gillett, N. P., Achuta Rao, K. M., Barimalala, R., Barreiro Parrillo, M., Bellouin, N., Cassou, C., Durack, P. J., Kosaka, Y.,520

McGregor, S., Min, S., Morgenstern, O., and Sun, Y.: Human Influence on the Climate System. In Climate Change 2021: The Physical

Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change,

Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/9781009157896.005, chapter

3, p425, 446, 2021.

Fischer, E. and Knutti, R.: Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes., Nature525

Clim Change, 5, 560–564, https://doi.org/10.1038/nclimate2617, 2015.

Frankcombe, L. M., England, M. H., Mann, M. E., and Steinman, B. A.: Separating Internal Variability from the Externally Forced Climate

Response, Journal of Climate, 28, 8184 – 8202, https://doi.org/10.1175/JCLI-D-15-0069.1, 2015.

Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D., Anav, A., Liddicoat, S. K., and Knutti, R.: Uncertainties in CMIP5 climate

projections due to carbon cycle feedbacks, Journal of Climate, 27(2), 511–526, https://doi.org/10.1175/JCLI-D-12-00579.1, 2014.530

Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Bakker, D. C. E., Hauck, J., Le Quéré, C., Peters, G. P., Peters, W., Pongratz,

J., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., Bates, N. R., Becker, M., Bellouin, N., Bopp, L., Chau, T.

T. T., Chevallier, F., Chini, L. P., Cronin, M., Currie, K. I., Decharme, B., Djeutchouang, L. M., Dou, X., Evans, W., Feely, R. A., Feng,

L., Gasser, T., Gilfillan, D., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, O., Harris, I., Houghton, R. A., Hurtt, G. C., Iida,

Y., Ilyina, T., Luijkx, I. T., Jain, A., Jones, S. D., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Körtzinger,535

A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lienert, S., Liu, J., Marland, G., McGuire, P. C., Melton, J. R., Munro, D. R., Nabel,

J. E. M. S., Nakaoka, S.-I., Niwa, Y., Ono, T., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Rosan,

T. M., Schwinger, J., Schwingshackl, C., Séférian, R., Sutton, A. J., Sweeney, C., Tanhua, T., Tans, P. P., Tian, H., Tilbrook, B., Tubiello,

F., van der Werf, G. R., Vuichard, N., Wada, C., Wanninkhof, R., Watson, A. J., Willis, D., Wiltshire, A. J., Yuan, W., Yue, C., Yue, X.,

Zaehle, S., and Zeng, J.: Global Carbon Budget 2021, Earth System Science Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-540

2022, 2022.

Hasselmann, K.: Linear statistical models, Dynamics of Atmospheres and Oceans, 3, 501–521, https://doi.org/https://doi.org/10.1016/0377-

0265(79)90029-0, 1979.

Hastie, T., Tibshirani, R., and Friedman, J.: The elements of statistical learning: data mining, inferencee, and prediction, Springer Series in

Statistics, https://doi.org/10.1007/b94608, p61-67, 2009.545

Hawkins, E. and Sutton, R.: Time of emergence of climate signals, Geophysical Research Letters, 39,

https://doi.org/10.1029/2011GL050087, 2012.

35

https://doi.org/10.1017/9781009157896.012
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1017/9781009157896.005
https://doi.org/10.1038/nclimate2617
https://doi.org/10.1175/JCLI-D-15-0069.1
https://doi.org/10.1175/JCLI-D-12-00579.1
https://doi.org/10.5194/essd-14-1917-2022
https://doi.org/10.5194/essd-14-1917-2022
https://doi.org/10.5194/essd-14-1917-2022
https://doi.org/https://doi.org/10.1016/0377-0265(79)90029-0
https://doi.org/https://doi.org/10.1016/0377-0265(79)90029-0
https://doi.org/https://doi.org/10.1016/0377-0265(79)90029-0
https://doi.org/10.1007/b94608
https://doi.org/10.1029/2011GL050087


Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers,

D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 monthly averaged data on single levels from 1940 to present., Copernicus

Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.f17050d7, accessed on August 18th, 2025, 2023.550

Hewitt, H. T., Roberts, M. J., Hyder, P., Graham, T., Rae, J., Belcher, S. E., Bourdallé-Badie, R., Copsey, D., Coward, A., Guiavarch, C.,

Harris, C., Hill, R., Hirschi, J. J.-M., Madec, G., Mizielinski, M. S., Neininger, E., New, A. L., Rioual, J.-C., Sinha, B., Storkey, D., Shelly,

A., Thorpe, L., and Wood, R. A.: The impact of resolving the Rossby radius at mid-latitudes in the ocean: results from a high-resolution

version of the Met Office GC2 coupled model, Geoscientific Model Development, 9, 3655–3670, https://doi.org/10.5194/gmd-9-3655-

2016, 2016.555

Humphrey, V., Zscheischler, J., Ciais, P., Gudmundsson, L., Sitch, S., and Seneviratne, S. I.: Sensitivity of atmospheric CO2 growth rate to

observed changes in terrestrial water storage, Nature, 560, 628–631, https://doi.org/10.1038/s41586-018-0424-4, 2018.

Humphrey, V., Berg, A., Ciais, P., Gentine, P., Jung, M., Reichstein, M., Seneviratne, S. I., and Frankenberg, C.: Soil moisture–atmosphere

feedback dominates land carbon uptake variability, Nature, 592, 65–69, https://doi.org/10.1038/s41586-021-03325-5, 2021.

IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of560

the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N.

Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O.

Yelekçi, R. Yu, and B. Zhou (eds.)], 2391, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,

https://doi.org/10.1017/9781009157896, p115, 2021.

Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C., Sitch, S., Ahlström, A., Arneth, A., Camps-Valls, G., Ciais, P., Friedlingstein,565

P., Gans, F., Ichii, K., Jain, A. K., Kato, E., Papale, D., Poulter, B., Raduly, B., Rödenbeck, C., Tramontana, G., Viovy, N., Wang, Y.-P.,

Weber, U., Zaehle, S., and Zeng, N.: Compensatory water effects link yearly global land CO2 sink changes to temperature, Nature, 541,

516–520, https://doi.org/10.1038/nature20780, 2017.

Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J. M., Bates, S. C., Danabasoglu, G., Edwards, J., Holland, M.,

Kushner, P., Lamarque, J.-F., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., and Vertenstein,570

M.: The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the

presence of internal climate variability, Bulletin of the American Meteorological Society, 96, 1333–1349, https://doi.org/10.1175/BAMS-

D-13-00255.1, 2015.

Keeling, C. D., Whorf, T. P., Wahlen, M., and van der Plichtt, J.: Interannual extremes in the rate of rise of atmospheric carbon dioxide since

1980., Nature, 375, 666–670, https://doi.org/10.1038/375666a0, 1995.575

Kharin, V. V., Flato, G. M., Zhang, X., Gillett, N. P., Zwiers, F., and Anderson, K. J.: Risks from Climate Extremes Change Differently from

1.5°C to 2.0°C Depending on Rarity, Earth’s Future, 6, 704–715, https://doi.org/10.1002/2018EF000813, 2018.

Kumar, S., Kinter III, J. L., Pan, Z., and Sheffield, J.: Twentieth century temperature trends in CMIP3, CMIP5, and CESM-LE climate

simulations: Spatial-temporal uncertainties, differences, and their potential sources, Journal of Geophysical Research: Atmospheres, 121,

9561–9575, https://doi.org/10.1002/2015JD024382, 2016.580

Lan, X., Tans, P., and Thoning, K. W.: Trends in globally-averaged CO2 determined from NOAA Global Monitoring Laboratory

measurements., https://doi.org/10.15138/9N0H-ZH07, version 2025-09, 2025.

Lee, J. Y., Marotzke, J., Bala, G., Cao, L., Corti, S., Dunne, J. P., Engelbrecht, F., Fischer, E., Fyfe, J. C., Jones, C., Maycock, A.,

Mutemi, J., Ndiaye, O., Panickal, S., and Zhou, T.: Future Global Climate: Scenario-Based Projections and Near- Term Information.

In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the585

36

https://doi.org/10.24381/cds.f17050d7
https://doi.org/10.5194/gmd-9-3655-2016
https://doi.org/10.5194/gmd-9-3655-2016
https://doi.org/10.5194/gmd-9-3655-2016
https://doi.org/10.1038/s41586-018-0424-4
https://doi.org/10.1038/s41586-021-03325-5
https://doi.org/10.1017/9781009157896
https://doi.org/10.1038/nature20780
https://doi.org/10.1175/BAMS-D-13-00255.1
https://doi.org/10.1175/BAMS-D-13-00255.1
https://doi.org/10.1175/BAMS-D-13-00255.1
https://doi.org/10.1038/375666a0
https://doi.org/10.1002/2018EF000813
https://doi.org/10.1002/2015JD024382
https://doi.org/10.15138/9N0H-ZH07


Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,

https://doi.org/10.1017/9781009157896.006, pp. 555, IPCC2021, Chapter 4, 2021.

Lehner, F., Deser, C., and Terray, L.: Toward a New Estimate of “Time of Emergence” of Anthropogenic Warming: Insights from Dynamical

Adjustment and a Large Initial-Condition Model Ensemble, Journal of Climate, 30, 7739 – 7756, https://doi.org/10.1175/JCLI-D-16-

0792.1, 2017.590

Li, C., Zwiers, F., Zhang, X., Li, G., Sun, Y., and Wehner, M.: Changes in Annual Extremes of Daily Temperature and Precipitation in CMIP6

Models, Journal of Climate, 34, 3441 – 3460, https://doi.org/10.1175/JCLI-D-19-1013.1, 2021.

Li, N.: Code for PhD thesis: Towards constraining the role of internal climate variability and the forced response in the global carbon cycle,

Chapter 4, Zenoto, https://doi.org/10.5281/zenodo.17436662, 2025.

Li, N., Sippel, S., Winkler, A. J., Mahecha, M. D., Reichstein, M., and Bastos, A.: Interannual global carbon cycle variations linked to595

atmospheric circulation variability, Earth System Dynamics, 13, 1505–1533, https://doi.org/10.5194/esd-13-1505-2022, 2022.

Lombardozzi, D., Bonan, G. B., and Nychka, D. W.: The emerging anthropogenic signal in land–atmosphere carbon-cycle coupling, Nature

Climate Change, 4, 796–800, https://doi.org/10.1038/nclimate2323, 2014.

Maher, N., Milinski, S., Suarez-Gutierrez, L., Botzet, M., Dobrynin, M., Kornblueh, L., Kröger, J., Takano, Y., Ghosh, R., Hedemann, C.,

Li, C., Li, H., Manzini, E., Notz, D., Putrasahan, D., Boysen, L., Claussen, M., Ilyina, T., Olonscheck, D., Raddatz, T., Stevens, B., and600

Marotzke, J.: The Max Planck Institute Grand Ensemble: Enabling the Exploration of Climate System Variability, Journal of Advances in

Modeling Earth Systems, 11, 2050–2069, https://doi.org/https://doi.org/10.1029/2019MS001639, 2019.

Maher, N., Phillips, A. S., Deser, C., Wills, R. C. J., Lehner, F., Fasullo, J., Caron, J. M., Brunner, L., and Beyerle, U.: The updated Multi-

Model Large Ensemble Archive and the Climate Variability Diagnostics Package: New tools for the study of climate variability and

change, EGUsphere, 2024, 1–28, https://doi.org/10.5194/egusphere-2024-3684, 2024.605

Mahlstein, I., Knutti, R., Solomon, S., and Portmann, R. W.: Early onset of significant local warming in low latitude countries, Environmental

Research Letters, 6, 034 009, https://doi.org/10.1088/1748-9326/6/3/034009, 2011.

Mahlstein, I., Hegerl, G., and Solomon, S.: Emerging local warming signals in observational data, Geophysical Research Letters, 39,

https://doi.org/10.1029/2012GL053952, 2012.

Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler,610

S., Fläschner, D., Gayler, V., Giorgetta, M., Goll, D. S., Haak, H., Hagemann, S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns,

T., Jimenéz-de-la Cuesta, D., Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S., Kleberg, D., Lasslop, G., Kornblueh, L.,

Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Möbis, B., Müller, W. A., Nabel, J. E. M. S., Nam, C. C. W., Notz,

D., Nyawira, S.-S., Paulsen, H., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Popp, M., Raddatz, T. J., Rast, S., Redler, R., Reick,

C. H., Rohrschneider, T., Schemann, V., Schmidt, H., Schnur, R., Schulzweida, U., Six, K. D., Stein, L., Stemmler, I., Stevens, B., von615

Storch, J.-S., Tian, F., Voigt, A., Vrese, P., Wieners, K.-H., Wilkenskjeld, S., Winkler, A., and Roeckner, E.: Developments in the MPI-M

Earth System Model version 1.2 (MPI-ESM1.2) and its response to increasing CO2, Journal of Advances in Modeling Earth Systems, 11,

998–1038, https://doi.org/10.1029/2018MS001400, 2019.

Mercado, L. M., Bellouin, N., Sitch, S., Boucher, O., Huntingford, C., Wild, M., and Cox, P. M.: Impact of changes in diffuse radiation on

the global land carbon sink, Nature, 458, 1014–1017, https://doi.org/10.1038/nature07949, 2009.620

Milinski, S., Maher, N., and Olonscheck, D.: How large does a large ensemble need to be?, Earth System Dynamics, 11, 885–901,

https://doi.org/10.5194/esd-11-885-2020, 2020.

37

https://doi.org/10.1017/9781009157896.006
https://doi.org/10.1175/JCLI-D-16-0792.1
https://doi.org/10.1175/JCLI-D-16-0792.1
https://doi.org/10.1175/JCLI-D-16-0792.1
https://doi.org/10.1175/JCLI-D-19-1013.1
https://doi.org/10.5281/zenodo.17436662
https://doi.org/10.5194/esd-13-1505-2022
https://doi.org/10.1038/nclimate2323
https://doi.org/https://doi.org/10.1029/2019MS001639
https://doi.org/10.5194/egusphere-2024-3684
https://doi.org/10.1088/1748-9326/6/3/034009
https://doi.org/10.1029/2012GL053952
https://doi.org/10.1029/2018MS001400
https://doi.org/10.1038/nature07949
https://doi.org/10.5194/esd-11-885-2020


O’Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe,

J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6,

Geoscientific Model Development, 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.625

O’Sullivan, M., Friedlingstein, P., Sitch, S., Anthoni, P., Arneth, A., Arora, V. K., Bastrikov, V., Delire, C., Goll, D. S., Jain, A., Kato, E.,

Kennedy, D., Knauer, J., Lienert, S., Lombardozzi, D., McGuire, P. C., Melton, J. R., Nabel, J. E. M. S., Pongratz, J., Poulter, B., Séférian,

R., Tian, H., Vuichard, N., Walker, A. P., Yuan, W., Yue, X., and Zaehle, S.: Process-oriented analysis of dominant sources of uncertainty

in the land carbon sink, Nature Communications, 13, 4781, https://doi.org/10.1038/s41467-022-32416-8, 2022.

Padrón, R. S., Gudmundsson, L., Liu, L., Humphrey, V., and Seneviratne, S. I.: Drivers of intermodel uncertainty in land carbon sink630

projections, Biogeosciences, 19, 5435–5448, https://doi.org/10.5194/bg-19-5435-2022, 2022.

Piao, S., Wang, X., Wang, K., Li, X., Bastos, A., Canadell, J. G., Ciais, P., Friedlingstein, P., and Sitch, S.: Interannual variation of terrestrial

carbon cycle: Issues and perspectives, Global Change Biology, 26, 300–318, https://doi.org/10.1111/gcb.14884, 2020.

Ranasinghe, R., Ruane, A. C., Vautard, R., Arnell, N., Coppola, E., Cruz, F. A., Dessai, S., Islam, A. S., Rahimi, M., Ruiz Carrascal,

D., Sillmann, J., Sylla, M. B., Tebaldi, C., Wang, W., and Zaaboul, R.: Climate Change Information for Regional Impact and for Risk635

Assessment. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report

of the Intergovernmental Panel on Climate Change, pp. 1767-1926, Cambridge University Press, Cambridge, United Kingdom and New

York, NY, USA, https://doi.org/10.1017/9781009157896.014, iPCC, chapter 12, 2021.

Rodgers, K. B., Lee, S.-S., Rosenbloom, N., Timmermann, A., Danabasoglu, G., Deser, C., Edwards, J., Kim, J.-E., Simpson, I. R.,

Stein, K., Stuecker, M. F., Yamaguchi, R., Bódai, T., Chung, E.-S., Huang, L., Kim, W. M., Lamarque, J.-F., Lombardozzi, D. L.,640

Wieder, W. R., and Yeager, S. G.: Ubiquity of human-induced changes in climate variability, Earth System Dynamics, 12, 1393–1411,

https://doi.org/10.5194/esd-12-1393-2021, 2021.

Ruehr, S., Keenan, T. F., Williams, C., Zhou, Y., Lu, X., Bastos, A., Canadell, J. G., Prentice, I. C., Sitch, S., and Terrer, C.: Evidence and

attribution of the enhanced land carbon sink, Nature Reviews Earth & Environment, 4, 518–534, https://doi.org/10.1038/s43017-023-

00456-3, 2023.645

Schlunegger, S., Rodgers, K. B., Sarmiento, J. L., Ilyina, T., Dunne, J. P., Takano, Y., Christian, J. R., Long, M. C., Frölicher, T. L., Slater,

R., and Lehner, F.: Time of Emergence and Large Ensemble Intercomparison for Ocean Biogeochemical Trends, Global Biogeochemical

Cycles, 34, e2019GB006 453, https://doi.org/https://doi.org/10.1029/2019GB006453, e2019GB006453 2019GB006453, 2020.

Schulzweida, U.: CDO user guide, Zenodo, 2023.

Seneviratne, S. I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Luca, A. D., Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto,650

I., Satoh, M., Vicente-Serrano, S. M., Wehner, M., and Zhou, B.: Weather and Climate Extreme Events in a Changing Climate., Cambridge

University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/9781009157896.013, pp. 1513–1766,

2021.

Sippel, S., Meinshausen, N., Merrifield, A., Lehner, F., Pendergrass, A. G., Fischer, E., and Knutti, R.: Uncovering the Forced Climate

Response from a Single Ensemble Member Using Statistical Learning, Journal of Climate, 32, 5677 – 5699, https://doi.org/10.1175/JCLI-655

D-18-0882.1, 2019.

Smoliak, B., Wallace, J. M., Lin, P., and Fu, Q.: Dynamical Adjustment of the Northern Hemisphere Surface Air Temperature Field:

Methodology and Application to Observations, Journal of climate, 2015.

Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Hanna, S.,

Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Sigmond, M., Solheim, L., von Salzen, K., Yang,660

38

https://doi.org/10.5194/gmd-9-3461-2016
https://doi.org/10.1038/s41467-022-32416-8
https://doi.org/10.5194/bg-19-5435-2022
https://doi.org/10.1111/gcb.14884
https://doi.org/10.1017/9781009157896.014
https://doi.org/10.5194/esd-12-1393-2021
https://doi.org/10.1038/s43017-023-00456-3
https://doi.org/10.1038/s43017-023-00456-3
https://doi.org/10.1038/s43017-023-00456-3
https://doi.org/https://doi.org/10.1029/2019GB006453
https://doi.org/10.1017/9781009157896.013
https://doi.org/10.1175/JCLI-D-18-0882.1
https://doi.org/10.1175/JCLI-D-18-0882.1
https://doi.org/10.1175/JCLI-D-18-0882.1


D., and Winter, B.: The Canadian Earth System Model version 5 (CanESM5.0.3), Geoscientific Model Development, 12, 4823–4873,

https://doi.org/10.5194/gmd-12-4823-2019, 2019.

van Vuuren, D. P., Edmonds, J., Kainuma, M., et al.: The representative concentration pathways: an overview., Climatic Change, 109,

https://doi.org/10.1007/s10584-011-0148-z, 2011.

Vogel, M. M., Zscheischler, J., Fischer, E. M., and Seneviratne, S. I.: Development of Future Heatwaves for Different Hazard Thresholds,665

Journal of Geophysical Research: Atmospheres, 125, e2019JD032 070, https://doi.org/10.1029/2019JD032070, e2019JD032070

10.1029/2019JD032070, 2020.

Walker, A. P., De Kauwe, M. G., Bastos, A., Belmecheri, S., Georgiou, K., Keeling, R. F., McMahon, S. M., Medlyn, B. E., Moore, D.

J. P., Norby, R. J., Zaehle, S., Anderson-Teixeira, K. J., Battipaglia, G., Brienen, R. J. W., Cabugao, K. G., Cailleret, M., Campbell, E.,

Canadell, J. G., Ciais, P., Craig, M. E., Ellsworth, D. S., Farquhar, G. D., Fatichi, S., Fisher, J. B., Frank, D. C., Graven, H., Gu, L.,670

Haverd, V., Heilman, K., Heimann, M., Hungate, B. A., Iversen, C. M., Joos, F., Jiang, M., Keenan, T. F., Knauer, J., Körner, C., Leshyk,

V. O., Leuzinger, S., Liu, Y., MacBean, N., Malhi, Y., McVicar, T. R., Penuelas, J., Pongratz, J., Powell, A. S., Riutta, T., Sabot, M. E. B.,

Schleucher, J., Sitch, S., Smith, W. K., Sulman, B., Taylor, B., Terrer, C., Torn, M. S., Treseder, K. K., Trugman, A. T., Trumbore, S. E.,

van Mantgem, P. J., Voelker, S. L., Whelan, M. E., and Zuidema, P. A.: Integrating the evidence for a terrestrial carbon sink caused by

increasing atmospheric CO2, New Phytologist, 229, 2413–2445, https://doi.org/10.1111/nph.16866, 2021.675

Zhang, Y., Ciais, P., Boucher, O., Maignan, F., Bastos, A., Goll, D., Lurton, T., Viovy, N., Bellouin, N., and Li, L.: Disentangling the impacts

of anthropogenic aerosols on terrestrial carbon cycle during 1850–2014, Earth’s Future, 9, e2021EF002 035, 2021.

Ziehn, T., Chamberlain, M. A., Law, R. M., Lenton, A., Bodman, R. W., Dix, M., Stevens, L., Wang, Y., and Srbinovsky, J.:

The Australian Earth System Model: ACCESS-ESM1.5, Journal of Southern Hemisphere Earth Systems Science, 70, 193–214,

https://doi.org/10.1071/ES19035, 2020.680

39

https://doi.org/10.5194/gmd-12-4823-2019
https://doi.org/10.1007/s10584-011-0148-z
https://doi.org/10.1029/2019JD032070
https://doi.org/10.1111/nph.16866
https://doi.org/10.1071/ES19035

