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Abstract. The global land carbon sink has increased since the preindustrial-pre-industrial period, driven by the increasing
atmospheric CO5 concentration and physical processes influenced by climate change. However, detecting these anthropogenic
signals in the global land carbon sink is challenging due to the large year—to—year variability, which can mask or amplify
long-term trends, particularly on regional and decadal scales. This study aims to detect the time it takes for long-term trends
driven mostly by anthropogenic signal to dominate over natural variations, that is, the "time of emergence", in the land carbon
sink.

For this, we use five large ensembles of historical simulations (1851-2014) and future scenarios (2016-2100) by-from Earth
system models (ESMs). Our results show that, firstly, the anthropogenic signal in the global net land carbon sink emerges from
26 to 66 years in the period 1960-2649-2009 (relative to the natural variations in the period of 1930-1959), depending on the
ESM considered. The time of emergence is considerably shorter for the two major gross carbon fluxes: 8—13 years for gross
primary productivity and 6-10 years for total ecosystem respiration. Furthermore, we find that long-term trends ef-in the net
land carbon sink en-at most regional scales take at least 20 years more-to-emerge-longer to emerge than at the global scale, due
to the larger contributions from internal climate variability at smaller scales.

Secondly, future scenarios show delayed signal detection compared to historical trends;-due-te-a-. This delay is mainly due to

of the increasing net land carbon sink in response to emission mitigation;-compared-to-the-highernataral-variability.

Thirdly, we apply dynamical adjustment to filter out the year—to—year eireulation-indueed-circulation-induced variability in
both the historical and future simulations. This approach aHews-te-substantiatly-sherten-substantially shortens the detection
time for the global net land carbon sink: between 34-39% for the historical period and 2729-5455% for the future simulations.
This approach can in-prineiple;be-applied-to-also shorten the detection time for observational based datasets (30% reduction
in the period 1960-2009), thereby improving our ability to detect long-term trends en-of land carbon sink variability. Given
that long-term trends are mostly associated with human impacts on the land carbon cycle, our proposed approach can offer

valuable insights on the effectiveness of policy decisions and their implementation.
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The global land carbon sink has been increasing since the pre-industrial period (Friedlingstein et al., 2022; Ruehr et al.,
2023), mainly driven by the increasing atmospheric CO2 and mid- to high-latitude warming caused by human activities
(O’Sullivan et al., 2022). Detecting such anthropogenic signals in observations of annual atmospheric CO5 concentration
remains challenging due to the large year—to—year natural variations, which can obscure or enhance long-term trends, especially
at regional scales and for shorter periods (Deser et al., 2012b; Kay et al., 2015; Maher et al., 2019; Chen et al., 2021; Bonan
et al., 2021).

The global net land carbon sink refers to the balance between carbon absorption through gross primary productivity (GPP,
photosynthesis at large scale) and carbon release through total ecosystem respiration (TER), but also through fires and other
disturbances (Canadell et al., 2021; Ciais et al., 2022). GPP and TER are directly driven by local climate variability, such
as temperature --and precipitation (Jung et al., 2017; Piao et al., 2020; Canadell et al., 2021). Elevated atmospheric CO,
concentrations have contributed to an increase in the global land carbon sink (Ruehr et al., 2023) through increasing GPP
(Walker et al., 2021). Warming temperatures, particularly at high latitudes, have also contributed to increasing GPP (Ruehr
et al., 2023).

The long-term trends in-of the global carbon cycle are superimposed by-with substantial year—to—year variations (Piao et al.,
2020). These variations mostly stem-originate from natural processessuch-as-, including internal climate variability;-variability
on—fluctuations across a continuum of time scalesunrelated—to-external-effeets;—as well as from influencesfromnaturat
foreingnatural external forcings such as volcanic eruptions and solar radiation (Deser et al., 2012b; Canadell et al., 2021; Eyring
etal., 2021; Mercado et al., 2009; Zhang et al., 2021). Internal climate variability is often referred-to-regarded as an irreducible

noise in-within the signal of long-term forced climatic trends, and-arises—arising from internal atmospheric dynamics and

interactions-between-the-atmosphere-and-oceans-from atmosphere-ocean interactions (Deser et al., 2012a, 2020; Lehner et al.,
2017; Bonan et al., 2021). Internal-climate-variability-emerges-Such variability manifests both as short-term weather events and

long-term-as low-frequency climate variability-patternstike-patterns, such as the El Nifio/Southern Oscillation (ENSO) which
are-known-to-influenced-strongly influence global land carbon sink variations through feeat-associated changes in temperature

and precipitation (Bacastow, 1976; Keeling et al., 1995; IPCC, 2021; Li et al., 2022).

The detection of anthropogenic signals in the global land carbon sink is important for improving our understanding of
carbon-climate feedback and refining future carbon projections (Friedlingstein et al., 2014). Detection involves identifying a
statistically significant "signal" of long-term forced changes against the "noise" of natural variability in the system (Chen et al.,
2021) and is important for improving our understanding of carbon-climate feedback and refining future carbon projections
(Friedlingstein et al., 2014). However, several fundamental challenges remain:

First, internal climate variability can differ—substantiallybe realized differently in multiple simulations under the same
external forcings, which may be seen as random and difficult to predict (Frankcombe et al., 2015; Deser et al., 2020; Doblas-
Reyes et al., 2021; Bonan et al., 2021). Since observations only represent one unique realization of internal climate variability,

they are insufficient to characterize the full range of physically plausible internal climate variability. Moreover, internal



60

65

70

75

80

85

90

climate variability is sensitive to the choice and length of the study period (Kumar-etal;2016;Doblas-Reyes-et-al; 2021
Kumar et al., 2016; Doblas-Reyes et al., 2021; Maher et al., 2024), making it harder to separate natural fluctuations from forced
signals (Bonan et al., 2021; Frankcombe et al., 2015; Doblas-Reyes et al., 2021). Short-term-observational-records-maynot

This makes it challenging to capture the full dynamics of internal climate variability, particularly due to the limited length of
observation records (Maher et al., 2019; Chen et al., 2021).

Second, ecosystem responses vary across geographic regions and timescales of natural climate variations and forcing
(Lombardozzi et al., 2014). Regions with high natural climate variability might not show high land carbon sink variability
(Lombardozzi et al., 2014). The detection and attribution of anthropogenic signals thus strongly depend on the specific regions
of interest (Deser et al., 2012b; Hawkins and Sutton, 2012; Deser et al., 2012a; Mabhlstein et al., 2012; Lombardozzi et al.,
2014). On decadal time scales, internal climate variability in land-atmosphere CO5 flux often mask the anthropogenic signals
in many regions (Lombardozzi et al., 2014; Kumar et al., 2016; Doblas-Reyes et al., 2021; Bonan et al., 2021).

Large ensembles of Earth SystemModel-system model (ESM) simulations with perturbed initial conditions are effective
tools to address these challenges (Deser et al., 2020; Bonan et al., 2021). By running sufficient simulations in a single
model with slightly different initial conditions, and under the same physical process representation and external forcing,
the distribution of internal climate variability is sampled much-better—thanin-more effectively than with a single realization
(Milinski et al., 2020; Chen et al., 2021). The externally perturbed signal (dominated by anthropogenic signal) emerges as the
ensemble mean, that is, a deterministic signal. The residual after removing the ensemble mean can thus be regarded as mostly
internal natural variability in the climate system (Milinski et al., 2020; Deser et al., 2020; Bonan et al., 2021). Based on such
large ensembles of ESM simulations, the "time of emergence (ToE)" can be determined as the time required for an external
perturbed signal (mostly anthropogenic-caused climate change) to become larger than the amplitude of natural variations
. The ToE metric helps to identify climate change impacts on regional and global scales, and attribute changes to particular
causes (Chen et al., 2021). However, due to large year—to—year variations, the anthropogenic signal may remain within the
range of natural variability for multiple decades (Lombardozzi et al., 2014; Bonan et al., 2021; Ranasinghe et al., 2021).

Here, we evaluate how long it takes for long-term trends in the global land carbon sink;—mesthy—primarily driven by
anthropogenic perturbationsaeed—to be detected fromtocat-to—global-seales—by-estimating-at_different spatial scales. To
achieve this, we estimate the ToE in ESM simulations under historical and future scenarios. Our key objectives are to: 1) detect
the anthropogenic perturbed signal in global land carbon sink in historical simulations (1851-2014); 2) examine the spatial
effects in the ToE on regional scales; 3) estimate the ToE under various future scenarios (2016-2100) and 4) test approaches to

separate eirettationindueed-circulation-induced variability in the ToE in the global land carbon sink.

2 Methods and dataset

In this study, we use five ESM large ensembles to investigate the time to detect anthropogenic perturbed signals in global and

regional land carbon sinks.
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2.1 Dataset

We use outputs from historical simulations by ESMs with at least 30 realizations to investigate the ToE in the land carbon
sink. The models selected include the CESM2-LE with 90 simulations (Danabasoglu et al., 2020; Rodgers et al., 2021) and
four models in CMIP6 (Eyring et al., 2016; Brunner et al., 2020): ACCESS-ESM1-5 with 38 simulations (Ziehn et al., 2020),
CanESMS5 with 40 simulations (Swart et al., 2019), IPSL-CM6A-LR with 33 simulations (Boucher et al., 2020), and MPI-
ESMI1-2-LR with 41 simulations (Mauritsen et al., 2019). All historical simulations are conducted under the CMIP6 historical
forcing, including volcanic eruptions and changes in atmospheric composition due to human activities (Eyring et al., 2016).

The future scenario simulations are modeled under different Shared Socioeconomic Pathways (SSPs), based on varying levels

of human-emitted CO9 and mitigation efforts (Chen et al., 2021; Lee et al., 2021; O’Neill et al., 2016).

2

The historical simulations covers the period of 1851-2014 and the future scenario simulations cover the period from 2015 to
2100. The spatial resolution of CESM2-LE outputs is 0.9375° x 1.25°, and four CMIP6 models is 2.5° x2.5° (pre-processed by
Brunner et al. (2020) from their native spatial resolution). We select the net biome production (NBP), gross primary production
(GPP), and total ecosystem respiration (TER) from the above five Earth-systemrmodelsESMs. Note that the TER in CESM2-
LE is calculated according to Eq. (1)1, where TER is estimated as the difference between GPP, primary production (NPP),
corresponding to autotrophic respiration, soil respiration (SR), and litter respiration (LR) (Eq. (bH1).

TER=GPP—-NPP+ SR+ LR ey

The TER in four CMIP6 models is calculated based on the sum of autotrophic (ra) and heterotrophic respiration (rh)
(Eq. 2)2).

TER=ra-+rh ()

CESM2-LE outputs of NBP, GPP, NPP, SR, and LR are downloaded from https://www.earthsystemgrid.org/dataset/ucar.cgd.
cesm2le.Ind.proc.monthly_ave.html, last accessed on July 11, 2024. For the other four CMIP6 models, NBP, GPP, ra and rh are
downloaded (originally from https://esgf-node.llnl.gov/projects/cmip6/) then pretreated by Brunner et al. (2020), last accessed
on July 11, 2024. We further download the monthly mean sea level pressure (SLP) from the five models from their respective
sources.

For the regional analysis, we use the regional carbon cycle assessment and processes (RECCAP-2) (Ciais et al., 2022) map
(https://www.bgc-jena.mpg.de/geodb/projects/Data.php) that categorizes the global land surface inte+0distinetinto 10 distinct

domains, with resolution of 0.5°x 0.5°.

ba%ed—eﬂ—vafymg}eve}%ef—humaﬂ-emiﬁeekWe also included the observations of atmospheric CO, and-mitigation—efforts

—growth rate (AGR) at Mauna Loa (Lan et al., 2025) from 1960 to
2009, downloaded from https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_gr_gl.txt, last accessed on August 18th, 2025. We
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used monthly mean SLP from the ERAS reanalysis dataset (Hersbach et al., 2023) for the period 1959-2009, with resolution of

0.25°x 0.25°, downloaded from https://cds.climate.copernicus.eu/datasets/reanalysis-eraS-single-levels-monthly-means?tab=

overview, last accessed on August 18th, 2025.
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2.2 PDateData pretreatment

135 NBP, GPP, and TER from CESM2-LE are provided in the unit of gC - m™ - 5!, from which an annual sum is calculated. NBP,
GPP, and TER from four CMIP6 models are in unit of kgC-m2-s™! and converted to annual sums in ¢&—m2—yearLqgC - m2 - yr.
TER is calculated according to Eq. {}5-1 for CESM2-LE and according to Eq. {2--2 in the four CMIP6 models. In order to
have consistent sign with GPP, TER here is multiplied by —1. In the historical simulations (1851-2014), NBP, GPP, and
TER of the five model datasets are area—weighted and aggregated to domain mean with the spatial resolutions of 2.5°x2.5°,

140 5°x5°,10°x10°, 20°x20°, 30°x30°, 45°x45°, 60° x60°, and global mean. The global mean of NBP, GPP, and TER is also
calculated for the four future scenarios, with period of 20162100 selected (in CMIP6 models the time series starts at July 2015,
so we select from 2016 instead). Note that CESM2-LE only includes one future scenario (SSP3-7.0)—Sealevel-pressure-, and
other models included all four future scenarios. SLP from all five Earth-system-models-ESMs is aggregated to the resolution

of 10°x10°. Data pre-processing, including unit conversion and spatial aggregation, was performed with the Climate Data

145 Operators software (Schulzweida, 2023, CDO).
The RECCAP-2 map is area—weighted and aggregated to 2.5° x2.5°, then categorize the NBP, GPP, and TER to 10 RECCAP-

2 regions.

The pretreatment steps of atmospheric CO» growth rate (AGR) at Mauna Loa from 1960 to 2009 (Lan et al., 2025) follows

Lietal. (2022). We first remove five volcanic years (1963, 1982, 1983, 1991, and 1992), then fitted the long-term trend with

150  locally weighted scatterplot smoothing (Cleveland et al., 1991, LOWESS). SLP from ERAS (Hersbach et al., 2023) also have
five volcanic years removed, then area_weighted and aggregated to the spatial resolution of 9° <97,


https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels-monthly-means?tab=overview
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2.3 Methods
2.3.1 Time of emergence

To determine the time of emergence (ToE), we apply the noise—to—signal ratio approach, following Bonan et al. (2021). The

155 signal (S) refers to the anthropogenic perturbation driven response, which is given-by-the-lineartrend-the linear regression
slope of the ensemble mean of the simulations for each model (Bonan et al., 2021). For the calculation of N, we first select

all years across all model simulations over the selected period, then mix the data from all years in the selected period together
and calculate the standard deviation, In the historical simulations, the noise (N) corresponds to the standard deviation of the
ensemble before the 195051960s (here is 1930-1959), a period less affected by human activities compared to more recent ones,

160 and used as the baseline for natural variability (Bonan et al., 2021). FeE«In the future scenarios, we calculate the ToE for NBP,
GPP, and TER, with the signal period in 2020-2070 and the noise period in 2020-2070 (with the ensemble mean removed).
ToE (Eq. {3)-3) represents the time needed for the anthropogenic perturbed signal to become larger than the amplitude of the
noise (Bonan et al., 2021).

ToE (years) =2N/S 3)

165 Here we use a linear regression slope rather than a nonlinear approach to represent the signal trend, this is to capture
the dominant forced signal in the selected signal period. The ensemble mean of NBP, GPP and TER reflects the forced

ecosystem response, including anthropogenic forcing, short-period natural forcings (e.g., volcanic eruptions), and decadal

internal variability (Deser et al., 2012b; Canadell et al., 2021; Eyring et al., 2021; Mercado et al., 2009; Zhang et al., 2021). The

2

linear trend captures the first-order (Hasselmann, 1979) long-term anthropogenic influence, whereas nonlinear methods could

170 risk overfitting and mis-attributing natural forcing or internal variability to anthropogenic signals, especially at regional scales
where variability is larger (see Fig. 3 and appendix A Fig. A.1).

2.3.2 Noise filtering based on dynamical adjustment

To shorten the detection time, we use a dynamical adjustment technique to estimate eireutation-indueed—circulation-induced

variability in NBP. Dynamical adjustment is a technique in climate science, which aims to isolate eireulation-indueed-circulation-induced
175 variability (such as in temperature and precipitation); where the residual time series in those climate variables is thought to

contain the forced response (Smoliak et al., 2015; Deser et al., 2016; Sippel et al., 2019). eirenlation-induced-Circulation-induced

variability is generally expected to reflect internal climate variability to the largest extent (Deser et al., 2016; Smoliak et al.,

2015; Sippel et al., 2019). Therefore, dynamical adjustment allows one to obtain a higher signal-to—noise ratio in the residual;

— et is—circulation-filtered residual time series, where the residual represents
i i i ton tabthty—+ table)subtracting the estimated

180 the remainder after <

circulation-induced variability from the target variable.




Here, we employ ridge regression, a linear—statistical-Hearning-dynamical adjustment technique, to estimate eireulation
indueed-vartability—circulation-induced variabilit (Slppel et al., 2019) In our model, the sea level pressure (SLP) field is

used as a predictor and proxy of et

ity-circulation-induced
185 variability (Sippel et al., 2019). As a regularized linear regression method, ridge regression allows for including full spatiotemporal
dynamics of circulation variations while overcoming multicollinearity and overfitting, normally-raising-which typically arise
from a large number of predictors and relatively short study period (Hastie et al., 2009; Sippel et al., 2019). This approach was
adapted by Li et al. (2022) to evaluate the fraction of atmospheric eirettation-indueed-circulation-induced variations in global
carbon cycle variability. The key steps include (Sippel et al., 2019; Li et al., 2022): 1) Selecting-Select pixel based time series of
190 global SLPto-prediet, to be used later for predicting global carbon cycle variability;-here-thefull-global-domain—Then-. We then
calculate the mean seasonal SLP. Since-DIF-(DecemberJanuary;-and-February)-SEP-has-Because DJF (December—February)
SLP provides the highest predictability of annual NBP (detatls-please-cheekLietal(2022))here-weseleet DHF-SEP-see
Li et al. (2022) for details), we use DJF SLP in this study. 2) Seleeting-Select the time series to-represent-global-carbon-—eyele
%WWM@WWM here, this corresponds to the global annual NBP with the
195 ensemble mean removed. 3) Sphi Training and testing. Here, the

first half pertod-of the dataset as-the-training-group-is used for training and the second half as-the-testinggroupfor testing. For

example in historical simulations, the training data is the time series from 1851 to 1932, and the testing data is in 1933-2014.

4) Switch the training and testing data to start a new round of model training and prediction. This means, the training data from
step 3 is used as testing data, and the testing data from step 3 is used as training data. Then we have the full time series of NBP
200 that is predicted by DJF SLP. Detailed model design can be found in Sippel et al. (2019); Li et al. (2022).

By using DJF SLP to predict NBP (with the ensemble mean removed), we estimate the fraction of eireulation-indueced
circulation-induced variability in global NBP time series. The residual, after removing the DJF SLP predicted NBP, reflects
mostly the influence of natural forcing (e.g., volcanic eruptions or solar radiation variability), disturbances (fires, when simulated
by models), and unpredictable high frequency internal climate variability (Sippel et al., 2019; Piao et al., 2020; Canadell et al.,

205 2021). We hypothesize that this method reduces noise levels in NBP and allows for an earlier detection of the anthropogenic

signal.
2.4 Statistical analysis

We perform four statistical analyses: 1) ToE in land carbon fluxes from historical simulations:-, We analyse the time-to-detect
ToE of the anthropogenic perturbed signal in NBP, GPP, and TER in the historical simulations. Following Bonan et al. (2021),
210 the signal (S) is the linear regression slope of the ensemble mean in the period of 1960-2009, and noise (N) is the standard
deviation of all simulations in the period 1930-1959. We first compare the historical time series of NBP, GPP, and TER, and
then calculate the ToE according to Eq. (3)3. 2) Spatial effects on ToE:-, We examine how the ToE varies globally and across the
10 RECCAP-2 regions. Additionattyln addition, we evaluate the impaetinfluence of spatial resolution on ToEby-ealeulating-,
We calculate pixel-based ToE at-various-values at multiple spatial scales (ranging from 2:55° x2-55° to 60° x60°) and compare
215 these with the global scale. 3) ToE in future projections of the land carbon fluxes:-, We calculate the ToE for NBP, GPP, and
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TER, with the signal period in 2020-2070 and the noise period in 2020-2656-2070 (with the ensemble mean removed). 4)
Noise reduction through dynamical adjustment:-. Given the large year—to—year variability in NBP, we use ridge regression to
remove the eirentationinduced-variabititycirculation-induced variability in global NBP. To assess the effectiveness of ToE
reduction on a global scale through dynamical adjustment, we calculate the relative reduction (ds) according to Eq. (4)4.
Note that only the calculated signal (regression slope) with significance value P < 0.05 is selected. If the calculated signal

(regression slope) is negative, we then take the absolute signal value to get a positive ToE. Here we select to show the ToEs

less than 150 years.

ds = 100% * (Vo — VR)/VO (4)

Note that Vj represents the original value (ToE or N) and V7 is the residual-after-the-eireulation-indueed-(ToE or N) estimated

from the original time series (NBP or GPP) after removing the circulation-induced variability estimated by using the ridge
regression modelis-remeved:,
global and regional scales, and then calculate the differences between each region and the global mean (Eq. 6).

In(ToE)=1In(2x N)+In(1/S) )

The contribution of changes in N and S are:

Ncontri == 100% X lTL(Q x Nregion) — ln(2 X Nglobal)

7
ZTL(TOEregion) - ln(TOEglObal) ( )
In(1/Syegion) = {1/ Sgiobar)
ontri = 1
SC t 00% x ln(TOEregion) - ln(TOEglObal) (8)

Note that for future scenarios, we substitute the region’s value to each future scenario’s value.

3 Results and discussion
3.1 Detection of anthropogenic signal in historical simulations

We first examine the NBP time series for the historical simulations from 1851 to 2014 (Fig. 1). Before the 1960s, the ensemble

mean (long-term trend) for each model remains relatively stable with slight variations. After the 1960s, the ensemble mean
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shows a noticeable increase. Despite this, the magnitude of NBP variability remains consistent or slightly increase throughout
the historical period, for all models. In individual simulations, we observe that the year—to—year variations are considerably
larger than the changes in the ensemble mean, enhancing or offsetting the long-term NBP trend —(Fig. 1).

We then examine the time series of GPP and TER in the historical simulations (Appendix-A-Fig-(-A-»HFig. 1). Both GPP
and TER show similar trends across models, though ACCESS-ESM1-5 shows a larger magnitude difference —(Fig. 1). The
ensemble mean of GPP and TER are similar until the 1960s, after which GPP slightly surpassed TER —(Fig. 1). Year—to—year
variations are minor compared to the long-term trend in the ensemble mean, suggesting that photosynthesis and respiration
are strongly influenced by anthropogenic perturbations. As-Because the trends in GPP and TER trends-largely compensate
when combined to calculate NBP, NBP-shows-the resulting NBP exhibits smaller long-term trends but significant-year—to—year

ronounced interannual variability.

3.2 Spatial effects of ToE

We then examine how long it takes for the anthropogenic signal (ensemble mean of each model) to emerge from year—to—year
variations of NBP in global scale and across 10 RECCAP-2 regions (Fig. 2b). Globally, CESM2-LE has the shortest detection
time at 26 years, while CanESMS5 takes the longest at 66 years —(Fig. 2b). The detection time in ACCESS-ESM -5 stands-out

with-a-much-longer-detectiontime-of 289-yearsis not available, due to a flat trend of ensemble mean after 1960s.
We first check the ensemble mean of NBP in global scale and 10 RECCAP-2 regions (Appendix A Fig. A.1). The trends

of ensemble mean in NBP subjects to larger interannual variability in regional than in global scales, particularly in Southeast
Asia and Africa, Comparing noise (N) and signal (S) (Appendix A Fig. A-2-A.4 and Eq. (3)3), we found that the variation in

detection time across models is mainly due to differences in year—to—year variability and signal trends.

In most of the 10 RECCAP-2 domains, ToE detection in NBP takes longer than at the global scale (Fig. 2B)-—The-exception

[ E SN\ hara 2 < and-afte he Oceancec—a—m h loncer-dete on me hae rago nal-n e—tand
v W a—+Ha a a v atd a H ORe c O a S

to-be-larger-than—at-theglobal-scale; leadingto-delayed-b). We calculate the contribution of changes in N and S to regional
ToE, compared with historical global scale NBP (Appendix A Fig. A.5). In regions such as South Asia and Australasia, the

longer regional ToE is mainly due to larger regional noise (Appendix A Fig. A.5). While in other regions such as East Asia

the longer regional ToE is mainly attributable to smaller regional S (Appendix A Fig. A.5). These effects delay the detection
of anthropogenic signals—Werefer-to-this-differenee-, a phenomenon we refer to as "spatial delay".

The spatial delay in NBP can be explained by the reduced noise from internal climate variability when aggregating-fluxes

fluxes are aggregated globally, while the signal remainsrelatively-stable-trend may be either enhanced or diminished dependin
on the specific region considered, (Appendix A Fig. A<2A 4, A.5). This is a well-known pattern in detection and emergence

studies in the climate literature (Mahlstein et al., 2011; Lehner et al., 2017). Southeast-Asta-and-Australasia;show-the-largest

notse—and—therefore—also—thetonge oE-aeross—the 1O RECCAP-2-demains—However, the spatial delay does not apply

everywhere. In Russia, models like ACCESS-ESMH-5-CanESM5, and IPSL-CM6A-LR show shorter detection time compared
to the global scale —Thisis-(Appendix A Fig. A.4, A.5). This is mainly due to apparent smaller noise in Russia of the three-two

models, compared with etherregions-and-global-seate-global scale and other regions (Appendix A Fig. A<2A 4, A.5).
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Figure 1. Time series of NBP, GPP, and TER from 1851 to 2014 in five ESM large ensembles. The thin lines represent individual simulations,

while the bold lines represent the ensemble mean. The gray lines show NBP, corresponding to the left y-axis. The blue and red lines

corresponds to the right y-axis and represent GPP and TER, respectively. The number of simulations for each model is listed in the legend

next to the model name. Note that TER in model ACCESS-ESM -5 only included 24 simulations, due to limited data availability.

We then evaluate the ToE for GPP and TER (Fig. 2€;-D);-whieh—, d), both show similar patterns in detection time, and
the relative importance of noise and signal at regional scale (Appendix A Fig. A-3;-A4A.6, A.7, A.8, A.9). Globally, it takes
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around 8 to 13 years to detect anthropogenic signal in GPP and 6 to 10 years for TER —(Fig. 2¢c, d). As found for NBP, both

GPP and TER show a spatial delay from global scale to regional scale —(Fig. 2¢c, d). For GPP and TER, longer regional ToEs
are mostly due to larger regional noise rather than weaker signal trends, except in West Asia, where it is mainly driven by an
apparent weaker signal trend (Appendix A Fig. A.7, A.9). Australasia in GPP and TER both have-generally-generally have the

longest detection time, due to high-higher noise compared to tew-signalHevels—-lower signal levels (Appendix A Fig. A.6, A.8)
indicating higher internal climate variability. In both GPP and TER, South America and Southeast Asia experience high level

levels of noise and signal, while West Asia has relatively low fevetlevels of noise and signal —(Appendix A Fig. A.6, A.8).

Compared with the land carbon sink (NBP), photosynthesis (GPP) and ecosystem respiration (TER) individually show a
much shorter detection time of the anthropogenic signal (Fig. 2). This is likely due to the fact that GPP and TER trends
are strongly influenced by anthropogenic perturbations, with the magnitude of the trend exceeding the magnitude of internal
climate variability in a much shorter time. However, when calculating NBP, the long-term trends of GPP and TER offset each
other, leaving NBP with weaker long-term trends relative to the year—to—year natural variations, thus making it harder to detect
the anthropogenic signal in NBP.

To further analyse the spatial delay effect, we calculate the distribution of pixel based ToE for NBP, GPP, and TER under
varying resolutions in the historical simulations. For NBP, as the resolution becomes coarser, the spread of the ToE distribution
decreases substantially (Fig. 3), though the median remains similar. This supperts-the-might be due to noise reduction by spatial
aggregation through offsetting internal climate variability (Lombardozzi et al., 2014) (Fig. 3). A similar pattern is observed in
GPP and TER, where aggregation reduces the spreads of ToE without substantially altering the medians (Appendix A Fig. A5
and A6A.10 and A.11).

We found that-onr-a-global-seale——it-takes—shorter-global scale takes shorter time to detect long-term trends induced by
anthropogenic effects than at smalerregional scales, with TeE-ToEs increasing for smaller domains as reported by Lombardozzi
et al. (2014), though their study used fewer models and less than 10 simulations. A few regions, however, show shorter ToEs

than the global scale. For example, in Russia, CanESM5 and IPSL-CM6A-LR simulate relatively small noise and stronger
signal trends, leading to shorter ToEs. This maybe relate to the sparsely distributed ecosystems included in models, which
are less sensitive to changes in climate drivers. We found that, for regional NBP, larger interannual variability in the signal

trend also contributes to longer detection time, likely reflecting different regional climate drivers (e.g., fires, decadal internal

land use changes (Deser et al., 2012b; Canadell et al., 2021; Eyring et al., 2021; Mercado et al., 2009). Such large

signal variability in regions like Southeast Asia and Africa therefore introduces substantial uncertainties in detecting the
anthropogenic signal on decadal timescales.
The large interannual variations in NBP largely arise from variations in GPP and respiration. As regional ecosystems are

, much of this variability maybe influenced b

more sensitive to precipitation than to temperature (Jung et al., 2017)

ale—anthropogenic signals

in precipitation are less robust and emerged later than those in temperature (Doblas-Reyes et al., 2021). Identifying these
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Figure 2. ToE of NBP on a global scale and across 10 RECCAP-2 regions, under historical simulations of five ESM large ensembles. Note
that ToE is the years detectable after 1960, and is calculated with signal period of 1960-2009 relative to the noise period of 1930-1959, details
please check Sect. 2.4. (a) RECCAP-2 map (duplicated from Ciais et al. (2022) Fig. 1) that divides the global continents into 10 domains.
Note that the RECCAP-2 map is aggregated from 0.5° x0.5° to 2.5° x2.5°, the spatial domains are slightly changed (b) Heat map of the ToE
in global and each spatial domain of NBP. (c) and (d) are heat maps of the ToE in global and each spatial domain of GPP and TER separately.
Domains with no significant signal (P > 0.05) or ToE longer than 150 years are shown as empty squares.

signals and their impacts on regional ecosystem activity could therefore enable a cleaner and earlier detection of anthropogenic

influences on land carbon sinks.
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Figure 3. Spatial effect in NBP historical simulations across five ESM large ensembles. The distribution of ToE are-(years after 1960) is

shown for varying spatial resolutions. We aggregate the global data per pixel to different resolutions, then calculate the ToE per pixel. The

line within each box indicates the median. Note that all the-signals are in absolute values, so the calculated FoE-ToEs are all positive.

3.3 TokE in future projections

We examine the time series of NBP under various future scenarios from 2016 to 2100 (Fig. 4). While NBP-trends-are-similar

e twolow-emission scenarios P12 6 and-SSP2-4.5)the hichest emission scenario PS-8.5)-shows NBP trends of
ensemble mean show large deviations across models —(Fig. 4).

In CESM2-LE, the SSP3-7.0 scenario shows a steady increase in NBP until around 2040, followed by stable vataes-untit
2100-trend until 2100 (Fig. 4). ACCESS-ESMI1-5 and IPSL-CM6A-LR exhibit mixed NBP trends in all scenarios, with a
relatively stable trend before 2050 and a gradual decline afterwards—ACCESS-ESM1-5 even shifted to a net carbon source
—(Fig. 4). In CanESMS, all scenarios are mixed and together increasing until 26502050 (Fig. 4). After that, all scenarios
diverged according to different emission scenarios —(Fig. 4). MPI-ESM1-2-LR also have all scenarios mixed before around
2050, then diverge clearly with a lower overall trend —(Fig. 4). Except CanESM5, the large year—to—year variability in NBP

makes it challenging to distinguish long-term trends across scenarios.
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Figure 4. The time series of future NBP from 2016 to 2100 across five ESM large ensembles. The four future scenarios include SSP1-2.6
(red line), SSP2-4.5 (yellow line), SSP3-7.0 (green line), and SSP5-8.5 (purple line). Thin lines represent individual simulations, while thick
lines represent the ensemble mean for each scenario. The number of simulations for each model scenario is indicated in the legend next to

the scenario label.

We then examine the time series of GPP and TER under future scenarios (Appendix A Fig. A<7-and-A-8A.12 and A.13).
GPP continues to rise in all models until 2100, except for SSP1-2.6, in which GPP slightly decreases after ca. 2060 (Appendix
A Fig. A<7A.12). TER follows a similar pattern, with an increasing trend in line with the different CO, emission scenarios
(Appendix A Fig. A=8A.13). The increase in GPP is likely due to the enhanced CO fertilization and warming in mid-to-high
latitudes (Ruehr et al., 2023; O’Sullivan et al., 2022).

Distinguishing the ToE for NBP from different future scenarios is challenging, due to smaller anthropogenic signal and larger
year—to—year variations across four future scenarios (Appendix-A-Fig. A:93). Only CanESMS5 shows a clear separation between
scenarios, with ToE of +44-147 years for SSP1-2.6, 57-60 years for SSP2-4.5, 33-35 years for SSP3-7.0, and +7-19 years for
SSP5-8.5. Other models take over 44 years to detect the anthropogenic signal among all scenarios —(Fig. 5). In contrast, GPP
and TER trends are more distinct and separated according to different scenarios, resulting in much shorter ToE (Appendix A
Fig. A-40;A-11A.15, A.17). This might be due to an increase in the CO2 emission level, or a stronger anthropogenic signal

that outweighs the increased noise level, making the detection time more driven by impacts from anthropogenic perturbations

rather than internal climate variability —(Appendix A Fig. A.16, A.18).
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Figure 5. Heat map of ToE, noise (N), and signal (S) of global mean NBP under future scenarios.

The divergence of NBP across models is much larger in future scenarios than in historical simulations. While models are

inherently different, these differences in the historical period may be amplified in future scenarios due to: (a) the increasin
,2018; Arora et al., 202(
2014; Fischer and Knutti, 2015; Hewitt et al., 2016; Kl

. Both may intensify differences in climate-carbon feedbacks among models (Friedlingstein et al., 2014; Hewitt et al., 2016; Seneviratne et

2016; Christensen et al.

3

influence of CO fertilization and land use change (van Vuuren et al., 2011; O’Neill et al.

; and (b) Rising temperature and more frequent extreme events (Friedlingstein et al.,

2

In future scenarios, it takes longer to detect the anthropogenic signal in NBP, when compared to historical simulations. This
delay is tikely-mainly due to the small anthropogenic signal caused by the compensation effect of GPP and TER, and-whose

differences are smaller than those in historical simulations (Fig. 5 and Appendix A Fig. A.14-A.18). This may result from a

slowdown in the long-term GPP trend under warmer climate and increasing CO2 concentrations in future scenarios. In addition,
larger noise levels that-(Appendix A Fig. A.14) that might driven by more frequent extreme events in a warming climate (Arias
et al., 2021) -whieh-amplifies year—to—year variations in the land carbon sink. Reducing these year—to—year variations is crucial
for reducing the ToE in NBP. In the next section, we apply dynamical adjustment to filter out the atmospheric eiretlationinduced
vartability-in-NBPcirculation-induced variability in global NBP time series, and assess whether it can contribute to reduce ToE

in both historical simulations and future scenarios.
3.4 Dynamical adjustment for noise reduction

We use the ridge regression to filter out atmospheric eirenlation-indueed-circulation-induced variability in year—to—year global
NBP variability (Fig. 56). By applying the ridge regression model that based on sea level pressure as covariates, the eireulation
indueed-circulation-induced variability in the respective carbon flux is predicted. The predicted eirenlation-induced-circulation-induced
variability is assumed to contain direct influences (via thermodynamics or CO, fertilization) of climate change (Sippel et al.,
2019). Because eireuntation-indueed-circulation-induced variability is highly variable and often assumed to be largely internal
variability, the residual can be expected to show a higher signal-to-noise ratio (e.g., Deser et al. (2016); Sippel et al. (2019)).

The noise of global NBP is substantially reduced after filtering out eireutation-tndueed-circulation-induced variability, so
that ToE is reduced in both historical simulations and future scenarios (Fig. 56, Appendix A Table. A.1). In the historical
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Figure 6. ToE of NBP from historical simulations to future scenarios. Note that ToE in historical simulations is calculated with signal
period of 1960-2009 relative to the noise period of 1930-1959, and ToE in future scenarios is calculated with signal period of 2020-2070
relative to the noise period of 202026562070, details please check Sect. 2.4. The tight-eotored-solid boxes represent the ToE of NBP,
while the neighbering—darker—shaded,—black—framed-hatched boxes represent the ToE of the NBP residual with the eireutation—induced
circulation-induced variability removed. In cases where both boxes are missing, the respective stmulation—was-signal is not available (no

significance of linear trend slope), or the ToEs are longer than 150 years.

simulations, the relative reduction in ToE ranges from 34:034% (CESM2-LE) to 38:639% (CanESMS5)-, corresponding to 9 and
26 years, respectively (Fig. 6, Appendix A Table. A.1). For future scenarios, the reduction ranges from 27+%-t0-54-3%~29%
to 55% (42 and 19 years reduction, respectively), except for ACCESS-ESM1-5, where reductions are mostly less pronounced
(Appendix A Table A.1). For GPP, the relative reduction in ToE is smaller (Appendix A Fig. A-}2-A.19 and Table. A.3). In the
historical simulations, it ranges from +2-713% (CanESMS5) to 32-132% (ACCESS-ESM1-5), and-fer-corresponding to 1 and 4
years, respectively (Appendix A Fig. A.19 and Table. A.3). For future scenarios, the relative reduction ranges from 19-2%-to
59-4%19% t0 60% (1 and 67 years reduction, respectively) (Appendix A Fig. A.19 and Table. A.3). The large reduction of
ToE indicates that NBP and GPP are both substantially affected by eireulation-indueed-circulation-induced variability.

adjustment, the ToE of the adjusted new AGR is reduced to 23 years, with noise of 0.70 ¢C'- yr”! and signal of 0.06 gC - yr>

Fig. 7). This represents an overall reduction of about 30%, contributed by 19% reduction in noise and 20% increase in signal.
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Figure 7. Time series of the atmospheric CO2 growth rate (AGR) at Mauna Loa from 1960 to 2009 (Lan et al., 2025). Five volcanic years
1963, 1982, 1983, 1991, and 1992) are removed. The red line is the observed AGR. The black line is the long-term trend fitted with a locall
weighted scatterplot smoothing (Cleveland et al., 1991, LOWESS) (signal). The residual (AGR — fitted long-term trend) was predicted usin

SLP through ridge regression with leave-one-out cross validation (blue line). This SLP predicted residual is then subtracted from the observed

AGR to obtain a new AGR time series with circulation-induced variations removed (observed AGR — SLP predicted residual). The dashed

black line is the new long-term trend. Data pretreatment and the ridge regression model follow paper Li et al. (2022). Note that the signal

eriod is the same as in models (1960-2009). Due to limited records of CO2 observations before 1958, here we calculate the noise also in
the period 1960-2009.

The results show that this approach can be applied in observations, enabling earlier detection of anthropogenic signals in global
carbon cycle variability.

4 Conclusions

This study examines the detection of long-term trends driven by anthropogenic signals in the global land carbon sink. Using

five ESM large ensembles, we analyze both the historical period (1851-2014) and future scenarios (2016-2100);-and-find-that:

In the historical period, the global land carbon sink (NBP) shows large year—to—year variations, which can enhance or
obscure long-term anthropogenic trends. While both carbon uptake (GPP) and ecosystem respiration (TER) show apparent
trends influenced by anthropogenic perturbations, their year—to—year variations are relatively small. Since NBP corresponds to
the balance between carbon absorption (photosynthesis) and release (ecosystem respiration), as well as other fluxes such as
fires, the long-term trend of NBP is in most cases smaller due to this compensation, leaving NBP with a smaller long-term

trend and relatively larger year—to—year variations.

17



390 We find that the ToE is smaller at global scale compared to regional scales, that is, the anthropogenic signal can be detected
earlier at global scale. In the period of 1960-20009, it takes over 26 years for NBP signals to emerge from internal variability,
and around 10 years for GPP and TER. At the regional scale, ToE is longer, which might be due to larger noise from natural
climate variability in most regions, as well as detected weaker signal trends. Coarser resolutions reduce the detection time, but
the spatial delay is not universal—some high-latitude regions, for example Russia, is found in three-two CMIP6 models having

395 a shorter detection time of NBP. This is due partly to a smaller noise compared with other regions and the global scale, and
partly due to a high signal relative to the small average carbon flux at present in those northern regions. The smaller noise may
be also due to the small average carbon flux, and associated small variability.

In future scenarios, it takes longer to detect the anthropogenic signal in NBP, due to lower anthropogenic signal level caused
by the compensation effect of GPP and TER, as well as higher noise levels that may result from more frequent extreme events

400 under a warming climate {Arias-et-al-2021H)(Friedlingstein et al., 2014; Fischer and Knutti, 2015; Hewitt et al., 2016; Kharin et al., 2018;

. The future trends of global land carbon sink differs-differ significantly across models. While some models have time series
separated by emissions after 2050, others remain mixed through 2100. This might be due to the large uncertainty in projections
of the global land carbon sink (Friedlingstein et al., 2014; Padrén et al., 2022). For high CO2 emission scenarios of SSP3-7.0
and SSP3-8.5, CanESM5 centinted-inereasing-continues to increase after around 2050, while other models show a-carbon

405 saturation, which might-be-due-to-model-uneertainties-in-may result from model uncertainties related to climate change and
nutrient limitations (Arora et al., 2020). Uncertainty in ToE in future projections is closely linked to uncertainties across the
model projections of the land carbon sink in the future. In contrast, GPP and TER increase consistently and are well separated
by different CO5 emission scenarios.

NBP exhibits larger year—to—year variability and it is difficult to detect the anthropogenic signal. After removing atmospheric

410 eirewlationindueced-circulation-induced variability from NBP, the time of emergence of the anthropogenic signal is significantly
reduced. In the historical simulations, the relative reduction in the ToE ranges from 34-0-t6-38-634 to 39%, while in future
scenarios it ranges between 27-+t6-54-329 to 55%. Future NBP is more influenced by anthropogenic perturbations and natural
variations ;with-inereasing-extreme-eventscontributingto-the-noise(Arias et al., 2021). However, anthropogenic perturbations
remain the dominant factor of GPP trends, which determine the time of emergence under all future scenarios. This approach

415 ean-be-has been applied in observations to—faetlitate-and shows an early detection of anthropogenic signal in global carbon
cycle variability.

The emergence approach used in this study is sensitive to the choice of the periods for defining noise and signal. Moreover,
the fitted linear slope of the ensemble mean may misrepresent the true signal trend, particularly at regional scales, due to large
forced variability in the ensemble mean (Lombardozzi et al., 2014; Bonan et al., 2021). A better understanding of regional

420 ecosystem responses to anthropogenic signals, along with improved methods that are less sensitive to large regional variability,

may help reduce the detected emergence time.
This study highlights how early the anthropogenic impacts on the global land carbon sink can be detected. By using ridge

regression-a_dynamical adjustment technique to remove atmospheric eireutation-indueed-circulation-induced variability, the

detection time can be largely reduced. However, there are still substantial uncertainties across models, with differing patterns
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425 and large year—to—year variations (Friedlingstein et al., 2014; Arora et al., 2020). Our proposed approach to use dynamical
adjustment to reduce ToE can contribute to enhance our ability to monitor human impacts on land carbon variability and thus
support decision making. This approach is particularly helpful in-detectingtf-for detecting whether recent regional carbon flux
trend-is-trends are driven by internal climate variability or forced by climate change. Internally driven trend-trends might not

going to be sustained in the near-future, while trends forced by climate change ean-be-expected-to-be-the-continuation-of present
430 trendsare expected to continue.

. The python scripts used for this study is available at Li (2025)

. Please check Section. 2.1 for details.

. Conceptualization by NLi, AB, SS; methodology by NLi, AB, SS, NLin, MR, MM; investigation by NLi, AB, SS, NLin; visualization by
NLi; supervision by AB, SS, Nlin, MM, MR; writing original draft by NLi; review by AB, SS, NLin, MM.

435 . The contact author has declared that none of the authors has any competing interests.

. Al tools ChatGPT (version GPT-40 mini) and Grammarly are used in this manuscript. They helped with writing, including grammar

correction and refining sentences and paragraphs. However, the original scientific ideas are from authors.

Appendix A

19



T 25 CESM2-LE

>

Y01

S

o -251

>

% =501 — Global

= T T T T T T

T

>

3

S

Q

S

5 -501

=2 T T T T T T

T 25 CanESM5

>

R N O N . = =

S

o —251

>

& ~501

z . . . . . .

T 25 IPSL-CMBA-LR

>

R —————— == e -

g

o —251

>

& -501

z . . . . . .

T 25 MPI-ESM1-2-LR

>

70

g

o —251

>

& ~501

z . . . . . .
1960 1970 1980 1990 2000 2010

Year
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Figure A.4. Heat map of noise and signal of NBP in historical simulations across five Earth-system-model-ESM large ensembles.
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Figure A.5. Contribution of N and S to each RECCAP-2 region’s ToE change in NBP, compared with global scale, in historical simulations.

Note that we only show the values with N/S change as the dominant contributor.
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Figure A.6. Heat map of noise and signal of GPP in historical simulations across five Earth-system-model-ESM large ensembles.
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Figure A.7. Contribution of N and S to each RECCAP-2 region’s ToE change in GPP, compared with global scale, in historical simulations.
Note that we only show the values with N/S change as the dominant contributor.

(N ®) S
60
CESM2-LE- 67 91 | ZbF 153 139 87 8.1 [hks CESM2-LE 25
50
ACCESS-ESM1-5- 35 54 136 105 7.7 38 26 81 51 87 161 o ACCESS-ESM1-5 2.0,
D D
40 5 B
CanESM5 - 48 92 144 195 H 72 86 Y 102 b CanESM5 1.5 W‘E
€
30 o
o
IPSL-CM6A-LR - 84 89 191 176 117 7.4 4 [PLPN 75 > IPSL-CM6A-LR 1.0
20
MPI-ESM1-2-LR - 119 13.1 (Rl ECl 2 86 164 [ERA 15 MPI-ESM1-2-LR -05
" ' " " " -10 © © © © © © ©
o © © [ © © © © © © © 9 o = = - - £
§ 2 ¢ 8 2 72 8 % % 7 0w 5 & 2 £ 2 2 8
2 [ o 5 g =3 - - > = £ £ = < = = ©
o £ € o < n £ % % 4 < < ¢ 3 3 8 £
< < o 5 © © 7 e < S 2 3
c < = o u 2 5 £ = s <
£ £ ] £ 5 3 5
£ 5 E= 2 < 2
<] 2 3 ) I
zZ & @

Figure A.8. Heat map of noise and signal in TER in historical simulations across five Earth-system-model-ESM large ensembles.
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Figure A.9. Contribution of N and S to each RECCAP-2 region’s ToE change in TER, compared with global scale, in historical simulations.

Note that we only show the values with N/S change as the dominant contributor.
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of time of emergence are shown for varying resolutions.
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Figure A.12. The time series of future GPP from 2016 to 2100 across five Earth-systemrmodel-ESM large ensembles. The four future
scenarios include SSP1-2.6 (red line), SSP2-4.5 (yellow line), SSP3-7.0 (green line), and SSP5-8.5 (purple line). Thin lines represent
individual simulations, while thick lines represent the ensemble mean for each scenario. The number of simulations for each model scenario

is indicated in the legend next to the scenario label.
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Figure A.13. The time series of future TER from 2016 to 2100 across five ESM large ensembles. The four future scenarios include SSP1-2.6
red line), SSP2-4.5 (yellow line), SSP3-7.0

reen line), and SSP5-8.5 (purple line). Thin lines represent individual simulations, while thick

2

lines represent the ensemble mean for each scenario. The number of simulations for each model scenario is indicated in the legend next to

the scenario label.
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that only values where changes in N or S are the dominant contributor are shown.
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Figure A.15. Heat map of ToE, noise, and signal of GPP under future scenarios.
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Figure A.16. Contribution of N and S to ToE changes in GPP for each future scenario, compared with global scale in historical simulations.

Note that only values where changes in N or S are the dominant contributor are shown.
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Figure A.17. Heat map of ToE, noise, and signal of TER under future scenarios.
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Figure A.18.

Note that only values where changes in N or S are the dominant contributor are shown.

Contribution of N and S to ToE changes in TER for each future scenario, compared with global scale in historical simulations.
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Figure A.19. ToE of GPP from historical simulations to future scenarios. The light colored boxes represent the ToE of GPP, while the
neighboring darker shade, black framed boxes represent the ToE of the GPP residual, which has the circulation-induced variability removed.
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Relative change (%% (Years) CESM2-LE ACCESS-ESM1-5 CanESM5 IPSL-CM6A-LR  MPI-ESM1-2-LR

Historical 34:034% (9) - 38:630% (26)  35035% (16)  35:536%(19)
SSP1-2.6 - 102% (2) 43743% (64)  32434%(29)  36:631%(30)
SSP2-4.5 - 33 50:453% (32) - -
SSP3-7.0 38:435% (15)  32234% (34)  54:355% (19) - -
SSP5-8.5 - - 48252% (10)  27429% (42)  38:837% (26)

Table A.1. ToE reduction in NBP, calculated according to Eq. {4).

Relative change (%)% _~ CESM2-LE =~ ACCESS-ESM1-5 CanESM5  IPSL-CM6A-LR  MPI-ESM1-2-LR

Historical 35:535% 34:134% 48:348% 39:239% 39:+39%
SSP1-2.6 - 35:837% 53.853% 25:928% 34:935%
SSP2-4.5 - 39:138% 52:254% 32:832% 40:638%
SSP3-7.0 36:934% 37.038% 54:355% 34931% 36736%
SSP5-8.5 - 39:039% 48:653% _ 18:320% 38:037%

Table A.2. Noise reduction in NBP, calculated according to Eq. {4).

Relative change (%% (Years) CESM2-LE ACCESS-ESM1-5 CanESM5 IPSL-CM6A-LR  MPI-ESM1-2-LR

Historical 24:825% () 324N% @) R2I3B() 26426%(2) 24:825% (2)
SSP1-2.6 - 59460% (67)  34334% (3)  25626% (4) 36:538% (1)
SSP2-4.5 - 47545% (17) 32434% (2)  27:828% (3) 39:5-38% (4)
SSP3-7.0 2621% (1) 39241%(11)  39941%(2)  306330%(2) 35:836% (3)
SSP5-8.5 - 42943% (9)  29634% (1) 19219% (1) 37:637% (2)

Table A.3. ToE reduction in GPP, calculated according to Eq. (4).
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Relative change (%)% _~ CESM2-LE =~ ACCESS-ESM1-5 CanESM5  IPSL-CM6A-LR  MPI-ESM1-2-LR

Historical 25:826% 32:533% 14:414% 28:028% 26727%
SSP1-2.6 - 38.039% 34:134% 26:427% 36:+37%
SSP2-4.5 - 41339% 32.934% 27.929% 39:-38%
SSP3-7.0 2:421% 38:640% 40:042% _ 30:530% 36:236%
SSP5-8.5 - 41542% 20.734% 18:818% 37.937%

Table A.4. Noise reduction in GPP, calculated according to Eq. (4).
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