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Abstract. Subglacial bedrock properties are key to understanding and predicting the dynamics and future evolution of the 10 

Antarctic Ice Sheet. However, the ice sheet bed is largely inaccessible for direct sampling, and characterization of subglacial 

properties has so far relied on expert interpretation of airborne geophysical data. To reduce subjective choices in the joint 

analysis of data and related biases, we present a Self-Organizing Map (SOM), an unsupervised machine learning technique. 

The concept of SOMs is briefly introduced and we discuss data selection and their associated attributes. First, we analysis the 

correlation between attributes to provide a validation of an appropriate choice. Next, the SOM is trained on attributes derived 15 

from gravity, magnetics and ice-penetrating radar data for the Wilkes and Aurora Subglacial Basin region in East Antarctica.  

In contrast to earlier studies, our approach uses original line data as much as possible. These have a much higher resolution 

than the smooth gridded products, which were used in previous studies. Previous analysis indicated the presence of both 

crystalline basement and sedimentary basins in the example area, and our SOM shows a remarkable agreement, but suggests 

some points of difference. For example, some highlands appear as similar domains in previous interpretations, but have quite 20 

dissimilar physical settings, which is also expressed in our results, demonstrating the potential in applying SOM to map details 

of subglacial geology.  



 

2 
 

1 Introduction 

Subglacial bedrock properties, are one of the key components in an improved understanding of the Antarctic Ice Sheet (e.g.., 

Aitken et al. 2023, Bingham et al. 2012, Bell et al. 2008, Jordan et al. 2023, McCormack et al. 2022). Especially, the properties 25 

at the ice sheet bed (, the ice-rock interface), can have a significant impact on ice flow dynamics from roughness and 

consolidation of the bed, as well as hydro(geo)logical processes, impact friction and basal sliding processes, and therefore, ice 

flow velocities (Koellner et al., 2019). Especially the presence of layers of sediments and sedimentary rocks at the base of the 

ice areis of interest as these can affect basal friction, water flow and advect geothermal heat (e.g.., Koellner, et al. 2019, Zoet 

and Iverson, 2020, Li et al. 2022, Aitken et al. 2023). 30 

There are very few reflection seismic lines on the Antarctic continent suitable for resolving the upper crust (e.g. 

Anandakrishnan et al. 1998, Bayer et al. 2009, Leitchenkov et al. 2016), and so geological models are conventionally based 

on interpretation of bed topography (e.g., Taylor 1914, Elliot, 1975, Jordan et al. 2020), aeromagnetic or airborne gravity 

datasets (e.g., Ferraccioli et al. 2002, 2009, 2011, McLean et al. 2009, Aitken et al. 2014, Forsberg et al. 2019), or a combination 

of those (e.g., Li et al., 2023, Wu et al. 2023). Especially, aeromagnetic data are a well-suited geophysical dataset for inferring 35 

subglacial geology (Betts et al. 2024).  However, the interpretation of potential field data requires constraints to overcome the 

inherent ambiguities. Therefore, the combination with other geophysical or petrophysical data sets in an integrated manner is 

a common choice (e.g., Jordan et al. 2023, Lowe et al. 2024a, b). 

Airborne radar data are complementary and well-suited for imaging within the ice but are almost entirely reflected at the ice-

rock interface. Therefore, radar can provide information on the bed-ice interface; however, the physical properties of the 40 

bedrock itself are difficult to derive. Still, detailed morphology and inferred attributes like roughness can be indicative of some 

near-surface geological characteristics (e.g., Shepherd et al. 2006, Rippin et al., 2014; Jordan et al., 2010, Jordan et al. 2023). 

For example, an area with elevated roughness can be inferred to have a more erosion-resistant bed. However, to complicate 

the matter, the current and past flow speed of the ice sheets also impacts erosion and modifies the roughness (Jamieson et al., 

2014). Hence, a combination of these data sets might provide a mean to overcome some of the limitations.  45 

Recently, Aitken et al. (2023) presented a detailed classification of geological bed type in Antarctica by analyzing multiple 

geophysical data sets and models. Hereby, they compiled and synthesized available data and models into a classification map. 

While Aiken et al. (2023) presented continent-wide, detail classification of geological bed types, it is an interpretation and 

remains equivocal at some locations due to complex geology and/or limited data coverage. Another limitation is that it is a 

compilation based on earlier interpretations, which have applied a multitude of methods, partly relying on expert knowledge, 50 

to map subglacial property models (Aitken et al. 2023). 

Machine learning and statistical methods are nowadays popular approaches to provide models less biased by expert knowledge. 

Examples are estimates of geothermal heat flow (Lösing and Ebbing, 2021, Stål et al. 2021), the presence of sedimentary rocks 

(Li et al., 2022) or subglacial geology (MacGregor et al. 2024). Statistical methods like Stål et al. (2021) and MacGregor et al. 

(2024) identify boundaries from multiple geophysical and geological datasets and are suitable to define regional domains, but 55 

suffer from heterogeneous data coverage and different resolution of the underlying models. On a survey scale, that limits such 



 

3 
 

statistical analysis even more, as the number of datasets available is often limited. As an alternative, machine learning methods 

such as gradient boosting regression tree have especially become popular to map subglacial properties in both Greenland and 

Antarctica (e.g., Rezvanbehbahani et al. 2019, Lösing & Ebbing, 2021, Li et al. 2022, Colgan et al. 2023). As for the statistical 

methods, these studies are commonly on the scale of an entire continent as these approaches rely on training datasets of 60 

reasonable size, which is often a limiting factor, as data coverage and quality isare variable, and the subjective choice of which 

data type to consider as suitable.  

As another alternative, we employ here Self-Organizing Maps (SOMs; e.g., Kohonen, 1990, Klose 2006) to exploit local, 

geophysical information. on a survey scale. SOMs are an unsupervised machine learning approach, where that estimates 

similarities within different data types are estimated without assigning thesethem to predefined categories. In order to detect 65 

the similarities, a number of attributes is provided based in the initial datasets, that ideally chosen to enhance the feature of 

interest, here details in subglacial geology. The advantage is that no training dataset is needed, and in addition to a map for 

geological interpretation, the results allow to analyze, which attributes contribute to the final map and which might be omitted 

as they do not contribute to the final map. To present the possibilities of using SOMs, we chose parts of the Wilkes and Aurora 

Subglacial Basins in East Antarctica (Figure 1). The area is a key region for studying the role of tectonic boundary conditions 70 

on the behavior of the East Antarctic Ice Sheet (Aitken et al. 2014, McCormack et al. 2022), but is chosen here mainly for the 

quality and preprocessing of the survey data, which facilitate the application of the SOMs method. In the following, we will 

shortly summarize the concept of SOMs and introduce the data and attributeattributes used for our analysis. We discuss our 

results both in comparison to the classification by Aitken et al. (2023), and with respect to the choice of input data. 

 75 

Figure 1: Overview of study area in East Antarctica: A) Bed elevation from Bedmachine (Morlighem, 2020, 2022) with main 

subglacial and geographical features annotated. B) Geological bed types from the study by Aitken et al. (2023). The black lines 

indicate the flight paths of the surveys used in our study. 
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2 Self-Organizing Maps 80 

SOMs, unlike other unsupervised learning algorithms, do not attempt to categorize data; rather, they reduce the dimensionality 

of complex datasets. In our example, we will map the three datasets (bed elevation, gravity, and magnetics) and the related 

attributes into a 2D space (map) representation. In this space, similar data points are placed in proximity to each other, enabling 

the identification of clusters. In the following, we briefly explain the concept of SOMs. More details and examples for 

geological mapping can be found for example in Klose (2006) or Carneiro et al. (2012). Self-Organizing Maps (SOMs; e.g., 85 

Kohonen 1990) are a simple neural network consisting of a single layer. Each neuron represents a cell on the two-dimensional 

map with one weight for every dimension of the input data. Neuron j is described by its weights m j. The weights of a cell 

translate to a value for each data type (e.g., bed roughness or magnetic anomaly), they can therefore also be understood as 

coordinate in the multidimensional data space.  

For a given data point xi, a best-matching neuron with the weights mb is chosen in such a way that the Euclidean distance 90 

between xi and mb is minimized: 

 ‖𝒙𝒊 − 𝒎𝒃‖ = 𝐦𝐢𝐧
𝒋

{‖𝒙𝒊 − 𝒎𝒋‖}          (1) 

Besides the weights, a neuron also has a location on the self-organizing map, which is described by the coordinate r in a two-

dimensional space.  

The network is trained iteratively t times for a randomly chosen input data point xi. The best-matching neuron for this data 95 

point is determined, and then the weights of it and its neighbors are adjusted towards xi. The value of the adjustment is 

determined by a neighborhood function hbj(t), it will be 1 for the best-matching neuron and decay as the neuron is further away 

from the best matching neuron on the two-dimensional map. As a result of this neighborhood function, the map is trained so 

that neighboring cells on the map have similar weights and therefore will have similar data points mapping to the same cluster. 

Additionally, for convergence purposes a time-dependent learning rate α(t) is employed.  100 

The training of a cell mj(t) can be expressed as follows: 

𝑚𝑗(𝑡 + 1) = 𝑚𝑗(𝑡) + 𝛼(𝑡)ℎ𝑏𝑗(𝑡)[𝑥𝑖 − 𝑚𝑗(𝑡)]       (2) 

The choice of the neighborhood function can vary, and we utilize a Gaussian function: 

         (3) 

Here, rb and rj represent the locations of the best-matching neuron and the neuron to be trained on the self-organizing map, 105 

respectively. The parameter σ influences the smoothness of the computed map. 

The two-dimensional SOM does not represent a geographic map; it is an arbitrary lower-dimensional representation of the 

higher-dimensional training dataset. E.g. an area with crystalline rocks with high gravity, and magnetic anomaly values, as 

well as a rough bed, will appear close to similar areas, even though they are geographically far apart.  

  110 



 

5 
 

3 Data and analysis 

3.1 Datasets 

We use the NASA Operation Ice Bridge (OIB) dataset collected between 2009 and 2012 (Figure 2) and high-level data products 

derived from this dataset. The Radar Data were recorded using the Hi-Capability Radar Sounder (HiCARS) Version 1 and 

later on Version 2 instrument. (MacGregor et al. 2021). We used the derived bed elevation from the radargrams (Blankenship 115 

et al. 2012, 2017). This dataset, however, includes a number of short-distance data gaps even in areas where bed echo is clearly 

visible in the radargram. This results in larger gaps in derived attributes, as observed in Eisen et al. (2020). We applied an 

optimization algorithm that filled each gap with sufficiently strong returns automatically. It specifically maximized the 

amplitude and the vertical gradient of the amplitude along the chosen bed elevation while minimizing the length of the bed 

elevation path (Liebsch 2023). 120 

 

Figure 2: Data along the flight lines as input for the SOM analysis: A) Bed elevation from radar data (NASA Operation Ice Bridge), 

B) Magnetic anomaly (after Golynsky et al. 2018), C) Bouguer gravity anomaly (after Scheinert et al. 2016).  

Magnetic data are taken from the ADMAP-2 compilation (Golynsky et al., 2018) along the OIB flight lines. In the 

supplementary database to Golynsky et al. (2018), the processed line data from the individual surveys are available, which are 125 

the basis for the ADMAP-2 map. Compared to the original flight data, data are slightly smoothed, but suitable for our approach. 

For details on the magnetic processing, see Golynsky et al. (2006, 2018). 

Gravity data were as well collected as part of the OIB surveys. Unfortunately, the available gravity data have data gaps and 

only parts of the data is available in a pre-processed format (see coverage in MacGregor et al. 2021). Instead, we use the 

compilation from Scheinert et al. (2016). This 10-km-grid dataset has been sampled along the flight lines to treat it as survey 130 

data. Although, resampling cannot provide the full resolution of the survey data, we deem this adequate for our purpose, as the 

distance (height) between the point of observation (airplane) and the ice-bed interface is typically 3-5 km in the study area, 

leading to only minor loss of information when using the gridded gravity signal.  
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3.2 Attributes 

We used the above datasets to generate 30 attributes (Table 1) for the SOM analysis. Several attributes were derived from a 135 

single dataset (e.g., bed elevation). Not only does the signal amplitude (e.g., bed elevation) characterize the signal, but also the 

spectral characteristics and local variations (e.g., roughness). This choice is subjective; therefore, rather than limiting the 

number of attributes, we include various attributes even though some attributes presumably have very similar characteristics 

and including both may have little impact on our final result compared to including only one of them. Figure 3 shows some 

examples, while Figures A1-A3 show all attributes as normalized maps. 140 

  

Figure 3: Example of attributes used for the SOM. A) Basal roughness ε derived from spectral domain b) Spectral Power in a 5-15 

km wavelength bin from magnetic data and c) Shape index for gravity data. See text for more details and Figures A1-A3 for all 

individual attributes. 

Attributes like roughness from radar data or spectral power in the short-wavelength magnetic field provide information about 145 

the variability in subglacial properties, e.g., a crystalline basement-ice interface can be expected to have a stronger contrast 

and larger variability than an incoherent bedrock (e.g., sedimentary basin) -ice interface. Other attributes based on the gravity 

and magnetic data (e.g., curvature) are well suited to describe the changes between data points, while features like the shape 

index or the tilt derivative are also known to reflect the source characteristics. For some of these, Li (2015) provides a detailed 

analysis of the link between source geometry and observed field. 150 
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Table 1: List of all attributes used for the SOM and explained in the text. See examples in Figure 3. See Figure 4 for the correlation 

between the different attributes and Figure 5 shows the weights for the attributes.  

3.2.1 Radar/Bed elevation attributes   

In the following, we describe the 10 attributes based on bedrock elevation and radar data. For example, roughness can be 155 

computed in various ways from the bed elevation data and used the same four roughness attributes as Eisen et al. (2020). 
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Isostatically adjusted bed elevation tiso (Isoadjusted topo) 

As we are interested in local variations, we used the isostatically adjusted topography tiso. This attribute is the hypothetical 

topographic height of the landscape assuming that no ice is present. In a simplified form, disregarding dynamic effects, it can 

be estimated from the ice surface height s and bed elevation z using the concept of isostasy after Airy with: 160 

tiso = (s − z) *917/3200+ z.           (4) 

Spectral Centroid Bed (Centroid bed) 

The spectral centroid represents the mean of all frequencies in the spectrum f(n), weighted by their spectral power S(n). 

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =
∑ 𝑓(𝑛)𝑁−1

𝑛=0 ⋅𝑆(𝑛)

∑ 𝑆(𝑛)𝑁−1
𝑛=0

            (5) 

The Centroid indicates where the center of mass of the spectrum is located 165 

Spectral Roughness Attribute ξ(η bed) 

ξ is the integrated power spectral density of the bed elevation profile in a 500 m to 2000 m wavelength bin. Given with the 

following equation: 

ξ = ∫ 𝑆(𝑘)d
𝑘2

𝑘1
𝑘             (6) 

where S is the power spectral density and k the wavenumber in spectral domain. 170 

Spectral Roughness Attribute (η bed) 

To also capture horizontal changes in the spectral properties, Li et al. (2010) suggest to also to include the integrated power 

spectral density of the horizontal derivative of the bed elevation ξsl analogue to ξ. The spectral roughness attribute η is defined 

as: 

 η =
ξ

ξ𝑠𝑙
            (7) 175 

Variogram value (v bed) 

This roughness attribute is derived from a variogram derived from a window along the flight line. We use a bin covering 700 m 

to 800 m lag distance.  

Hurst coefficient (h bed) 

To complement the information on specific lag distances used in v, we also use the Hurst coefficient h. The Hurst 180 

exponent corresponds to the slope of the variogram in a log-log plot and can be described as: 

𝑣(Δ𝑥) = 𝑣(Δ𝑥0) (
Δ𝑥

Δ𝑥0
)

ℎ

           (8) 
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Moving averaged filtered bed elevation (Mean bed) 

To avoid using the bed elevations directly and reduce noise we used a 10 km-moving average filtered bed elevation 

Standard deviation in a 10 km moving window (Stdev bed) 185 

We compute the standard deviation of the bed elevation z in a 10 km moving window.  

σ𝑏𝑒𝑑 = √
1

𝑁
∑ (𝑧𝑖 − 𝑧)2𝑁

𝑛=1             (9) 

where N is the number of points in a window. And 𝑧 is the mean of bed elevation in the window 

Kurtosis in a 10 km moving window (Kurtosis bed) 

Analogue to the standard deviation the kurtosis w can be computed: 190 

𝑤 =
1

𝑁
∑ (

𝑧𝑖−𝑧̅

𝜎
)

4
𝑁
𝑛=1            (10) 

Bed Echo Tail Attribute (σ) 

We additionally derive an attribute from the shape of the bed echo. The direct interpretation of reflectivity can be challenging 

due to unknown attenuation within the ice (Matsuoka et al. 2011). Instead, we use the tail of the bed echo, which refers to the 

recorded signal after the initial backscattering from the bed has occurred. The tail originates from off-nadir backscattering. A 195 

significant advantage of this approach is that a radar ray scattered at the nadir and one scattered off-nadir encounter 

approximately the same conditions on their way back. Consequently, the shape of the bed echo tail can be described without 

relying on knowledge of attenuation. 

To keep the fitting procedure stable and computationally efficient across the varying conditions of the survey area we are 

assuming a simplistic Gaussian decay of the amplitude. This neglects losses due to beam characteristics and spherical 200 

spreading. The amplitude A as a function of incident angle 𝜑 is given as: 

𝐴(𝜑) = 𝐴0 ⋅ 𝑒𝑥𝑝 (
−𝑡𝑎𝑛2(𝜑)

2σ2
)          (11) 

The bed echo tail σ can then be computed as the weighted average of 𝑡𝑎𝑛(𝜑): 

σ =
∑ 𝐴𝑖

𝑁
𝑖=1 ⋅𝑡𝑎𝑛(ϕ𝑖)

∑ 𝐴𝑖
𝑁
𝑖=1

            (12) 

3.2.2 Magnetic data attributes 205 

For the magnetic data, 11 attributes were computed along the flight lines (see Figure A2). Since there are some data gaps, 

certain attributes are also computed in the spectral domain, using a window with a length of 40 km. These attributes are 

standard features used to describe the magnetic field. See Blakely et al. (1996) or Li et al. (2015) for more details. 
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Magnetic anomaly (Mag) 

This corresponds to the total field anomaly along the flight lines as explained above. 210 

Tilt Derivative (TDX mag) 

The TDX signal is the tilt derivative of the magnetic field (Salem et al. 2008) computed as  

TDX = arctan (HG/Mzz)          (13) 

where HG is the total horizontal gradient and Mzz, the vertical gradient 

Spectral Centroid (Centroid mag) 215 

Typically, magnetic fields are inspected in a power spectrum to identify the source depth. Here, we calculate spectral centroid 

of the power spectrum for a 40 km window using the following equation: 

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =
∑ 𝑓(𝑛)𝑆(𝑛)𝑁−1

𝑛=𝑜

∑ 𝑆(𝑛)𝑁−1
𝑛=𝑜

            (14) 

Hereby, the spectral centroid represents the mean of all frequencies f(n) in the spectrum, weighted by their spectral power S(n). 

Spectral power bin (Bin Power mag) 220 

The spectral power of the magnetic anomaly ςmag, limited to a bin of 5-15 km wavelength is calculated using the following 

equation:  

𝜍𝑚𝑎𝑔 = ∫ 𝑆𝑚𝑎𝑔(𝑘)𝑑𝑘
15 𝑘𝑚

5 𝑚
          (15) 

where Smag is the classical power spectrum calculated in the wavenumber domain k. The range of 5-15 km has been chosen to 

represent subglacial sources, hereby suppressing longer wavelengths due to regional sources and to suppress noise in the short-225 

wavelength range. The intention of this attribute is to represent the wavelength corresponding to the top bedrock and is shown 

as an example in Figure 3B. 

Moving average filtered magnetic anomaly (Mean mag) 

This was computed by removing a linear trend from the signal within a 40 km window around each point. This attribute is 

enhancing the short-wavelength content in the data. 230 

Standard deviation in moving window (Stdev mag) 

The attributes represent the variability of the signal in a 40 km window around each point. Details on the calculation are 

provided for bed/radar data above. 



 

11 
 

Kurtosis in a moving window 

Kurtosis is a measure to describe the sharpness of the magnetic anomaly. Details on the calculation. are provided for bed/radar 235 

data above.  

Curvature (Curvature mag) 

The curvature K is calculated along the flight line by  

𝐾 = −𝑀𝑥𝑧/2𝑀𝑧            (16) 

where Mxz is the gradient along the flight line (x-direction) of the vertical magnetic field component Mz. 240 

More details on curvature calculations can be found in Li et al. (2015). 

Vertical gradient (VG mag) 

This is the vertical derivative of the vertical magnetic field component: 

𝑉𝐺 = 𝑀𝑧𝑧 =
𝜕𝑀𝑧

𝜕𝑧
             (17) 

Analytical signal (AS mag) 245 

The analytical signal is calculated from the vertical gradient and the gradient along the flight line as following: 

𝐴𝑆 = √𝑀𝑥𝑧
2 + 𝑀𝑧𝑧

2             (18) 

Detrended Signal (Detrended mag) 

The magnetic total field anomaly was detrended by removing a linear fit of the signal for 40 km window around each data 

point. By removing such a linear trend, the attribute is more sensitive to local scale variations.  250 

 

3.2.3 Gravity data attributes 

For the gravity data, 9 attributes (see Figure A3) were computed from the grids, not along the flight lines.. As we have gridded 

data, the derivatives are calculated using an equivalent source approach with prisms extendingas source bodies. The prisms 

extend from the ice bed to a depth of 10 km. The densities of the prisms are estimated by inverting the gravity field of Scheinert 255 

et al. (2016). From these prisms, all spatial derivatives can be forward calculated following Nagy et al. (2000). For the curvature 

attributes, we are following Li et al. (2015), where the full mathematical background, tests with synthetic data and an evaluation 

of these attributes for airborne gravity gradients can be found in. See also Ebbing et al. (2018) for an example of curvature 

attributes from satellite gravity data over Antarctica.. 

Isostatic anomaly (Iso grv) 260 

To obtain the isostatic anomaly, the free air anomaly was first mass corrected using the ice and bed elevation model Bed- 
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Machine Antarctica v2 (Morlighem et al., 2020). To minimize isostatic effects, the undulation of the Moho boundary was 

estimated assuming Airy isostasy with an assumed density contrast of 530 kg/m3 and reference depth of 25 km. The resulting 

undulation was then forward modelled using prisms with the same density contrast and subtracted from the mass corrected 

anomaly. 265 

Vertical gradient (VG grv) 

The vertical gradient of the isostatic anomaly is calculated as 

𝑉𝐺 = 𝐺𝑧𝑧 =  
𝜕𝐼𝑠𝑜 𝑔𝑟𝑣

𝜕𝑧
           (19) 

Analytical signal (AS grv) 

In contrast to the magnetic data, we calculate here the 3D analytical signal using  270 

𝐴𝑆 = √𝐺𝑧𝑥
2 + 𝐺𝑦𝑧

2 + 𝐺𝑧𝑧
2            (20) 

where Gxz, Gyz and Gzz are the derivatives in the x-, y- and z-direction of the isostatic anomaly, respectively. 

Tilt derivative (TDX grv) 

See description for attribute Tilt Derivative of the magnetic field (TDX mag). 

Mean curvature (Kmean grv) 275 

When curvature is used to interpret gravity anomalies, we try to delineate geometric information of subsurface structures from 

an observed non-geometric quantity. The mean curvature is calculated as  

𝐾𝑚𝑒𝑎𝑛 =
𝐺𝑥𝑥+𝐺𝑦𝑦

2𝐺𝑧
            (21) 

where Gxx, Gyy are the second derivatives in the x-, y-direction. Gz is the isostatic anomaly. 

Gaussian Curvature (KGauss grv) 280 

The Gaussian curvature is the product of minimum and maximum curvatures and often exhibits rapid sign changes.  

𝐾𝐺𝑎𝑢𝑠𝑠 = −
𝐺𝑥𝑥𝐺𝑦𝑦−𝐺𝑥𝑦

2

𝐺𝑧
2             (22) 

Maximum Curvature (Kmax grv) 

From the two attributes before, we can calculate the maximum curvature: 

𝐾𝑚𝑎𝑥 =  𝐾𝑚𝑒𝑎𝑛 + √𝐾𝑚𝑒𝑎𝑛
2 − 𝐾𝐺𝑎𝑢𝑠𝑠

2           (23) 285 
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Minimum Curvature (Kmin grv) 

And similar as before, it follows the minimum curvature: 

𝐾𝑚𝑖𝑛 =  𝐾𝑚𝑒𝑎𝑛 − √𝐾𝑚𝑒𝑎𝑛
2 − 𝐾𝐺𝑎𝑢𝑠𝑠

2           (24) 

Shape index (SI grv) 

Maximum and minimum curvature can be combined as well to compute the shape index.  290 

𝑆𝐼 = (
2

𝜋
) arctan[(𝐾𝑚𝑎𝑥 + 𝐾𝑚𝑖𝑛)/(𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛)]         (25) 

The shape index is shown as an example for the gravity attributes in Figure 3c.   

3.3 Calculation of the Self-Organizing Map  

For the calculation of the SOMs, we use the existing Python package MiniSOM (Vettigli, 2018). Before training a SOM, all 

attributes are normalized using their standard deviation. Additionally, we removed all values deviating by more than ten 295 

standard deviations from the mean, as likely measurement errors. The threshold was arbitrarily chosen to exclude extreme 

outliers conservatively. All remaining points are part of the training data set. A unified distance matrix is computed that 

contains the distance to neighboring neurons for each neuron. 

The resulting SOM has a shape of 30 by 30 and was trained using 15,000 iterations and a learning rate of 10−4. σ was set to 5 

to create soft weight maps and avoid overfitting. Naturally, there are numerous possibilities and parameter sets that yield 300 

acceptable results. For visual comparison only, the final map was divided into 5 clusters, where the main attributes show 

similar values. Boundaries were chosen in a way that neighboring cells are distinct from each other. 

4 Results and discussion 

4.1 Correlation between attributes  

We first examined correlations between individual attributes (Figure 4). Particularly high correlations or anticorrelations 305 

indicate how different datasets are affecting each other, and which ones can be used jointly in an interpretation. The correlation 

matrix between the attributes shows that, in general, the correlation is strongest between attributes derived from the same data 

type (radar, magnetic, or gravity), as expected. Some of the attributes do not follow this general observation. E.g., the Tilt-

Derivative of the gravity (TDX grv) correlates stronger with radar roughness than with any other gravity-derived attribute. 

Roughness reflects, first of all, variations in the topography itself. Such a varying topography will cause variations in the 310 

gravity signal and, to a minor portion, magnetic signal. This is evident in the correlations between roughness and spectral 

attributes in magnetics, as well as with the gravity signal, which may indicate that a smooth bed-ice transition tends to be less 

dense and has lower susceptibility.   
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Some of the attributes show almost no correlation with other attributes, such as Tilt-Derivative of the magnetic field 

(TDX_mag) or Gaussian Curvature of the gravity field (KGauss). An absence of correlation might indicate that these attributes 315 

are sensitive to different source structures.  

Another example is the correlation of the Total Magnetic Field anomaly (Mag) and its detrended version (Detrended mag). 

While the first shows some degree of correlation to the gravity -derived attributes, the second does not. That corresponds to 

the different sensitivity of the gravity and magnetic field to the sources, but might also indicate that we miss some of the 

gravity signal by using a gridded data set as input and not measurements along the flight lines.  320 

Other attributes, such as the roughness attributes (ζ bed, η bed) show a correlation with both gravity and magnetic attributes, 

for example the spectral centroid (Centroid mag) or the shape index (SI _grv). Similarly, the power of the 5 to 15 km bin (Bin 

Power mag) has a correlation with the basal roughness attributes. This could indicate that sedimentary basins lack short-

wavelength signals as they tend to have smoother surfaces. Similarly, correlations between the gravity attributes could support 

the idea that dense rocks tend to be more erosion-resistant, leading to rougher landscapes. 325 

 

Figure 4: Correlation matrix for all attributes listed in Table 1. 
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4.2 Weights for individual attributes 

An important parameter to consider are the weights for the individual attributes in(see Figure 5) in contributing to the chosen 330 

SOM (Figure 6). The SOM is not a unique solution as it not only depends on the attributes, but also the initialization and 

chosen thresholds. Hence, even with the same choice of parameters, the outcome may vary and any SOM mist be considered 

as a possible solution only. If weights are near zero across the whole map for a specific attribute, that indicates that the attribute 

has no significant impact on the SOM and could be omitted from the analysis without significant loss of information. The 

weights map shows that some of the attributes, e.g. SI _Grav, strongly influence the results, while others, e.g. Kurtosis mag 335 

and bed, have a minor impact. That corresponds to the correlation with other attributes (Figure 4). Those attributes not 

correlating with other attributes have in general, less impact on the final SOMs, while those showing a larger degree of 

correlation are deemed more important. That must be taken into consideration when discussing the dependency of the final 

SOM on the choice of attributes for analysis. 

 340 

Figure 5: Weights for every attribute and cell (30 by 30) of the SOM. All attributes were rescaled using the standard deviation, 

before the training started. See Figures 3 and A1-A3 for a geographical representation of the individual attributes. 
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4.3 Subglacial clusters from SOMs 

Next, we analyze the SOMs in more detail by discussing apparent clusters in the map. For a first comparison between our 345 

SOM and the bed type classification by Aitken et al. (2023), we map their classification on our 2D representation (Figure 6).  

 
Figure 6: Visualization of the SOM and class distribution. Every data point (measurement along a flight line) was assigned a class 

according to Aitken et al. (2023) and subsequently mapped onto the SOM. Each cell represents a neuron in the SOM and contains 

the data points mapped to it. The pie charts within each cell indicate the proportions of different classes present. The letters A–E 350 
highlight regions of the SOM with similar properties, they are manually defined to aid description and interpretation. 

The crystalline-basement class indicates where the bed is interpreted to consist of igneous or metamorphic rocks (including 

high-grade metasedimentary rocks), with either no or only a thin veneer of sedimentary cover. Typically, these regions possess 

the characteristics of high elevation and high gravity with high spatial variability in topography, gravity, and magnetic data. 

Type 1 basin class represents regions where sedimentary basins are preserved in relatively unmodified basins, with typical 355 

characteristics of low elevation and low gravity, and low spatial variability in gravity and magnetic data. Along-track roughness 



 

17 
 

tends to be low. The intra-basin volcanics class includes areas where volcanic rocks are interpreted to be emplaced within a 

Type 1 basin sequence. Type 2 basin class, in turn, represents areas where sedimentary rocks are known or inferred but the 

original depositional basin is not preserved. These rocks tend to predate the formation of the present landscape, are often 

uplifted to high elevations, may be intruded by younger igneous rocks, may be heavily eroded and may have geophysical 360 

characteristics more similar to crystalline basement than Type 1 basins. For mixed classes the geophysical characteristics are 

not providing clear evidence for an assignment to a single class (Aitken et al. 2023). We expect our SOM to contribute the 

most to an improved understanding of the mixed or inconclusive classes. For comparison, we sample for each data point of 

our SOM its class according to Aitken et al. (2023) shown in Figure 6. The datapoint can then be mapped into the two 

dimensions of the SOM. The pie chart for each cell f our map represents the different classes mapped to it, e.g. association 365 

with Type 1 basins and Crystalline Basement is dominant on the left and right side, respectively, while most cells sample 

different domains and can be less clearly associated with a certain class. As the SOM is mapping data firstly in a 2D Domain 

based on attribute similarity and irrespective of the geographic location (see inset in Figure 7), the domains A to E seen in 

Figure 6 and Figure 7 are only to guide visual comparison and are not based on a statistical evaluation of the results.   

 370 

Type 1 basins are predominantly located within cluster C aligning with the expected characteristics of smooth beds, low 

gravity, and minimal magnetic signals. In contrast, crystalline rocks are predominantly found in the cluster E. This observation 

supports the assumption that strong magnetic anomalies are typically generated by crystalline rocks. Furthermore, crystalline 

rocks are also seen in the left side of cluster B. This sub-cluster exhibits high roughness and, intense magnetic and gravity 

signals, as expected for crystalline rocks. Type 2 basins, however, do not show a distinct concentration, but are visible across 375 

various regions of the map. This dispersion raises questions about the feasibility of coherently inferring this class solely from 

the attribute compilation used here or from the robustness of defining this class over such a large region. Possibly, the Type 2 

basins, in this region mainly sedimentary rocks on highlands, have a more heterogeneous build-up or reflect different sub-

types compared to the interpretation by Aitken et al. (2023). For the mixed class, no clear domain can be found on the SOM, 

conforming to their complex nature. 380 
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Figure 7: Representation of the clusters from the SOM. A) 2D Colormap for the SOM. B) Unified distance matrix (30 by 30 cells) 

for the presented SOM. C) Geographical distribution of the SOM. The orange box indicates the zoom-in area in Figure 8. 

In Figure 7 and 8, we map the SOM along the individual flight lines for geographical representation, and in Figure 9 along a 

profile.  385 

Comparison with the bed type classification of Aitken et al. (2023) shows a general agreement (Figure 8). Particularly, the 

delineation of various highlands corresponds closely between the two classifications. However, for some structures, as Knox 

Highlands (classified as Crystalline) and Highlands A (classified as Type 2 Basin), there are differences in the results. This is 

coherent with the observation that the Type 2 Basin class seems to be mapped for quite dissimilar physical settings. 

Additionally, most basins, including the Southern Wilkes Basin, Central Aurora Basin, and Aurora South Basin, exhibit strong 390 

consistency with the classification presented by Aitken et al. (2023). Furthermore, the sedimentary basin likelihood map as 

presented by Li et al. (2022) consistently indicates thick sedimentary layers in areas that were mapped within class C. The 

most significant disagreement between the SOM and the classification by Aitken et al. (2023) is shown for the Sabrina Basin 

and Aurora North Basin. In these areas, the fine-scale variations within Clusters A, D, and E of the mapped SOM appear to 
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contradict the homogeneous classification by Aitken et al. (2023), suggesting that the SOM may be able to capture local 395 

variations, which are best observed when compared along an individual flight line (Figure 9).  

 

Figure 8: Zoom in for the Wilkes land area for comparison of our results and Aitken et al. (2023): (A) Geographical distribution of 

the SOM., , (B) Geological bed types from the study by Aitken et al. (2023). See Figure 7 for location and orange line indicates profile 

shown in Figure 9. 400 

Along a flight line (Figure 9) the interpretation by Aitken et al. (2023) does not clearly follow the boundaries visible in the 

data and SOM. The radar data show that there are sections of the basin where no return from the bed was detected (e.g. distance 

~100 km), while it appears as a very smooth reflector in places where it was detected (~140 km). Additionally, the magnetic 

signal exhibits a predominantly long wavelength above the basin and shows no obvious correlation with the bed. These 

observations indicate the presence of non-magnetic rocks near the bed. The SOM effectively captures the abrupt change at the 405 

rise of Aurora North Basin in the north of the profile (Figure 9). For clusters B and E the correlation between the magnetic 

signal and bed elevation becomes evident. This suggests the presence of magnetic rocks near the surface of Aurora North 

Basin, whereas it is not the case in the Aurora Basin. This illustrates how the SOM can successfully integrate information from 

various data types into a single parameter clearly highlighting the most probable geological boundaries. It therefore could be 

a useful tool for future mapping attempts and could also help adjusting boundaries while leveraging all available data types. 410 
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Figure 9: A combined plot of magnetics, gravity and radar data along a profile. Beneath the plots, the SOM is shown along with the 

classification by Aitken et al., 2023. Color coding for SOMS is according to Figure 7A. 

4.4 Pitfalls and possibilities of SOMs 415 

The comparison to the expert judgment approach by Aitken et al. (2023) by compiling available data sources, shows that SOMs 

can potentially provide an added level of detail or aid in detecting possible errors or inconsistencies as it should be based on 

measured data as much as possible. Nevertheless, the application of SOM has certain limitations. For example, the result is 

based on the selection of attributes. Some attributes show generally low correlation with other attributes (Figure 4) and might 

be omitted (e.g., detrended magnetic field). For others, like the isostatic gravity field and its vertical gradient seems to add 420 

little additional information and only one may be used. Instead, additional attributes derived either from the data used here or 

other independent datasets (e.g., roughness derived from ice surface elevation or ice flow velocity) could be added.  

As such data sets often have quite dissimilar coverage, we limit ourselves here to use data sets with a similar coverage and 

sampling. The number of attributes is intended to avoid a bias towards a single data set. However, we did not test how the 

results would vary using a different number or only a selection of the attributes, mainly due to computational reasons, but also 425 

due to the different characteristics of the input data set (flight lines and resampled gridded products).  
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Using a consistent data set, e.g. data based on the same flight campaign, is preferred to improve interpretation at survey scale, 

with the trade-off that along-line variations may be underestimated if line orientations are not located perpendicular to the 

main strike direction.  

But this trade-off appears to be preferential to the use of gridded data products, where interpolation and the lower resolution 430 

of grids compared to line products, affect the quality of the resulting products. Still, the insensitivity to spatial anisotropy of 

gridded data products might outweigh the gains in data resolution. Furthermore, additional attributes that could be derived 

from gridded datasets that potentially enhance the resulting SOMs. Certainly, exploring the choice of input datasets by 

assessing the importance of different attributes., possibly by jack-knifing, is worth exploring in more detail.   

Another point of caution, is that there is little control over the meaning of the output clusters of the SOMs. That implies that 435 

an interpretation is needed to assign meaning to each cluster. Here, as well thatfor other machine learning methods, a training 

or validation data set might increase the confidence in the results. Furthermore, not all features mapped by the SOMs might 

be a geological signal, but some, especially local features, might reflect data quality (measurement errors or noise). To generate 

a well-informed classification, multiple, quality-controlled, data types should be combined and a careful assessment of the 

data products is required.  440 

Despite these shortcomings, SOMs can aid to define (geological) units with distinct properties and to help interpreters to make 

data-optimized classifications. Especially, when zooming in on the geology under the ice and the spatial scale that seems to be 

most important for understanding the coupling of ice-sheets and the underlying solid earth structure (e.g. McCormack et al. 

2022), the SOMs can provide a second level of detail. that is difficult to achieve from direct interpretation. This can be 

potentially combined with statistical analysis of bedrock properties from petrophysical samples to predict the variations of 445 

thermal parameters on a local scale (e.g., Freienstein et al., 2025). As always, careful evaluation of the final results is still a 

crucial point in estimating subglacial properties as the SOMs do not provide immediately a new geological map, but a tool for 

classification and interpretation. 

5 Conclusions  

We present a novel mapping of subglacial geology by using Self-Organizing Maps applied to radar, gravity and magnetic data 450 

sets along flight lines from the NASA Operation Ice Bridge (OIB) dataset in East Antarctica. The attributes calculated from 

the data sets provide a suite of products useful for interpretation, however, challenging for direct manual interpretation. Here, 

the SOM helps to group the complex features into a simple map. Comparison to the classification of Aitken et al. (2023) 

generally shows good agreement for the major classes in regions of low complexity, while also indicating variations within 

some of the classes. In such areas, the SOMs can help to refine interpretations and unveil previously unknown small-scale 455 

structures. To further enhance the clustering capabilities of the SOM, an in-depth exploration of hyperparameters and choice 

of attributes could lead to improved results.  

In general, data selection is a key to avoid a bias by inconsistent data sets and for example, the recently released geophysical 
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data catalogue from the British Antarctic Survey includes multiple surveys with magnetic, gravity, and radar data (Frémand et 

al., 2022), presenting an opportunity to further explore the possibilities of SOMs for flight line data. 460 

We see two possible direction as next steps. For one the classification of different bed types could also serve as constraint, a 

priori information for (joint) inversion, that could extend the analysis from a moremere description of subglacial properties to 

a physical earth model, needed to describe the full coupling between the Solid Earth and the overlying ice-sheets. The other 

interesting aspect is to analysis the sensitivity of ice-sheet modelling to the complexity of subglacial geology to identify which 

parameters and scales are most critical to predict the future evolution of the Polar ice-sheets. 465 

 

Appendices: As an appendix, we present all 30 attributes in a normalized form as used as input calculating the SOM discussed 

and presented in Figures 5-9. 
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Figure A1: Normalized attributes based on topography and radar data. See text and Table 1 for more details. 470 
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Figure A2:. Normalized attributes based on magnetic data. See text and Table 1 for more details. 
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Figure A3. Normalized attributes based on gravity data. See text and Table 1 for more details. 
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