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Abstract. Since the earliest days of soil geography, it has been clear that soils occur in more-or-less clearly mappable bodies,
within which soil forming factors have been fairly homogeneous or in a regular pattern, and between which there is usually
a clear transition in one or more factors. This has been the basis for polygon-based soil mapping: make a concept map from
landscape elements leading to a mental model of the landscape, confirm or modify it with strategically-placed observations, find
the transitions, delineate the soil bodics, and characterise them. By contrast, common methods of Digital Soil Mapping (DSM)
predict per pixel over a regular grid, {from training obscrvations at pedon support. Accuracy asscssment of DSM products has
been at this “point” support, ignoring the existence of spatial soil bodies and the relations between pixels. Different approaches
to DSM - datascts, model forms, analyst choices — result in maps with distinctly different patterns of predicted soil properties
or types. Techniques [rom landscape ecology have been used 1o characterize spatial patterns of DSM products. The question
remains as to how well these products reproduce the actual soil patterns at a given cartographic scale and categorical level
ol dctail. Our approach is to let DSM maps “spcak for themsclves™ to reveal spatial patterns. We do this by grouping pixels,
cither (1) by aggregation based on property homogeneity using the supercells algorithm, or (2) by segmentation based
on within-block property pattern similarity, using the GeoPAT suitc of computer programs. Segments can be hierarchically
clustered into groups ol presumed soil landscape elements. Supercells and segments can be compared to existing soil maps,
other land resource maps, and expert judgement. To the extent that presumed soilscape patterns are reproduced, this is evidence
that DSM has identificd the soil landscape at the chosen scale. Since map users perceive patterns, and most land usc decisions
are for areas rather than pixels, we propose that DSM products be evaluated by their patierns, as well as by pointwise evaluation

statistics.



%

20

25

30

35

40

45

50

Lol 4 &;MJ/)§\17> beve loem Joﬁ“a:

a>
https://doi.org/10.5194/egusphere-2025-1896 ﬂ«? ,'3 LM 14 7 4&
Preprint. Discussion started: 20 May 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. ere

Msvéc wove fo The pond
1 Introduction ,-/ /ré\’)ﬁ/g%z )a 6)‘,“/6( Af{ﬂ/)w

Digital Soil Mappigflg (DSM) is a general term for the creatipn of digital maps of soil classes or propertics by fitting gcostatistical

or machine-learning models between observations of soil tlasses or properties at known locations and a set of environmental

covariates representing soil-forming factors, Smce its formal mtroductnon by McBratney et al. (2003) it has been extensively
applied worldwide at a wide range of scales and target classes and ploperues see for examples reviews by Mulder et al. (2023),
Arrouays et al. (2020) and Nenkam et al. (2024).

DSM products are routincly and (almost) cxclusively cvaluated by point-bascd cvaluatlon stamllcs and these arc almost
never based on _probablllly oreven leplesentan\:é ;bselvallons (Piikki et al., 2021). Pomt based evaluallon ignores the existence
of soil bodies that form a pattern over the landscape. Maps ‘with distinctly different patterns of predicted soil properties or
types can result from different approaches to DSM, see for example Rossiter et al. (2022) and Poggio et al. (2010). We propose
to also evaluate DSM products by their patterns, as revealed by segmentation of the gridded maps into areas with more or

less homogeneous internal composition of soil properties. As Vaysse and Lagacherie (2017) aptly state, “DSM products are

simplified representations of more complex and partially grlﬁnov:\rl atsle‘r:l:i of _foﬂ' variations” (emphasis added).

Soil geographers conceive of the soilscape as a continuum in 3D, with the Vertical dimension (soil profile) defining a pedoﬂ
(Soil Survey Staff, 1999, p. 11). The pedon has a horizontal dimension sufficient to show the local variability of horizons and
properties, e.g., cyclic or irregular horizons. Pedons are connected laterally into relatively homogeneous polypedons (Johnson,
1963), within which the soil-forming factors and hence the pedons are within some defined limits. The transition zones between

polypedons are marked as borders between natural soil bodies (according to those limits). Figure 1 shows a typical conceptual

modcl from a detailed soil survey in the USA, design scale 1:12 000 (minimum mappable arca 0.576 ha). The transitions

P

between polypedons in this scene are due to parent material, topography, and hydrology. "ove &(&( 2"

Together, these make up the soilscape, i.e., distribution of polypedons on the landscape. These form a pattern. The classic
example is the catena of Milne: “a sequence of distinct but pedogenetically-related soils that are consistently located on specific
facets down a slope, giving recurrent topographically associated soil pattern” (Borden et al., 2020), We would hope that a map
of a catena would clearly show these clements and their transitions. ] QL.).@M o(lqﬂ.,(?"" *

In traditional expert-based soil class mapping (Hudson, 1992) the landscape is segmented according to the mapper’s con-
ceptual model of soil-landscape relations, and by examination of extigxal c {Aes notabqu re[llef \;.gelatlon and land use, and

24
by augermg or full profile examination. DSM replaces the c.onccﬁ’ua] model with wrrclallve relations with digital coverages

"'meam to represent, at least in part, one or more of the seven predictive SCORPAN factors of McBratney et al(2003). There-

fore, there is no longer Ecxpllcn rclation with the soil landscape, but it :19 hoped that the lmpllcn corrclative relations can find
c

these, €—— 444+« A\f Qmﬂaﬁéms 5, }M: «h nb’ cenn

The concept of areas w1th distinct patterns of contrasting soils goes| |back to the * soﬂscape fabrics™ from the soilscape
analysis of Hole (1978) and the “soil combinations” of Fridland (1974). Al increasingly detailed scales and with increasingly
fine distinctions in the definition of soil bodies, increasingly finer patterns (are revealed. Conversely, at coarser scales, patterns

are based on less precise definitions of distinct soil bodies. As Fridland puls it, “Soil combinations consist of elementary soil
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Figure 1. Conceptual block diagram, Otsego County NY (USA)

Source: https://www.nres.usda.gov/publications/NY-2010-09-28- 14.png

areas which are genetically linked to various degrees and which produce a definite pattern in the soil mantle .. . Multiple spatial

repelition ol a certain soil combination or several soil combinations alternating in a definite order creates various forms of L

55 structures of the soil mantle.” An example of a fine-scale soil paltem is the pit and mound topography found on a hillslope in
“ n
southwest Poland by Pawlik ct al. (2024). /1\,(, (of(h}ﬁ»; hp eV 2t /0( .‘é}'/ gvhm Vﬁ)@-yw\, anWLL*
In traditional soil mapping, these areas with sufficiently i‘lomogeneous soils or patterns of them at a given cartographic

scale are the units that are delineated on the map. However, as Fridland explains: “The structure of the soil mantle and soil

combinations are in their essence not cartographic but genetic-geographic concepts, even though they constitute a basis for
" e S———

60 claborating cartographic units.” This implies that the resulting soil properties distributed vertically in the profile, as products
ms for map units. Therefore, if at cach pixcl DSM accurately predicts a sufficiently rich sct of ”ﬁ’
properties over the soil profile, these should be grouped on the DSM map as recognisable cartographic units. \1 A /(

Within a mappable soilscape segment, there will of course be variability, ranging from some smaller deviations from a
central concept (typical soilscape position and pedon), to a mixture of contrasting pedons, in National Resource Conservation ﬂq:y\ \(/

65 )\ Service (NRCS) soil survey terms a comple.\'.‘iince DSM predicts per pixel, it may be possible to resolve these complexes L)é

into their components at the pixel scale, if tha; is fine enough to match the pattern within the complex.ll. I_f_gis-is the case, our| %

‘[;:val_uag_ion of the DSM product should identify this.‘i
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Digital Soil Mapping (DSM) predicts at each pixel of a regular, mere-ortessfinegrid, either as the centre point or a block 17[}‘\4.,

average of the area covered by the pixel. DSM typically predicts multiple soil properties at a set of standard depth slices.

70  Although some DSM methods use covariates in areas around a pixel, they do not enforce any relation between adjacent pixels. / / / )k_
These relations are particularly important in soil hydrology models. Thus, the question is to what degree the pixels of DSM .
products at various resolutions can be aggregated into groups to realistically represent a soil landscape, whether the soilscape
scgment is relatively homogencous in its propertics or represents a complex. Intuitively, if the soil forming factors responsible
for a polypedon are also spatially associated in the covariates used in DSM, the relations between pixels should occur as a %‘

75 byproduct of per—pi)-(;l DSM. More abrupt transitions in the covariates should be reflected in the predictions. The pattern of the ar BAk
pixels should therefore represent the soil landscape. The question is, does the DSM product show these relations? X; LS

One way to assess the success of DSM in reproducing a soil landscape is to aggregate the individual predictions from pixels YYD
into more or Icss homogencous supercells, following methods used in image processing, where these arc called superpixels
/ (Nowosad and Stepinski, 2022). This can be based on single properties and depth layers, or. more usefully, on the multivariate
80 collection of DSM-predicted properties at a pixel. We explain the aggregation algorithm in §2.1.

' At coarser scales, homogeneity of properties within some larger area may not be possible or even desirable. This has led o

the concept of landscape segments, defined by the co-occurrence pattern, referred to as a signature, of a group of contrasting

pixcls of a class map, within a pre-defined size of the segment. Segmentation was developed by geographers to find similar

land cover patterns for ecoregionalization (Nowosad and Stepinski, 2018). In that caisz, /the pixels represent land cover classes. ,*.

MU

o ) _4&} m Waq !l
85 The aim is not homogeneity of land cover, rather, homogeneity of the land cover paitern within SOIY analyst-defined area. The |, t,
relation 1o a soil cover palttern is obvious, and corresponds well to concepts such as the cat_cu(a or soil associations. Depending 2’“ 2
— - ; Ii 1

on the scale of the analysis and the inherent scale of the soil landscape, we may expect to see homogeneity at the level of

Tfesvare

consociation (e.g?.éroﬁ%ries), or a heterogencous pattern of contrasting soils at the level of soil association, or a fine-scale
pattern of contrasting soils, the complex (Soil Science Division Staff, 2017).

QF i Segmentation requires that DSM maps of continuous predictions be classified, i.e., sliced according to analyst-defined class

{ limits. The classes can correspond to meaningful classes for soil management, or can be based on laboratory precision. They

/ can be wider (more general) or narrower, roughly corresponding to cartographic detail. Clearly, the classification can greatly

influence segmentation. This is also the case when segmenting land cover classes. We explain the segmentation algorithm in

( | 8§22

. 95 ":'“,Oncc a scgmentation has been performed, the segments can be clustered according to their similarity of internal pattern, i.c.,
' " the signature of the segment. We explain the clustering algorithm in §2.3.

o Thus, the objective of this study is present methods to create presumed soil landscape units from DSM products, by both

aggregation and segmentation, and then to cluster the segments to identify similar soil landscape units within the map. We first

describe the methods and then apply them to three case studies corresporyding to different DSM projects at various resolutions

100 and cxtents. Finally, we discuss how these methods can be used in routine evaluation of DSM products.
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2 Methods

&

We contrast two approaches to Ictting the map “speak for itsclf””: aggregation bascd on homogencity of propertics (§2.1), and

segmentation based on patterns of classified propertics within segments (§2.2).

2.1 Aggregation S W @@ﬂ] WVM W%’é

Aggregnation secks to find contiguous groups of pixels with relatively homogeneous property values, either single or multivari-

atc. This is implemented by the supercells R package (Nowosad, 2025), which uscs the Simple Lincar Iterative Clustering
(SLIC) image-processing algorithm (Nowosad and Stepinski. 2022), with the improvement that an appropriate data distance
mcasure and function for cluster averaging can be defined. For multivariate aggregation there must be a distance measure

defined in in multivariate space. A common choice, used here, is the Jensen-Shannon divergence, (Lin, 1991). which quan-

tilics the distance between two histograms by the deviation between the Shannon entropy of the combination of two uni- or
multivariate histograms and the mean of their individual entropies.

The supercells function is controlled by several parameters that have a large effect on the results. First and most impor-
tant is compactness, which trades off internal homogeneity of the supercells with their geometric compactness. The absolute
compactness value depends on the range of input pixcl values and the selected distance measure. A large value prioritizes spatial
distances between pixels and superpixel centres (more gcometric compactness), whercas a smaller value prioritizes distances
in feature space (inore property homogeneity). Second is the approximate number of supercells, k. This should correspond to
the number of landscape segments expected in the study area, at the design scale of the corresponding polygon map. Third is

the minimum supcrcell size, minarea. This should correspond to a minimum mappable arca or a minimum size nceded for an

application, e.g., land management or stratified sampling.
The quality of the aggregation can be evaluated by the standard deviation or coefficicnt of variability of each property in the

supercell. As supercells decrease in size, these measures will necessarily have smaller values.
2.2 Segmentation e ,414 2 /63 Lomv M A@&%ﬁ\q

Segmentation seeks to find contiguous groups of blocks of grid cells with similar internal patterns of pixels, which represent
soil classes or properties, these either univariate or multivariate. Patterns are computed within blocks of at least 10 x 10 pixels,
as specified by the analyst. Unlike supercells, segments must have rectilinear borders.

Segmentation proceeds as follows. The first step is to select classified soil properties and their depth slices to represent
soil individuals at cach pixcl. The sccond step is to find the co-occurrence pattern of the pixels within pre-defined grid cells.
The third step is to aggregate grid cells with similar internal spatial patterns into larger units, sufficiently distinct from neigh-
bouring units in terms of their internal spatial patterns. Finally, the result is evaluated by its segmentation statistics, namely,
inhomogeneity within the segment and isolation of the segment [rom its neighbours. The segmentation can be inspected by
expert judgement, perhaps comparing with conventional soil maps, to evaluate how well it represents the soil landscape at the

sclected cartographic scale.
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Figure 3.13: Workflow path for segmentation

Figure 2. GeoPAT scgmentation workflow. Source: (Netzel ct al., 2018)

For segmentation, we use the GeoPAT suite of standalone Unix programs (Jasiewicz et al., 2015). These are invoked in
sequence, via the R system function, to obtain a segmentation and an evaluation of its quality. GeoPAT has been used
successfully to segment categorical rasters such as land cover maps (Jasiewicz et al., 2018) and for global ecoregionalization
based on multiple environmental factors (Nowosad and Stepinski, 2018). Figure (2) shows the segmentation workflow using
GeoPAT.

Several parameters control the signature computation of the gpat_gridhis program. Two related parameters are size
and motifel. The first is the size of the output grid cell of the segmented map. This must be at least 10 x 10 pixels of
the source DSM. Thus, the segmentation is of similar patterns within an output grid cell and its neighbours. This dictates the
largest equivalent map scale at which soilscape patterns (groups of output grid cells) can be discerned. The second is the “Motif
Element”, referred to as the motifel, defined as the size of the window within which the pattern will be computed. This must be
at least as large as the size, but could be larger to account for edge effects in the pattern. Also important are two thresholds
for joining grid cells into segments: 1threshold to control the sizes of segments and uthreshold to prevent the growth
of inhomogeneous segments.

Another important option for gpat_gridhis is the signature type within each grid cell, default cooc, “Spatial co-
occurrence of categorics™. This characterizes signatures with a “colour” co-occurrence histogram, a variant of the Gray-Level,

Co-occurrence Matrix (GLCM) used to characterise texture in greyscale images (Haralick et al., 1973; Hall-Beyer, 2017). In
N
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GceoPAT, discrete greyscale numbers, as in GLCM, are replaced by cell classes. A separation of one pixel is used to calculate

the co-occurrence histogram, which then represents the spatial pattern within a grid cell. Related to this is the normalization
type, default pd f “probability distribution function”, which is recommended for the cooc signature type. This harmonizes the
signatures from different motifels.

Grid creation requires the selection of grid sizes. To evaluate DSM products we select these based on their correspondence
to nominal map scales, using the Vink definition of a minimum legible delincation (MLD), i.c., the smallest arca that can be
1556 displayed on a printed map. of 0.25 cm? at map scale. i.e., a grid cell side of 0.5 cm (Vink, 1963). To determine the Minimum
Legible Area (MLA) and corresponding side on the ground, these are multiplied by the scale number (denominator of the
scale ratio). For example, at 1:200 000 the MLA is 100 ha, with a side of 1 km. Signature computation requires at least 100
pixels from the DSM map in order to produce a reliable signature, i.e., the minimum edge of the segmentation grid (the “shift”
parameter) must be 10 times the original DSM resolution. For example, a 25 x 25 m DSM product can only be segmented
160  at 250 x 250 m or coarser (6.25 ha), corresponding to the MLA of a 1:50 000 scale map. To match a 1:200 000 map (MLA
100 ha), the 25 x 25 m pixel must be aggregated 40 times per side, i.e., | km x | km.

"The segmentation phase in GeoPAT is implemented by the gpat_segment program. This groups grid cells based on their
motifel signatures computed by goat_gridhis. Scgments have a “brick” topology, in which square grid cells are arranged
in alternating laycrs with cach layer is shifted by onc-half the size of the motifel. Thus, the analysed arca (i.c., the MLA) is
165 four times the motifel size.

Segment homogeneity is characterised by their normalised Shannon entropy /1, defined as:

H Zp! logu_.p! (l)

i=1

where p, is the proportion of the segment in class ¢, n. is the number of possible classes, and these are summed over all
1, pixels in the grid cell. Using the logarithm to base n, normalizes the entropy to the unit range regardless of the number
170 of possible classcs, so that 0 indicates completc homogencity, i.c., onc class for the entirc scgment. By contrast, 1 indicates
maximum heterogeneity, i.e., all classes are equally represented in the segment. This only depends on class composition, not

on pattern, even though the latter is the basis for segmentation.
Scgmentation quality is measured with the gpat_segquality program. This produces two quality measures: (1) the
inhomogeneity within each segment, and (2) the isolation of each segment from its neighbours. Inhomogeneity measures the
175 degree of mutual dissimilarity between a segment’s motifels, on a [0...1] scale, where smaller values arc better, i.c., morce
homogeneous, less internally diverse. Isolation is the average dissimilarity between a segment and its immediate neighbours.
ona [0...1] scale, where larger values are better, i.e., more isolated. These measures depend on the pattern, not just the class

composition, ol segments.
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Figure 3. GeoPAT clustering workflow. Source: (Netzel et al., 2018)

2.3 Clustering

Once segments are created, their internal patterns can be characterised by the same signature methods used to perform the seg-
mentation. Figure (3) shows thc workflow for clustering in GeoPAT. The gpat_polygons program computcs the signature
within each segment. The distance between these signatures is then computed by the gpat_distmtx program. Here we used
the default Jensen-Shannon divergence. The segments can then be clustered on the basis of their distance measures by many
clustering algorithms. Here we use hierarchical clustering, as implemented by the R function hclust using Ward’s linkage
with squared distances to produce a dendrogram. This is cut at an analyst-determined number of classes to represent groups of
intcrnal homogencity of scgments. There are other choices in both the distance measurement and clustering linkage mcthod.
We chose Jensen-Shannon divergence because it is easily interpretable on a [0...1] scale and is stable. We chose Ward’s with
squared distances to minimize within-cluster variance.
oxf P\’ ~3

3 Case study 1 — BIS-4D (Netherlands)

BIS-4D (“Bodeninformatiesysteem 4-Dimensional™) (Helfenstein et al., 2024} is a high-resolution (25 m horizontal, six depth
slices vertical) soil modelling and mapping platform for the Netherlands. The 3D are geographic space and depth along the
soil profile. The fourth dimension is time, applied only to soil organic matter (SOM), which we ignore here by using only
thc most rccent SOM map. Predicted propertics arc clay, silt, sand and SOM concentrations %, bulk density g cin™3, pH
in KCI, total N mg kg~ . oxalate-extractable P mmol kg ', and cation exchange capacity mmol(c) kg™ '. Depth slices are
the GlobalSoilMap standard 0-5, 5-15, 15-30, 30-60, 60-100 and 100-200 cm (Science Committee, 2015). Each map is
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Figure 4. Semi-detailed soil map of the Netherlands, design scale 1:50 000 (part).
Source and detailed legend: Ministerie van Volkshuisvesting en Ruimtelijke Ordening (2024).
General legend: Dark and medium green: river clays with different clay concentrations; Light green: glacial depression scdiments; Brown,

pink: push moraines with varying sand and gravel sizes; Yellow: wind-blown sands; Purple: peat.

accompanicd by unccrtaintics (quantiles and 90% prediction intcrval). We did not usc these in this analysis, only the mean
predictions. Coverages in the GeoTIFF format are free to download and use, and can be dircctly read into the terra R
package (Hijmans et al., 2025).

BIS-4D is highly accurale at point support, as assessed by cross-validation, due to a very dense sampling network and the
country-specific covariates used in the DSM. Visual inspection of layers agrees well with traditional 1:50 000 scale polygon
soil maps (Steur and Heijink, 1980; Brouwer et al., 2021) and expert views of the soil landscape.

We selected a 40 x 40 km test area (Figure 4), because of its diverse soil-forming environments, including river clays of

various ages and compositions, sandy push moraines, organic soils in glacial depressions, and coversands.

10
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3.1 Aggregation

The supercells algorithm can work dircctly on raster stacks of the terra package. All 54 maps (7 propertics, 6 laycrs)
were combined in a Spat Raster raster stack. Since the values and ranges are not compatible, the Jensen-Shannon divergence
was used to evaluate the distance in feature space between pixels and supercell centres. In this landscape there are non-compact
(extended) features parallel to the river, in the fen areas and along the push moraines, so alter some experimentation a low
compactness value (0.2) was selected. We selected a minimum mappable area of 10 ha, equivalent to the 1:50 000 design scale
of the Dutch conventional soil map, using the Cornell definition of 0.4 em? minimum lcgible arca on the map (Forbes ct al.,
1982). Twe set the minarea was to 1,600 25 m x 25 m pixels. J ”’ﬂ {1 o ? m‘/gﬁ'\‘gé‘{mm?

Figure 5 shows the supercells (outlined in black) with several properties as a background. Note that the supercells in all

maps are the same, but of course the mean values of each property within the supercells are different. The median size of the
270 supercells was 433 ha, ranging from 104 to 5 044 ha, with a strongly right-skewed distribution. Aggregation clearly shows
the differences between soil bodies, with some properties being more prominent in certain supercells.

To evaluate the quality of the aggregation, we computed the standard deviation of each property within each supercell (Figure
6). These are quite low for clay and SOM, and for pH with some small but notable exceptions. Bulk density is less successfully

aggregated. The exceptions are where that property is not important in the computation of Jensen-Shannon divergence to that

supercell, av \0’;\,\

Y

3.2 Segmentation

Since gpat_gridhis requires class maps, we classificd the soil property maps as follows: bulk density by 0.1 g cimn—3, CEC
by 25 mumol(c) kg~ ', clay, silt, sand concentrations by 5%. Py by 4 mmol kg ™", pH by 0.1 units, SOM concentration by 4%,
and total N by 1000 mg kg~ '.

The minimum grid size for segmentation (10 x 10 pixels) is 250 x 250 m (62.5 ha), corresponding to a 1:158 000 scale map,
as explained in §2.2. Segmentation at this resolution is expected to more closely match the [:200 000 generalised soil map

(Haans, 1965) than the 1:50 000 semi-detailed map shown in Figure 3.
3.2.1 Univariate segmentation of individual maps

To examine the elfect of grid size, we segmented all properties at all depths, individually, at the minimum possible grid cell
size, i.e., 10 x 10 and at several multiples: 40 x 40 (1 000 ha) and 80 x 80 (4 000 ha), corresponding to nominal map scales
1:400,000 and 1:800,000, respectively.  fgvmhac 9 7

The finest segmentation produced 4,393 (pH 100-200 cm) to 675 (Pox 100-200 cm), median 2,678 segments, average area
0.597 km®. Comparing this to the single grid cell at resolution, 0.625 km?, we see that many segments were of one or two grid
cells. The pattern was mostly very fine, with a few large segments {or most single properties.

Segmentation at 1:40q 000 equivalent scale produced 231 (sand 0—15 cm) to 41 (SOM 15-30 cm), median 181 segments,

average arca 8.84 km?. Compared to the single grid cell at resolution, i.c., 1 km?, there was significant grouping. Scgimenta-
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Figure 5. Results for selected properties of aggregation by supercells algorithm using all properties and layers

tion at 1:800 000 equivalent scale produced 66 (sand 0-15 cm) to 12 (Pox 60-100 cm), median 47 segments, average area

34.04 km?. Again, compared to the single grid cell at resolution, i.e., 4 km?, there was significant grouping.
3.2.2 Multivariate segmentation of individual properties, all depth slices

We then performed a multivariate segmentation using all depth slices of single propertics. By default, GeoPAT normalizes cach
layer and by default weights them equally. In this mode, a motifel must meet the threshold conditions for all input layers to be
joined to a segment. In this way the segmentation is meaningful for each layer. Because of the different spatial structures of
the properties at each depth slice, it was expected that the segmentation would be finer at each scale than for individual depth
slices, i.e., it would be more difficult to merge grid cells.

The finest segmentation using all depth slices of a single property produced 3 316 (pH) to 168 (SOM) segments, median 1 873
segments, average area 0.854 km?. Segmentation at 1:400 000 equivalent scale produced 190 (sand) to 13 (SOM) segments,

median 127 segments, average area 12.59 km?. Segmentation at 1:800 000 equivalent scale produced 55 (sand) to 6 (SOM)
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Figure 6. Standard deviations for selected properties of aggregation by supercells algorithm using all properties and layers

segments, median 36 segments, average area 44.44 km?. Contrary to our expectations, the median number of segments were
all smaller than those for the corresponding property’s single depth slice segmentations.

Figure 7 shows the segment boundaries for this multivariate segmentation by bulk density over the whole profile, at the three
resolutions overlaid on the Dutch 1:50 000 soil survey polygons. It is clear that the 1:800 000 segmentation misses important
differences and that the 1:100 000 scgmentation finds quite small arcas, mostly just onc grid ccll, within soil bodics. The
1:400 000 segmentation (i.e., shift size 40, I km?) grid cells) matches well with many soil map boundaries.

Figure 8 shows the success of the segmentation based on bulk density over the whole profile at the 1:400 000 design scale:
inhomogeneity of each segment and isolation [rom its neighbours. For example, the pixels in the large segment in the top-
centre are quite similar in their bulk density profiles, but this segment is only moderately different from its neighbours. This
shows the relative homogeneity of the bulk density profiles of the central Gelderse Vallei (Gelderland Valley) in the vicinity of
Renswoude and Scherpenzeel. Note that this area also has large segments based on all properties and depth slices, as seen in

Figure 5.
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Figure 7. Scgmentation based on bulk density over the wholc profile (red lines), overlaid on soil map polygons (grey lines). Design scales

left to right: 1:100 000, 1:400 000, 1:800 000 9
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Figure 8. Evaluation of segmentation based on bulk density over the whole profile at the 1:400 000 design scale

As the segmentation becomes coarser the inhomogeneity and isolation both decrease, i.e., segments are internally more
consistent in their patterns, and less isolated from their neighbours. For cxample, median inhomogencity values from the
segmentation based on whole-profile bulk density (1 266, 96, 28 segments) decreased from 0.108, 0.086, to 0.076. In parallel,

median isolation values decreased from 0.288, 0.211, to 0.178.
3.2.3 Multivariate segmentation with selected properties and depth slices

Another scgmentation is obtained by sclecting propertics and depth slices to represent the profile, Using all 56 layers results in
an impractical Jensen-Shannon divergence, hence we selected key properties at key depths: pH, clay, silt, SOM 0-5 cm, clay,
bulk density 15-30 cm, CEC 30-60 cm, sand, SOM 100-200. Figure 9 shows the segment boundaries from this segmentation at
the 1:400 000 design scale, overlaid on several single soil properties and depth slices. Note that the segment boundaries are the
same for all maps. This segmentation should bEs_lJ group soils considered holistically, not per-property. Many of the segments
Wha 7

3 .
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Figure 9. Segmentation based on selected properties and depth slices, overlaid on DSM of selected soil properties, 1:400 000 design scale.

Legends not shown. Scale is from dark red (low valucs of the property) to dark green (high values). Top-left map includes scgment numbers

correspond to landscape features shown in the conventional soil map of Figure 4, although constrained to the rectilinear shape

and minimum grid celi size. (/a . 7
A1
g <
3.2.4 Scaling of segmentation Mia N é 7 %WM— ? ﬁ/xﬂm/g .14 v/ )
'

The segmentation method scales well. The land area of the Netherlands (= 33 240 kmg) was segmented using all depth slices
sty

for several properties. At the nominal 1:400 000 design scale, this resulted in 2 535 (pH) and 1 547 (bulk density) segments; at

1:800 000 design scale 649 (pH) and 371 (bulk density). Figure 10 shows the segmentation by pH of the entire Netherlands at

these two scales. For this cxtent the coarsest scgmentation scems most uscful for understanding the country-wide soil pattern,
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Figure 10. Segmentation by whole-profile pH of the Netherlands at 1:400 000 (left) and 1:800 000 (right) nominal scales, overlaid on the
pH 15-30 cm DSM product

3.2.5 Segmentation parameters

Segmentation is greatly affected by the two thresholds. For example, segmenting the test area using all depth slices for clay
using the default lower and upper thresholds (0.1 and 0.3, respectively) results in 1 932 (1:100 000) and 148 (1:400 000)
scgments, whereas using morc liberal (casicr segmentation) thresholds 0.3 and 0.8 the number of segments is reduced to 285
and 18. In effect, the more liberal segmentation at a finer scale is similar to the morc conservative one at a coarser scale.
Figure 11 shows the multivariate segmentation of the test area on the basis of clay concentration at all depth slices at nominal
1:400 000 scale with default thresholds, and the same [or the 1:100 000 scale but with liberal thresholds. These maps are

comparable.
"k \N}qu{’\m
33 Clustering_ ]/W( (/4 r’

Hluarchfcal clustermg was applled to the segments of Figure 9, i.e., based on selected properties and depth slices, to represent
the profile. The resulting dendrogram is shown in Figure 12. Note the large separation in internal patterns between the two

top-level branches (height 6). These represent the river clay landscape, Gelderse Vallei depression, and lower terraces (right

. branch, clusters 4-7) and the sandy uplands (left, clusters 1-3). At the sccond level for the right branch (height 3.5) the large

separation is between the Gelderse Vallei depression and terraces (clusters 4 and 5) and the river clays (clusters 6-7). At the
third level for the rightmost branch is the separation between the actively flooded zones (cluster 7) and the somewhat higher
\zones (cluster 6). While not a perfect separation, the clustering does separate the principal soil landscape components.

The seven generalised clusters identified in the dendrogram are shown on the landscape in Figure 13. These group similar

scgments well and could scrve as landscape management units. For cxample, cluster 4 groups the mostly homogencous scg-
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Figure 11. Segmentation b)_/myhg!c_-_p_ro(ile clay at 1:400 000 with default thresholds (left) and 1:100 000 (right) with liberal thresholds,

overlaid on the clay 0-5 cm DSM product ' .
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ments dominated by low pH, clay, SOM, CEC, high sand, and medium silt. Cluster 7 groups the heterogencous segments along

the rivers and large brooks.
3.4 Evaluation

The BIS-4D product can “speak for itself” quite well, to reveal both compact units of homogeneous soils and segments with
similar heterogeneous patterns of soil classes. Aggregation based on properties and depths selected to represent the results of
the principal soil forming factors delineates patches (Figures 5 and 9) that closely correspond to polygons of the 1:50 000 design
scale conventional soil map with design scale 1:50 000 (Figure 4), generalized to about 1:158 000 design scale, although with
some variations in form. Segmentation was most successful with grid cells of 1 000 ha, corresponding to nominal map scale
1:400 000. This grouped patterns of pixels with different internal patterns of classes. Hierarchical clustering of these segments
found groups of similar patterns within the map. Tilfig_re_;)_(gﬁeni separate segments of the same landscape component, These
results increase confidence in the BIS-4D DSM product. This is p_t:rh;}_).s- z-lmt-)gs;_cdase, due to the extreme”l;{igh quality of the
source data (training points and covariates), the conventional map which can be used for comparison with aggregation and

segmentation, and sophisticated modelling approach specific to the Netherlands.

4 Case study 2 — SeilGrids v2.0 (Global)

At the other extreme from the country-specific DSM exercise based on a large quality-controlled and spatially complete training
set (§3) is a global DSM exercise based on a heterogeneous and spatially-unbalanced training points, using only covariates with

global coverage. For this case we sclected SoilGrids v2.0 (Poggio ct al., 2021) from ISRIC-World Soil Information. This is a

17



315

320

(© Author(s) 2025. CC BY 4.0 License.

* ¢ </,vu; :

T reiaad A gt wf e pebese oo Fert ia 33
e it aade ¥ aondfitens #o e & o
G (Ll dhstens o e

T nfuwv}, éejm%fﬁ, Ao i :'MCUL

https://doi.org/10.5194/egusphere-2025-1896
Preprint. Discussion started: 20 May 2025 EG U
sphere

y whe shale) e;satn(s /ﬁ/é/ @m%, . clore 87 lrs
B Uy love Ul wjtely @ teminel | *fips" M?”‘”

Segment number

Figure 12. Hierarchical clustering of the segments shown in Figure 9

set of predictive maps of soil properties for the entire globe at 250 m nominal spatial resolution. Aggregations to 1 km and 5 km
resolutions are provided for modelling at coarser scales. It is a globally-consistent product that uses all available point data
from the World Soil Information Service (WoSIS) database (Batjes et al., 2024), also from ISRIC-World Soil Information, and | ‘pj)lmﬁ
covariates with global coverage. Political boundarjes are nowhere visible, except where one or more covariates match these. - Ll
SoilGrids provides both prcdiaia(;h’s and their uncertainty, via quantile random forest anachine=tcarning modecls: It closcly
follows the GlobalSoilMap specifications of properties and depth slices (Science Committee, 2015). It also predicts the derived
property of SOC stocks from 0-30 cm, in T ha™ !, computed from SOC concentration and bulk density. We chose to evaluate
this layer, in order to compare it with the FAO’s Global Soil Organic Carbon Map (GSOCmap) project (FAO, 2018).
We selected a transnational study area with corners (-109.99, 27.86) E and (-100.03, 35.64) N. This covers most of Chihuahua

and Coahuila and part of Sonora States (MX) and portions of Texas and New Mexico States (USA). Figure 14 shows this arca,
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Figure 13. Generalised clusters of the segmentation of Figure 9, based on slicing the clustering dendrogram shown in Figure 12 for seven

general clusters.

with the SOC stocks over the 0-30 c¢m depth slice. The higher stocks are in mountains and wetlands along the Rio Grande, the
lower in high deserts.
Individual 2 x 2° tiles of the 250 m product were downloaded in the GeoTIFF format from the intcractive SoilGrids sitc
(ISRIC-World Soil Information, 2024b), imported into R with the terra package, mosaicked, projected from the original
325 geographic coordinates to a local Albers Equal Area projection, and trimmed to 3 270 x 3 610 6.25 k> pixels, covering
737 793.8 km?. The global map of the 1 km product was downloaded in the GeoTIFF format from the ISRIC WebDAV
repository (ISRIC-World Soil Information, 2024a), projected from the original Homolosine coordinate reference system to the
same local Albers Equal Area projection, and trimmed to 900 x 900 1 km? pixels, covering 810 000 km?.
Predicted SOC stocks per pixel ranged from 0 to 83, median 28 T ha~! for the 250 m product, and 7 to 76, median 29 28
330 T ha ! forthe t km product, showing the smoothing effect of upscaling.
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Figure 14. SoilGrids v2.0; SOC stock 0-30 cm, T ha™ .

4.1 Aggregation

We applied the supercells algorithm to the SOC stocks 250 m resolution layer. To limit processing time and memory

requirements, we selected a small test area of 80 x 80 km, i.e., 640 000 ha, centred on (-105 E, 32 N) at the Texas (N) / New

Mexico (S) border, ncar Dell City NM (Figurc 15). The centre pivot irrigated ficlds at the centre-left arc = 800 x 800 m and

335 should thus be resolvable on the SoilGrids map. This area includes a wide range of the SOC stocks (Figure 16 left), with high
values in the Guadalupe Mountains to the east and very low values in the salt flats in the centre of the area.

After some experimentation, a medium value (0.5) for compactness was selected. We did not set a minimum mappable arca

mineara, rather a number of proposed supercells k. A choice of ~ 400 supercells corresponds to an average area of 1 600 ha,

corresponding to 1 em? on a 1:400 000 printed map. This is much larger than the arca of single centre-pivot irrigated ficlds, so

340 we did not expect these to be individually resolved.
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Figure 15. Test area for aggregation, centred on (-105 E. 32 N). Source: © Google Earth

Figure 16 (right) shows the computed supercells. Median size of the 412 supercells was 1 388 ha, ranging [rom 431 10
5 462 ha, with a strongly right-skewed distribution. This aggregation clearly groups the pixels with similar SOC concentra-
tions. However, the shapes do not seem to correspond to natural landscape boundarics. We attempted other combinations of
compactness and supercell numbers, with poorer results.

The quality of the aggregation can be measured by the standard deviation of the property within each supercell (Figure 17).
These ranged from 0.34 to 6.08, median 1.18 T ha !, with corresponding coefficients of variation [rom 1.36 10 26.61, median

4.39%. The highest heterogeneity was in the pivot irrigation here the minimum supercell size forced pixels with a wide

range of valucs t(.)gcthcr. L _ﬂ% L@ » A/‘l; ‘ﬁ d! M
4.2 Segmentation X4 g’;{%‘ﬁ@ 4\;7(,( &* [73 ém‘\ (Z /ZF?

Segmentation was applied to the SOC stock map of the full study area, for both resolution SoilGrids DSM products. Since

gpat_gridhis requires class maps, SOC stocks were classified in 19 (250 m) and 18 (1 km) equal intervals of 4 T ha ',

with from 31 to 1°956 813 (250 m) and 14 to 128 549 (1 km) pixcls per class. The minimum grid resolution for the 250 m

product is here 2.5 x 2.5 km. The map was segmented at this resolution, and also four coarser resolutions: 5x 5 km, 10x 10 km,
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Figure 17. Standard deviation within supercells; SOC stock 0-30 cm. T ha ™
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Figure 18. Segmentation of 250 m resolution SoilGrids map (part) at 1:1M nominal resolutions Céﬁés

’chm[/( e e WM MW'YK.'A/ ‘ ?Ww%ﬁ%m 1‘; 7/ /-z:-;\ ’(M/é(&%, b,;‘/

only ow 90C ghitde - ,(u.{.i:&r(-,
20 x 20 k111.gnd 40 x 40 km, corresponding to nﬁfp scales 1:11 , 1:12M, 1:4M, 1:8M, and 1:16M, respectively. These produced

355 7600, 1905,491, 127, and 35 segments from the 250 m resolution map, respectively. Figure 18 shows the segmentation at the
finest scale. The level of detail is apparent, but many segments seem to be of a single class, with no internal pattern. Broader
landscape patterns are obscured by this level of detail.

From the 1 km resolution SoilGrids map the three coarscst resolutions resulted in 669, 165, and 43 scgments. Figurc 19 shows
these three segmentations. As resolution decreases, broader landscape patterns are increasingly aparent. All segmentations

360 seem useful at their respective design scales.j E XY L',{\,\

For the 250 m SoilGrids segmentation, median standard deviation increased from 2.35, 3.08, 3.94, 4.62, 10 6.15 T ha !,
while the median normalized Shannon entropy increased from 0.311, 0.369, 0.433, 0.472, to 0.580, for the 1:1M, 1:2M, 1:4M,

1:8M, and 1:16M scalces, respectively. Entropy and standard deviation increasc with segment size, as cxpected. The comparable

values for the 1 km SoilGrids segmentation are median standard deviation 3.37,4.29, and 6.19 T ha™ !, and median normalized

23



365

370

(© Author(s) 2025. CC BY 4.0 License.

MW/,W%W g losyer] gk

https://doi.org/10.5194/egusphere-2025-1896
Preprint. Discussion started: 20 May 2025 EG U
- sphere

Figure 19. Scgmentation of | km resolution SoilGrids map (part) at (left to right) 1:4M, 1:8M, and 1:16M nominal resolutions

@

Figure 20. Normalized Shannon Entropy of segments of the SoilGrids v.2 1 km map (part) at 1:16M nominal resolution.

Shannon entropy 0.417, 0.481 and 0.584 for the 1:4M. 1:8M. and 1:16M scales, respectively, similar to those from the 250 m
segmentation,

Figure 20 shows the entropy for each segment of the 1:16M nominal resolution map from the 250 m product. This is
a measure of the internal class homogeneity of each segment, although not the spatial pattern of the classes. The highest

cntropics arc found in the scgments with mixed high and low terrain, shown as contrasting purple and light bluc colours.
4.3 Clustering

Figure 21 (left) shows the 39 segments signatures {rom the | km product, using motifel size 40 cells, and Figure 21 (right)
shows the assignment to seven generalised clusters. Figure 22 shows the dendrogram for the clustering of the 39 segment

signatures.
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Figure 22. Dendrogram of segment signatures, SoilGrids v2.0 1 km, motifel size 40 cells.
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Figure 23. Jensen-Shannon divergence from Segment |

The co-occurrence pattern of classes is similar within cach general cluster. The clusters should group similar soil landscapes,
at least with respect to the SOC concentration. For example, cluster 1 groups mountainous terrain with high SOC interspersed
with basins with medium SOC in an intricate pattern.

Figure 23 shows the Jensen-Shannon divergence with the first segment, which necessarily has no divergence. These range
from 0.14 (scgment 30, in thc same cluster | as the target segment, although on a different first branch at height 0.45) to
0.84 (segment 4, in widely-separated cluster 3, different at branch height 1.45). This can be used to find the soil patterns that
are megmem independently of cluster rzfemhership. The dist;mce does not directly correspond to cluster

distance in the dendrogram when linkages other than single are used, as in this case, Ward’s D2.

4.4 Evaluation MVLA/ A)Z‘/ M Wﬂ vc“s = Hj ”

Aggregation was able to form compact groups of pixels with similar SOC stocks. which could be useful for, e.g.. stratified
sampling. However the polygons did not seem to correspond well with landscape units. Segmentation was more successful.
Al several increasingly-general scales il grouped distinctive patterns of SOC stocks, corresponding to large landscape units.
Clustering was then able to identify general groups of landscape units, and the Jensen-Shannon divergence identified the

. /
scgments most similar to a sclected scgment. A / ﬁj

k Does T mep ?wm,w‘w

MOS""NU(’”LL/ vt lks :
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5 Case study 3 - SOLUS100 (USA)

The third casc study is intermediate to the first two. Like the BIS-4D study it is of onc country and with training points from
one source, but (1) it covers a much wider area and so can’t use covariates that are only available for part of the area, and (2)
the product is based on numerous traditional soil surveys of varying age and quality control which can be used to some extent
for evaluation.

SOLUSI100 (“Soil Landscapes of the United States 100-meter”) is a recent DSM product from the USDA-NRCS (Nauman
ct al., 2024). This contains predicted valucs, high and low cstimatces, and prediction intervals for soil propertics at the Global-
SoilMap standard depths, at 100 m horizontal resolution (i.e., 1 ha pixels) over the entire conterminous United States (CONUS).
The maps are available in GeoTIFF format TNaurmam;-2624). These can be compared to the Gridded Soil Survey Geographic
Database (gSSURGO) digital product from the NRCS (NRCS Soils, 2022). This was created by digitising the polygons from
traditional soil-landscape survey, with its linked relational database of polygons, map units, components, horizons, and soil
properties. Thus aggregation and segmentation can be compared to a product based on expert judgement and field-based soil
survey, although gSSURGO is also quite heterogeneous in the age and quality of the soil surveys on which it is bgsed, and so

. j S -7,
must be used with caution as a ground truth. M%'\,W(,L/d/ PMH,?,L (‘..( %M%;?Z 7

We selected a 570 km? test area in \kfg_)_/’_ﬁ)gegggt_y NY, mapped in 1978 on an unrectified airphoto base (Higgins, 1978),
and later digitised by the NRCS and incorpor?tzd into gSSURGO. This area has a distinctive pattern of NNW-SSE orientated
drumlins of various sizes and shapes, and i‘ijter-drumlin depressions. Some of these developed into peatlands, with drained
areas used for agriculture and undrained areds used as wildlife reserves. The genesis of this soil landscape has been studied for
more than a century (Menzies ct al., 2016). 1: W ,050 M - o7 Z-

Figure 24 shows the predicted s_t_x_r_{a_ce_@ﬁél_gy_cogqen_ug_tign for the original soil survey, as compiled in gSSURGO, and
for SOLUS. Notice the different legend scales, otherwise the SOLUS map would not clearly show its pattern, since SOLUS
predicts a narrower range of concentrations, as is typical of DSM products. It is obvious by visual inspection that SOLUS misses
much of t-he f_ip_é‘ i)_a_t-te_r_r_l_,nand especially thaj

(dark bluc on the gSSURGO map). \ £ A %)}7,'0‘1 v\/( 1(/( ‘3‘1"19"&5«(

5.1 Aggregation MW_(_ MﬁMS = "“?“4’5"9»‘- o T ULZZEN
el 4 7

We aggregated the SOLUS map of surface layer clay CYh/cenlralion with the supercells algorithm. We sel the minimum

t does not identify most of the organic soils with very low clay concentrations

area parameter minarea to be comparable to MLD at briginal design scale. The source map in this area was at 1:24k design
scalc, so thc MLD was sct to 2.304 ha. The Qp_til_n_'clxlyljc_:giblc Dclinc_a!_i_on LOLD) is 4 x MLD (Forbes ct al., 1982), so here

9.216 ha, corresponding to nine SOLUS cells. Aggregation complexity is controlled by the number of supercells. This should

be comparable to the number of gSSURGO polygohs in this study area. In this way we can evaluate how well the DSM
can malch the traditional soil survey. In this area there are 14,949 gSSURGO polygons, with a median area ol 2.43 ha,
corresponding to 2 to 3 cells. The mean is area 5.30 hg, because of some large polygons, mainly organic soils, i.e. Histosols in

US Soil Taxonomy (Soil Survey Staft, 1999).
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Figure 24. Clay concentration % of the 045 ¢m layer, gSSURGO (left), SOLUS 100 m (right}. Codrdinate Reference System is an Albers

o

We aggregated with a range of compactness values from 0.2 to 2. Because of the long lincar shape of the drumlins, we
expected that the lower compactness would best match the landscape. Indeed, this parameter value produced the map with
the Icast rounded features, but their orientation did not match the landscape pattern (Figure 25). From this we conclude that

SOLUS in no way represents the actual soil pattern. This same result was obtained with other layers of clay concentration, and

with several other soil propertics. L \"XA Ii/ /‘UCS {— 41 M 'éb re fw 2

5.2 Segmentation

SOLUS resolution is 100 m, so that the minimum shift is 10 i.c., 1 000 m = 1 km, corresponding to 1:250k nominal scalc.
Thus we did not expect to reproduce the fine pattern, but rather to group these into regions. We segmented with raster stacks
of single properties at all depth slices, and with a raster stack of seven properties (clay, silt, and soil organic carbon weight
concentrations, coarse [ragments volume, pH measured at 1:1 in water, CEC, bulk density) at one depth slice. The continuous
properties were converted to classes, as required by the GeoPAT segmentation algorithm: particle-size separates in units of 4%,
pH in units of 0.2 pH, CEC in units of 10 meq (100 g)~!, bulk density in units of 0.1 kg m~3 , and SOC in units of 0.2% up
to 6% and then in units of 5% to the maximum of 30%.

Figure 26 shows the segmentation based on all depth slices of SOC concentration, units 1000 x %, for three of the slices.
Some segments are well-separated, notably the depressions with swamps and organic soils, as well as sections with dillerent
intensities of drumlins.

Figurc 27 shows the scgmentation bascd on all depth slices of clay %, for thrce of the slices. The segments are quite large
and do not identify collections of the main landscape elements, i.e., drumlins and depressions.

Similar and even worse results were found with other properties, as well as with an attempt to use all properties at one depth

slice.
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5.3 Clustering

Because of the poor results of segmentation, we do not present the results of clustering for this case study.

“his metic nels 1o be /L%M @ The 9{7"+

SOLUS 100 was able to "speak for itself”, but the message was not clear and even misleading. Notably, the attempts to aggregate

5.4 Evaluation

and segment based on a representation of the profile resulted in unrealistic maps. In this area the landscape pattern is striking
and casy to map by conventional methods. SOLUS was unable to approximate the conventional map, let alone improve its

resolution. This is likely because SOLUS lacks locally- 1mp0rlanl covariates to represent this recently glaciated soil land§cape

with its characteristic drumlins. Mﬁ P £ )(k’b l Mé/{&(, M ”‘?1(/(,,( n
e
6 Discussion ,A(ijt\é— L// /7&-() &

The supercells algorithm was able to delincate relatively homogencous soils, based on all soil propertics and layers in
the BIS-4D example and the SoilGrids SOC example, but failed completely with SOLUS. A limitation of this approach is
that there is no objective way to adjust the compactness and supercell number parameters, other than the expert opinion on
which choice looks most “realistic”. However, the minimum size parameter can be set to match a minimum legible delineation
corresponding to a desired map scale.

The GeoPAT algorithm was able to segment DSM products into objectively-defined areas made up of fixed-size blocks, each
relatively homogeneous in its pattern internally and relatively isolated from its neighbours. Segmentation was quite successful
on appropriate scales for BIS-4D and the test area and property of SoilGrids v2.0, but much less successful for the test area
of SOLUS100. The class composition of segments, although not their internal spatial pattern, were well-characterised by
normalized Shannon Entropy.

A limitation of the GeoPAT approach is the requirement for relatively large numbers of pixels per grid cell, and the rectan-
gular shape of the grid cells that are combined into segments. Thus, the segment boundaries can not follow complex natural

boundaries. Also, the landscape segments are at much more general scale than the source map.
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The question remains as to the relation of the supercells or segments with the actual soil landscape at the several scales.
There are two related questions. (1) For aggregation, do the relatively homogeneous (according to the supercells algo-
rithm) groups of pixels correspond to landscape elements? These would correspond to polypedons or consociations. (2) For
segmentation, do the patterns of pixels within the segment correspond to finer-scale patterns at the design scale of the segmen-
tation? These would correspond to associations or complexes.

In the casc of BIS-4D and the detailed traditional Dutch soil survey, the degree to which the aggregation matches the pub-
lished map (Figure 3) is likely sufficient. The success of segmentation was discussed in §3.2. It is not clear which segmentation

scale is the most appropriate. A\

In the case of SoilGrids, the “true” soil landscape pattern in the test area is not so clear. When comparing SoilGrids with
the USA, a problem is that the detailed gSSURGO map (NRCS Soils, 2022) has been compiled from multiple survey areas,
mappcd over many years, and with imperfect corrclation between arcas. This is compiled from traditional surveys at design
scales from 1:127000 to 1:24°000 in most areas, but somewhat coarser in less populated areas in the western USA. The INEGI
map in México is a consistent 1:250°000 national product (Instituto Nacional de Estadistica, Geografia e Informética (INEGI),
2024), which can show a minimum delineation ol 250 ha. Figure 28 shows a SOC stock maps of the study area, compiled
from the above-mentioned USA and Mexican sources by the FAO as part of the Global Soil Organic Carbon Map (GSOCmap)
projcct (FAQO, 2018). Version 1.6.1 of this product was downloaded from the FAO's Global Soil Information System (GloSIS)
(FAQ, 2024). The inconsistency in values and pattern between México and the USA is obvious, as are several sharp boundaries
between survey areas in the USA. So it is difficult to evaluate how well SoilGrids identifies supercells or segments.

In the case of SOLUS, the geomorphology and soil pattern of the test area is well understood and has been mapped in detail.
Of the SOLUS layers only soil organic carbon and coarse fragment volume showed a relation with known patterns in the
test area. Aggregation based on multiple properties completely failed to find landscape units. Segmentation based on multiple

properties failed to find more general units with consistent internal patterns.

7 Conclusions

The methods presented in this paper are part of an effort to evaluate DSM products based on how well they represent the soil
landscape. The approach taken here complements pattern analysis of the DSM product, which characterises the map without
attempling aggregation or segmentation, as in Rossiter et al. (2022). Both the aggregation and segmentation approaches were
able to allow the DSM product “speak for itself”. Individual predictions in pixels were combined into possible soil-landscape
clements, which could be cvaluated statistically and by cxpert judgment. Both of these approaches require the intervention of
the analyst to select scales and parameters, often with large differences in resulting patterns. This has the advantage that the
analyst can match desired scales of landscape analysis, and indeed can perform a multi-resolution evaluation. The analysis of
the resulting maps is a significant addition to the commonly-used “point”-based evaluation statistics, which (1) do not evaluate

the full map, (2) even at point support, do not take into account the spatial relation between evaluation points. We hope that
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Figure 28. Global Soil Organic Carbon (GSOC) map {part). Boundary is between México (south) and the USA (north).
Source and legend: FAO (2024).

this will stimulate digital soil mappers to evaluate their own products in this light. This should lead to clearer communication

with DSM users, so that dlgllal soil maps become more, Avidely awkpled and properly used. / ~
I ( \'. /( y\j - ,4&9‘ MC{T{S /
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Code and data availability. The GeoPAT modules are available at its GitHub reposifory'. The superpixels R package is available at
CRAN? and must be installed from within the R environment. The analysis code for this paper is available in a GitLab repository*. The

datasets used in case studies can be obtained from the websites referenced in the text.

Author contributions. DGR conceived of the approach, wrote the code, carried out the test cases, and wrotce the initial draft. LP contributed

advice at every step. especially the concepts and interpretations, and contributed detailed knowledge of SoilGrids.

Uhttps://github. com/Nowmad/geopatZ
Thitps://cran.r project.org/web/packagesfsupercells/index.html
Ihitps://git.wur.nl/isric/scientific-publications/Rossiter-2025-Soil_landscapes_from_DSM
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