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Abstract. Since the earliest days of soil geography, it has been clear that soils occur in more-or-less clearly mappable bodies,
within which soil forming factors have been either fairly homogeneous or in a regular pattern within the body, and between
which there is usually a clear transition in one or more factors. This has been the basis for polygon-based soil mapping: make a
concept map from landscape elements leading to a mental model of the landscape, confirm or modify it with strategieally-placed
strategically placed observations, find the transitions, delineate the soil bodies, and characterise them. By contrast, common
methods of Digital Soil Mapping (DSM) predict per pixel over a regular grid, from training observations at pedon support.
Accuracy assessment of DSM products has been at this “point” support, ignoring the existence of spatial soil bodies and the
relations between pixels. Different approaches to DSM — datasets, model forms, analyst choices — result in maps with distinctly
different patterns of predicted soil properties or types. Techniques from landscape ecology have been used to characterize
spatial patterns of DSM products. The question remains as to how well these products reproduce the actual soil patterns at
a given cartographic scale and categorical level of detail. Our approach is to tetBSM-maps-help DSM maps to “speak for
themselves” te-and thereby reveal spatial patterns that have been found by the DSM. We do this by grouping pixelspredictions
at the individual pixel level, either (1) by aggregation based on property homogeneity using the supercells algorithm, or (2)
by segmentation based on within-block property pattern similarity, using the GeoPAT suite of computer programs. Segments
can be hierarchically clustered into groups of presumed soil landscape elements. Supercells and segments can be compared
to existing soil maps, other land resource maps, and expert judgement. To the extent that the presumed soilscape patterns are
reproduced, this is evidence that DSM has identified the soil landscape at the chosen scale. Since map users perceive patterns,

and most land use decisions are for areas rather than pixels, we propose that DSM products be evaluated by their patterns as

revealed by aggregation and segmentation, as well as by pointwise evaluation statistics.
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1 Introduction

Digital Soil Mapping (DSM) is a general term for the creation of digital maps of soil classes or properties by fitting geostatistical

or-machine-learning(Webster and Oliver, 2008), statistical learning (Hastie et al., 2009), or similarity-based (Zhu and Turner, 2022

models between observations of soil classes or properties at known locations and a set of environmental covariates repre-

senting soil-forming factors. This term has also been applied to soil maps based on GIS overlay of presumed soil-forming
factors, for example, the eSOTER approach (Dobos et al., 2019). Some authors follow the review of Scull et al. (2003) and
refer to this as Predictive Soil Mapping (PSM). although since all soil mapping is by nature predictive, this seems to be
a less specific term. Since its formal introduction by McBratney et al. (2003) it-has-been—extensively-DSM has been ap-
plied worldwide at a wide range of scales and target classes and properties;—see—for-examples—; see reviews by Mulder
et al. (2023), Arrouays et al. (2020) and Nenkam et al. (2024) —and future perspectives by Lagacherie (2025). DSM is a
semi-automated digital form of landscape analysis as used in traditional soil survey to identify distinct soils from environmental
Hole and Campbell, 1985; Hudson, 1992). However, as DSM predicts at the pixel level, it ignores spatial relations.
As Vaysse and Lagacherie (2017) aptly state, “DSM products are simplified representations of more complex and partially

DSM products are routinely and (almost) exclusively evaluated by point-based evaluation statistics, and-these-including
the cross-validation mean error (ME), root-mean squared error (RMSE). proportion of variance explained (1:1 _R?) and the

model efficient coefficient (MEC) (Helfenstein et al., 2024, Formulas 2—4). These are almost never based on probability or even
representative training (i.e., cross-validation) observations (Piikki et al., 2021). Point-based evaluation ignores the existence of

soil bodies that form a pattern over the landscape. Maps with distinctly different patterns of predicted soil properties or types

covariates

can result from different approaches to DSM, see for example Rossiter et al. (2022) and Poggio et al. (2010a). We propose
to also evaluate DSM products by their patterns, as revealed by aggregation and segmentation of the gridded maps into areas

with more or less homogeneous internal composition of soil properties. As—Vaysse-andlagacherie- (2017 -aptly-state; “DSM

R

Soil geographers conceive of the soilscape as a continuum in 3D, with the vertical dimension (soil profile) defining a pedon
(Soil Survey Staff, 1999, p. 11). The pedon has a horizontal dimension sufficient to show the local variability of horizons and
properties, e.g., cyclic or irregular horizons. Pedons are connected laterally into relatively homogeneous polypedons (John-
son, 1963), within which the soil-forming factors and hence the pedons are within some defined limits. The transition zones
between polypedons are marked as borders between natural soil bodies taccording to those limits), which may be abrupt or
smooth (Lagacherie et al., 1996), according to the spatial pattern of the soil-forming factors. Figure 22-1 shows a typical con-
ceptual model from a detailed Order 2 soil survey in the USA, design scale 1:12 000 (minimum mappable area 0.576 ha). The

transitions between polypedons in this scene are due to parent material, topography, and hydrology.

Togetherthese-makeup-thesoilseape;+e-The pattern of the distribution of polypedons on the landscape —Theseform—a
pattern—make up the soilscape. The classic example is the catena ef-Milne-as defined by Milne (Milne, 1935) as: “a sequence
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Figure 1. Conceptual block diagram, Otsego County NY (USA)

Source: https://www.nrcs.usda.gov/publications/NY-2010-09-28-14.png

of distinct but pedogenetically-related soils that are consistently located on specific facets-down-a-stope-slope facets, giving
recurrent topegraphically-assoeetated-topographically-associated soil pattern” (Borden et al., 2020), We would hope that a
DSM-produced map of a catena would clearly show these elements and their transitions.

In traditional expert-based soil class mapping (Hudson, 1992) the landscape is segmented according to the mapper’s con-
ceptual model of soil-landscape relations, and by examination of external clues, notably relief, vegetation, and land use, and
by augering or full profile examination. DSM replaces the conceptual model with correlative relations with digital coverages

meant to represent, at least in part, one or more of the seven predietive-SCORPAN ‘SCORPAN" predictive factors of McBrat-

ney et al. (2003). In this widely-cited paper they briefly describe as these factors as: s: soil, other properties of the soil at a
oint; ¢: climate, climatic properties of the environment at a point; 0: organisms, vegetation or fauna or human activity; r:

topography, landscape attributes; arent material, lithology; a: age, the time factor; n: space, spatial position. The time

factor accounts for the changing climate, organisms (including human activities) and relief over the time of soil formation. In

2

ractice, the time factor has proven quite difficult to represent by digital coverages. Fherefore;Note that these are correlative,
not necessarily causative, and are used to build a predictive model for mapping, not (at first) to understand pedogenesis. Thus

in DSM there is no longer an explicit relation with the soil landscape, but it is hoped that the implicit correlative relations,

based on representative covariates, can find these.
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The concept of areas with distinct patterns of contrasting soils goes back to the “soilscape fabrics” from the soilscape

analysis of Hole (1978) and the “soil combinations” of Fridland (1974).

fine-distinctionsin-the-definitton-of sotl-bodies-With increasingly-detailed cartographic scales and categorical definitions of soil

wmcreasmgly finer patterns are-reveated—can be shown. Conversely, at coarser scales ;patierns-are-based-onlesspreeise

ies—and broader categories patterns are necessarily more general. As Fridland puts it, “Soil
combinations consist of elementary soil areas which are genetically linked to various degrees and which produce a definite

pattern in the soil mantle ... Multiple spatial repetition of a certain soil combination or several soil combinations alternating
in a definite order creates various forms of structures of the soil mantle.” An example of a fine-scale soil pattern is the pit and
mound topography found on a hillslope in southwest Poland by Pawlik et al. (2024).

In traditional soil mapping, these areas with sufficiently homogeneous soils or patterns of them at a given cartographic
scale are the units that are delineated on the map. However, as Fridland explains: “The structure of the soil mantle and soil
combinations are in their essence not cartographic but genetic-geographic concepts, even though they constitute a basis for
elaborating cartographic units.” This implies that the resulting soil properties distributed vertically in the profile, as products
of pedogenesis, can be the basis for map units. Therefore, if at each pixel DSM accurately predicts a sufficiently rich set of
properties over the soil profile, these should be grouped on the DSM map as reeognisablerecognizable cartographic units.

Within a mappable soilscape segment, there will of course be variability, ranging from some smaller deviations from a central
concept (typical soilscape position and pedon), to a mixture of contrasting pedons, in National Resource Conservation Service
(NRCS) soil survey terms a complex. Since BSM-prediets-predictions made by DSM are per pixel, it may be possible to resolve
these complexes into their components at the pixel scale, if that is fine enough to match the pattern within the complex. If this
is the case, our evaluation of the DSM product should identify this.

Digital Soil Mapping (DSM) prediets-products show predicted values of soil properties or classes at each pixel of a regular,
more or less fine grid, either as the centre point or a block average of the area covered by the pixel. DSM typically predicts
multiple soil properties at a set of standard depth slices. Although some DSM methods use covariates in areas around a pixel,
they do not enforce any relation between adjacent pixels. These relations are particularly important in soil hydrology models.
Thus, the question is to what degree the pixels of DSM products at various resolutions can be aggregated into groups to
realistically represent a soil landscape, whether the soilscape segment is relatively homogeneous in its properties or represents
a-an association or complex. Intuitively, if the seil-forming-soil-forming factors responsible for a polypedon are also spatially
associated in the covariates used in DSM, the relations between pixels should occur as a bypreduet-by-product of per-pixel
DSM. More abrupt transitions in the covariates should be reflected in the predictions. The pattern of the pixels should therefore
represent the soil landscape. The question is, does the DSM product show these relations?

One-way-In this study, we examine two methods to assess the success of DSM in reproducing a soil landscape. The first
method is to aggregate the individual predictions from pixels into more or less homogeneous contiguous groups of pixels
referred to supercells, following methods used in image processing, where these are called superpixels (Nowosad and Stepinski,
2022). This can be based on single properties and depth layers, or, more usefully, on the multivariate collection of DSM-

predicted properties at a pixel. We explain the aggregation algorithm in §2.1.
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At-The second method is applied at coarser scales, where the homogeneity of properties within some larger area may not be
possible or even desirable. This has led to the concept of landscape segments, defined by the co-occurrence pattern, referred to
as a signature, of a group of contrasting pixels of a class map, within a pre-defined-predefined size of the segment. Segmentation
was developed by geographers to find similar land cover patterns for ecoregionalization (Nowosad and Stepinski, 2018). In that
case, the pixels represent land cover classes. The aim is not homogeneity of land cover, rather, homogeneity of the land cover
pattern within some analyst-defined area. The relation to a soil cover pattern is obvious, and corresponds well to concepts such

as the catena or soil associations.

These two concepts, aggregation and segmentation, can be related to traditional soil survey practice. Depending on the
scale of the analysis (for DSM, the horizontal resolution, for traditional soil survey the minimum delineation size) and the

inherent scale of the soil landscape, we may expect to see homogeneity at the level of eonsociation map delineations containin

dominantly one soil type within defined limits at a detailed categorical level (e.g., soil series);-or-a-heterogeneous-, the lowest

level of Soil Taxonomy); this is called a consociation in the US soil survey (Soil Science Division Staff, 2017). This is where

agoregation is useful, to identify homogeneous components that can be mapped as separate units . At a coarser scale we ma
expect a regular pattern of contrasting seils—at-thelevel-ef-seil-soil types forming a soil association, or a fine-scale pattern

of contrasting soils ;-the-forming a soil complextSeit-Setence Diviston-Staff; 2647)—. This is where segmentation is useful, to
form mapping units with consistent heterogeneous composition, These terms from the US soil survey are well-explained, with
examples, by Van Wambeke and Forbes (1986).

Segmentation requires that DSM maps of continuous predictions be classified, i.e., sliced according to analyst-defined class
limits. The classes can correspond to meaningful classes for soil management, or can be based on laboratory precision. They
can be wider (more general) or narrower, roughly corresponding to cartographic detail. Clearly, the classification can greatly
influence segmentation. This is also the case when segmenting land cover classes. We explain the segmentation algorithm in
§2.2.

Once a segmentation has been performed, the segments can be clustered according to their similarity of internal pattern, i.e.,

the signature of the segment. These can then be examined to find similar soil landscape elements in different parts of the map.
We explain the clustering algerithm-procedure in §2.3.
Fhus;-the-The objective of this study is present methods to create prestmed-possible soil landscape units from DSM prod-

ucts, by both aggregation and segmentation, and then to cluster the segments to identify similar soiHandseape-soil-landscape

units within the map. These proposed units can be characterized statistically by their composition, internal variability and
differentiation from their neighbours, as well as evaluated visually. We first describe the methods (§2) and then apply them to
three case studies (§3 BIS-4D Netherlands, §4 SoilGrids v2.0 global, §5 SOLUS 100 m USA) corresponding to different DSM

projects at various resolutions and extents. Finally, we discuss (§6) how these methods can be used in reutine-the evaluation of

DSM products.
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2 Methods

We contrast two approaches to letting-the-map-helping the map to “speak for itself”: aggregation based on homogeneity of

properties (§2.1), and segmentation based on patterns of classified properties within segments (§2.2).
2.1 Aggregation

Aggregnation-Aggregation seeks to find contiguous groups of pixels with relatively homogeneous property values, either single
or multivariate. This is implemented by the supercells R package (Nowosad, 2025), which uses the Simple Linear Iterative
Clustering (SLIC) image-processing algorithm (Nowosad and Stepinski, 2022), with the improvement that an appropriate data
distance measure and function for cluster averaging can be defined by the analyst. For multivariate aggregation there must
be a distance measure defined in #n—multivariate space. A common choice, used here, is the Jensen-Shannon divergence 5
Ein+99H—(Lin, 1991), which quantifies the distance between two histograms by the deviation between the Shannon entropy
of the combination of two uni- or multivariate histograms and the mean of their individual entropies.

The supercells function is controlled by several parameters that have a large effect on the results. First and most impor-
tant is compactness, which trades off internal homogeneity of the supercells with their geometric compactness. The absolute
compactness value depends on the range of input pixel values and the selected distance measure. A large value prioritizes spatial
distances between pixels and superpixel centres (more geometric compactness), whereas a smaller value prioritizes distances
in feature space (more property homogeneity). Second is the approximate number of supercells, k. This should correspond to
the number of landscape segments expected in the study area, at the design scale of the corresponding polygon map. Third is
the minimum supercell size, minarea. This should correspond to a minimum mappable area or a minimum size needed for an
application, e.g., land management or stratified sampling.

The quality of the aggregation can be evaluated by the standard deviation or coefficient of variability of each property in the

supercell. As supercells decrease in size, these measures will necessarily have smaller values.
2.2 Segmentation

Segmentation seeks to find contiguous groups of blocks of grid cells with similar internal patterns of pixels, which represent
soil classes or properties, these-either univariate or multivariate. Patterns-are-computed-within-The GeoPAT implementation of
segmentation compares patterns within square blocks of at least 10 x 10 pixels s-as-and then joins adjacent blocks with similar
internal patterns into rectilinear segments. Larger blocks can be specified by the analyst, according to the desired scale of the

Segmentation proceeds as follows. The first step is to select classified soil properties and their depth slices to represent
soil individuals at each pixel. The second step is to find the co-occurrence pattern of the pixels within pre-defined grid cells.
The third step is to aggregate grid cells with similar internal spatial patterns into larger units, sufficiently distinct from neigh-
bouring units in terms of their internal spatial patterns. Finally, the result is evaluated by its segmentation statistics, namely,

inhomogeneity within the segment and isolation of the segment from its neighbours. The segmentation can be inspected by
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Figure 3.13: Workflow path for segmentation

Figure 2. GeoPAT segmentation workflow. at_gridhis: “create a binary grid of signatures’; at_segment “segment a

rid-of-scenes”; gpat_segquality “compute quality metrics of a segmentation”; gpat_gridts not used. Source: (Netzel et al., 2018)

expert judgement, perhaps comparing with conventional soil maps, to evaluate how well it represents the soil landscape at the
selected cartographic scale.

For segmentation, we use the GeoPAT suite of standalene-stand-alone Unix programs (Jasiewicz et al., 2015). These are
invoked in sequence, via the R system function, to obtain a segmentation and an evaluation of its quality. GeoPAT has been
used successfully to segment categorical rasters such as land cover maps (Jasiewicz et al., 2018) and for global ecoregionaliza-
tion based on multiple environmental factors (Nowosad and Stepinski, 2018). Figure (222) shows the segmentation workflow
using GeoPAT.

Several parameters control the signature computation of the gpat_gridhis “create a binary grid of signatures” program.
Two related parameters are size and motifel. The first is the size of the output grid cell of the segmented map. This
must be at least 10 x 10 pixels of the source DSM. Thus, the segmentation is of similar patterns within an output grid cell
and its neighbours. This dictates the largest equivalent map scale at which soilscape patterns (groups of output grid cells) can
be discerned. The second is the “Motif Element”, referred to as the motifel, defined as the size of the window within which
the pattern will be computed. This must be at least as large as the size, but could be larger to account for edge effects in

the pattern. Alse-impeortant-are-two-thresholds-Two important threshold parameters for joining grid cells into segments +are

lthreshold to control the sizes of segments and uthreshold to prevent the growth of inhomogeneous segments.
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Another important option for gpat_gridhis is the signature type within each grid cell, default cooc, “Spatial-spatial co-
occurrence of categories”. This characterizes signatures with a “colour” co-occurrence histogram, a variant of the Gray-Level
Co-occurrence Matrix (GLCM) used to characterise texture in greyscale images (Haralick et al., 1973; Hall-Beyer, 2017). In
GeoPAT, discrete greyscale numbers, as in GLCM, are replaced by cell classes. A separation of one pixel is used to calculate
the co-occurrence histogram, which then represents the spatial pattern within a grid cell. Related to this is the normalization
type, default pd £ “probability distribution function”, which is recommended for the cooc signature type. This harmonizes the
signatures from different motifels.

Grid creation requires the selection of grid sizes. To evaluate DSM products we select these based on their correspondence
to nominal map scales, using the Vink definition of a minimum legible delineation (MLD), i.e., the smallest area that can
be displayed on a printed map, of 0.25 cm? at map scale, i.e., a grid cell side of 0.5 cm (Vink, 1963). The Optimal Legible

Delineation (OLD) is conventionally defined as 4 x MLD (Forbes et al., 1982). This is a delineation size which is easily legible

2

and still small enough to be relatively homogeneous. In conventional mapping the map scale should be set so that the soil
attern is on average able to be shown by OLD-sized polygons. In segmenting DSM products we hope that most segments are

at least as large as the OLD.
To determine the Minimum Legible Area (MLA) and corresponding side on the ground, these-are-the MLD is multiplied by

the scale number (denominator of the scale ratio). For example, at 1:200 000 the MLA is 100 ha, with a side of 1 km. Signature
computation requires at least 100 pixels from the DSM map in order to produce a reliable signature, i.e., the minimum edge of
the segmentation grid (the “shift” parameter) must be 10 times the original DSM resolution. For example, a 25 x 25 m DSM
product can only be segmented at 250 x 250 m or coarser (6.25 ha), corresponding to the MLA of a 1:50 000 scale map. To
match a 1:200 000 map (MLA 100 ha), the 25 x 25 m pixel must be aggregated 40 times per side, i.e., 1 km x 1 km. These

concepts are comparable to concept of soil survey orders in the USA soil survey (Soil Science Division Staff, 2017, Chapter 4)

and the “resolutions and extents for DSM” of (McBratney et al., 2003, Table 1).
The segmentation phase in GeoPAT is implemented by the gpat_segment “segment a grid-of-scenes” program. This

groups grid cells based on their motifel signatures computed by gpat_gridhis. Segments have a “brick” topology, in
which square grid cells are arranged in alternating layers with each layer is shifted by one-half the size of the motifel. Thus,
the analysed area (i.e., the MLA) is four times the motifel size.

Segment homogeneity is characterised by their normalised Shannon entropy H, defined as:

Ny

H=-Y pilog,_ pi (1
i=1

where p; is the proportion of the segment in class ¢, n, is the number of possible classes, and these are summed over all
n, pixels in the grid cell. Using the logarithm to base n, normalizes the entropy to the unit range regardless of the number
of possible classes, so that 0 indicates complete homogeneity, i.e., one class for the entire segment. By contrast, 1 indicates
maximum heterogeneity, i.e., all classes are equally represented in the segment. This only depends on class composition, not

on pattern, even though the latter is the basis for segmentation.
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Figure 3. GeoPAT clustering workflow. gpat_polygons ‘“calculate numerical signatures of irregular regions”; at_distmtx
“compute a distance matrix between a collection of scenes”. Source: (Netzel et al., 2018)

Segmentation quality is measured with the gpat_segquality “compute quality metrics of a segmentation’” program.

This produces two quality measures: (1) the inhomogeneity within each segment, and (2) the isolation of each segment from its
neighbours. Inhomogeneity measures the degree of mutual dissimilarity between a segment’s motifels, on a [0. .. 1] scale, where
smaller values are-better;+-e--more-homogeneotss-correspond to more homogeneous and less internally diverse segments. Iso-
lation is the average dissimilarity between a segment and its immediate neighbours, on a [0...1] scale, where larger values are

better+i-e;-more-iselated-correspond to segments that are more isolated from their neighbours. These measures depend on the

pattern, not just the class composition, of segments. The most successful segmentation would have the smallest inhomogeneit
and largest isolation.

2.3 Clustering

Once segments are created, their internal patterns can be characterised by the same signature methods used to perform the seg-
mentation. Figure (223) shows the workflow for clustering in GeoPAT. The gpat_polygons “calculate numerical signatures

of irregular regions” program computes the signature within each segment. The distance between these signatures is then com-

puted by the gpat_distmtx program—"‘compute a distance matrix between a collection of scenes” program. Here we used
the default Jensen-Shannon divergence, because it is easily interpretable on a [0...1] scale and is not sensitive to extreme

values (Lin, 1991). The segments can then be clustered on the basis of their distance measures by many clustering algorithms—;
see the comprehensive description in Gan et al. (2021). Here we use hierarchical clustering, as implemented by the R function

hclust using Ward’s linkage with squared distances to produce a dendrogram. This is cut at an analyst-determined num-

10
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ber of classes to represent groups of internal homogeneity of segments. There-are-We chose Ward’s with squared distances

Ward’s D2) to minimize within-cluster variance. This minimizes the loss of information associated with each merging as

the dendrogram is built bottom-up. There other choices in both the distance measurement and clustering linkage method—We

s

. here we want to illustrate the clustering concept, not compare clusterin

methods.

3 Case study-Study 1 — BIS-4D (Netherlands)

BIS-4D (“Bodeninformatiesysteem 4-Dimensional”) (Helfenstein et al., 2024) is a high-resolution (25 m horizontal, six depth
slices vertical) soil modelling and mapping platform for the Netherlands. The 3D are geographic space and depth along the
soil profile. The fourth dimension is time, applied only to soil organic matter (SOM), which we ignore here by using only
the most recent SOM map. Predicted properties are clay, silt, sand and SOM concentrations %, bulk density g cm~3, pH
in KCI, total N mg kg ™', oxalate-extractable P mmol kg !, and cation exchange capacity mmol(c) kg~ !. Depth slices are
the GlobalSoilMap standard 0-5, 5-15, 15-30, 30-60, 60-100 and 100-200 cm (Science Committee, 2015). Each map is
accompanied by uncertainties (quantiles and 90% prediction interval). We did not use these in this analysis, only the mean
predictions. Coverages in the GeoTIFF format are free to download and use, and can be directly read into the terra R
package (Hijmans et al., 2025).

BIS-4D is highly—fairly accurate at point support, as assessed by cross-validation (Helfenstein et al., 2024, Tables 7, 8)
, due to a very dense sampling network and the country-specific covariates used in the DSM. For example, the 10-fold
cross-validation average for all predictions of pH had a median ME of -0.023 pH. median RMSE of 0.72 pH, and a median

MEC of 0.72. For clay these accuracy statistics are 0.42%, 7.7%, and 0.78, respectively. Visual inspection of layers agrees well
with traditional 1:50 000 scale polygon soil maps (Steur and Heijink, 1980; Brouwer et al., 2021) and expert views of the soil

landscape.
We selected a 40 x 40 km test area (Figure 2?4), because of its diverse soil-forming environments, including river clays of

various ages and compositions, sandy push moraines, organic soils in glacial depressions, and coversands.
3.1 Aggregation

The supercells algorithm can work directly on raster stacks of the terra package. All 54 maps (7-properties;—6-nine
properties, each with six depth layers) were combined in a SpatRaster raster stack. Since the values and ranges are not
compatible, the Jensen-Shannon divergence was used to evaluate the distance in feature space between pixels and supercell
centres. In this landscape there are non-compact (extended) features parallel to the river, in the fen areas and along the push
moraines, so after some experimentation a low compactness value (0.2) was selected. We selected a minimum mappable area

of 10 ha, equivalent to the 1:50 000 design scale of the Dutch conventional soil map, using the Cornell definition of 0.4 cm?

11



Figure 4. Semi-detailed soil map of the Netherlands, design scale 1:50 000 (part).
Source and detailed legend: Ministerie van Volkshuisvesting en Ruimtelijke Ordening (2024).
General legend: Dark and medium green: river clays with different clay concentrations; Light green: glacial depression sediments; Brown,

pink: push moraines with varying sand and gravel sizes; Yellow: wind-blown sands; Purple: peat.

minimum legible area on the map (Forbes et al., 1982). Thus we-set-the minarea was-parameter was set to 1-,600 pixels, each
265 of 25 m x 25 mpixels.
Figure 22-5 shows the supercells (outlined in black) with several properties as a background. Note that the supercells in all
maps are the same, but ef-eeurse-the mean values of each property within the supercells are different. The median size of the
270 supercells was 433 ha, ranging from 104 to 5 044 ha, with a strongly right-skewed distribution. Aggregation clearly shows
the differences between soil bodies, with some properties being more prominent in certain supercells.
270 To evaluate the quality of the aggregation, we computed the standard deviation of each property within each supercell (Figure
226). These are quite low for clay and SOM, and for pH with some small but-areas with notable exceptions. Bulk density is

less successfully aggregated. The exeeptions-are-where-that-property-is-notimportantin-high standard deviations in a supercell
occur when that property has a small contribution to the computation of Jensen-Shannon divergence te-in that supercell.
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Figure 5. Results for selected properties of aggregation by supercells algorithm using all properties and layers

3.2 Segmentation

275 Since gpat_gridhis requires class maps, to illustrate this method we classified the soil property maps as follows: bulk
density by 0.1 gcm ™3, CEC by 25 mmol(c) kg™ ", clay, silt, sand concentrations by 5%, Poy by 4 mmol kg™, pH by 0.1
units, SOM concentration by 4%, and total N by 1000 mg kg~ ". In practice, the map evaluator would select class limits to
correspond to the desired precision and thresholds for interpretations or models. The class widths can not be finer than the
precision of the corresponding laboratory analyses, which usually are more precise than the precision needed for applications..
of 0.1 pH, although the recommended laboratory method has a precision of 0.01 pH. Another consideration is the precision of
the DSM. In this example pH was predicted with an overall RMSE of 0.72 pH, so perhaps the classes should have been defined
more coarsely than the selected 0.1 pH.
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Figure 6. Standard deviations for selected properties of aggregation by supercells algorithm using all properties and layers

The minimum grid size for segmentation (10 x 10 pixels) is 250 x 250 m (62.5 ha), corresponding to a 1:158 000 scale map
by the Vink definition, or 1:125 000 by the Cornell definition, as explained in §2.2. Segmentation at this resolution is expected
to more closely match the 1:200 000 generalised soil map of the Netherlands (Haans, 1965) than the 1:50 000 semi-detailed

map shown in Figure 223.
3.2.1 Univariate segmentation of individual maps

To examine the effect of grid size, we segmented all properties at all depths, individually, at the minimum possible grid
cell size, i.e., 10 x 10 and at several multiples +46-<-46-corresponding to nominal map scales 1:100 000-ha)-and-80-<80-(4-,
1:200 000-ha);eorresponding-to-nominal-map-seales-, 1:400 000, and 1:800 000, respectively. The-finestsegmentationproduced
4-393-pH106-200-em)The next coarser resolution (1:1°600 000) resulted in only one or two segments and so was not used
in_this test area, only for the entire Netherlands (§3.2.4, below). Table | shows the results for one run of the segmentation
process. Note that because of the random aspects in the algorithm other runs give slightly different results. Comparing the
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300

305

310

315

1010
2020
4040
80 x380 1:800 000 eguiva

Table 1. Results of univariate segmentation: each property at each depth slice separately (54 segmentations). 72,,4.: maximum number of
segments found by all properties; 72,,i,: number of segments found for the “minimum segments” property; nedian: Median number of
segments found by all properties.

finest segmentation to the single

grid cell at resolution, 0.625 km?, we see that many segments were of one or two grid cells. The-This pattern was mostly
very fine, with a few large segments for most single properties. Segmentation-at-Each quadrupling of the grid area resulted
in larger segments, but these were not simply groupings of the previous segments. In general, the various depth slices of pH
were the least successfully grouped into larger segments, whereas Pox and SOM were able to form large segments. The clay.
properties, as well as intrinsic spatial variability.

3.2.2 Multivariate segmentation of individual properties, all depth slices

We then performed a multivariate segmentation using all depth slices of single properties. By default, GeoPAT normalizes each
layer and by default weights them equally. In this mode, a motifel must meet the threshold conditions for all input layers to
be joined to a segment. In this way the segmentation is meaningful for each-tayerthe whole profile. Because of the different
spatial structures of the properties at each depth slice, it was expected that the segmentation would be finer at each scale than

for individual depth slices, i.e., it would be more difficult to merge grid cells. The results for one run of the segmentation

process are shown in Table 2. Contrary to our expectations, the median number of segments were all smaller than those for the
corresponding property’s single depth slice segmentations. This shows that using the multivariate measure of similarity with
the same model parameters allows for larger areas with the same internal pattern. Again, the maps of pH and sand could only
be grouped into small segments, and SOM into the largest segments.

Figure 7 shows the segmentation based on whole-profile bulk density at the finest scale (nominal 1:100 000), overlaid on the
six depth slices. y tons;-the-med tah-nun egments-were-all-smallerthan-those for the-corresponding
property s single depth-stice segmentations:There is a clear landscape pattern. The sandy areas with higher bulk density, as well
as the medium bulk densities in the older river clays, are mostly collected into large polygons.The fine details in peat areas and
younger river sediments are also captured.
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Cell size. ~ominal scale

1010 1:100 000
2020 1:200 000

80 x 80 1:800 000 valen e v g 5 g Taverage-area
Table 2. Results of multivariate segmentation: all depth slices for each property (9 segmentations). nmqz: maximum number of segments.
found by all properties; nmix: number of segments found for the “minimum segments” property; Mymedian; Median number of segments
found by all properties.

bd000S; Shift: 250 m bd0515; Shift: 250 m bd1530; Shift: 250 m

Figure 7. Segmentation based on bulk density over the whole profile (red lines), overlaid on soil map polygons (grey lines). Design scales
left to right, top to bottom: 1:100 000, 1:200 000, 1:400 000, 1:800 000

Figure ??-shows-8 compares the segment boundaries for this-the multivariate segmentation by bulk density over the whole
profile, at the-three—four resolutions overlaid on the Dutch 1:50 000 soil survey polygons. It is clear that the +:806-000

320 segmentation-missesimportant-differeneesnecessarily larger polygons resulting from the coarser segmentations miss important

differences, and that the 1:100 000 segmentation finds quite small areas, mostly just one grid cell, within soil bodies. The

1:466200 000 segmentation (i.e., shift size 46:1+20, i.e., 0.5 km® 3-grid cells) matches well with many soil map boundaries.
Note however that the Dutch soil survey map units are defined by many properties, not just bulk density.
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Figure 8. Segmentation based on bulk density over the whole profile (red lines), overlaid on soil map polygons (grey lines). Design scales

left to right, top to bottom: 1:100 000, 1:400 000, 1:800 000, 1:1°600 000

RANARKARRAR

Figure 22-9 shows the success of the segmentation based on bulk density over the whole profile at the—+:466-006-design
seale-two design scales. This is evaluated by the internal inhomogeneity of each segment and isetation-the difference of this
from its neighbours, i.e., the isolation. For example, the-pixels-in-the large segmentin-the-top-centre-are-quite-similar-in-their-at

both scales the polygon at upper left, representing part of the sandy uplands (the Utrechtse Heuvelrug), has low inhomogeneit

similar internal composition of the bulk density profiles ;-butthissegmentis-only-moderately-differentfrom-of its pixels), and
high isolation, i.e., its internal composition is quite different from that of its neighbours. This shews-the-relative- homegeneity

~landscape segment
has been well-identified at both scales, because it has such a distinctive bulk density profile (very high throughout) in contrast
to its neighbours.
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Figure 9. Evaluation of segmentation based on bulk density over the whole profile at the 1;100 000 (top) and 1:400 000 (bottom) design

sealescales. Note the different colour ramps for the two scales

Cell size nominal scale  number of segments
10x10 1:100 000 985
40 x40 1:400 000 7
80 x 80 1:800 000 22 0.086 o 0070 paratlel median isolation-values de

Table 3. Results of segmentation based on the bulk density profile.

As-Table 3 shows that as the segmentation becomes coarser the inhomogeneity and isolation both decrease, i.e., segments
335 are internally more consistent in their patterns;-internal patterns and less isolated from their neighbours. Ferexample;median

OHOE —vald o o atton—based-on—whole-profile bulk—denstty(This illustrates the effect of

eneralisation.
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360

Cell size  nominal scale  number of segments  inhomogeneit isolation  average area km?

20x20 1200000 us 0366 0574 1356
40x40 1400000 40 0365 0566 40.00
80 x 80 1:800 000 6 0.414 0.569 266.67

Table 4. Results of multivariate segmentation: with selected properties and depth slices

3.2.3 Multivariate segmentation with selected properties and depth slices

Although BIS-4D predicts each property separately, the soil as
a natural body is of course more than a stack of individual properties, and this is recognized by the concept of diagnostic
horizons and properties in modern soil classification systems. and soil series in detailed conventional soil mapping. To see if
segmentation of BIS-4D can identify these, we selected properties and depth slices to represent the profile. These were selected
to match with expected diagnostic horizons and series differences in the test area, Usingalt-56-In other contexts the choices
would be linked to the key soil properties and depth slices which differentiate the major soil types in that area. Using all 54
layers results in an impractical Jensen-Shannon divergence, hence we selected key properties at key depths: (1) pH, clay, silt,
SOM at 0-5 cm-elay—-bulk-density-; (2) clay and bulk density at 15-30 cm;-CEC-; (3) CEC at 30-60 cm;-sand—+SOM-; and (4)
sand and SOM at 100-200 cm. Figure-2>-The reason for including SOM of the deepest layer was to distinguish thick peats,
and for sand of that same layer is to distinguish thick dune sands.

Table 4 shows the results for one run of the segmentation process. The segment counts at each scale are much smaller, and
thus the segment areas are larger, than for individual properties and depth slices, and also for individual properties over the
whole profile, compare with Table 3. This follows the tendency observed for using full profiles of single properties, compared

to single depth slices (§3.2.2).
Figure 10 shows the segment boundaries from this segmentation at the 1:400 000 design scale, overlaid on several-single

soil-the properties and depth slices —Note-that-the-segment-boundaries-are-the-samefor-all-maps—This-segmentationshould
best-group-seils-considered-holistically; not-per-propertyused to compute the segmentation. Many of the segments correspond
to landscape features shown in the conventional soil map of Figure 2?4, although constrained to the rectilinear shape and
minimum grid cell size. For example, segment 2 covers both the sandy push moraines, and segment 10 most of the lower Rhine
floodplain. However, because the different properties and depths have different segmentations when considered independently,
some obvious soil landscapes are not well-represented because the segmentation must consider all the properties and depths.
For example, the areas with thick peat as shown on the 100-200 cm SOM map are not separated into segments, but rather
included in larger segments. This suggests that the algorithm will have difficulty segmenting on the basis of multiple properties
which are selected to represent major profile types.
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Figure 10. Segmentation based on selected properties and depth slices, overlaid on DSM of selected soil properties, 1:400 000 design scale.
Legends not shown. Scale is from dark—+ed-yellow (low values of the property) to dark green-blue (high values). Fop-left-map-inctudes

segment-Segments are labelled with their numbers.

3.2.4 Sealing-efsegmentationSegmentation over a large area

The-segmentation-method-seales—well—The-To determine whether segmentation could be applied over a larger area than the
40 x 40 km test area, we segmented the BIS-4D product for the entire land area of the Netherlands (= 33 240 kmz) Wwas
segmeﬂfedrusmg all depth slices for

ity)three properties, at the three most
general scales. The results are shown in Table 5. Interestingly, there is quite some difference in segment numbers among these
properties. Bulk density (classified units of 0.1 kg m ") forms the fewest segments, whereas pH (classified in units of 0.1 pH)
the properties.
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Property 7,40x40 n.80x80 m 160x160

pH. 2240 601 161
Bulk densit 1344 358 100
Clay concentration 1444 462 143

Table 5. Results of multivariate segmentation: all depth slices for selected properties, entire Netherlands. n = number of segments

ph1530; Shift: 2000 m ph1530; Shift: 4000 m

40105 550000
40105 450000 550000

350000
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&

Figure 11. Segmentation by whole-profile pH of the Netherlands at 1:460800 000 (left) and 1:3661°600 000 (right) nominal scales, overlaid
on the pH 15-30 cm DSM product

Figure 11 shows the segmentation by pH ef-(classified in units of 0.1 pH) of the entire Netherlands at these-two-seales:
the two most general scales. For this extent the coarsest segmentation seems most useful for understanding the generalized

country-wide soil pattern. For example, the two push-moraine sand ridges (Utrechtse Heuvelrug and De Veluwe) are identified
as one segment, as is most of the reclaimed marine clays of Flevoland. The complex pattern of low and medium pH in North
Brabant is also identified as one generalized soil landscape.

3.2.5 Segmentation parameters

Segmentation is greatly affected by the two thresholds. Forexamplesegmenting-the-test-area-Table 6 shows the results for one
run of the segmentation process using all depth slices for clay using-concentration with the default lower and upper thresholds

(0.1 and 0.3, respectively)restlts-in—+9 100-000)-and148-(1:400-000)-segments;-whereas-using-, compared with a more
liberal (easier segmentation) thresholds (0.3 and 0.8, respectively), at several resolution. Using these liberal segmentation
parameters reduces the number of segments isredueed-to-285-and-+8-between two- and three-fold. In effect, the more liberal
segmentation at a finer scale is simitar-comparable to the more conservative one at a-coarser-seale—the next-coarser scale.
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390

395

400

405

Cellsize.  nominalscale 7 (conservative) 7 (liberal)  reduction factor

Table 6. Conservative and liberal segmentation, all depth slices of clay concentration.

Figure-22-This is illustrated in Figure 12, which shows the multivariate segmentation of the test area on the basis of clay
concentration at all depth slices at nominal 1:460100 000 seale-with-default-thresholds;-and-the-same-for-the-and 1:166200 000

scale but-with-with default and more liberal thresholds. These-maps-are-comparable—The thresholds can be adjusted by the
analyst to match known soil-landscape components. This is an example of “helping”’ the DSM product to “speak for itself”.

3.3 Clustering

Hierarchical clustering was applied to the segments of Figure 2?10, i.e., based on seleeted-properties and depth slices s-selected
to represent the profileprofiles of the major soil types. The resulting dendrogram is shown in Figure 2?13. Note the large
separation in internal patterns between the two top-level branches (height 6)—Fhese-2.5). Comparing to the segment numbers
shown in Figure 10, it is clear that these represent the river clay landscape, Gelderse Vallei depression, and lower terraces (right
braneh;-elusters4—7left branch, e.g., segments 5 and 17) and the sandy uplands (left—elusters+—3right branch, e.g., segments
1 and 2). At the second level fer-of the right branch (height 3:-5)-the-large-1.2) the separation is between the-Gelderse-Vallet
WWWSW%%WMW4% 6,9) and

the

%WWWMWWM%
segments 1 and 2). While not a perfect separation, the clustering does separate the principal soil landscape components —and
are joined, it seems that cutting the tree at height 0.8 into five clusters forms the most useful general grouping. This is shown in

Figure 13 by boxes around the sets of segments in each cluster. These generalised clusters are shown on the landseape-inFigure
2nine properties in Figure 14. Fhese-They group similar segments well and could serve as landscape management units. For

3.4 Evaluation
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Figure 12. Segmentation by whole-profile clay at 1:406100 000 with-defaultthresholds-(lefttop) and 1:306200 000 (rightbottom) with default
thresholds (left) and liberal thresholds (right), overlaid on the clay 0-5 cm DSM product

Fhe-By using the algorithms with analyst-selected parameters, the BIS-4D product ean-was able “speak for itself” quite well,
to-reveakrevealing both compact units of homogeneous soils and segments with similar heterogeneous patterns of soil classes.
Aggregation based on properties and depths selected to represent the results of the principal soil forming factors delineates
410 patches (Figures-22-and-2?Figure 5) that closely correspond to polygons of the 1:50 000 design scale conventional soil map
with design scale 1:50 000 (Figure 2?4), generalized to about 1:+58100 000 design scale, although with some variations in
form. Segmentation was most successful with grid cells of 1 000 ha, corresponding to nominal map scale 1:400 000. This
grouped patterns of pixels with different internal patterns of classes. Hierarchical clustering of these segments found groups of
similar patterns within the map. These represent separate segments of the same landscape component. These results increase

415 confidence in the BIS-4D DSM product. This is perhaps a best case, due to the extremely-high quality of the source data
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Figure 13. Hierarchical clustering of the segments shown in Figure 2210

(training points and covariates), the conventional map which can be used for comparison with aggregation and segmentation,

and sophisticated modelling approach specific to the Netherlands, as explained by Helfenstein et al. (2024).

4 Case study-Study 2 — SoilGrids v2.0 (Global)

At the other extreme from the country-specific DSM exercise based on a large quality-controlled and spatially complete training
set (§3) is a global DSM exercise based on a heterogeneous and spatially-unbalanced training points, using only covariates with
global coverage. For this case we selected SoilGrids v2.0 (Poggio et al., 2021) from ISRIC-World Soil Information. This is a
set of predictive maps of soil properties for the entire globe at 250 m nominal spatial resolution. Aggregations to 1 km and 5 km
resolutions are provided for modelling at coarser scales. It is a globally-consistent product that uses all available point data

from the World Soil Information Service (WoSIS) database (Batjes et al., 2024), also from ISRIC-World Soil Information, and
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Figure 14. Generalised clusters of the segmentation of Figure 2210, based on slicing the clustering dendrogram shown in Figure 22-13. The

same segmentation is shown for sever-general-ctustersnine selected property-depth combinations. Clusters shown by colour and number.

covariates with global coverage. Political boundaries are nowhere visible, except where one or more covariates match these. In

this it follows the concept of the pioneering FAO-UNESCO Soil Map of the World (FAO - UNESCO, 1971-1979; FAO, 1990

SoilGrids provides both predictions and their uncertainty, via quantile random forest machine-learning models. It closely
follows the GlobalSoilMap specifications of properties and depth slices (Science Committee, 2015). It also predicts the derived
property ef-SOC stocks from 0-30 cm, in T ha™*, computed from SOC concentration and bulk density. We ehose-to-evaluate

thistayer, in-order-to-compare-it-with-the FAG’s-selected SOC stock because it is a high priority for global modelling, as
evidenced by the efforts of the FAO to produce a global map from national contributions in the Global Soil Organic Carbon
Map (GSOCmap) project (FAO;2648)~(FAO, 2018, see a portion of this map in Figure 30, below). It is a high priority due to
its key role in soil functions and its importance in policy applications. It is a primary target for DSM over various spatial
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Figure 15. SoilGrids v2.0; SOC stock 0-30 cm, T ha . Test area for aggregation (§4.1) shown as a red square.

extents. How can the diverse SOC digital soil maps be evaluated? We propose the spatial pattern and its relation to the soil

landscape, as revealed (we hope) by aggregation and segmentation.

Poggio et al. (2021, Table 4) shows that SoilGrids predictions had a median global cross-validation RMSE of 3.97% SOC

concentration and 0.19 g cm 2 bulk density, averaged over the three layers which contribute to SoilGrids SOC stock estimates.

We selected a transnational study area with eorners-lower-left corner (-109.99 E, 27.86)-E-and- N) and upper-right corner
(-100.03 E, 35.64)N N). This covers most of Chihuahua and Coahuila and part of Sonora States (M2XMéxico) and portions of

Texas and New Mexico States (USA). Figure 22-15 shows this area, with the SOC stocks over the 0-30 cm depth slice. The
higher stocks are in mountains and wetlands along the Rio Grande, the lower in high deserts.
Individual 2 x 2° tiles of the 250 m product were downloaded in the GeoTIFF format from the interactive SoilGrids site

(ISRIC-World Soil Information, 2024b), imported into R with the terra package, mosaicked, projected from the original

445  geographic coordinates to a local Albers Equal Area projection, and trimmed to 3 270 x 3 610 6.25 km? pixels, covering
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Figure 16. Test area for aggregation, centred on (-105 E, 32 N). Source: @ Google Earth

737 793.8 km?. The global map of the 1 km product was downloaded in the GeoTIFF format from the ISRIC WebDAV
repository (ISRIC-World Soil Information, 2024a), projected from the original Homolosine coordinate reference system to the
same local Albers Equal Area projection, and trimmed to 900 x 900 1 km? pixels, covering 810 000 km?.

Predicted SOC stocks per pixel in the study area ranged from 0 to 83, median 28 T ha™" for the 250 m product, and 7 to
76, median 29 28T ha ™" for the 1 km product, showing the smoothing effect of upscaling. These distributions are moderately

right-skewed (skewness 0.468 and 0.488, respectively).

4.1 Aggregation

We applied the supercells algorithm to the SOC stocks 250 m resolution layer. To limit processing time and memory
requirements, we selected a small test area of 80 x 80 km, i.e., 640 000 ha, centred on (-105 E, 32 N) at the Texas (N) /
New Mexico (S) border, near Dell City NM-(Figure-22)-TX (Figure 16). The centre pivot irrigated fields at the centre-left are
~ 800 x 800 m and should thus be resolvable on the SoilGrids map. This area includes a wide range of the SOC stocks (Figure
22-17 left), with high values in the Guadalupe Mountains to the east and very low values in the salt flats in the centre of the

area.
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Figure 17. SoilGrids v2.0 250 m SOC stock M(lefo and its aggregation into supercells (right)%SQG—steeleG—%@em,—T—ha;'&

After some experimentation, a medium value (0.5) for compactness was selected. We did not set a minimum mappable
area minearaminarea, rather a number of proposed supercells #—A-ehoiee-of-~-400-supercellseorresponds-k ~ 400 supercells,
corresponding to an average area of 1 600 ha eorrespending-to-and 1 cm? on a 1:400 000 printed-map. This is much larger
than the area of single centre-pivot irrigated fields, so we did not expect these to be individually resolved.

Figure 22-17 (right) shows the computed supercells. Median size of the 412 supercells was 1 388 ha, ranging from 431 to
5 462 ha, with a strongly right-skewed distribution. This aggregation clearly groups the pixels with similar SOC concentra-
tions. However, the shapes do not seem to correspond to natural landscape boundaries. We attempted other combinations of
compactness and supercell numbers, with poorer results.

The quality of the aggregation can be measured by the standard deviation of the property within each supercell (Figure
2218). These ranged from 0.34 to 6.08, median 1.18 T ha™', with corresponding coefficients of variation from 1.36 to 26.61,
median 4.39%. The highest heterogeneity was in the pivot irrigation area, where the minimum supercell size forced pixels with

a wide range of values together.
4.2 Segmentation

Segmentation was applied to the SOC stock map of the full study area, for both resolution SoilGrids DSM products. Since
gpat_gridhis requires class maps, SOC stocks were classified in 19 (250 m) and 18 (1 km) equal intervals of 4 T ha~ !,
with from 31 to 1’956 813 (250 m) and 14 to 128 549 (1 km) pixels per class. The minimum grid resolution for the 250 m
product is here 2.5 x 2.5 km. Fhe-This map was segmented at this resolution, and also four coarser resolutions: 5 x 5 km,
10 x 10 km, 20 x 20 km, and 40 x 40 km, corresponding to map scales 1:1M, 1:2M, 1:4M, 1:8M, and 1:16M, respectively.

As expected, the segments are increasingly heterogeneous as the cell size increases: both the median standard deviation within
the segments and their entropy increase. Figure-22-shows-the-segmentation-at-the-finest-seale-
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Figure 18. Standard deviation within supercells; SoilGrids v2.0 250 m SOC stock 0-30 cm, T ha ™!, rounded to 0.1 precision

Cell size nominal scale  number of segments  median standard deviation  median normalized entro average area km?>

Table 7. Results of seementation of SoilGrids 250 m resolution SOC stock T ha~'; normalized entro

480 Figure 19 shows the results of the four finest segmentations. The level of detail is apparent, but many segments seem-to
be-ofasingle-elass-with-at the finest segmentation contain only one SOC class. and thus have no internal pattern. Broader
tandseape patterns-are-obseured by-thistevet-of detaifThe increasing generalisations find increasing heterogenous segments,
with a clearer relation to the soil landscape with each increase.
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Figure 19. Segmentation of the SoilGrids v2.0 250 m resolution SeilGrids-SOC stock map (part) at (left to right, top to bottom) 1:1M, 1:2M,

14V and 1:8M nominal resolutions, Units are T ha™"

From-the-The 1 km resolution

was also segmented at the four finest possible cell sizes. Again as expected, the segments are increasingly heterogeneous as

the cell size increases: both the median standard deviation within the segments and their entropy increase. Table 8 shows the

results. Comparing with Table 7, we see that at comparable nominal resolutions the numbers of segments are comparable

although there are somewhat fewer segments from the 1 km product, consistent with its generalisation. Figure-2?-shows-these
threesegmentations-

Figure 20 shows these segmentations of the 1 km product. As reselution-deereasesminimum segment size increases, broader
landscape patterns are increasingly aparent—AH-segmentations-seem-useful-at-theirrespeetive-destgn-seales-
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Cell size. nominal scale  number of segments  median standard deviatic

1010 1:4M5-47000 000 381
8080 ion-32:000 000 6

495

312585 The coarsest segmentation (80 x 80) separates the large low-SOC plateaus from the
basin-and-range mountains with alternating high and low SOC. The entire Rio Grande valley is one segment. The comparable
uniform internal patterns. This resolution will be used for clustering (§4.3, below).

500 Figure 22-21 shows the entropy for each segment of the 1:16M nominal resolution map from the 256-m-1 km product. This
is a measure of the internal class homogeneity of each segment, although not the spatial pattern of the classes. The highest

entropies are found in the segments with mixed high and low terrain, shown as contrasting purple and light blue colours.
4.3 Clustering

Figure 22-22 (left) shows the 39 segments signatures from the 1 km product, using motifel size 40 cells, and Figure 22-22

505 (right) shows the assignment to seven generalised clusters. Figure 22-23 shows the dendrogram for the clustering of the 39
segment signatures.

The co-occurrence pattern of classes is similar within each general cluster. The clusters should group similar soil landscapes,

at least with respect to the SOC concentration. For example, cluster 1 groups mountainous terrain with high SOC interspersed

with basins with medium SOC in an intricate pattern—, whereas cluster 5 groups the low-SOC plateau areas. Cluster 2 contains
510 most of the upper Rio Grande valley, but includes some plateau areas to its west.

Figure 2224 shows the Jensen-Shannon divergence with the first segment, which necessarily has no divergence. This distance
does not directly correspond to cluster distance in the dendrogram unless clustering is by single linkage; here we used clustering
by Ward’s D2. These range from 0.14 (segment 30, in the same cluster 1 as the target segment, although on a different first
branch at height 0.45) to 0:84-(segment40.94 (segment 28, in widely-separated cluster 3, different at branch height 1.45). Fhis

515 These distances can be used to find the soil patterns that are most similar to any segment, independently of cluster membership.
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Figure 20. Segmentation of the SoilGrids v2.0 1 km resolution SOC stock ma

4.4 Evaluation

Aggregation was able to form compact groups of pixels with similar SOC stocks, which could be useful for, e.g., stratified sam-
pling. However the polygons did not seem to correspond weh-with-to landscape units. Segmentation was more successful. At
several increasingly-general scales it grouped distinctive patterns of SOC stocks, corresponding to large landscape units. This
was most apparent at the 1:16M nominal resolution (Figure 22). Among the most obvious are the Chihuahuan basin-and-range
mountains (segment 29 of Figure 22), the upper Rio Grande valley near Socorro NM (segment 2), and the west Texas/eastern
New Mexico plateau (segment 13). Some segments include several physiographic units, which nonetheless apparently had
similar _patterns of SOC, for example segment 23 which includes some west Texas uplands, the Rio Grande valley below
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Figure 21. Normalized Shannon Entropy of segments of the SeilGrids—+2-v2.0 1 km resolution SOC stock map (part) at 1:16M nominal

resolution. Colour scale from white (lowest entropy) to dark purples (highest entropy).

ooooo
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Figure 22. Left: Segmentation of the SoilGrids v2.0 1 km resolution SOC steeles—@llhai)%n@, motifel size 40 cells, units are T ha™!;

RAAANAANAAAAANAA

Right: Assignment of segments to seven-five generalised clusters, legend is cluster number.
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Figure 23. Dendrogram of segment signatures, SoilGrids v2.0 1 km SOC stock map, motifel size 40 cells:, with five general clusters
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Figure 24. Jensen-Shannon divergence from Segment +1. Heat colours from red (most similar) to white (least similar).
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El Paso, and uplands in eastern Chihuahua. Clustering was then able to identify general groups of landscape units, and the

Jensen-Shannon divergence identified the segments most similar to a selected segment.

5 Case study Study 3 — SOLUS100 (USA)

The third case study is intermediate to the first two. Like the BIS-4D study it is of one country and with training points from
one source, but (1) it covers a much wider area-and-se-and more diverse area but can’t use covariates that are only available for
part of the area, and (2) the-produetit is based on numerous traditional soil surveys of varying age and quality control, as well
as training points, which can be used to some extent for evaluation.

SOLUS100 (“Soil Landscapes of the United States 100-meter”) is a recent DSM product from the USDA-NRCS (Nauman
et al., 2024). Fhis-It contains predicted values, high and low estimates, and prediction intervals for soil properties at the
GlobalSoilMap standard depths, at 100 m horizontal resolution (i.e., 1 ha pixels) over the entire conterminous United States
(CONUS). The maps are available in GeoTIFF format (Nauman, 2024). These-SOLUS can be compared to the Gridded Soil
Survey Geographic Database (gSSURGO) digital product from the NRCS (NRCS Soils, 2022)—Fhis-, which was created

by digitising the polygons from traditional soil-landscape survey, with its linked relational database of polygons, map units,
components, horizons, and soil properties. Thus-aggregation-and-segmentation-NRCS has been working on updates to source
maps as well as harmonising map unit names and boundaries across different survey areas since 2013, although this work
is not complete. These updates are then used in new versions of gSSURGO. Aggregation and segmentation of SOLUS can
be compared to gSSURGO, a product based on expert judgement and field-based soil survey;-atthotgh-gSSURGO-is-also-.
However, gSSURGO is quite heterogeneous in the age and quality of the soil surveys on which it is based, and so must be used
with-eaution-as-a-ground-truthapproached with caution and preferably with the judgement of a local experienced soil surveyor

We selected a 570 km? test area in Wayne County NY,-mapped-(Higgins, 1978) and Ontario (Pearson, 1958) Counties NY,
originally published in 1978 and 1958 as Order 2, 1:15 840 and 1:20 000 scale surveys, respectively, on an unrectified airphoto

base(Higgins; 1978}, and later digitised on a topographic base map by the NRCS (D’ Avelo and McLeese, 1998) and incorpo-
rated into gSSURGO. This area has a distinctive pattern of NNW-SSE orientated drumlins of various sizes and shapes, and

inter-drumlin depressions. Some of these-the depressions developed into peatlands, with drained areas used for agriculture and

undrained areas used as wildlife reserves. All soils have developed since the final retreat of the Laurentide Ice Sheet around
12 000 years before present. The main soils are classified in US Soil Taxonomy as Glossic and Oxyaquic Hapludalfs at the tops
The genesis of this soil landscape has been studied for more than a century (Menzies et al., 2016). A topographic map of a

Figure-22-We selected clay concentration and SOC as the properties to analyze. This is because these vary considerably
in the area and shows excellent relation with the landscape. Specifically, the inter-drumlin swamps have high SOC and low.
clay, with the reverse for the drumlins. Accuracy statistics are not available for this area, however, for clay concentration of
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Figure 25. Representative portion of the SOLUS100 test area. Source: USGS topographic map, Lyons NY quadrangle, 2016, scale 1:24 000.
Contour interval 10 feet. Projection and marginal coordinates UTM Zone 18N. The centre swamp contains Typic Medisaprists; drumlin tops
are Glossic Hapludalfs.

the 0-5 cm layer over the entire CONUS (Nauman et al., 2024, Table S1) reports spatial cross-validation statistics of 6.481%
RMSE, -0.003% ME, and 0.672 R?, based on all 484 258 observations. When compared to only the 37 992 observations
that were analyzed in the NRCS Soil Characterization Laboratory these results were substantially worse: 8.382% RMSE,
0.011% ME, and 0.544 R?. For SOC of the surface layer the statistics are 7.507% RMSE, 0.213% ME, and 0.716 R? for
all observations, and 4.218% RMSE, 0.062% ME, and 0.220 R? for the laboratory observations. Thus the point accuracy of

SOLUS for this property is only moderate, but our interest is in the spatial pattern.
Figure 26 shows the predicted surface layer clay concentration for the original soil survey, as compiled in gSSURGO, and

for SOLUS. Notice the different legend scales and colour ramps, otherwise the SOLUS map would not clearly show its pattern,
since SOLUS predicts a narrower range of concentrations;-as-, This is typical of DSM products —made with statistical learnin
methods. (Hastie et al., 2009). It is obvious by visual inspection that SOLUS misses much of the fine pattern, and especially

36



570

575

gSSURGO Clay % 0-5 cm SOLUS 100m Clay % 0-5 cm

43.25°N 43.25°N

43.20°N 43.20°N

%

43.15°N 40 43.15°N

30

20
43.10°N 43.10°N
10

43.05°N 43.05°N

43.00°N 43.00°N

42.95°N 42.95°N
77.05°W 77.00°W 76.95°W 76.90°W  76.85°W  76.80°W 77.06°W  77.00°W  76.95°W  76.90°W  76.85°W  76.80°W

Figure 26. Clay concentration % of the 0-5 cm layer, gSSURGO (left), SOLUS 100 m (right).Cotrdinate Reference-System-is-an-Albers
Equal-Areafor CONUS:

that it does not identify most of the organic soils with very low clay concentrations (dark blue on the gSSURGO map). There

is some hint of the pattern in the southeastern corner of the study area.

5.1 Aggregation

-Aggregation with the supercells algorithm requires
parameterization. We set the minimum area parameterminarea to be comparable to MEDB-the Minimum Legible Delineation

MLD) (Forbes et al., 1982) at original design seale—The-source-map-in-this-area-was-at-scales, 1:24k-design-seale-so-15 840

and 1:20 000 for the two counties. We set the reference scale to be a bit smaller, i.e., 1:24 000, so that the MLD was set to

and increased slightly to three SOLUS cells. Aggregation complexity is also controlled by the target number of supercells.
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Figure 27. Supercells of-derived from the clay concentration % of the 0-5 cm layer from SOLUS 100 m overlaid by the polygon boundaries

(in red) from gSSURGO. Compactness parameter 0.2 (left), 2.0 (right). Projection is UTM18N on WGS84, compare with Figure 25

This should be comparable to the number of gSSURGO polygons in this study area. In-this-way-we-ean-This was to evaluate
how well the-BSM-SOLUS in this area can match the traditional soil survey for this property. In this area there are 14 949
gSSURGO polygons, with a median area of 2.43 ha, corresponding to—2-to-3-eeHsvery well to the MLD. We reduced this
slightly to a target of 14 000 supercells. The-mean-is-area-However, the mean area is 5.30 ha, because of some large polygons 5

- —of organic soils.

resulting number of supercells was much lower than the target, ranging from 6 364 for compactness 0.2, to 8 422 for
compactness 2.0. Indeed;-this-parameter-value-As expected, compactness 0.2 produced the map with the leastrounded-features
s but-their-orientation-most elongated features and 2.0 the least. However the orientation of the supercells did not match the
tandseape pattern-(Figure2?)-generally NNW-SSE pattern of the drumlin field (Figure 27).

We then aggregated based on clay concentration of all layers, i.e., the full profile, again with a range of compactness. The
number of supercells was more consistent than with a single layer, ranging from 7 306 for compactness 0.2, to 8 238 for
compactness 2.0. The larger number at the lowest compactness is because the algorithm could not find as much homogeneity.
in adjacent grid cells when considering all layers. Again, the spatial pattern of the supercells did not resemble the pattern shown
by gSSURGO and the topographic map.

From this we conclude that SOEUS-in-ne-way-represents-aggregation based on this SOLUS layer does not represent the actual
soil pattern. Fhis-same result-was-obtained-with-other layers-of elay-concentrationand-with-several-other soil-propertiesAfter

examining the supercells pattern and the source map, it is unclear to us what the SOLUS model is “seeing” in this area.
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Figure 28. Segmentation based on all depth slices of etay-SOLUS-predicted SOC concentration, nominal scale 1:400 000, 1000 x %. Note

the slightly different colour scales

5.2 Segmentation

SOLUS resolution is 100 m, so that the minimum shift is 10 i.e., 1 000 m = 1 km, corresponding to 1:250k nominal scale.
Thus we did not expect to reproduce the fine pattern, but rather to group these into regions. We segmented with raster stacks
of single properties at all depth slices, and with a raster stack of seven properties (clay, silt, and soil organic carbon weight
concentrations, coarse fragments volume, pH measured at 1:1 in water, CEC, bulk density) at one depth slice. The continuous
properties were converted to classes, as required by the GeoPAT segmentation algorithm: particle-size separates in units of 4%,
pH in units of 0.2 pH, CEC in units of 10 meq (100 g) ~*, bulk density in units of 0.1 kg m~ , and SOC in units of 0.2% up
to 6% and then in units of 5% to the maximum of 30%.

Figure 22-28 shows the segmentation based on all depth slices of SOC concentration, units-H006-x-%for-three-of the-overlaid
on the concentration at two depth slices . Some segments are well-separated, notably the depressions with swamps and organic
soils, as well as sections with different intensities of drumlins.

Figure-22-By contrast, Figure 29 shows the segmentation based on all depth slices of clay %;for-three-of-the-concentration,
overlaid on the concentration at two depth slices. The segments are quite large and do not identify collections of the main
landscape elements, i.e., drumlins and depressions.

Similar and even worse results were found with other properties, as well as with an attempt to use all properties at one depth

slice.
5.3 Clustering

Because of the poor results of segmentation, we do not present the results of clustering for this case study.
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Figure 29. Segmentation based on all depth slices of clay concentration, nominal scale 1:400 000, %. Note the slightly different colour

scales.

5.4 Evaluation

The two algorithms applied to SOLUS100was-able-to—, with appropriate parameters, allowed the product “speak for itself*”,
but the message was not clear and even misleading. Notably, the attempts to aggregate and segment based on a representation

of the profile resulted in unrealistic polygon maps. In this area the landscape pattern is striking and easy to map by conventional
methods. SOLUS was unable to approximate the conventional map in this area, let alone improve its resolution. This is likely
because SOLUS lacks locally-important covariates to represent this reeenthy-glaciatedrecently-glaciated soil landscape with its
characteristic drumlins. This is not meant to be a condemnation of SOLUS as a useful product overall. All DSM models trained
over a wide area have difficulty when applied to a local area with idiosyncratic soil-landscape relations which are not reflected
in the covariates available over the entire training area, or which have locally-specific relations with the wider-area covariates.
methods, see for example Fan et al. (2022). This problem was already recognized early on in DSM exercises. For example
Poggio et al. (2010b) discovered that soil available water capacity models used different significant covariates according to the
this study area, perhaps fitting the SOLUS model locally would have been more successful in reproducing the soil landscape
pattern, even without local covariates related to glaciation.

6 Discussion
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We first discuss how the two methods performed when applied in the test cases (86.1), as well as their strengths and limitations
and then discuss how they could be incorporated into evaluating DSM products (§6.2).

6.1 How did the methods perform?

The supercells algorithm was able to delineate relatively homogeneous soils, based on all soil properties and layers in
the BIS-4D example and the SoilGrids SOC example, but failed completely with SOLUS. A limitation of this approach is
that there is no objective way to adjust the compactness and supercell number parameters, other than the expert opinion on
which choice looks most “realistic”’. However, the minimum size parameter can be set to match a minimum legible delineation
corresponding to a desired map scale.

The GeoPAT algorithm was able to segment DSM products into objectively-defined areas made up of fixed-size blocks, each
relatively homogeneous in its pattern internally and relatively isolated from its neighbours. Segmentation was quite successful
on appropriate scales for BIS-4D and the test area and property of SoilGrids v2.0, but much less successful for the test area
of SOLUS100. The class composition of segments, although not their internal spatial pattern, were well-characterised by
normalized Shannon Entropy.

A limitation of the GeoPAT approach is the requirement for relatively large numbers of pixels per grid cell, and the rectan-
gular shape of the grid cells that are combined into segments. Thus, the segment boundaries can not follow complex natural

boundaries. Also, the landscape segments are at much more general scale than the source map.

An obvious question is how to parameterise the two approaches. In this paper we compared several choices of parameters in
each case study on an at hoc basis. It may be possible to systematise this with sensitivity analysis, to quantify the changes in

results as parameters change. This was outside the scope of this paper.
The question remains as to the relation of the supercells or segments with the actual soil landscape at the several scales.

There are two related questions. (1) For aggregation, do the relatively homogeneous (according to the supercells algo-
rithm) groups of pixels correspond to landscape elements? These would correspond to polypedons or consociations. (2) For
segmentation, do the patterns of pixels within the segment correspond to finer-scale patterns at the design scale of the segmen-
tation? These would correspond to associations or complexes.

In the case of BIS-4D and the detailed traditional Dutch soil survey, the degree to which the aggregation matches the
published map (Figure 224) is likely sufficient. The success of segmentation was discussed in §3.2. It is not clear which
segmentation scale is the most appropriate.

In the case of SoilGrids, the “true” soil landscape pattern in the test area is not so clear. When comparing SoilGrids with
the USA, a problem is that the detailed gSSURGO map (NRCS Soils, 2022) has been compiled from multiple survey areas,
mapped over many years, and with imperfect correlation between areas. This is compiled from traditional surveys at design
scales from 1:12> 000 to 1:24> 000 in most areas, but somewhat coarser in less populated areas in the western USA. The INEGI
map in México is a consistent 1:250°000 national product (Instituto Nacional de Estadistica, Geografia e Informatica (INEGI),
2024), which can show a minimum delineation of 250 ha. Figure 22-30 shows a SOC stock maps of the study area, compiled

from the above-mentioned USA and Mexican sources by the FAO as part of the Global Soil Organic Carbon Map (GSOCmap)
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Figure 30. Global Soil Organic Carbon (GSOC) map (part). Boundary is between México (south) and the USA (north). M
SOC stock. Source and legend: FAO (2024).

project (FAO, 2018). Version 1.6.1 of this product was downloaded from the FAO’s Global Soil Information System (GloSIS)
(FAO, 2024). The inconsistency in values and pattern between México and the USA is obvious, as are several sharp boundaries
between survey areas in the USA. So it is difficult to evaluate how well SoilGrids identifies supercells or segments.

In the ease-of-SOEUS-SOLUS example, the geomorphology and soil pattern of the test area is well understood and has been
mapped in detail. Of the SOLUS layers only soil organic carbon and coarse fragment volume showed a relation with known
patterns in the test area. Aggregation based on multiple properties completely failed to find landscape units. Segmentation

based on multiple properties failed to find more general units with consistent internal patterns.

6.2 Evaluating a DSM product

So. how should aggregation and segmentation be used in an overall evaluation of a DSM product? The common use of point
evaluation statistics by cross-validation or repeated data splitting is still important, as long as the representativeness in both
geographic and feature space is clear to the map user. There is a large difference between these statistics applied to legacy.
observations that were opportunistically located (e.g., farmer-supplied observations), purposively located (e.g.. at “typical”
locations for soil series), or placed by a method meant to cover feature space, e.g.. conditioned Latin hypercube sampling.

Minasny and McBratne

2006) or geographic space, €.

spatial coverage sampling Walvoort et al. (2009). But as explained

3

in the Introduction (§1), these do not account for spatial patterns.

An obvious evaluation of aggregation and segmentation can be the expert opinion of the soil geographer familiar with the
mapped area. Notable soil-landscape features should be identified either by aggregation for relatively homogeneous areas such

42



685

690

695

700

705

710

715

as swamps and salt flats, or segmentation for heterogeneous areas at the design scale, for example prairie pothole topography.
(Kiss et al., 2022) at scales where individual potholes can not be shown. Although subjective, this can be supported by the
geographer’s conceptual model (Hudson, 1992) based on field experience and known landscape expression. An example is the
discussion of the SOLUS map in the well-understood soil landscape of Case Study 3 (§3). All soil surveyors and most field
scientists using soil maps soon recognise that some conventional maps are more reliable than others, that is, some delineations
are more reliably identified than others. So just matching a conventional map at the appropriate degree of generalisation is not
always appropriate. In Case Study 3 the landscape and soil patterns are highly distinctive so that the original surveyors could
hardly make mistakes — the only problem could be digitizing from the unrectified photo base used for the original survey to a
correct topographic base for incorporation in SSURGO. In other contexts the soil-landscape relation and soil boundaries may.
not be so clear and so difficult to represent (Lagacherie et al., 1996), and in others the conventional map may have been made
by less-skilled surveyors. No general solution can be given — this is a separate level of expert opinion, i.c., the reliability of the
traditional map.

The starting point in any evaluation is the intended use(s) of the map. Then its fitness for use can be assessed according to
the requirements to support those uses. Pattern-based evaluation is indicated if be map be used to represent soil geography,
for example, to help map users assess the relation of soils with the landscape. It is also indicated if the map user will need to
identify landscape components, for example for ecological zoning of a protected area. The degree of internal heterogeneity as
revealed by the segmentation can be used to assess connectivity, for example in catchment hydrological models.

One application where segmentation analysis can be used is identifying areas similar in their internal spatial pattern to a
known area where the pattern has been characterized. This has been applied to land cover (Nowosad, 2018) but can appl
equally well to soil patterns. For example, in every region there are areas with high sampling density and well-characterized
soils, and others with less information. Once the segments are established over the whole area, specific segments in_the
high-density area can be matched to those in the low-density area, where the soil pattern is expected to be similar. This is
the “Homosoil” concept (Nenkam et al., 2022) applied to areas. The clustering of segments in the BIS-4D (§3) and SoilGrids
(§4) case studies shows one way to do this. The Jensen-Shannon distance from a target segment can also be used to identify.

7 Conclusions

The methods presented in this paper are part of an effort to evaluate DSM products based on how well they represent the soil
landscape. The approach taken here complements pattern analysis of the DSM product, which characterises the map without
attempting aggregation or segmentation, as in Rossiter et al. (2022).

Both the aggregation and segmentation approaches were able to allow the DSM product “speak for itself”—, with the
assistance of the analyst’s choices of parameters. Individual predictions in pixels were combined into possible soil-landscape
elements, which could be evaluated statistically and by expert judgment. Both of these approaches require the intervention of

the analyst to select scales and parameters, often with large differences in resulting patterns. This has the advantage that the
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analyst can match desired scales of landscape analysis, and indeed can perform a multi-resolution evaluation. The analysis of
the resulting maps is a significant addition to the commonly-used “point”-based evaluation statistics, which (1) do not evaluate
the full map, (2) even at point support, do not take into account the spatial relation between evaluation points. We hope that
this will stimulate digital soil mappers to evaluate their own products in this light. This should lead to clearer communication

with DSM users, so that digital soil maps become more widely accepted and properly used.

Code and data availability. The GeoPAT modules are available at its GitHub repository'. The superpixels R package is available at
CRAN? and must be installed from within the R environment. The analysis code for this paper is available in a GitLab repository®. The

datasets used in case studies can be obtained from the websites referenced in the text.
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