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Abstract. Since the earliest days of soil geography, it has been clear that soils occur in more-or-less clearly mappable bodies,

within which soil forming factors have been
::::
either

:
fairly homogeneous or in a regular pattern

:::::
within

:::
the

::::
body, and between

which there is usually a clear transition in one or more factors. This has been the basis for polygon-based soil mapping: make a

concept map from landscape elements leading to a mental model of the landscape, confirm or modify it with strategically-placed

::::::::::
strategically

::::::
placed observations, find the transitions, delineate the soil bodies, and characterise them. By contrast, common5

methods of Digital Soil Mapping (DSM) predict per pixel over a regular grid, from training observations at pedon support.

Accuracy assessment of DSM products has been at this “point” support, ignoring the existence of spatial soil bodies and the

relations between pixels. Different approaches to DSM – datasets, model forms, analyst choices – result in maps with distinctly

different patterns of predicted soil properties or types. Techniques from landscape ecology have been used to characterize

spatial patterns of DSM products. The question remains as to how well these products reproduce the actual soil patterns at10

a given cartographic scale and categorical level of detail. Our approach is to let DSM maps
:::
help

:::::
DSM

:::::
maps

:::
to “speak for

themselves” to
:::
and

:::::::
thereby reveal spatial patterns

:::
that

::::
have

::::
been

::::::
found

::
by

:::
the

:::::
DSM. We do this by grouping pixels

:::::::::
predictions

:
at
:::
the

:::::::::
individual

::::
pixel

::::
level, either (1) by aggregation based on property homogeneity using the supercells algorithm, or (2)

by segmentation based on within-block property pattern similarity, using the GeoPAT suite of computer programs. Segments

can be hierarchically clustered into groups of presumed soil landscape elements. Supercells and segments can be compared15

to existing soil maps, other land resource maps, and expert judgement. To the extent that
:::
the presumed soilscape patterns are

reproduced, this is evidence that DSM has identified the soil landscape at the chosen scale. Since map users perceive patterns,

and most land use decisions are for areas rather than pixels, we propose that DSM products be evaluated by their patterns
::
as

:::::::
revealed

::
by

::::::::::
aggregation

:::
and

::::::::::::
segmentation, as well as by pointwise evaluation statistics.
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1 Introduction20

Digital Soil Mapping (DSM) is a general term for the creation of digital maps of soil classes or properties by fitting geostatistical

or machine-learning
::::::::::::::::::::::
(Webster and Oliver, 2008)

:
,
::::::::
statistical

:::::::
learning

::::::::::::::::
(Hastie et al., 2009),

::
or

::::::::::::::
similarity-based

:::::::::::::::::::
(Zhu and Turner, 2022)

models between observations of soil classes or properties at known locations and a set of environmental covariates repre-

senting soil-forming factors.
:::
This

:::::
term

:::
has

::::
also

::::
been

:::::::
applied

::
to

::::
soil

:::::
maps

:::::
based

:::
on

::::
GIS

::::::
overlay

:::
of

::::::::
presumed

:::::::::::
soil-forming

::::::
factors,

:::
for

::::::::
example,

:::
the

::::::::
eSOTER

::::::::
approach

:::::::::::::::::
(Dobos et al., 2019).

:::::
Some

:::::::
authors

::::::
follow

:::
the

::::::
review

::
of

::::::::::::::::
Scull et al. (2003)

:::
and25

::::
refer

::
to

::::
this

::
as

:::::::::
Predictive

::::
Soil

::::::::
Mapping

:::::::
(PSM),

:::::::
although

:::::
since

:::
all

::::
soil

::::::::
mapping

::
is

::
by

::::::
nature

:::::::::
predictive,

::::
this

::::::
seems

::
to

:::
be

:
a
::::
less

:::::::
specific

::::
term.

:
Since its formal introduction by McBratney et al. (2003) it has been extensively

::::
DSM

::::
has

::::
been

:
ap-

plied worldwide at a wide range of scales and target classes and properties, see for examples
:
;
:::
see

:
reviews by Mulder

et al. (2023), Arrouays et al. (2020) and Nenkam et al. (2024) .
:::
and

::::::
future

::::::::::
perspectives

:::
by

:::::::::::::::
Lagacherie (2025)

:
.
:::::
DSM

::
is

::
a

:::::::::::::
semi-automated

:::::
digital

:::::
form

::
of

::::::::
landscape

:::::::
analysis

::
as

::::
used

::
in

:::::::::
traditional

:::
soil

::::::
survey

::
to

::::::
identify

::::::
distinct

:::::
soils

::::
from

::::::::::::
environmental30

::::::::
covariates

:::::::::::::::::::::::::::::::::::
(Hole and Campbell, 1985; Hudson, 1992).

::::::::
However,

::
as

:::::
DSM

:::::::
predicts

::
at

:::
the

::::
pixel

:::::
level,

::
it

::::::
ignores

::::::
spatial

::::::::
relations.

::
As

::::::::::::::::::::::::::
Vaysse and Lagacherie (2017)

::::
aptly

:::::
state,

:::::
“DSM

::::::::
products

:::
are

:::::::::
simplified

:::::::::::::
representations

::
of

:::::
more

::::::::
complex

:::
and

::::::::
partially

:::::::
unknown

:::::::
patterns

::
of

::::
soil

::::::::::
variations”,

:::::
where

:::
this

::::::::::::::
“simplification”

:
is
::::::::
reducing

:::::::::
landscapes

::
to

:::::::::
individual

:::::
pixels.

:

DSM products are routinely and (almost) exclusively evaluated by point-based evaluation statistics, and these
::::::::
including

::
the

::::::::::::::
cross-validation

:::::
mean

::::
error

::::::
(ME),

:::::::::
root-mean

::::::
squared

:::::
error

::::::::
(RMSE),

:::::::::
proportion

::
of

::::::::
variance

::::::::
explained

::::
(1:1

::::
R2)

::::
and

:::
the35

:::::
model

:::::::
efficient

:::::::::
coefficient

::::::
(MEC)

::::::::::::::::::::::::::::::::
(Helfenstein et al., 2024, Formulas 2–4)

:
.
:::::
These are almost never based on probability or even

representative
::::::
training

::::
(i.e.,

::::::::::::::
cross-validation) observations (Piikki et al., 2021). Point-based evaluation ignores the existence of

soil bodies that form a pattern over the landscape. Maps with distinctly different patterns of predicted soil properties or types

can result from different approaches to DSM, see for example Rossiter et al. (2022) and Poggio et al. (2010a). We propose

to also evaluate DSM products by their patterns, as revealed by
:::::::::
aggregation

:::
and

:
segmentation of the gridded maps into areas40

with more or less homogeneous internal composition of soil properties. As Vaysse and Lagacherie (2017) aptly state, “DSM

products are simplified representations of more complex and partially unknown patterns of soil variations” (emphasis added).

Soil geographers conceive of the soilscape as a continuum in 3D, with the vertical dimension (soil profile) defining a pedon

(Soil Survey Staff, 1999, p. 11). The pedon has a horizontal dimension sufficient to show the local variability of horizons and45

properties, e.g., cyclic or irregular horizons. Pedons are connected laterally into relatively homogeneous polypedons (John-

son, 1963), within which the soil-forming factors and hence the pedons are within some defined limits. The transition zones

between polypedons are marked as borders between natural soil bodies (according to those limits)
:
,
:::::
which

::::
may

:::
be

:::::
abrupt

:::
or

::::::
smooth

::::::::::::::::::::
(Lagacherie et al., 1996)

:
,
::::::::
according

::
to

:::
the

::::::
spatial

::::::
pattern

::
of

:::
the

:::::::::::
soil-forming

:::::
factors. Figure ??

:
1 shows a typical con-

ceptual model from a detailed
:::::
Order

::
2 soil survey in the USA, design scale 1:12 000 (minimum mappable area 0.576 ha). The50

transitions between polypedons in this scene are due to parent material, topography, and hydrology.

Together, these make up the soilscape, i.e.,
::::
The

::::::
pattern

::
of

:::
the

:
distribution of polypedons on the landscape . These form a

pattern.
::::
make

::
up

:::
the

::::::::
soilscape

:
. The classic example is the catena of Milne

::
as

::::::
defined

:::
by

:::::
Milne

::::::::::::
(Milne, 1935)

::
as: “a sequence
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Figure 1. Conceptual block diagram, Otsego County NY (USA)

.

Source: https://www.nrcs.usda.gov/publications/NY-2010-09-28-14.png

of distinct but pedogenetically-related soils that are consistently located on specific facets down a slope
::::
slope

::::::
facets, giving

recurrent topographically associated
::::::::::::::::::::::
topographically-associated

:
soil pattern” (Borden et al., 2020), We would hope that a55

::::::::::::
DSM-produced

:
map of a catena would clearly show these elements and their transitions.

In traditional expert-based soil class mapping (Hudson, 1992) the landscape is segmented according to the mapper’s con-

ceptual model of soil-landscape relations, and by examination of external clues, notably relief, vegetation, and land use, and

by augering or full profile examination. DSM replaces the conceptual model with correlative relations with digital coverages

meant to represent, at least in part, one or more of the seven predictive SCORPAN
:::::::::::
“SCORPAN”

::::::::
predictive

:
factors of McBrat-60

ney et al. (2003).
:
In

::::
this

::::::::::
widely-cited

::::::
paper

::::
they

:::::
briefly

::::::::
describe

::
as

:::::
these

::::::
factors

:::
as:

:
s
:
:
:::
soil

:
,
:::::
other

::::::::
properties

::
of
::::

the
:::
soil

::
at

::
a

:::::
point;

:
c
:
:
::::::
climate

:
,
:::::::
climatic

:::::::::
properties

::
of

:::
the

:::::::::::
environment

::
at

::
a

:::::
point;

::
o:

:::::::::
organisms

:
,
::::::::
vegetation

:::
or

:::::
fauna

::
or

::::::
human

::::::::
activity;

:
r
:
:

:::::::::
topography

:
,
::::::::
landscape

:::::::::
attributes;

::
p:

::::::
parent

::::::::
material,

:::::::::
lithology;

:
a
:
:
:::
age

:
,
:::
the

::::
time

::::::
factor;

::
n:

::::::
space,

::::::
spatial

::::::::
position.

:::
The

:::::
time

:::::
factor

:::::::
accounts

:::
for

:::
the

::::::::
changing

:::::::
climate,

:::::::::
organisms

::::::::
(including

::::::
human

:::::::::
activities)

:::
and

:::::
relief

::::
over

:::
the

::::
time

::
of

::::
soil

:::::::::
formation.

::
In

:::::::
practice,

:::
the

::::
time

:::::
factor

:::
has

::::::
proven

:::::
quite

:::::::
difficult

::
to

::::::::
represent

::
by

::::::
digital

:::::::::
coverages. Therefore,

::::
Note

::::
that

::::
these

:::
are

::::::::::
correlative,65

:::
not

:::::::::
necessarily

::::::::
causative,

::::
and

:::
are

::::
used

::
to

:::::
build

:
a
:::::::::
predictive

:::::
model

:::
for

::::::::
mapping,

:::
not

:::
(at

::::
first)

::
to

:::::::::
understand

:::::::::::
pedogenesis.

:::::
Thus

::
in

:::::
DSM there is no longer an explicit relation with the soil landscape, but it is hoped that the implicit correlative relations

:
,

:::::
based

::
on

::::::::::::
representative

:::::::::
covariates, can find these.
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The concept of areas with distinct patterns of contrasting soils goes back to the “soilscape fabrics” from the soilscape

analysis of Hole (1978) and the “soil combinations” of Fridland (1974). At increasingly detailed scales and with increasingly70

fine distinctions in the definition of soil bodies,
::::
With

:::::::::::::::::
increasingly-detailed

:::::::::::
cartographic

:::::
scales

:::
and

::::::::::
categorical

::::::::
definitions

::
of

::::
soil

::::
types

:
increasingly finer patterns are revealed.

:::
can

::
be

:::::::
shown. Conversely, at coarser scales , patterns are based on less precise

definitions of distinct soil bodies.
:::
and

:::::::
broader

:::::::::
categories

:::::::
patterns

:::
are

::::::::::
necessarily

:::::
more

:::::::
general.

:
As Fridland puts it, “Soil

combinations consist of elementary soil areas which are genetically linked to various degrees and which produce a definite

pattern in the soil mantle . . . Multiple spatial repetition of a certain soil combination or several soil combinations alternating75

in a definite order creates various forms of structures of the soil mantle.” An example of a fine-scale soil pattern is the pit and

mound topography found on a hillslope in southwest Poland by Pawlik et al. (2024).

In traditional soil mapping, these areas with sufficiently homogeneous soils or patterns of them at a given cartographic

scale are the units that are delineated on the map. However, as Fridland explains: “The structure of the soil mantle and soil

combinations are in their essence not cartographic but genetic-geographic concepts, even though they constitute a basis for80

elaborating cartographic units.” This implies that the resulting soil properties distributed vertically in the profile, as products

of pedogenesis, can be the basis for map units. Therefore, if at each pixel DSM accurately predicts a sufficiently rich set of

properties over the soil profile, these should be grouped on the DSM map as recognisable
::::::::::
recognizable

:
cartographic units.

Within a mappable soilscape segment, there will of course be variability, ranging from some smaller deviations from a central

concept (typical soilscape position and pedon), to a mixture of contrasting pedons, in National Resource Conservation Service85

(NRCS) soil survey terms a complex. Since DSM predicts
:::::::::
predictions

:::::
made

::
by

:::::
DSM

:::
are per pixel, it may be possible to resolve

these complexes into their components at the pixel scale, if that is fine enough to match the pattern within the complex. If this

is the case, our evaluation of the DSM product should identify this.

Digital Soil Mapping (DSM) predicts
::::::
products

:::::
show

::::::::
predicted

::::::
values

::
of

:::
soil

:::::::::
properties

::
or

::::::
classes at each pixel of a regular,

more or less fine grid, either as the centre point or a block average of the area covered by the pixel. DSM typically predicts90

multiple soil properties at a set of standard depth slices. Although some DSM methods use covariates in areas around a pixel,

they do not enforce any relation between adjacent pixels. These relations are particularly important in soil hydrology models.

Thus, the question is to what degree the pixels of DSM products at various resolutions can be aggregated into groups to

realistically represent a soil landscape, whether the soilscape segment is relatively homogeneous in its properties or represents

a
::
an

::::::::::
association

::
or

:
complex. Intuitively, if the soil forming

::::::::::
soil-forming factors responsible for a polypedon are also spatially95

associated in the covariates used in DSM, the relations between pixels should occur as a byproduct
:::::::::
by-product of per-pixel

DSM. More abrupt transitions in the covariates should be reflected in the predictions. The pattern of the pixels should therefore

represent the soil landscape. The question is, does the DSM product show these relations?

One way
::
In

:::
this

:::::
study,

:::
we

::::::::
examine

:::
two

::::::::
methods

:
to assess the success of DSM in reproducing a soil landscape.

::::
The

::::
first

::::::
method

:
is to aggregate the individual predictions from pixels into more or less homogeneous

:::::::::
contiguous

::::::
groups

::
of

::::::
pixels100

::::::
referred

::
to

:
supercells, following methods used in image processing, where these are called superpixels (Nowosad and Stepinski,

2022). This can be based on single properties and depth layers, or, more usefully, on the multivariate collection of DSM-

predicted properties at a pixel. We explain the aggregation algorithm in §2.1.
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At
::::
The

::::::
second

::::::
method

::
is

::::::
applied

::
at
:
coarser scales,

:::::
where

:::
the homogeneity of properties within some larger area may not be

possible or even desirable. This has led to the concept of landscape segments, defined by the co-occurrence pattern, referred to105

as a signature, of a group of contrasting pixels of a class map, within a pre-defined
::::::::
predefined

:
size of the segment. Segmentation

was developed by geographers to find similar land cover patterns for ecoregionalization (Nowosad and Stepinski, 2018). In that

case, the pixels represent land cover classes. The aim is not homogeneity of land cover, rather, homogeneity of the land cover

pattern within some analyst-defined area. The relation to a soil cover pattern is obvious, and corresponds well to concepts such

as the catena or soil associations.110

:::::
These

::::
two

::::::::
concepts,

::::::::::
aggregation

::::
and

:::::::::::
segmentation,

::::
can

:::
be

::::::
related

::
to

:::::::::
traditional

::::
soil

::::::
survey

:::::::
practice.

:
Depending on the

scale of the analysis
:::
(for

::::::
DSM,

:::
the

:::::::::
horizontal

:::::::::
resolution,

:::
for

:::::::::
traditional

:::
soil

::::::
survey

::::
the

::::::::
minimum

::::::::::
delineation

::::
size)

:
and the

inherent scale of the soil landscape, we may expect to see homogeneity at the level of consociation
::::
map

::::::::::
delineations

:::::::::
containing

:::::::::
dominantly

::::
one

:::
soil

::::
type

::::::
within

::::::
defined

:::::
limits

::
at

::
a

::::::
detailed

::::::::::
categorical

::::
level

:
(e.g., soil series), or a heterogeneous ,

:::
the

::::::
lowest

::::
level

::
of

::::
Soil

::::::::::
Taxonomy);

:::
this

::
is
::::::
called

:
a
:::::::::::
consociation

::
in

:::
the

:::
US

::::
soil

:::::
survey

:::::::::::::::::::::::::::::
(Soil Science Division Staff, 2017).

::::
This

::
is
::::::
where115

:::::::::
aggregation

::
is
::::::
useful,

::
to

:::::::
identify

::::::::::::
homogeneous

::::::::::
components

::::
that

:::
can

::
be

:::::::
mapped

::
as

:::::::
separate

:::::
units

:
.
:::
At

:
a
::::::
coarser

:::::
scale

:::
we

::::
may

:::::
expect

::
a
::::::
regular

:
pattern of contrasting soils at the level of soil

:::
soil

:::::
types

:::::::
forming

:
a
::::

soil
:
association, or a fine-scale pattern

of contrasting soils , the
::::::
forming

::
a
:::
soil

:
complex(Soil Science Division Staff, 2017). .

::::
This

::
is

::::::
where

:::::::::::
segmentation

::
is

::::::
useful,

::
to

::::
form

:::::::
mapping

:::::
units

::::
with

::::::::
consistent

::::::::::::
heterogeneous

:::::::::::
composition,

:::::
These

:::::
terms

:::::
from

:::
the

:::
US

:::
soil

::::::
survey

:::
are

:::::::::::::
well-explained,

::::
with

::::::::
examples,

:::
by

:::::::::::::::::::::::::::
Van Wambeke and Forbes (1986).

:
120

Segmentation requires that DSM maps of continuous predictions be classified, i.e., sliced according to analyst-defined class

limits. The classes can correspond to meaningful classes for soil management, or can be based on laboratory precision. They

can be wider (more general) or narrower, roughly corresponding to cartographic detail. Clearly, the classification can greatly

influence segmentation. This is also the case when segmenting land cover classes. We explain the segmentation algorithm in

§2.2.125

Once a segmentation has been performed, the segments can be clustered according to their similarity of internal pattern, i.e.,

the signature of the segment.
::::
These

::::
can

::::
then

::
be

::::::::
examined

::
to

::::
find

::::::
similar

:::
soil

:::::::::
landscape

:::::::
elements

::
in
::::::::
different

::::
parts

::
of

:::
the

:::::
map.

We explain the clustering algorithm
::::::::
procedure

:
in §2.3.

Thus, the
:::
The

:
objective of this study is present methods to create presumed

::::::
possible

:
soil landscape units from DSM prod-

ucts, by both aggregation and segmentation, and then to cluster the segments to identify similar soil landscape
::::::::::::
soil-landscape130

units within the map.
:::::
These

::::::::
proposed

:::::
units

:::
can

:::
be

:::::::::::
characterized

::::::::::
statistically

:::
by

::::
their

:::::::::::
composition,

:::::::
internal

:::::::::
variability

::::
and

:::::::::::
differentiation

:::::
from

::::
their

::::::::::
neighbours,

::
as

::::
well

::
as

::::::::
evaluated

::::::::
visually. We first describe the methods

::::
(§2) and then apply them to

three case studies
:::
(§3

:::::::
BIS-4D

::::::::::
Netherlands,

:::
§4

::::::::
SoilGrids

::::
v2.0

::::::
global,

::
§5

:::::::
SOLUS

::::
100

::
m

:::::
USA) corresponding to different DSM

projects at various resolutions and extents. Finally, we discuss
:::
(§6)

:
how these methods can be used in routine

:::
the evaluation of

DSM products.135
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2 Methods

We contrast two approaches to letting the map
::::::
helping

:::
the

::::
map

::
to

:
“speak for itself”: aggregation based on homogeneity of

properties (§2.1), and segmentation based on patterns of classified properties within segments (§2.2).

2.1 Aggregation

Aggregnation
::::::::::
Aggregation

:
seeks to find contiguous groups of pixels with relatively homogeneous property values, either single140

or multivariate. This is implemented by the supercells R package (Nowosad, 2025), which uses the Simple Linear Iterative

Clustering (SLIC) image-processing algorithm (Nowosad and Stepinski, 2022), with the improvement that an appropriate data

distance measure and function for cluster averaging can be defined
::
by

:::
the

::::::
analyst. For multivariate aggregation there must

be a distance measure defined in in multivariate space. A common choice, used here, is the Jensen-Shannon divergence ,

(Lin, 1991).
:::::::::
(Lin, 1991)

:
, which quantifies the distance between two histograms by the deviation between the Shannon entropy145

of the combination of two uni- or multivariate histograms and the mean of their individual entropies.

The supercells function is controlled by several parameters that have a large effect on the results. First and most impor-

tant is compactness, which trades off internal homogeneity of the supercells with their geometric compactness. The absolute

compactness value depends on the range of input pixel values and the selected distance measure. A large value prioritizes spatial

distances between pixels and superpixel centres (more geometric compactness), whereas a smaller value prioritizes distances150

in feature space (more property homogeneity). Second is the approximate number of supercells, k. This should correspond to

the number of landscape segments expected in the study area, at the design scale of the corresponding polygon map. Third is

the minimum supercell size, minarea. This should correspond to a minimum mappable area or a minimum size needed for an

application, e.g., land management or stratified sampling.

The quality of the aggregation can be evaluated by the standard deviation or coefficient of variability of each property in the155

supercell. As supercells decrease in size, these measures will necessarily have smaller values.

2.2 Segmentation

Segmentation seeks to find contiguous groups of blocks of grid cells with similar internal patterns of pixels, which represent

soil classes or properties, these either univariate or multivariate. Patterns are computed within
:::
The

::::::::
GeoPAT

:::::::::::::
implementation

::
of

:::::::::::
segmentation

::::::::
compares

:::::::
patterns

:::::
within

::::::
square blocks of at least 10 x 10 pixels , as

:::
and

::::
then

:::::
joins

:::::::
adjacent

::::::
blocks

::::
with

::::::
similar160

::::::
internal

:::::::
patterns

::::
into

::::::::
rectilinear

:::::::::
segments.

::::::
Larger

:::::
blocks

::::
can

::
be

:
specified by the analyst,

:::::::::
according

::
to

:::
the

::::::
desired

:::::
scale

::
of

:::
the

::::::
analysis. Unlike supercells, segments must have rectilinear borders.

Segmentation proceeds as follows. The first step is to select classified soil properties and their depth slices to represent

soil individuals at each pixel. The second step is to find the co-occurrence pattern of the pixels within pre-defined grid cells.

The third step is to aggregate grid cells with similar internal spatial patterns into larger units, sufficiently distinct from neigh-165

bouring units in terms of their internal spatial patterns. Finally, the result is evaluated by its segmentation statistics, namely,

inhomogeneity within the segment and isolation of the segment from its neighbours. The segmentation can be inspected by

7



Figure 2. GeoPAT segmentation workflow.
:::::::::::::
gpat_gridhis

:
:
::::::
“create

::
a
:::::
binary

::::
grid

:::
of

:::::::::
signatures’;

::::::::::::::
gpat_segment

:::::::
“segment

::
a

::::::::::::
grid-of-scenes”;

::::::::::::::::
gpat_segquality

:::::::
“compute

:::::
quality

::::::
metrics

::
of

:
a
:::::::::::
segmentation”;

::::::::::::
gpat_gridts

::
not

::::
used.

:
Source: (Netzel et al., 2018)

expert judgement, perhaps comparing with conventional soil maps, to evaluate how well it represents the soil landscape at the

selected cartographic scale.

For segmentation, we use the GeoPAT suite of standalone
:::::::::
stand-alone

:
Unix programs (Jasiewicz et al., 2015). These are170

invoked in sequence, via the R system function, to obtain a segmentation and an evaluation of its quality. GeoPAT has been

used successfully to segment categorical rasters such as land cover maps (Jasiewicz et al., 2018) and for global ecoregionaliza-

tion based on multiple environmental factors (Nowosad and Stepinski, 2018). Figure (??
:
2) shows the segmentation workflow

using GeoPAT.

Several parameters control the signature computation of the gpat_gridhis
::::::
“create

:
a
::::::
binary

:::
grid

::
of
::::::::::
signatures” program.175

Two related parameters are size and motifel. The first is the size of the output grid cell of the segmented map. This

must be at least 10 x 10 pixels of the source DSM. Thus, the segmentation is of similar patterns within an output grid cell

and its neighbours. This dictates the largest equivalent map scale at which soilscape patterns (groups of output grid cells) can

be discerned. The second is the “Motif Element”, referred to as the motifel, defined as the size of the window within which

the pattern will be computed. This must be at least as large as the size, but could be larger to account for edge effects in180

the pattern. Also important are two thresholds
::::
Two

::::::::
important

::::::::
threshold

:::::::::
parameters

:
for joining grid cells into segments :

:::
are

lthreshold to control the sizes of segments and uthreshold to prevent the growth of inhomogeneous segments.
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Another important option for gpat_gridhis is the signature type within each grid cell, default cooc, “Spatial
:::::
spatial co-

occurrence of categories”. This characterizes signatures with a “colour” co-occurrence histogram, a variant of the Gray-Level

Co-occurrence Matrix (GLCM) used to characterise texture in greyscale images (Haralick et al., 1973; Hall-Beyer, 2017). In185

GeoPAT, discrete greyscale numbers, as in GLCM, are replaced by cell classes. A separation of one pixel is used to calculate

the co-occurrence histogram, which then represents the spatial pattern within a grid cell. Related to this is the normalization

type, default pdf “probability distribution function”, which is recommended for the cooc signature type. This harmonizes the

signatures from different motifels.

Grid creation requires the selection of grid sizes. To evaluate DSM products we select these based on their correspondence190

to nominal map scales, using the Vink definition of a minimum legible delineation (MLD), i.e., the smallest area that can

be displayed on a printed map, of 0.25 cm2 at map scale, i.e., a grid cell side of 0.5 cm (Vink, 1963).
:::
The

:::::::
Optimal

:::::::
Legible

:::::::::
Delineation

::::::
(OLD)

::
is

::::::::::::
conventionally

:::::::
defined

::
as

:
4
::
x

::::
MLD

:::::::::::::::::
(Forbes et al., 1982)

:
.
::::
This

:
is
::
a
:::::::::
delineation

::::
size

:::::
which

::
is

:::::
easily

::::::
legible

:::
and

::::
still

:::::
small

::::::
enough

::
to
:::

be
::::::::
relatively

::::::::::::
homogeneous.

:::
In

:::::::::::
conventional

:::::::
mapping

::::
the

::::
map

::::
scale

::::::
should

:::
be

:::
set

::
so

::::
that

:::
the

::::
soil

::::::
pattern

:
is
:::
on

:::::::
average

:::
able

::
to
:::
be

:::::
shown

:::
by

:::::::::
OLD-sized

:::::::::
polygons.

::
In

::::::::::
segmenting

::::
DSM

::::::::
products

:::
we

::::
hope

:::
that

:::::
most

::::::::
segments

:::
are195

:
at
:::::
least

::
as

::::
large

::
as

:::
the

:::::
OLD.

:

To determine the Minimum Legible Area (MLA) and corresponding side on the ground, these are
:::
the

:::::
MLD

::
is multiplied by

the scale number (denominator of the scale ratio). For example, at 1:200 000 the MLA is 100 ha, with a side of 1 km. Signature

computation requires at least 100 pixels from the DSM map in order to produce a reliable signature, i.e., the minimum edge of

the segmentation grid (the “shift” parameter) must be 10 times the original DSM resolution. For example, a 25 x 25 m DSM200

product can only be segmented at 250 x 250 m or coarser (6.25 ha), corresponding to the MLA of a 1:50 000 scale map. To

match a 1:200 000 map (MLA 100 ha), the 25 x 25 m pixel must be aggregated 40 times per side, i.e., 1 km x 1 km.
:::::
These

:::::::
concepts

:::
are

::::::::::
comparable

::
to

::::::
concept

::
of

::::
soil

:::::
survey

::::::
orders

::
in

:::
the

::::
USA

:::
soil

::::::
survey

::::::::::::::::::::::::::::::::::::::
(Soil Science Division Staff, 2017, Chapter 4)

:::
and

:::
the

::::::::::
“resolutions

:::
and

:::::::
extents

::
for

::::::
DSM”

::
of

:::::::::::::::::::::::::::
(McBratney et al., 2003, Table 1)

:
.

The segmentation phase in GeoPAT is implemented by the gpat_segment
::::::::
“segment

:
a
:::::::::::::

grid-of-scenes”
:

program. This205

groups grid cells based on their motifel signatures computed by gpat_gridhis. Segments have a “brick” topology, in

which square grid cells are arranged in alternating layers with each layer is shifted by one-half the size of the motifel. Thus,

the analysed area (i.e., the MLA) is four times the motifel size.

Segment homogeneity is characterised by their normalised Shannon entropy H , defined as:

H =−
ny∑
i=1

pi lognz
pi (1)210

where pi is the proportion of the segment in class i, nz is the number of possible classes, and these are summed over all

ny pixels in the grid cell. Using the logarithm to base nz normalizes the entropy to the unit range regardless of the number

of possible classes, so that 0 indicates complete homogeneity, i.e., one class for the entire segment. By contrast, 1 indicates

maximum heterogeneity, i.e., all classes are equally represented in the segment. This only depends on class composition, not

on pattern, even though the latter is the basis for segmentation.215
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Figure 3. GeoPAT clustering workflow.
::::::::::::::
gpat_polygons

:::::::
“calculate

:::::::::
numerical

::::::::
signatures

::
of

:::::::
irregular

::::::::
regions”;

::::::::::::::
gpat_distmtx

:::::::
“compute

:
a
:::::::
distance

:::::
matrix

::::::
between

:
a
::::::::
collection

::
of

::::::
scenes”.

:
Source: (Netzel et al., 2018)

Segmentation quality is measured with the gpat_segquality
::::::::
“compute

::::::
quality

:::::::
metrics

::
of

::
a

::::::::::::
segmentation” program.

This produces two quality measures: (1) the inhomogeneity within each segment, and (2) the isolation of each segment from its

neighbours. Inhomogeneity measures the degree of mutual dissimilarity between a segment’s motifels, on a [0 . . .1] scale, where

smaller values are better, i.e., more homogeneous ,
:::::::::
correspond

::
to

::::
more

::::::::::::
homogeneous

:::
and

:
less internally diverse

::::::::
segments. Iso-

lation is the average dissimilarity between a segment and its immediate neighbours, on a [0 . . .1] scale, where larger values are220

better, i.e., more isolated
:::::::::
correspond

::
to

::::::::
segments

::::
that

:::
are

::::
more

:::::::
isolated

:::::
from

::::
their

:::::::::
neighbours. These measures depend on the

pattern, not just the class composition, of segments.
::::
The

::::
most

:::::::::
successful

:::::::::::
segmentation

:::::
would

::::
have

:::
the

:::::::
smallest

:::::::::::::
inhomogeneity

:::
and

::::::
largest

::::::::
isolation.

2.3 Clustering

Once segments are created, their internal patterns can be characterised by the same signature methods used to perform the seg-225

mentation. Figure (??
:
3) shows the workflow for clustering in GeoPAT. The gpat_polygons

::::::::
“calculate

::::::::
numerical

:::::::::
signatures

::
of

:::::::
irregular

:::::::
regions”

:
program computes the signature within each segment. The distance between these signatures is then com-

puted by the gpat_distmtx program.
::::::::
“compute

::
a

:::::::
distance

:::::
matrix

::::::::
between

:
a
::::::::
collection

:::
of

::::::
scenes”

::::::::
program.

:
Here we used

the default Jensen-Shannon divergence,
:::::::
because

::
it
::
is
::::::
easily

::::::::::
interpretable

:::
on

::
a
::::::
[0 . . .1]

:::::
scale

:::
and

::
is
::::

not
:::::::
sensitive

:::
to

:::::::
extreme

:::::
values

::::::::::
(Lin, 1991). The segments can then be clustered on the basis of their distance measures by many clustering algorithms.

:
;230

:::
see

::
the

:::::::::::::
comprehensive

:::::::::
description

::
in
:::::::::::::::
Gan et al. (2021). Here we use hierarchical clustering, as implemented by the R function

hclust using Ward’s linkage with squared distances to produce a dendrogram. This is cut at an analyst-determined num-
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ber of classes to represent groups of internal homogeneity of segments. There are
::
We

:::::
chose

:::::::
Ward’s

::::
with

:::::::
squared

::::::::
distances

::::::
(Ward’s

::::
D2)

::
to
:::::::::

minimize
::::::::::::
within-cluster

:::::::
variance.

:::::
This

:::::::::
minimizes

:::
the

::::
loss

::
of

::::::::::
information

:::::::::
associated

:::::
with

::::
each

:::::::
merging

:::
as

::
the

:::::::::::
dendrogram

::
is

::::
built

:::::::::
bottom-up.

:::::
There

:
other choices in both the distance measurement and clustering linkage method. We235

chose Jensen-Shannon divergence because it is easily interpretable on a [0 . . .1] scale and is stable. We chose Ward’s with

squared distances to minimize within-cluster variance,
::::
here

:::
we

::::
want

::
to

::::::::
illustrate

:::
the

::::::::
clustering

:::::::
concept,

:::
not

:::::::
compare

:::::::::
clustering

:::::::
methods.

3 Case study
:::::
Study 1 – BIS-4D (Netherlands)

BIS-4D (“Bodeninformatiesysteem 4-Dimensional”) (Helfenstein et al., 2024) is a high-resolution (25 m horizontal, six depth240

slices vertical) soil modelling and mapping platform for the Netherlands. The 3D are geographic space and depth along the

soil profile. The fourth dimension is time, applied only to soil organic matter (SOM), which we ignore here by using only

the most recent SOM map. Predicted properties are clay, silt, sand and SOM concentrations %, bulk density g cm−3, pH

in KCl, total N mg kg−1, oxalate-extractable P mmol kg−1, and cation exchange capacity mmol(c) kg−1. Depth slices are

the GlobalSoilMap standard 0–5, 5–15, 15–30, 30–60, 60–100 and 100-200 cm (Science Committee, 2015). Each map is245

accompanied by uncertainties (quantiles and 90% prediction interval). We did not use these in this analysis, only the mean

predictions. Coverages in the GeoTIFF format are free to download and use, and can be directly read into the terra R

package (Hijmans et al., 2025).

BIS-4D is highly
:::::
fairly accurate at point support, as assessed by cross-validation

::::::::::::::::::::::::::::::
(Helfenstein et al., 2024, Tables 7, 8)

, due to a very dense sampling network and the country-specific covariates used in the DSM.
:::
For

::::::::
example,

:::
the

:::::::
10-fold250

:::::::::::::
cross-validation

::::::
average

:::
for

:::
all

::::::::::
predictions

::
of

:::
pH

:::
had

::
a
::::::
median

::::
ME

::
of

::::::
-0.023

::::
pH,

::::::
median

::::::
RMSE

:::
of

::::
0.72

:::
pH,

::::
and

:
a
:::::::
median

::::
MEC

::
of

:::::
0.72.

:::
For

::::
clay

::::
these

::::::::
accuracy

:::::::
statistics

:::
are

::::::
0.42%,

:::::
7.7%,

::::
and

::::
0.78,

:::::::::::
respectively. Visual inspection of layers agrees well

with traditional 1:50 000 scale polygon soil maps (Steur and Heijink, 1980; Brouwer et al., 2021) and expert views of the soil

landscape.

We selected a 40 x 40 km test area (Figure ??
:
4), because of its diverse soil-forming environments, including river clays of255

various ages and compositions, sandy push moraines, organic soils in glacial depressions, and coversands.

3.1 Aggregation

The supercells algorithm can work directly on raster stacks of the terra package. All 54 maps (7 properties, 6
::::
nine

::::::::
properties,

:::::
each

::::
with

:::
six

:::::
depth

:
layers) were combined in a SpatRaster raster stack. Since the values and ranges are not

compatible, the Jensen-Shannon divergence was used to evaluate the distance in feature space between pixels and supercell260

centres. In this landscape there are non-compact (extended) features parallel to the river, in the fen areas and along the push

moraines, so after some experimentation a low compactness value (0.2) was selected. We selected a minimum mappable area

of 10 ha, equivalent to the 1:50 000 design scale of the Dutch conventional soil map, using the Cornell definition of 0.4 cm2
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Figure 4. Semi-detailed soil map of the Netherlands, design scale 1:50 000 (part).

Source and detailed legend: Ministerie van Volkshuisvesting en Ruimtelijke Ordening (2024).

General legend: Dark and medium green: river clays with different clay concentrations; Light green: glacial depression sediments; Brown,

pink: push moraines with varying sand and gravel sizes; Yellow: wind-blown sands; Purple: peat.

minimum legible area on the map (Forbes et al., 1982). Thus we set the minarea was
::::::::
parameter

:::
was

:::
set

:
to 1

:
,600

::::::
pixels,

::::
each

::
of 25 m x 25 mpixels.265

Figure ??
:
5
:
shows the supercells (outlined in black) with several properties as a background. Note that the supercells in all

maps are the same, but of course the mean values of each property within the supercells are different. The median size of the

270 supercells was 433 ha, ranging from 104 to 5 044 ha, with a strongly right-skewed distribution. Aggregation clearly shows

the differences between soil bodies, with some properties being more prominent in certain supercells.

To evaluate the quality of the aggregation, we computed the standard deviation of each property within each supercell (Figure270

??
:
6). These are quite low for clay and SOM, and for pH with some small but

::::
areas

::::
with notable exceptions. Bulk density is

less successfully aggregated. The exceptions are where that property is not important in
::::
high

:::::::
standard

:::::::::
deviations

::
in

:
a
::::::::
supercell

::::
occur

:::::
when

::::
that

:::::::
property

:::
has

::
a

::::
small

:::::::::::
contribution

::
to the computation of Jensen-Shannon divergence to

:
in

:
that supercell.
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Figure 5. Results for selected properties of aggregation by supercells algorithm using all properties and layers

3.2 Segmentation

Since gpat_gridhis requires class maps,
::
to

::::::::
illustrate

:::
this

:::::::
method we classified the soil property maps as follows: bulk275

density by 0.1 g cm−3, CEC by 25 mmol(c) kg−1, clay, silt, sand concentrations by 5%, Pox by 4 mmol kg−1, pH by 0.1

units, SOM concentration by 4%, and total N by 1000 mg kg−1.
:
In

::::::::
practice,

:::
the

::::
map

::::::::
evaluator

::::::
would

:::::
select

::::
class

::::::
limits

::
to

:::::::::
correspond

::
to

:::
the

:::::::
desired

::::::::
precision

:::
and

:::::::::
thresholds

:::
for

::::::::::::
interpretations

:::
or

:::::::
models.

:::
The

:::::
class

::::::
widths

:::
can

::::
not

::
be

:::::
finer

::::
than

:::
the

:::::::
precision

::
of
:::
the

::::::::::::
corresponding

:::::::::
laboratory

::::::::
analyses,

:::::
which

::::::
usually

:::
are

:::::
more

::::::
precise

::::
than

:::
the

::::::::
precision

::::::
needed

:::
for

:::::::::::
applications..

:::
For

::::::::
example,

:::
the

::::::::
guidelines

:::
for

::::::
liming

::
in

:::::
New

::::
York

:::::
State

:::::::::::::::::::::::::::
(Ketterings and Workman, 2023)

::::::::::
recommend

:::::
based

::
on

::
a
::::::::
precision280

::
of

:::
0.1

:::
pH,

::::::::
although

:::
the

:::::::::::
recommended

:::::::::
laboratory

:::::::
method

:::
has

:
a
::::::::
precision

::
of

::::
0.01

::::
pH.

:::::::
Another

:::::::::::
consideration

::
is

:::
the

::::::::
precision

::
of

::
the

::::::
DSM.

::
In

:::
this

:::::::
example

:::
pH

::::
was

::::::::
predicted

::::
with

::
an

::::::
overall

::::::
RMSE

::
of

::::
0.72

:::
pH,

:::
so

::::::
perhaps

:::
the

::::::
classes

::::::
should

::::
have

::::
been

:::::::
defined

::::
more

:::::::
coarsely

::::
than

:::
the

:::::::
selected

:::
0.1

::::
pH.
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Figure 6. Standard deviations for selected properties of aggregation by supercells algorithm using all properties and layers

The minimum grid size for segmentation (10 x 10 pixels) is 250 x 250 m (62.5 ha), corresponding to a 1:158 000 scale map ,

::
by

:::
the

::::
Vink

:::::::::
definition,

::
or

:::::
1:125

::::
000

::
by

:::
the

:::::::
Cornell

::::::::
definition,

:
as explained in §2.2. Segmentation at this resolution is expected285

to more closely match the 1:200 000 generalised soil map
:
of

:::
the

:::::::::::
Netherlands (Haans, 1965) than the 1:50 000 semi-detailed

map shown in Figure ??
:
3.

3.2.1 Univariate segmentation of individual maps

To examine the effect of grid size, we segmented all properties at all depths, individually, at the minimum possible grid

cell size, i.e., 10× 10 and at several multiples : 40× 40 (
:::::::::::
corresponding

::
to

:::::::
nominal

::::
map

::::::
scales 1

::::
:100 000 ha) and 80× 80 (4

:
,290

:::::
1:200 000 ha), corresponding to nominal map scales ,

:
1:400 000, and 1:800 000, respectively. The finest segmentation produced

4 393 (pH 100–200 cm)
:::
The

::::
next

::::::
coarser

:::::::::
resolution

:::::::
(1:1’600

:::::
000)

:::::::
resulted

::
in

::::
only

:::
one

::
or

::::
two

::::::::
segments

:::
and

:::
so

:::
was

:::
not

:::::
used

::
in

:::
this

::::
test

::::
area,

::::
only

:::
for

:::
the

::::::
entire

::::::::::
Netherlands

:::::::
(§3.2.4,

:::::::
below).

:::::
Table

:
1
::::::

shows
:::
the

::::::
results

:::
for

::::
one

:::
run

::
of

:::
the

::::::::::::
segmentation

::::::
process.

:::::
Note

::::
that

:::::::
because

::
of

:::
the

:::::::
random

::::::
aspects

:::
in

:::
the

::::::::
algorithm

:::::
other

::::
runs

::::
give

:::::::
slightly

::::::::
different

::::::
results.

::::::::::
Comparing

:::
the
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:::
Cell

:::
size

: ::::::
nominal

::::
scale

::::::::
maximum

:::::::
segments

::::::
property

: ::::
nmax: :::::::

minimum
:::::::
segments

:::::::
property

::::
nmin: ::::::

nmedian: :::::
median

::::
area

::::
km2

::::::
10× 10 1:

:::
100

:::
000

::
pH

:::::
05–15

:::
cm

:
3
:::
867

: ::::
SOM

:::::
15–30

:::
cm

:::
534

: :
2
:::
366

: ::::
0.68

::::::
20× 20

::::
1:200

:::
000

::
pH

:::::
05–15

:::
cm

::
832

: :::
Pox

::::::
60–100

:::
cm

:::
138

: ::
621

: :::
2.58

:

::::::
40× 40

:
1:400 000 equivalent scale produced 231 (sand 0–15 cm ) to 41 (

:::
sand

:::::
05–15

:::
cm

: ::
205

:
SOM 15–30 cm ), median 181 segments, average area 8.84 km2. Compared to the single grid cell at resolution, i.e., 1 km2, there was significant grouping. Segmentation at

::
30

: ::
153

: :::::
10.46

::::::
80× 80 1:800 000 equivalent scale produced 66 (sand 0–15 cm ) to 12 (Pox 60–100 cm ), median 47 segments, average area 34.04 km2. Again, compared to the single grid cell at resolution, i.e., 4 km2, there was significant grouping.

:::
sand

:::
60

:
–
:::
100

:::
cm

:
52

: ::::
SOM

:::::
30–60

:::
cm

:
8
: :

40
: ::::

40.00
:

Table 1.
:::::
Results

::
of

::::::::
univariate

::::::::::
segmentation:

::::
each

:::::::
property

::
at

:::
each

:::::
depth

::::
slice

::::::::
separately

:::
(54

::::::::::::
segmentations).

:::::
nmax:

::::::::
maximum

::::::
number

::
of

:::::::
segments

::::
found

:::
by

::
all

:::::::::
properties;

:::::
nmin:

::::::
number

::
of

:::::::
segments

:::::
found

:::
for

:::
the

::::::::
“minimum

::::::::
segments”

:::::::
property;

::::::::
nmedian:

::::::
median

::::::
number

::
of

:::::::
segments

::::
found

:::
by

::
all

::::::::
properties.

::::
finest

::::::::::::
segmentation to 675 (Pox 100–200 cm), median 2 678 segments , average area0.597 km2. Comparing this to the single295

grid cell at resolution, 0.625 km2, we see that many segments were of one or two grid cells. The
::::
This pattern was mostly

very fine, with a few large segments for most single properties. Segmentation at
::::
Each

::::::::::
quadrupling

:::
of

:::
the

::::
grid

::::
area

:::::::
resulted

::
in

:::::
larger

::::::::
segments,

:::
but

:::::
these

:::::
were

:::
not

::::::
simply

::::::::
groupings

:::
of

:::
the

:::::::
previous

:::::::::
segments.

::
In

:::::::
general,

:::
the

::::::
various

:::::
depth

:::::
slices

:::
of

:::
pH

::::
were

:::
the

::::
least

::::::::::
successfully

::::::::
grouped

:::
into

::::::
larger

::::::::
segments,

:::::::
whereas

::::
Pox

:::
and

:::::
SOM

:::::
were

::::
able

::
to

::::
form

:::::
large

::::::::
segments.

::::
The

::::
clay

:::
and

:::
silt

::::::::::
particle-size

:::::::
classes,

:::::
CEC,

:::
and

::::
bulk

:::::::
density

::::
were

:::::::::::
intermediate.

::::
This

::::
may

:::
be

::
in

:::
part

::
to
:::
the

:::::::
selected

:::::
class

:::::
limits

:::
for

:::
the300

::::::::
properties,

:::
as

::::
well

::
as

:::::::
intrinsic

::::::
spatial

:::::::::
variability.

3.2.2 Multivariate segmentation of individual properties, all depth slices

We then performed a multivariate segmentation using all depth slices of single properties. By default, GeoPAT normalizes each

layer and by default weights them equally. In this mode, a motifel must meet the threshold conditions for all input layers to

be joined to a segment. In this way the segmentation is meaningful for each layer
:::
the

:::::
whole

::::::
profile. Because of the different305

spatial structures of the properties at each depth slice, it was expected that the segmentation would be finer at each scale than

for individual depth slices, i.e., it would be more difficult to merge grid cells.
:::
The

::::::
results

:::
for

::::
one

:::
run

::
of

:::
the

::::::::::::
segmentation

::::::
process

:::
are

::::::
shown

::
in

::::
Table

::
2.
::::::::
Contrary

::
to

:::
our

:::::::::::
expectations,

:::
the

::::::
median

:::::::
number

::
of

::::::::
segments

:::::
were

::
all

::::::
smaller

::::
than

:::::
those

:::
for

:::
the

:::::::::::
corresponding

:::::::::
property’s

::::::
single

:::::
depth

::::
slice

::::::::::::
segmentations.

::::
This

::::::
shows

::::
that

:::::
using

:::
the

::::::::::
multivariate

:::::::
measure

::
of

:::::::::
similarity

::::
with

::
the

:::::
same

::::::
model

:::::::::
parameters

::::::
allows

::
for

::::::
larger

::::
areas

::::
with

:::
the

:::::
same

:::::::
internal

::::::
pattern.

::::::
Again,

:::
the

:::::
maps

::
of

:::
pH

:::
and

:::::
sand

:::::
could

::::
only310

::
be

:::::::
grouped

::::
into

::::
small

:::::::::
segments,

:::
and

:::::
SOM

::::
into

:::
the

:::::
largest

:::::::::
segments.

The finest segmentation using all depth slices of a single property produced

:::::
Figure

::
7

:::::
shows

:::
the

:::::::::::
segmentation

:::::
based

:::
on

:::::::::::
whole-profile

::::
bulk

::::::
density

::
at

:::
the

:::::
finest

::::
scale

::::::::
(nominal

:::::
1:100

::::
000),

:::::::
overlaid

:::
on

:::
the

::
six

:::::
depth

:::::
slices. Contrary to our expectations, the median number of segments were all smaller than those for the corresponding

property’s single depth slice segmentations.
::::
There

::
is

:
a
:::::
clear

::::::::
landscape

:::::::
pattern.

:::
The

:::::
sandy

:::::
areas

::::
with

:::::
higher

::::
bulk

:::::::
density,

::
as

::::
well315

::
as

:::
the

:::::::
medium

::::
bulk

:::::::
densities

::
in

:::
the

:::::
older

::::
river

:::::
clays,

:::
are

::::::
mostly

:::::::
collected

::::
into

::::
large

::::::::::::
polygons.The

:::
fine

::::::
details

::
in

::::
peat

::::
areas

::::
and

:::::::
younger

::::
river

::::::::
sediments

:::
are

::::
also

::::::::
captured.
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:::
Cell

:::
size

: ::::::
nominal

::::
scale

: ::::::::
maximum

:::::::
segments

::::::
property

: :::::
nmax :::::::

minimum
:::::::
segments

:::::::
property

::::
nmin: ::::::

nmedian: ::::::
average

:::
area

::::
km2

::::::
10× 10

::::
1:100

:::
000

: ::
pH

:
3 316 (pH ) to 168 (SOM) segments, median

:::
114

::::
SOM

: :::
162

:
1 873 segments, average area 0.854 km2. Segmentation at

:::
633

: :::
0.98

::::::
20× 20 1:

::
200

:::
000

: ::
pH

: :::
668

::::
SOM

: ::
38

: :::
403

: :::
3.97

:

::::::
40× 40

::
1:400 000 equivalent scale produced 190 (sand ) to 13 (SOM ) segments, median 127 segments, average area 12.59 km2. Segmentation at

:::
sand

: :::
174

::::
SOM

: ::
12

: :::
111

: ::::
14.41

::::::
80× 80 1:800 000 equivalent scale produced 55 (sand)to 6 (SOM) segments, median 36 segments, average area 44.44 km2

:::
sand

: ::
44

::::
SOM

: :
5
: ::

37
: ::::

43.24
:

Table 2.
:::::
Results

::
of

:::::::::
multivariate

:::::::::::
segmentation:

::
all

:::::
depth

::::
slices

:::
for

::::
each

::::::
property

::
(9
::::::::::::

segmentations).
::::::
nmax:

:::::::
maximum

::::::
number

:::
of

:::::::
segments

::::
found

:::
by

::
all

::::::::
properties;

:::::
nmin:

:::::::
number

::
of

:::::::
segments

:::::
found

::
for

:::
the

:::::::::
“minimum

::::::::
segments”

:::::::
property;

:::::::
nmedian:

::::::
median

::::::
number

::
of
::::::::

segments

::::
found

::
by

:::
all

::::::::
properties.

Figure 7.
::::::::::
Segmentation

:::::
based

::
on

::::
bulk

::::::
density

:::
over

:::
the

:::::
whole

:::::
profile

::::
(red

:::::
lines),

::::::
overlaid

::
on

:::
soil

::::
map

:::::::
polygons

::::
(grey

:::::
lines).

::::::
Design

:::::
scales

::
left

::
to
:::::
right,

::
top

::
to

::::::
bottom:

:::::
1:100

:::
000,

:::::
1:200

::::
000,

::::
1:400

::::
000,

::::
1:800

:::
000

.
:

Figure ?? shows
:
8
::::::::
compares

:
the segment boundaries for this

:::
the multivariate segmentation by bulk density over the whole

profile, at the three
:::
four

:
resolutions overlaid on the Dutch 1:50 000 soil survey polygons. It is clear that the 1:800 000

segmentation misses important differences
:::::::::
necessarily

:::::
larger

::::::::
polygons

:::::::
resulting

::::
from

:::
the

:::::::
coarser

:::::::::::
segmentations

:::::
miss

::::::::
important320

:::::::::
differences,

:
and that the 1:100 000 segmentation finds quite small areas, mostly just one grid cell, within soil bodies. The

1:400
:::
200 000 segmentation (i.e., shift size 40, 1

::
20,

::::
i.e.,

:::
0.5 km2 ) grid cells) matches well with many soil map boundaries.

::::
Note

:::::::
however

::::
that

:::
the

:::::
Dutch

:::
soil

::::::
survey

::::
map

::::
units

:::
are

:::::::
defined

::
by

:::::
many

:::::::::
properties,

:::
not

::::
just

::::
bulk

::::::
density.

:
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Figure 8. Segmentation based on bulk density over the whole profile (red lines), overlaid on soil map polygons (grey lines). Design scales

left to right
:
,
::
top

::
to

::::::
bottom: 1:100 000, 1:400 000, 1:800 000

:
,
::::::
1:1’600

:::
000

.

Figure ??
:
9 shows the success of the segmentation based on bulk density over the whole profile at the 1:400 000 design

scale:
:::
two

::::::
design

::::::
scales.

::::
This

::
is

::::::::
evaluated

::
by

::::
the

::::::
internal

:
inhomogeneity of each segment and isolation

::
the

:::::::::
difference

::
of

::::
this325

from its neighbours,
::::
i.e.,

::
the

::::::::
isolation. For example, the pixels in the large segment in the top-centre are quite similar in their

::
at

::::
both

:::::
scales

:::
the

:::::::
polygon

::
at

:::::
upper

:::
left,

:::::::::::
representing

:::
part

::
of

:::
the

:::::
sandy

:::::::
uplands

::::
(the

::::::::
Utrechtse

::::::::::
Heuvelrug),

:::
has

:::
low

:::::::::::::
inhomogeneity

::::::
(similar

:::::::
internal

::::::::::
composition

::
of

:::
the

:
bulk density profiles , but this segment is only moderately different from

::
of

::
its

::::::
pixels),

::::
and

::::
high

:::::::
isolation,

::::
i.e.,

::
its

:::::::
internal

::::::::::
composition

::
is
:::::
quite

:::::::
different

:::::
from

:::
that

::
of

:
its neighbours. This shows the relative homogeneity

of the bulk density profiles of the central Gelderse Vallei (Gelderland Valley) in the vicinity of Renswoude and Scherpenzeel.330

Note that this area also has large segments based on all properties and depth slices, as seen in Figure ??.
:::::::
landscape

::::::::
segment

:::
has

::::
been

::::::::::::
well-identified

::
at

::::
both

::::::
scales,

:::::::
because

:
it
::::
has

::::
such

:
a
:::::::::
distinctive

::::
bulk

::::::
density

::::::
profile

:::::
(very

::::
high

::::::::::
throughout)

::
in

:::::::
contrast

::
to

::
its

::::::::::
neighbours.
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Figure 9. Evaluation of segmentation based on bulk density over the whole profile at the 1:
:::
100

:::
000

::::
(top)

::::
and

::
1:400 000

::::::
(bottom)

:
design

scale
::::
scales.

::::
Note

:::
the

:::::::
different

:::::
colour

::::
ramps

:::
for

:::
the

:::
two

:::::
scales

.

:::
Cell

:::
size

: ::::::
nominal

::::
scale

: ::::::
number

::
of

:::::::
segments

:::::::::::
inhomogeneity

::::::
isolation

: ::::::
average

:::
area

::::
km2

::::::
10× 10 1

:::
:100

:::
000

: :::
985

::::
0.105

::::
0.277

: :::
1.62

:

::::::
20× 20

::::
1:200 266, 96, 28 segments) decreased from 0.108,

:::
000

: :::
277

::::
0.085

::::
0.250

: :::
5.78

:

::::::
40× 40

::::
1:400

:::
000

: ::
77

::::
0.081

::::
0.199

: ::::
20.78

:

::::::
80× 80

::::
1:800

:::
000

: ::
22 0.086 , to 0.076. In parallel, median isolation values decreased from 0.288, 0.211, to 0.178.

::::
0.184

: ::::
72.73

:

Table 3.
::::::
Results

::
of

::::::::::
segmentation

::::
based

:::
on

::
the

::::
bulk

:::::
density

::::::
profile.

As
::::
Table

::
3
:::::
shows

::::
that

::
as

:
the segmentation becomes coarser the inhomogeneity and isolation both decrease, i.e., segments

are internally more consistent in their patterns,
::::::
internal

:::::::
patterns

:
and less isolated from their neighbours. For example, median335

inhomogeneity values from the segmentation based on whole-profile bulk density (
::::
This

::::::::
illustrates

::::
the

:::::
effect

::
of

::::::::::
geographic

::::::::::::
generalisation.
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:::
Cell

:::
size

: ::::::
nominal

::::
scale

: ::::::
number

::
of

:::::::
segments

:::::::::::
inhomogeneity

::::::
isolation

: ::::::
average

:::
area

::::
km2

::::::
10× 10

::::
1:100

:::
000

: :::
525

::::
0.431

::::
0.630

: :::
3.05

:

::::::
20× 20

::::
1:200

:::
000

: :::
118

::::
0.366

::::
0.574

: ::::
13.56

:

::::::
40× 40

::::
1:400

:::
000

: ::
40

::::
0.365

::::
0.566

: ::::
40.00

:

::::::
80× 80

::::
1:800

:::
000

: :
6

::::
0.414

::::
0.569

: :::::
266.67

:

Table 4.
::::::
Results

::
of

:::::::::
multivariate

::::::::::
segmentation:

::::
with

::::::
selected

::::::::
properties

:::
and

::::
depth

:::::
slices

3.2.3 Multivariate segmentation with selected properties and depth slices

Another segmentation is obtained by selecting properties and
::::::::
Although

::::::
BIS-4D

:::::::
predicts

:::::
each

:::::::
property

:::::::::
separately,

:::
the

:::
soil

:::
as

:
a
::::::
natural

:::::
body

::
is

::
of

::::::
course

:::::
more

::::
than

::
a
:::::
stack

::
of

:::::::::
individual

:::::::::
properties,

::::
and

:::
this

::
is
::::::::::
recognized

::
by

:::
the

:::::::
concept

:::
of

:::::::::
diagnostic340

:::::::
horizons

:::
and

:::::::::
properties

::
in

:::::::
modern

:::
soil

:::::::::::
classification

::::::::
systems,

:::
and

::::
soil

:::::
series

::
in

:::::::
detailed

:::::::::::
conventional

:::
soil

::::::::
mapping.

:::
To

:::
see

::
if

:::::::::::
segmentation

::
of

::::::
BIS-4D

::::
can

::::::
identify

:::::
these,

:::
we

:::::::
selected

::::::::
properties

::::
and depth slices to represent the profile.

:::::
These

::::
were

:::::::
selected

::
to

:::::
match

::::
with

::::::::
expected

:::::::::
diagnostic

:::::::
horizons

::::
and

:::::
series

:::::::::
differences

::
in
:::

the
::::

test
::::
area.

:
Using all 56

::
In

:::::
other

:::::::
contexts

:::
the

:::::::
choices

:::::
would

::
be

::::::
linked

::
to

:::
the

::::
key

:::
soil

:::::::::
properties

:::
and

:::::
depth

:::::
slices

::::::
which

::::::::::
differentiate

:::
the

::::::
major

:::
soil

:::::
types

::
in

::::
that

::::
area.

::::::
Using

::
all

:::
54

layers results in an impractical Jensen-Shannon divergence, hence we selected key properties at key depths:
::
(1)

:
pH, clay, silt,345

SOM
:
at
:
0-5 cm, clay , bulk density ;

:::
(2)

::::
clay

:::
and

::::
bulk

:::::::
density

:
at
:
15-30 cm, CEC

:
;
::
(3)

:::::
CEC

::
at 30-60 cm, sand , SOM ;

::::
and

:::
(4)

::::
sand

:::
and

:::::
SOM

::
at

:
100-200

::::
cm. Figure ??

:::
The

::::::
reason

:::
for

::::::::
including

:::::
SOM

::
of

:::
the

:::::::
deepest

:::::
layer

:::
was

::
to
::::::::::

distinguish
:::::
thick

:::::
peats,

:::
and

:::
for

::::
sand

::
of

::::
that

::::
same

:::::
layer

:
is
:::
to

:::::::::
distinguish

::::
thick

:::::
dune

:::::
sands.

:

::::
Table

::
4
:::::
shows

:::
the

::::::
results

:::
for

:::
one

::::
run

::
of

:::
the

:::::::::::
segmentation

:::::::
process.

::::
The

:::::::
segment

::::::
counts

::
at

::::
each

::::
scale

:::
are

:::::
much

:::::::
smaller,

::::
and

:::
thus

:::
the

::::::::
segment

::::
areas

::::
are

:::::
larger,

::::
than

:::
for

:::::::::
individual

:::::::::
properties

:::
and

:::::
depth

::::::
slices,

:::
and

::::
also

:::
for

:::::::::
individual

:::::::::
properties

::::
over

:::
the350

:::::
whole

::::::
profile,

::::::::
compare

::::
with

::::
Table

::
3.
:::::

This
::::::
follows

:::
the

::::::::
tendency

:::::::
observed

:::
for

:::::
using

:::
full

:::::::
profiles

::
of

:::::
single

:::::::::
properties,

:::::::::
compared

::
to

:::::
single

:::::
depth

:::::
slices

:::::::
(§3.2.2).

:

:::::
Figure

:::
10 shows the segment boundaries from this segmentation at the 1:400 000 design scale, overlaid on several single

soil
::
the

:
properties and depth slices . Note that the segment boundaries are the same for all maps. This segmentationshould

best group soils considered holistically, not per-property
::::
used

::
to

:::::::
compute

:::
the

::::::::::::
segmentation. Many of the segments correspond355

to landscape features shown in the conventional soil map of Figure ??
:
4, although constrained to the rectilinear shape and

minimum grid cell size.
:::
For

::::::::
example,

:::::::
segment

:
2
::::::
covers

::::
both

:::
the

:::::
sandy

::::
push

::::::::
moraines,

::::
and

:::::::
segment

::
10

:::::
most

::
of

:::
the

:::::
lower

:::::
Rhine

:::::::::
floodplain.

::::::::
However,

:::::::
because

::
the

::::::::
different

::::::::
properties

::::
and

:::::
depths

::::
have

::::::::
different

::::::::::::
segmentations

::::
when

::::::::::
considered

::::::::::::
independently,

::::
some

:::::::
obvious

::::
soil

:::::::::
landscapes

:::
are

:::
not

::::::::::::::
well-represented

:::::::
because

:::
the

:::::::::::
segmentation

::::
must

::::::::
consider

::
all

:::
the

:::::::::
properties

:::
and

:::::::
depths.

:::
For

::::::::
example,

:::
the

:::::
areas

::::
with

:::::
thick

::::
peat

::
as

::::::
shown

::
on

::::
the

:::::::
100-200

:::
cm

:::::
SOM

::::
map

:::
are

::::
not

::::::::
separated

::::
into

::::::::
segments,

:::
but

::::::
rather360

:::::::
included

::
in

:::::
larger

::::::::
segments.

::::
This

::::::::
suggests

:::
that

:::
the

::::::::
algorithm

::::
will

::::
have

::::::::
difficulty

:::::::::
segmenting

:::
on

:::
the

::::
basis

::
of

:::::::
multiple

:::::::::
properties

:::::
which

:::
are

:::::::
selected

::
to

::::::::
represent

:::::
major

::::::
profile

:::::
types.
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Figure 10. Segmentation based on selected properties and depth slices, overlaid on DSM of selected soil properties, 1:400 000 design scale.

Legends not shown. Scale is from dark red
:::::
yellow (low values of the property) to dark green

:::
blue

:
(high values). Top-left map includes

segment
:::::::
Segments

:::
are

::::::
labelled

::::
with

::::
their numbers.

3.2.4 Scaling of segmentation
::::::::::::
Segmentation

::::
over

::
a

::::
large

:::::
area

The segmentation method scales well. The
::
To

:::::::::
determine

:::::::
whether

:::::::::::
segmentation

::::::
could

::
be

:::::::
applied

::::
over

:
a
::::::
larger

::::
area

::::
than

:::
the

::
40

::
x

:::
40

:::
km

:::
test

:::::
area,

:::
we

:::::::::
segmented

::::
the

::::::
BIS-4D

:::::::
product

:::
for

::::
the

:::::
entire

:
land area of the Netherlands (≈ 33 240 km2) was365

segmented using all depth slices for several properties. At the nominal 1:400 000 design scale, this resulted in 2 535 (pH) and

1 547 (bulk density) segments; at 1:800 000 design scale 649 (pH) and 371 (bulk density)
::::
three

:::::::::
properties,

:::
at

:::
the

::::
three

:::::
most

::::::
general

::::::
scales.

:::
The

::::::
results

:::
are

::::::
shown

::
in

:::::
Table

::
5.

:::::::::::
Interestingly,

::::
there

::
is

::::
quite

:::::
some

:::::::::
difference

::
in

:::::::
segment

:::::::
numbers

::::::
among

:::::
these

::::::::
properties.

:::::
Bulk

::::::
density

:::::::::
(classified

::::
units

::
of

:::::::::::
0.1 kg m−3)

:::::
forms

:::
the

::::::
fewest

::::::::
segments,

:::::::
whereas

:::
pH

:::::::::
(classified

::
in

::::
units

::
of

:::
0.1

::::
pH)

:::::
forms

:::
the

::::
most

::::::::
segments. Figure ??

:::::
These

::::::
results

:::
are

:::::
partly

:::
due

::
to

:::
the

:::::::::::
classification

:::::::::
precision,

::
as

::::
well

::
as

:::
the

:::::
spatial

:::::::
pattern

::
of370

::
the

:::::::::
properties.

:
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::::::
Property

: ::
n,

::::::
40× 40

::
n,

::::::
80× 80

::
n,

::::::::
160× 160

::
pH

: ::::
2240

:::
601

:::
161

::::
Bulk

:::::
density

: ::::
1344

:::
358

:::
100

::::
Clay

::::::::::
concentration

::::
1444

:::
462

:::
143

Table 5.
::::::
Results

::
of

:::::::::
multivariate

::::::::::
segmentation:

:::
all

::::
depth

::::
slices

:::
for

::::::
selected

::::::::
properties,

:::::
entire

::::::::::
Netherlands.

:
n
::
=

:::::
number

::
of
::::::::
segments

Figure 11. Segmentation by whole-profile pH of the Netherlands at 1:400
:::
800 000 (left) and 1:800

::::
1’600 000 (right) nominal scales, overlaid

on the pH 15–30 cm DSM product

.

:::::
Figure

:::
11

:
shows the segmentation by pH of

::::::::
(classified

::
in

:::::
units

::
of

:::
0.1

::::
pH)

::
of

:
the entire Netherlands at these two scales.

::
the

::::
two

:::::
most

::::::
general

::::::
scales.

:
For this extent the coarsest segmentation seems most useful for understanding the

:::::::::
generalized

country-wide soil pattern.
:::
For

:::::::
example,

:::
the

::::
two

:::::::::::
push-moraine

::::
sand

::::::
ridges

:::::::::
(Utrechtse

::::::::
Heuvelrug

::::
and

:::
De

:::::::
Veluwe)

:::
are

::::::::
identified

::
as

:::
one

::::::::
segment,

::
as

::
is

::::
most

:::
of

:::
the

::::::::
reclaimed

::::::
marine

:::::
clays

::
of

:::::::::
Flevoland.

::::
The

:::::::
complex

::::::
pattern

::
of

::::
low

:::
and

:::::::
medium

:::
pH

:::
in

:::::
North375

::::::
Brabant

::
is
::::
also

::::::::
identified

::
as

:::
one

::::::::::
generalized

::::
soil

::::::::
landscape.

:

3.2.5 Segmentation parameters

Segmentation is greatly affected by the two thresholds. For example, segmenting the test area
::::
Table

::
6

:::::
shows

:::
the

::::::
results

::
for

::::
one

:::
run

::
of

:::
the

:::::::::::
segmentation

::::::
process

:
using all depth slices for clay using

:::::::::::
concentration

::::
with the default lower and upper thresholds

(0.1 and 0.3, respectively)results in 1 932 (1:100 000) and 148 (1:400 000) segments, whereas using ,
::::::::
compared

:::::
with

:
a
:
more380

liberal (easier segmentation) thresholds
:
(0.3 and 0.8

:
,
:::::::::::
respectively),

::
at
:::::::

several
:::::::::
resolution.

::::::
Using

::::
these

::::::
liberal

::::::::::::
segmentation

:::::::::
parameters

::::::
reduces

:
the number of segments is reduced to 285 and 18.

::::::
between

::::
two-

::::
and

:::::::::
three-fold. In effect, the more liberal

segmentation at a finer scale is similar
:::::::::
comparable

:
to the more conservative one at a coarser scale.

::
the

:::::::::::
next-coarser

:::::
scale.
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:::
Cell

:::
size

: ::::::
nominal

::::
scale

: :
n
:::::::::::
(conservative)

:
n
:::::::
(liberal)

:::::::
reduction

:::::
factor

:::::
10× 10

: ::::
1:100

:::
000

: :
1
:::
175

:::
563

:::
2.09

:::::
20× 20

: ::::
1:200

:::
000

: :::
481

:::
157

:::
3.06

:::::
40× 40

: ::::
1:400

:::
000

: :::
143

::
61

:::
2.34

:::::
80× 80

: ::::
1:800

:::
000

: ::
40

::
12

:::
3.33

Table 6.
::::::::::
Conservative

:::
and

:::::
liberal

::::::::::
segmentation,

:::
all

::::
depth

:::::
slices

::
of

:::
clay

:::::::::::
concentration.

Figure ??
::::
This

::
is

:::::::::
illustrated

::
in

::::::
Figure

:::
12,

:::::
which

:
shows the multivariate segmentation of the test area on the basis of clay

concentration at all depth slices at nominal 1:400
:::
100 000 scale with default thresholds, and the same for the

:::
and

:
1:100

:::
200 000385

scale but with
::::
with

::::::
default

:::
and

:::::
more

:
liberal thresholds. These maps are comparable.

:::
The

:::::::::
thresholds

:::
can

:::
be

:::::::
adjusted

:::
by

:::
the

::::::
analyst

::
to

:::::
match

::::::
known

::::::::::::
soil-landscape

:::::::::::
components.

::::
This

::
is

::
an

:::::::
example

::
of

:::::::::
“helping”

:::
the

::::
DSM

:::::::
product

::
to

::::::
“speak

:::
for

::::::
itself”.

3.3 Clustering

Hierarchical clustering was applied to the segments of Figure ??
::
10, i.e., based on selected properties and depth slices ,

:::::::
selected

to represent the profile
::::::
profiles

::
of

:::
the

::::::
major

:::
soil

:::::
types. The resulting dendrogram is shown in Figure ??

::
13. Note the large390

separation in internal patterns between the two top-level branches (height 6). These
:::
2.5).

::::::::::
Comparing

::
to

:::
the

:::::::
segment

::::::::
numbers

:::::
shown

::
in

::::::
Figure

:::
10,

:
it
::
is

::::
clear

::::
that

::::
these

:
represent the river clay landscape, Gelderse Vallei depression, and lower terraces (right

branch, clusters 4–7
:::
left

::::::
branch,

::::
e.g.,

::::::::
segments

::
5
:::
and

:::
17) and the sandy uplands (left, clusters 1–3

:::
right

:::::::
branch,

::::
e.g.,

::::::::
segments

:
1
:::
and

::
2). At the second level for

::
of the right branch (height 3.5) the large

::::
1.2)

:::
the separation is between the Gelderse Vallei

depression and terraces (clusters
::::
small

:::::
areas

::::
with

::::
more

:::::::::::
heterogenous

::::::::
segments

:::::
(right

:::::::
branch,

::::
e.g.,

::::::::
segments 4and 5,

::
6,

::
9) and395

the river clays (clusters 6–7). At the third level for the rightmost branch is the separation between the actively flooded zones

(cluster 7) and the somewhat higher zones (cluster 6
::::
larger

:::::
more

::::::::::::
homogeneous

:::::
areas

::
of

:::
the

:::::
sandy

:::::::
uplands

::::
(left

:::::::
branch,

::::
e.g.,

:::::::
segments

::
1
:::
and

::
2). While not a perfect separation, the clustering does separate the principal soil landscape components .

:::
and

::::
their

::::::
internal

::::::::::::
heterogeneity.

:

The seven generalised clusters identified in the dendrogram
::::
From

::
an

::::::::::
examination

:::
of

::
the

:::::::
heights

::
at

:::::
which

::::::
groups

::
of

::::::::
segments400

::
are

::::::
joined,

::
it
:::::
seems

::::
that

::::::
cutting

:::
the

:::
tree

::
at

::::::
height

::
0.8

::::
into

:::
five

:::::::
clusters

:::::
forms

:::
the

::::
most

::::::
useful

::::::
general

::::::::
grouping.

::::
This

::
is

::::::
shown

::
in

:::::
Figure

:::
13

::
by

:::::
boxes

::::::
around

:::
the

:::
sets

:::
of

:::::::
segments

::
in
:::::
each

::::::
cluster.

:::::
These

:::::::::
generalised

:::::::
clusters are shown on the landscape in Figure

??
:::
nine

:::::::::
properties

::
in

::::::
Figure

::
14. These

::::
They group similar segments well and could serve as landscape management units. For

example, cluster 4 groups the mostly homogeneous segments dominated by low pH, clay, SOM, CEC, high sand, and medium

silt. Cluster 7 groups the heterogeneous segments along the rivers and large brooks.405

3.4 Evaluation
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Figure 12. Segmentation by whole-profile clay at 1:400
::
100 000 with default thresholds (left

::
top) and 1:100

:::
200 000 (right

:::::
bottom) with

:::::
default

:::::::
thresholds

::::
(left)

:::
and

:
liberal thresholds

::::
(right), overlaid on the clay 0–5 cm DSM product

.

The
::
By

:::::
using

:::
the

:::::::::
algorithms

::::
with

:::::::::::::
analyst-selected

::::::::::
parameters,

:::
the

:
BIS-4D product can

:::
was

::::
able

:
“speak for itself” quite well,

to reveal
::::::::
revealing both compact units of homogeneous soils and segments with similar heterogeneous patterns of soil classes.

Aggregation based on properties and depths selected to represent the results of the principal soil forming factors delineates

patches (Figures ?? and ??
:::::
Figure

::
5) that closely correspond to polygons of the 1:50 000 design scale conventional soil map410

with design scale 1:50 000 (Figure ??
:
4), generalized to about 1:158

:::
100 000 design scale, although with some variations in

form. Segmentation was most successful with grid cells of 1 000 ha, corresponding to nominal map scale 1:400 000. This

grouped patterns of pixels with different internal patterns of classes. Hierarchical clustering of these segments found groups of

similar patterns within the map. These represent separate segments of the same landscape component. These results increase

confidence in the BIS-4D DSM product. This is perhaps a best case, due to the extremely high quality of the source data415
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Figure 13. Hierarchical clustering of the segments shown in Figure ??
::
10

.

(training points and covariates), the conventional map which can be used for comparison with aggregation and segmentation,

and sophisticated modelling approach specific to the Netherlands
:
,
::
as

::::::::
explained

::
by

::::::::::::::::::::
Helfenstein et al. (2024).

4 Case study
:::::
Study 2 – SoilGrids v2.0 (Global)

At the other extreme from the country-specific DSM exercise based on a large quality-controlled and spatially complete training

set (§3) is a global DSM exercise based on a heterogeneous and spatially-unbalanced training points, using only covariates with420

global coverage. For this case we selected SoilGrids v2.0 (Poggio et al., 2021) from ISRIC-World Soil Information. This is a

set of predictive maps of soil properties for the entire globe at 250 m nominal spatial resolution. Aggregations to 1 km and 5 km

resolutions are provided for modelling at coarser scales. It is a globally-consistent product that uses all available point data

from the World Soil Information Service (WoSIS) database (Batjes et al., 2024), also from ISRIC-World Soil Information, and
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Figure 14. Generalised clusters of the segmentation of Figure ??
::
10, based on slicing the clustering dendrogram shown in Figure ??

::
13.

::::
The

::::
same

::::::::::
segmentation

:
is
:::::
shown

:
for seven general clusters

:::
nine

:::::::
selected

:::::::::::
property-depth

::::::::::
combinations.

::::::
Clusters

:::::
shown

::
by

:::::
colour

:::
and

::::::
number.

covariates with global coverage. Political boundaries are nowhere visible, except where one or more covariates match these.
::
In425

:::
this

:
it
:::::::
follows

:::
the

::::::
concept

:::
of

:::
the

:::::::::
pioneering

::::::::::::
FAO-UNESCO

::::
Soil

::::
Map

::
of

:::
the

::::::
World

:::::::::::::::::::::::::::::::::::
(FAO - UNESCO, 1971–1979; FAO, 1990)

:
.

SoilGrids provides both predictions and their uncertainty, via quantile random forest machine-learning models. It closely

follows the GlobalSoilMap specifications of properties and depth slices (Science Committee, 2015). It also predicts the derived

property of SOC stocks from 0-30 cm, in T ha−1, computed from SOC concentration and bulk density. We chose to evaluate430

this layer, in order to compare it with the FAO’s
::::::
selected

:::::
SOC

:::::
stock

:::::::
because

::
it

::
is

:
a
:::::

high
::::::
priority

:::
for

::::::
global

:::::::::
modelling,

:::
as

::::::::
evidenced

:::
by

:::
the

:::::
efforts

:::
of

:::
the

::::
FAO

::
to

:::::::
produce

::
a
:::::
global

::::
map

:::::
from

:::::::
national

:::::::::::
contributions

::
in

:::
the

:
Global Soil Organic Carbon

Map (GSOCmap) project (FAO, 2018).
:::::::::::::::::::::::::::::::::::::::::::::::
(FAO, 2018, see a portion of this map in Figure 30, below).

::
It
::
is

::
a

::::
high

::::::
priority

::::
due

::
to

::
its

:::
key

::::
role

:::
in

:::
soil

::::::::
functions

::::
and

:::
its

:::::::::
importance

::
in
::::::

policy
:::::::::::
applications.

::
It

::
is

::
a

:::::::
primary

:::::
target

:::
for

:::::
DSM

::::
over

:::::::
various

::::::
spatial
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Figure 15. SoilGrids v2.0; SOC stock 0-30 cm, T ha−1.
:::
Test

::::
area

::
for

:::::::::
aggregation

:::::
(§4.1)

:::::
shown

::
as

:
a
:::
red

::::::
square.

::::::
extents.

:::::
How

:::
can

:::
the

::::::
diverse

:::::
SOC

::::::
digital

:::
soil

:::::
maps

:::
be

:::::::::
evaluated?

:::
We

:::::::
propose

:::
the

::::::
spatial

::::::
pattern

::::
and

::
its

:::::::
relation

::
to

:::
the

::::
soil435

::::::::
landscape,

:::
as

:::::::
revealed

:::
(we

:::::
hope)

:::
by

::::::::::
aggregation

:::
and

::::::::::::
segmentation.

:::::::::::::::::::::::
Poggio et al. (2021, Table 4)

:::::
shows

::::
that

::::::::
SoilGrids

::::::::::
predictions

:::
had

::
a

::::::
median

::::::
global

:::::::::::::
cross-validation

::::::
RMSE

::
of

::::::
3.97%

:::::
SOC

:::::::::::
concentration

:::
and

::::
0.19

:::::::
g cm−3

::::
bulk

::::::
density,

::::::::
averaged

::::
over

:::
the

::::
three

:::::
layers

::::::
which

::::::::
contribute

::
to

::::::::
SoilGrids

:::::
SOC

::::
stock

:::::::::
estimates.

We selected a transnational study area with corners
::::::::
lower-left

::::::
corner (-109.99

::
E, 27.86) E and

:::
N)

:::
and

::::::::::
upper-right

::::::
corner

(-100.03
::
E, 35.64) N

::
N). This covers most of Chihuahua and Coahuila and part of Sonora States (MX

::::::
México) and portions of440

Texas and New Mexico States (USA). Figure ??
::
15 shows this area, with the SOC stocks over the 0–30 cm depth slice. The

higher stocks are in mountains and wetlands along the Rio Grande, the lower in high deserts.

Individual 2× 2◦ tiles of the 250 m product were downloaded in the GeoTIFF format from the interactive SoilGrids site

(ISRIC-World Soil Information, 2024b), imported into R with the terra package, mosaicked, projected from the original

geographic coordinates to a local Albers Equal Area projection, and trimmed to 3 270 x 3 610 6.25 km2 pixels, covering445
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Figure 16. Test area for aggregation, centred on (-105 E, 32 N). Source: @ Google Earth

737 793.8 km2. The global map of the 1 km product was downloaded in the GeoTIFF format from the ISRIC WebDAV

repository (ISRIC-World Soil Information, 2024a), projected from the original Homolosine coordinate reference system to the

same local Albers Equal Area projection, and trimmed to 900 x 900 1 km2 pixels, covering 810 000 km2.

Predicted SOC stocks per pixel
:
in
::::

the
::::
study

::::
area

:
ranged from 0 to 83, median 28 T ha−1 for the 250 m product, and 7 to

76, median 29 28 T ha−1 for the 1 km product, showing the smoothing effect of upscaling.
:::::
These

::::::::::
distributions

:::
are

::::::::::
moderately450

::::::::::
right-skewed

:::::::::
(skewness

:::::
0.468

:::
and

::::::
0.488,

:::::::::::
respectively).

:

4.1 Aggregation

We applied the supercells algorithm to the SOC stocks 250 m resolution layer. To limit processing time and memory

requirements, we selected a small test area of 80 x 80 km, i.e., 640 000 ha, centred on (-105 E, 32 N) at the Texas (N) /

New Mexico (S) border, near Dell City NM (Figure ??).
::
TX

:::::::
(Figure

:::
16).

:
The centre pivot irrigated fields at the centre-left are455

≈ 800×800 m and should thus be resolvable on the SoilGrids map. This area includes a wide range of the SOC stocks (Figure

??
::
17 left), with high values in the Guadalupe Mountains to the east and very low values in the salt flats in the centre of the

area.
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Figure 17. SoilGrids v2.0
:::
250

::
m SOC stock

::::
0-30

:::
cm,

::::::
T ha−1 (left) and its aggregation into supercells (right); SOC stock 0-30 cm, T ha−1

:
.

After some experimentation, a medium value (0.5) for compactness was selected. We did not set a minimum mappable

area mineara
:::::::
minarea, rather a number of proposed supercells k. A choice of ≈ 400 supercellscorresponds

:::::::
k ≈ 400

:::::::::
supercells,460

:::::::::::
corresponding

:
to an average area of 1 600 ha , corresponding to

:::
and

:
1 cm2 on a 1:400 000 printed map. This is much larger

than the area of single centre-pivot irrigated fields, so we did not expect these to be individually resolved.

Figure ??
::
17

:
(right) shows the computed supercells. Median size of the 412 supercells was 1 388 ha, ranging from 431 to

5 462 ha, with a strongly right-skewed distribution. This aggregation clearly groups the pixels with similar SOC concentra-

tions. However, the shapes do not seem to correspond to natural landscape boundaries. We attempted other combinations of465

compactness and supercell numbers, with poorer results.

The quality of the aggregation can be measured by the standard deviation of the property within each supercell (Figure

??
::
18). These ranged from 0.34 to 6.08, median 1.18 T ha−1, with corresponding coefficients of variation from 1.36 to 26.61,

median 4.39%. The highest heterogeneity was in the pivot irrigation area, where the minimum supercell size forced pixels with

a wide range of values together.470

4.2 Segmentation

Segmentation was applied to the SOC stock map of the full study area, for both resolution SoilGrids DSM products. Since

gpat_gridhis requires class maps, SOC stocks were classified in 19 (250 m) and 18 (1 km) equal intervals of 4 T ha−1,

with from 31 to 1’956 813 (250 m) and 14 to 128 549 (1 km) pixels per class. The minimum grid resolution for the 250 m

product is here 2.5× 2.5 km. The
::::
This

:
map was segmented at this resolution, and also four coarser resolutions: 5× 5 km,475

10× 10 km, 20× 20 km, and 40× 40 km, corresponding to map scales 1:1M, 1:2M, 1:4M, 1:8M, and 1:16M, respectively.

These produced 7 600, 1 905, 491, 127, and 35 segments from the 250 m resolution map, respectively
:::::
Table

:
7
::::::
shows

:::
the

::::::
results.

::
As

::::::::
expected,

:::
the

::::::::
segments

:::
are

::::::::::
increasingly

::::::::::::
heterogeneous

::
as

:::
the

::::
cell

:::
size

:::::::::
increases:

::::
both

:::
the

::::::
median

:::::::
standard

::::::::
deviation

::::::
within

::
the

::::::::
segments

::::
and

::::
their

:::::::
entropy

:::::::
increase. Figure ?? shows the segmentation at the finest scale.
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Figure 18. Standard deviation within supercells;
:::::::
SoilGrids

::::
v2.0

:::
250

::
m SOC stock 0-30 cm, T ha−1

:
,
::::::
rounded

::
to

::
0.1

:::::::
precision

:::
Cell

:::
size

: ::::::
nominal

::::
scale

: ::::::
number

::
of

:::::::
segments

:::::
median

:::::::
standard

:::::::
deviation

: :::::
median

:::::::::
normalized

::::::
entropy

::::::
average

:::
area

::::
km2

::::::
10× 10

::::::
1:1’000

:::
000

: :
6

:::
612

:::
2.36

: :::
0.31

::
122

:

::::::
20× 20

::::::
1:2’000

:::
000

: :
1

:::
718

:::
3.07

: :::
0.37

:::
471

::::::
40× 40

::::::
1:4’000

:::
000

: :::
485

:::
3.86

: :::
0.43

:
1
:::
670

:

::::::
80× 80

::::::
1:8’000

:::
000

: :::
117

:::
4.46

: :::
0.47

:
6
:::
923

:

::::::::
160× 160

:::::::
1:16’000

:::
000

: ::
35

:::
6.42

: :::
0.60

::
23

:::
142

:

Table 7.
::::::
Results

::
of

::::::::::
segmentation

::
of

:::::::
SoilGrids

:::
250

::
m

::::::::
resolution

::::
SOC

::::
stock

:::::::
T ha−1;

::::::::
normalized

::::::
entropy

::::::
[0 . . .1].

:

:::::
Figure

:::
19

::::::
shows

:::
the

::::::
results

::
of

:::
the

::::
four

:::::
finest

:::::::::::::
segmentations. The level of detail is apparent, but many segments seem to480

be of a single class, with
:
at
::::

the
:::::
finest

:::::::::::
segmentation

::::::
contain

:::::
only

:::
one

:::::
SOC

:::::
class,

:::
and

::::
thus

:::::
have no internal pattern. Broader

landscape patterns are obscured by this level of detail
:::
The

:::::::::
increasing

::::::::::::
generalisations

::::
find

:::::::::
increasing

:::::::::::
heterogenous

:::::::::
segments,

::::
with

:
a
::::::
clearer

::::::
relation

:::
to

::
the

::::
soil

::::::::
landscape

::::
with

::::
each

::::::::
increase.
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Figure 19. Segmentation of
:::
the

:::::::
SoilGrids

:::
v2.0

:
250 m resolution SoilGrids

:::
SOC

::::
stock

:
map (part) at

:::
(left

::
to
:::::
right,

::
top

::
to

::::::
bottom)

:
1:1M,

:::::
1:2M,

::::
1:4M

:::
and

::::
1:8M

:
nominal resolutions.

:::::
Units

::
are

:::::::
T ha−1

.

From the
:::
The

:
1 km resolution SoilGrids map the three coarsest resolutions resulted in 669, 165, and 43 segments

::::::
product

:::
was

::::
also

:::::::::
segmented

::
at

:::
the

::::
four

:::::
finest

:::::::
possible

::::
cell

:::::
sizes.

:::::
Again

:::
as

::::::::
expected,

:::
the

::::::::
segments

:::
are

::::::::::
increasingly

::::::::::::
heterogeneous

:::
as485

::
the

::::
cell

::::
size

::::::::
increases:

::::
both

:::
the

:::::::
median

:::::::
standard

::::::::
deviation

::::::
within

:::
the

::::::::
segments

:::
and

::::
their

:::::::
entropy

::::::::
increase.

:::::
Table

:
8
::::::
shows

:::
the

::::::
results.

:::::::::
Comparing

:::::
with

:::::
Table

::
7,

:::
we

:::
see

::::
that

::
at

::::::::::
comparable

:::::::
nominal

::::::::::
resolutions

:::
the

::::::::
numbers

::
of

::::::::
segments

:::
are

:::::::::::
comparable,

:::::::
although

:::::
there

::
are

:::::::::
somewhat

:::::
fewer

::::::::
segments

::::
from

:::
the

::
1
:::
km

:::::::
product,

:::::::::
consistent

::::
with

::
its

::::::::::::
generalisation. Figure ?? shows these

three segmentations

:::::
Figure

:::
20

:::::
shows

:::::
these

::::::::::::
segmentations

::
of

:::
the

:
1
:::
km

:::::::
product. As resolution decreases

::::::::
minimum

:::::::
segment

::::
size

::::::::
increases, broader490

landscape patterns are increasingly aparent. All segmentations seem useful at their respective design scales.

Segmentation of 1 km resolution SoilGrids map (part) at (left to right) 1:4M, 1:8M, and 1:16M nominal resolutions.
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:::
Cell

:::
size

: ::::::
nominal

::::
scale

::::::
number

::
of

:::::::
segments median standard deviation 3.37, 4.29, and 6.19 T ha−1, and median normalized Shannon entropy 0.417, 0.481 and 0.584 for the

:::::
median

:::::::::
normalized

::::::
entropy

::::::
average

:::
area

::::
km2

::::::
10× 10 1:4M,

::::
4’000

:::
000

:::
581

:::
3.44

:::
0.42 1

:::
394

:

::::::
20× 20

::::::
1:8’000

:::
000

:::
151

:::
4.51

:::
0.50

:
5

:::
364

::::::
40× 40

:
1:8M, and

:::::
16’000

:::
000

::
39

:::
6.08

:::
0.61

::
20

:::
769

:

::::::
80× 80 1:16M scales, respectively, similar to those from the 250 m segmentation.

:::::
32’000

:::
000

:
6

:::
7.98

:::
0.69

:::
135

:::
000

:

Table 8.
::::::
Results

::
of

::::::::::
segmentation

::
of

:::::::
SoilGrids

::::
1km

:::::::
resolution

::::
SOC

:::::
stock

::::::
T ha−1

:::::::
apparent,

::::::
within

:::
the

::::::::
constraint

::
of
:::
the

::::::::::
rectangular

::::::
blocks.

:
For the 250 m SoilGrids segmentation , median standard deviation

increased from 2.35, 3.08, 3.94, 4.62, to 6.15 T ha−1, while the median normalized Shannon entropy increased from 0.311,

0.369, 0.433, 0.472, to 0.580, for the 1:1M, 1:2M, 1:4M, 1:8M, and 1:16M scales, respectively. Entropy and standard deviation495

increase with segmentsize, as expected
:::
The

:::::::
coarsest

:::::::::::
segmentation

:::::::::
(80× 80)

::::::::
separates

:::
the

:::::
large

::::::::
low-SOC

:::::::
plateaus

:::::
from

:::
the

:::::::::::::
basin-and-range

:::::::::
mountains

::::
with

:::::::::
alternating

::::
high

:::
and

::::
low

:::::
SOC.

:::
The

:::::
entire

::::
Rio

::::::
Grande

:::::
valley

::
is
::::
one

:::::::
segment. The comparable

values for the 1 km SoilGrids segmentation are
:::
next

:::::::
coarsest

::::::::
(40× 40)

::::::::
separates

:::::
these

::::
into

::::::::
segments

::::
with

:::::::::
somewhat

:::::
more

::::::
uniform

:::::::
internal

:::::::
patterns.

::::
This

:::::::::
resolution

::::
will

::
be

::::
used

:::
for

::::::::
clustering

:::::
(§4.3,

:::::::
below).

Figure ??
::
21

:
shows the entropy for each segment of the 1:16M nominal resolution map from the 250 m

:
1
::::
km product. This500

is a measure of the internal class homogeneity of each segment, although not the spatial pattern of the classes. The highest

entropies are found in the segments with mixed high and low terrain, shown as contrasting purple and light blue colours.

4.3 Clustering

Figure ??
::
22 (left) shows the 39 segments signatures from the 1 km product, using motifel size 40 cells, and Figure ??

::
22

(right) shows the assignment to seven generalised clusters. Figure ??
::
23

:
shows the dendrogram for the clustering of the 39505

segment signatures.

The co-occurrence pattern of classes is similar within each general cluster. The clusters should group similar soil landscapes,

at least with respect to the SOC concentration. For example, cluster 1 groups mountainous terrain with high SOC interspersed

with basins with medium SOC in an intricate pattern. ,
:::::::
whereas

::::::
cluster

::
5

::::::
groups

:::
the

::::::::
low-SOC

::::::
plateau

:::::
areas.

::::::
Cluster

::
2

:::::::
contains

::::
most

::
of

:::
the

:::::
upper

:::
Rio

:::::::
Grande

::::::
valley,

:::
but

:::::::
includes

::::
some

:::::::
plateau

::::
areas

::
to

:::
its

::::
west.

:
510

Figure ??
::
24 shows the Jensen-Shannon divergence with the first segment, which necessarily has no divergence.

::::
This

:::::::
distance

::::
does

:::
not

::::::
directly

:::::::::
correspond

::
to
::::::
cluster

:::::::
distance

::
in

:::
the

::::::::::
dendrogram

:::::
unless

:::::::::
clustering

:
is
:::
by

:::::
single

:::::::
linkage;

::::
here

::
we

::::
used

:::::::::
clustering

::
by

::::::
Ward’s

::::
D2. These range from 0.14 (segment 30, in the same cluster 1 as the target segment, although on a different first

branch at height 0.45) to 0.84 (segment 4
:::
0.94

::::::::
(segment

::
28, in widely-separated cluster 3, different at branch height 1.45). This

:::::
These

::::::::
distances can be used to find the soil patterns that are most similar to any segment, independently of cluster membership.515

The distance does not directly correspond to cluster distance in the dendrogram when linkages other than single are used, as in

this case, Ward’s D2.
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Figure 20.
::::::::::
Segmentation

::
of
:::
the

:::::::
SoilGrids

::::
v2.0

::
1

::
km

::::::::
resolution

::::
SOC

:::::
stock

:::
map

:::::
(part)

::
at

:::
(left

::
to

::::
right,

:::
top

::
to
:::::::
bottom))

:::::
1:2M,

:::::
1:4M,

:::::
1:8M,

:::
and

:::::
1:16M

::::::
nominal

:::::::::
resolutions.

::::
Units

:::
are

::::::
T ha−1

.
:

4.4 Evaluation

Aggregation was able to form compact groups of pixels with similar SOC stocks, which could be useful for, e.g., stratified sam-

pling. However the polygons did not seem to correspond well with
::
to landscape units. Segmentation was more successful. At520

several increasingly-general scales it grouped distinctive patterns of SOC stocks, corresponding to large landscape units.
::::
This

:::
was

::::
most

::::::::
apparent

::
at

:::
the

:::::
1:16M

:::::::
nominal

:::::::::
resolution

::::::
(Figure

::::
22).

::::::
Among

:::
the

:::::
most

::::::
obvious

:::
are

:::
the

::::::::::
Chihuahuan

::::::::::::::
basin-and-range

::::::::
mountains

::::::::
(segment

:::
29

::
of

::::::
Figure

:::
22),

:::
the

:::::
upper

::::
Rio

::::::
Grande

::::::
valley

::::
near

::::::
Socorro

::::
NM

::::::::
(segment

:::
2),

:::
and

:::
the

::::
west

::::::::::::
Texas/eastern

::::
New

:::::::
Mexico

::::::
plateau

::::::::
(segment

::::
13).

:::::
Some

::::::::
segments

:::::::
include

::::::
several

::::::::::::
physiographic

:::::
units,

::::::
which

::::::::::
nonetheless

:::::::::
apparently

::::
had

::::::
similar

:::::::
patterns

::
of

:::::
SOC,

:::
for

::::::::
example

:::::::
segment

:::
23

::::::
which

:::::::
includes

:::::
some

::::
west

::::::
Texas

:::::::
uplands,

:::
the

::::
Rio

:::::::
Grande

:::::
valley

::::::
below525
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Figure 21. Normalized Shannon Entropy of segments of the SoilGrids v.2
:::
v2.0

:
1 km

:::::::
resolution

::::
SOC

:::::
stock map (part) at 1:16M nominal

resolution.
:::::
Colour

::::
scale

::::
from

:::::
white

:::::
(lowest

:::::::
entropy)

::
to

:::
dark

::::::
purples

::::::
(highest

:::::::
entropy).

Figure 22. Left: Segmentation of
::
the

:
SoilGrids v2.0 1 km

:::::::
resolution SOC stocks (T ha−1)

::::
stock

:::
map, motifel size 40 cells

:
,
::::
units

::
are

::::::
T ha−1;

Right: Assignment of segments to seven
:::
five generalised clusters,

:::::
legend

::
is

:::::
cluster

::::::
number.
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Figure 23. Dendrogram of segment signatures, SoilGrids v2.0 1 km
::::
SOC

::::
stock

::::
map, motifel size 40 cells.

:
,
::::
with

:::
five

:::::
general

::::::
clusters

Figure 24. Jensen-Shannon divergence from Segment 1
::
1.

:::
Heat

::::::
colours

::::
from

:::
red

::::
(most

::::::
similar)

::
to
:::::
white

::::
(least

:::::::
similar).
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::
El

:::::
Paso,

:::
and

:::::::
uplands

::
in

:::::::
eastern

::::::::::
Chihuahua. Clustering was then able to identify general groups of landscape units, and the

Jensen-Shannon divergence identified the segments most similar to a selected segment.

5 Case study
:::::
Study 3 – SOLUS100 (USA)

The third case study is intermediate to the first two. Like the BIS-4D study it is of one country and with training points from

one source, but (1) it covers a much wider area and so
:::
and

:::::
more

::::::
diverse

::::
area

:::
but can’t use covariates that are only available for530

part of the area, and (2) the product
:
it is based on numerous traditional soil surveys of varying age and quality control

:
,
::
as

::::
well

::
as

::::::
training

::::::
points,

:
which can be used to some extent for evaluation.

SOLUS100 (“Soil Landscapes of the United States 100-meter”) is a recent DSM product from the USDA-NRCS (Nauman

et al., 2024). This
:
It

:
contains predicted values, high and low estimates, and prediction intervals for soil properties at the

GlobalSoilMap standard depths, at 100 m horizontal resolution (i.e., 1 ha pixels) over the entire conterminous United States535

(CONUS). The maps are available in GeoTIFF format (Nauman, 2024). These
::::::
SOLUS

:
can be compared to the Gridded Soil

Survey Geographic Database (gSSURGO) digital product from the NRCS (NRCS Soils, 2022). This
:
,
:::::
which

:
was created

by digitising the polygons from traditional soil-landscape survey, with its linked relational database of polygons, map units,

components, horizons, and soil properties. Thus aggregation and segmentation
:::::
NRCS

:::
has

::::
been

::::::::
working

::
on

:::::::
updates

::
to

::::::
source

::::
maps

:::
as

::::
well

::
as

:::::::::::
harmonising

::::
map

::::
unit

::::::
names

:::
and

::::::::::
boundaries

:::::
across

::::::::
different

::::::
survey

:::::
areas

::::
since

::::::
2013,

:::::::
although

::::
this

:::::
work540

:
is
::::
not

::::::::
complete.

:::::
These

:::::::
updates

:::
are

::::
then

:::::
used

::
in

::::
new

:::::::
versions

::
of
:::::::::::

gSSURGO.
::::::::::
Aggregation

::::
and

:::::::::::
segmentation

::
of

:::::::
SOLUS

:
can

be compared to
::::::::::
gSSURGO, a product based on expert judgement and field-based soil survey, although gSSURGO is also

:
.

::::::::
However,

:::::::::
gSSURGO

::
is quite heterogeneous in the age and quality of the soil surveys on which it is based, and so must be used

with caution as a ground truth
:::::::::
approached

::::
with

:::::::
caution

:::
and

:::::::::
preferably

::::
with

:::
the

:::::::::
judgement

::
of

:
a
:::::
local

::::::::::
experienced

:::
soil

::::::::
surveyor

::
as

::
to

:::
the

::::::::
reliability

::
of

:::::::::
gSSURGO.545

We selected a 570 km2 test area in Wayne County NY, mapped
:::::::::::::
(Higgins, 1978)

:::
and

::::::
Ontario

::::::::::::::
(Pearson, 1958)

:::::::
Counties

::::
NY,

::::::::
originally

::::::::
published in 1978

:::
and

::::
1958

::
as

::::::
Order

::
2,

::::
1:15

:::
840

:::
and

::::
1:20

::::
000

::::
scale

:::::::
surveys,

:::::::::::
respectively, on an unrectified airphoto

base(Higgins, 1978), and later digitised
::
on

::
a

::::::::::
topographic

::::
base

::::
map by the NRCS

:::::::::::::::::::::::::
(D’Avelo and McLeese, 1998) and incorpo-

rated into gSSURGO. This area has a distinctive pattern of NNW-SSE orientated drumlins of various sizes and shapes, and

inter-drumlin depressions. Some of these
:::
the

:::::::::
depressions

:
developed into peatlands, with drained areas used for agriculture and550

undrained areas used as wildlife reserves.
:::
All

::::
soils

::::
have

:::::::::
developed

:::::
since

:::
the

::::
final

::::::
retreat

::
of

:::
the

:::::::::
Laurentide

::::
Ice

:::::
Sheet

::::::
around

::
12

:::
000

:::::
years

::::::
before

::::::
present.

::::
The

::::
main

::::
soils

:::
are

::::::::
classified

::
in

:::
US

::::
Soil

:::::::::
Taxonomy

::
as

::::::
Glossic

::::
and

::::::::
Oxyaquic

:::::::::
Hapludalfs

::
at

:::
the

::::
tops

:::
and

:::::
sides

::
of

:::
the

::::::::
drumlins,

::::
and

::::::
Mollic

:::
and

:::::
Histic

:::::::::::
Haplaquepts

::::
and

::::::::::
Medisaprists

:::
in

:::
the

::::::::::
depressions

::::::::::::::::::::
(Soil Survey Staff, 2022)

:
.

The genesis of this soil landscape has been studied for more than a century (Menzies et al., 2016).
::
A

::::::::::
topographic

::::
map

::
of

::
a

:::::::::::
representative

::::::
portion

::
is
::::::
shown

::
in

::::::
Figure

:::
25.555

Figure ??
::
We

:::::::
selected

::::
clay

::::::::::::
concentration

:::
and

:::::
SOC

::
as

:::
the

:::::::::
properties

::
to

::::::::
analyze.

::::
This

::
is

:::::::
because

:::::
these

::::
vary

:::::::::::
considerably

::
in

:::
the

::::
area

:::
and

::::::
shows

::::::::
excellent

::::::
relation

:::::
with

:::
the

:::::::::
landscape.

::::::::::
Specifically,

:::
the

:::::::::::
inter-drumlin

::::::::
swamps

::::
have

::::
high

:::::
SOC

:::
and

::::
low

::::
clay,

::::
with

:::
the

::::::
reverse

:::
for

:::
the

:::::::::
drumlins.

::::::::
Accuracy

:::::::
statistics

:::
are

::::
not

:::::::
available

:::
for

::::
this

::::
area,

::::::::
however,

:::
for

::::
clay

:::::::::::
concentration

:::
of
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Figure 25.
:::::::::::
Representative

:::::
portion

::
of

:::
the

:::::::::
SOLUS100

:::
test

:::
area.

::::::
Source:

:::::
USGS

:::::::::
topographic

::::
map,

:::::
Lyons

:::
NY

:::::::::
quadrangle,

:::::
2016,

::::
scale

:::
1:24

::::
000.

::::::
Contour

::::::
interval

::
10

::::
feet.

:::::::
Projection

:::
and

:::::::
marginal

:::::::::
coördinates

::::
UTM

:::::
Zone

::::
18N.

:::
The

:::::
centre

:::::
swamp

:::::::
contains

::::
Typic

::::::::::
Medisaprists;

::::::
drumlin

::::
tops

::
are

::::::
Glossic

:::::::::
Hapludalfs.

::
the

::::
0-5

:::
cm

::::
layer

::::
over

:::
the

::::::
entire

:::::::
CONUS

:::::::::::::::::::::::::::
(Nauman et al., 2024, Table S1)

:::::
reports

::::::
spatial

:::::::::::::
cross-validation

::::::::
statistics

::
of

:::::::
6.481%

::::::
RMSE,

::::::::
-0.003%

::::
ME,

:::
and

::::::
0.672

:::
R2,

:::::
based

:::
on

:::
all

::::
484

:::
258

::::::::::::
observations.

:::::
When

:::::::::
compared

::
to

::::
only

:::
the

:::
37

::::
992

:::::::::::
observations560

:::
that

:::::
were

::::::::
analyzed

::
in

:::
the

::::::
NRCS

::::
Soil

::::::::::::::
Characterization

::::::::::
Laboratory

:::::
these

:::::
results

:::::
were

:::::::::::
substantially

::::::
worse:

:::::::
8.382%

:::::::
RMSE,

::::::
0.011%

::::
ME,

::::
and

:::::
0.544

::::
R2.

:::
For

:::::
SOC

::
of

:::
the

:::::::
surface

::::
layer

::::
the

:::::::
statistics

:::
are

:::::::
7.507%

:::::::
RMSE,

:::::::
0.213%

::::
ME,

:::
and

::::::
0.716

:::
R2

:::
for

::
all

:::::::::::
observations,

::::
and

::::::
4.218%

:::::::
RMSE,

:::::::
0.062%

::::
ME,

:::
and

:::::
0.220

:::
R2

:::
for

:::
the

:::::::::
laboratory

:::::::::::
observations.

:::::
Thus

:::
the

:::::
point

:::::::
accuracy

:::
of

::::::
SOLUS

:::
for

::::
this

:::::::
property

::
is

::::
only

::::::::
moderate,

:::
but

:::
our

:::::::
interest

::
is

::
in

:::
the

:::::
spatial

:::::::
pattern.

:::::
Figure

:::
26 shows the predicted surface layer clay concentration for the original soil survey, as compiled in gSSURGO, and565

for SOLUS. Notice the different legend scales
:::
and

:::::
colour

::::::
ramps, otherwise the SOLUS map would not clearly show its pattern,

since SOLUS predicts a narrower range of concentrations, as
:
.
::::
This is typical of DSM products .

:::::
made

::::
with

::::::::
statistical

:::::::
learning

:::::::
methods.

:::::::::::::::::
(Hastie et al., 2009).

:
It is obvious by visual inspection that SOLUS misses much of the fine pattern, and especially
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Figure 26. Clay concentration % of the 0-5 cm layer, gSSURGO (left), SOLUS 100 m (right).Coördinate Reference System is an Albers

Equal Area for CONUS.

that it does not identify most of the organic soils with very low clay concentrations (dark blue on the gSSURGO map).
:::::
There

:
is
:::::
some

::::
hint

::
of

:::
the

::::::
pattern

::
in

:::
the

::::::::::
southeastern

::::::
corner

::
of

:::
the

:::::
study

::::
area.

:
570

5.1 Aggregation

We aggregated the SOLUS map of surface layer clay concentration
::::::::::
Aggregation

:
with the supercells algorithm

:::::::
requires

:::::::::::::
parameterization. We set the minimum area parameter minarea to be comparable to MLD

:::
the

::::::::
Minimum

:::::::
Legible

::::::::::
Delineation

::::::
(MLD)

:::::::::::::::::
(Forbes et al., 1982) at original design scale. The source map in this area was at

:::::
scales,

:
1:24k design scale , so

::
15

::::
840

:::
and

::::
1:20

::::
000

:::
for

:::
the

:::
two

::::::::
counties.

:::
We

:::
set

:::
the

::::::::
reference

:::::
scale

::
to

:::
be

:
a
:::
bit

:::::::
smaller,

:::
i.e.,

:::::
1:24

::::
000,

::
so

::::
that the MLD was set to575

2.304 ha. The Optimal Legible Delineation (OLD) is 4 x MLD (Forbes et al., 1982), so here 9.216 ha, corresponding to nine

:
,
:::
and

::::::::
increased

:::::::
slightly

::
to

:::::
three SOLUS cells. Aggregation complexity is

:::
also

:
controlled by the

:::::
target number of supercells.
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Figure 27. Supercells of
:::::
derived

::::
from

:::
the clay concentration % of the 0-5 cm layer from SOLUS 100 m overlaid by the polygon boundaries

(in red) from gSSURGO.
::::::::::
Compactness

::::::::
parameter

:::
0.2

::::
(left),

:::
2.0

:::::
(right).

::::::::
Projection

::
is

:::::::
UTM18N

:::
on

::::::
WGS84,

:::::::
compare

::::
with

:::::
Figure

::
25

This should be comparable to the number of gSSURGO polygons in this study area. In this way we can
::::
This

:::
was

:::
to evaluate

how well the DSM
:::::::
SOLUS

::
in

:::
this

::::
area

:
can match the traditional soil survey

::
for

::::
this

:::::::
property. In this area there are 14 949

gSSURGO polygons, with a median area of 2.43 ha, corresponding to 2 to 3 cells
::::
very

::::
well

::
to

:::
the

::::::
MLD.

:::
We

:::::::
reduced

::::
this580

::::::
slightly

::
to

:
a
:::::
target

:::
of

::
14

::::
000

::::::::
supercells. The mean is area

::::::::
However,

:::
the

::::
mean

::::
area

::
is 5.30 ha, because of some large polygons ,

mainly organic soils, i.e. Histosols in US Soil Taxonomy (Soil Survey Staff, 1999).
::
of

::::::
organic

:::::
soils.

We aggregated
:::
first

:::::::::
aggregated

::::
clay

::::::::::::
concentration

::
of

:::
the

::::::
surface

:::::
layer

:
with a range of compactness values from 0.2 to 2.

Because of the long linear shape of the drumlins, we expected that the lower compactness would best match the landscape
:::
The

:::::::
resulting

:::::::
number

:::
of

::::::::
supercells

::::
was

::::::
much

:::::
lower

::::
than

::::
the

::::::
target,

:::::::
ranging

::::
from

::
6
::::

364
:::

for
:::::::::::

compactness
::::

0.2,
:::

to
::
8

::::
422

:::
for585

::::::::::
compactness

:::
2.0. Indeed, this parameter value

::
As

::::::::
expected,

:::::::::::
compactness

:::
0.2

:
produced the map with the least rounded features

, but their orientation
::::
most

::::::::
elongated

:::::::
features

::::
and

:::
2.0

:::
the

:::::
least.

:::::::
However

:::
the

::::::::::
orientation

::
of

:::
the

:::::::::
supercells did not match the

landscape pattern (Figure ??).
::::::::
generally

:::::::::
NNW-SSE

::::::
pattern

::
of

:::
the

:::::::
drumlin

::::
field

:::::::
(Figure

:::
27).

:

:::
We

::::
then

:::::::::
aggregated

:::::
based

:::
on

::::
clay

:::::::::::
concentration

::
of

:::
all

::::::
layers,

:::
i.e.,

:::
the

::::
full

::::::
profile,

:::::
again

::::
with

:
a
:::::

range
:::

of
:::::::::::
compactness.

::::
The

::::::
number

:::
of

::::::::
supercells

::::
was

:::::
more

:::::::::
consistent

::::
than

::::
with

::
a

:::::
single

:::::
layer,

:::::::
ranging

:::::
from

:
7
::::

306
:::
for

:::::::::::
compactness

::::
0.2,

::
to

::
8
::::
238

:::
for590

::::::::::
compactness

::::
2.0.

:::
The

::::::
larger

::::::
number

::
at

:::
the

::::::
lowest

:::::::::::
compactness

::
is

::::::
because

:::
the

:::::::::
algorithm

:::::
could

:::
not

::::
find

::
as

:::::
much

:::::::::::
homogeneity

::
in

:::::::
adjacent

:::
grid

::::
cells

:::::
when

::::::::::
considering

::
all

::::::
layers.

::::::
Again,

:::
the

:::::
spatial

::::::
pattern

::
of

:::
the

:::::::::
supercells

:::
did

:::
not

:::::::
resemble

:::
the

::::::
pattern

::::::
shown

::
by

:::::::::
gSSURGO

::::
and

:::
the

::::::::::
topographic

::::
map.

:

From this we conclude that SOLUS in no way represents
:::::::::
aggregation

:::::
based

:::
on

:::
this

:::::::
SOLUS

::::
layer

::::
does

:::
not

::::::::
represent the actual

soil pattern. This same result was obtained with other layers of clay concentration, and with several other soil properties
::::
After595

::::::::
examining

:::
the

:::::::::
supercells

::::::
pattern

:::
and

:::
the

::::::
source

::::
map,

::
it
::
is

::::::
unclear

::
to

:::
us

::::
what

:::
the

:::::::
SOLUS

:::::
model

::
is

:::::::
“seeing”

:::
in

:::
this

::::
area.
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Figure 28. Segmentation based on all depth slices of clay
:::::::::::::
SOLUS-predicted

::::
SOC

:
concentration,

::::::
nominal

:::::
scale

::::
1:400

::::
000,

::::
1000

:
x
:::
%.

::::
Note

::
the

::::::
slightly

:::::::
different

:::::
colour

::::
scales

5.2 Segmentation

SOLUS resolution is 100 m, so that the minimum shift is 10 i.e., 1 000 m = 1 km, corresponding to 1:250k nominal scale.

Thus we did not expect to reproduce the fine pattern, but rather to group these into regions. We segmented with raster stacks

of single properties at all depth slices, and with a raster stack of seven properties (clay, silt, and soil organic carbon weight600

concentrations, coarse fragments volume, pH measured at 1:1 in water, CEC, bulk density) at one depth slice. The continuous

properties were converted to classes, as required by the GeoPAT segmentation algorithm: particle-size separates in units of 4%,

pH in units of 0.2 pH, CEC in units of 10 meq (100 g)−1, bulk density in units of 0.1 kg m−3 , and SOC in units of 0.2% up

to 6% and then in units of 5% to the maximum of 30%.

Figure ??
::
28 shows the segmentation based on all depth slices of SOC concentration, units 1000 x %, for three of the

:::::::
overlaid605

::
on

:::
the

:::::::::::
concentration

::
at

::::
two

:::::
depth slices . Some segments are well-separated, notably the depressions with swamps and organic

soils, as well as sections with different intensities of drumlins.

Segmentation based on all depth slices of SOC concentration

Figure ??
:::
By

:::::::
contrast,

::::::
Figure

::
29

:
shows the segmentation based on all depth slices of clay %, for three of the

::::::::::::
concentration,

::::::
overlaid

:::
on

:::
the

::::::::::::
concentration

::
at

::::
two

:::::
depth slices. The segments are quite large and do not identify collections of the main610

landscape elements, i.e., drumlins and depressions.

Similar and even worse results were found with other properties, as well as with an attempt to use all properties at one depth

slice.

5.3 Clustering

Because of the poor results of segmentation, we do not present the results of clustering for this case study.615
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Figure 29.
:::::::::
Segmentation

:::::
based

:::
on

::
all

:::::
depth

::::
slices

::
of
::::

clay
:::::::::::
concentration,

::::::
nominal

:::::
scale

::::
1:400

::::
000,

:::
%.

::::
Note

:::
the

::::::
slightly

::::::
different

::::::
colour

:::::
scales.

5.4 Evaluation

:::
The

::::
two

:::::::::
algorithms

::::::
applied

::
to

:
SOLUS100was able to ",

::::
with

::::::::::
appropriate

::::::::::
parameters,

::::::
allowed

:::
the

:::::::
product

::
“speak for itself"

:
”,

but the message was not clear and even misleading. Notably, the attempts to aggregate and segment based on a representation

of the profile resulted in unrealistic
:::::::
polygon maps. In this area the landscape pattern is striking and easy to map by conventional

methods. SOLUS was unable to approximate the conventional map
::
in

:::
this

::::
area, let alone improve its resolution. This is likely620

because SOLUS lacks locally-important covariates to represent this recently glaciated
:::::::::::::::
recently-glaciated soil landscape with its

characteristic drumlins.
::::
This

:
is
:::
not

::::::
meant

::
to

::
be

:
a
::::::::::::
condemnation

::
of

:::::::
SOLUS

::
as

:
a
::::::
useful

::::::
product

:::::::
overall.

:::
All

:::::
DSM

::::::
models

::::::
trained

:::
over

::
a
::::
wide

::::
area

::::
have

::::::::
difficulty

:::::
when

::::::
applied

::
to

::
a

::::
local

::::
area

::::
with

:::::::::::
idiosyncratic

::::::::::::
soil-landscape

:::::::
relations

:::::
which

:::
are

:::
not

::::::::
reflected

::
in

:::
the

::::::::
covariates

::::::::
available

::::
over

:::
the

:::::
entire

::::::
training

:::::
area,

::
or

:::::
which

:::::
have

::::::::::::
locally-specific

::::::::
relations

::::
with

:::
the

:::::::::
wider-area

:::::::::
covariates.

::::
This

::
is

:
a
:::::::

general
:::::::
“global

::::::
model

::::::
applied

:::
to

:::::::::::::::::
locally-idiosyncratic

::::::::::
landscapes”

::::::
issue,

:::::
which

::
is
::::::

being
::::::::
addressed

:::
by

::::::::
adaptive625

:::::::
methods,

::::
see

:::
for

:::::::
example

::::::::::::::
Fan et al. (2022).

:::::
This

:::::::
problem

::::
was

::::::
already

::::::::::
recognized

::::
early

:::
on

::
in
:::::

DSM
:::::::::

exercises.
:::
For

::::::::
example

:::::::::::::::::
Poggio et al. (2010b)

:::::::::
discovered

:::
that

::::
soil

:::::::
available

:::::
water

:::::::
capacity

:::::::
models

::::
used

:::::::
different

:::::::::
significant

::::::::
covariates

:::::::::
according

::
to

:::
the

::::
level

::
in

:
a
::::::::
hierarchy

::
of
:::::::
national

::::::::::
(Scotland),

:::::::
regional

:::
and

:::::::::
catchment,

::::
and

::::::::::::
recommended

:::::
fitting

::::::
models

::
at

:::
the

:::::
target

::::::
extent.

:::
So

::
in

:::
this

:::::
study

::::
area,

:::::::
perhaps

:::::
fitting

:::
the

:::::::
SOLUS

::::::
model

::::::
locally

:::::
would

:::::
have

::::
been

:::::
more

::::::::
successful

:::
in

::::::::::
reproducing

:::
the

:::
soil

:::::::::
landscape

::::::
pattern,

::::
even

:::::::
without

::::
local

:::::::::
covariates

::::::
related

::
to

:::::::::
glaciation.630

6 Discussion
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:::
We

:::
first

::::::
discuss

::::
how

:::
the

:::
two

::::::::
methods

::::::::
performed

:::::
when

:::::::
applied

::
in

::
the

::::
test

::::
cases

::::::
(§6.1),

::
as

::::
well

::
as

::::
their

::::::::
strengths

:::
and

::::::::::
limitations,

:::
and

::::
then

::::::
discuss

::::
how

::::
they

:::::
could

::
be

:::::::::::
incorporated

:::
into

:::::::::
evaluating

:::::
DSM

:::::::
products

::::::
(§6.2).

:

6.1
:::
How

::::
did

:::
the

::::::::
methods

::::::::
perform?

The supercells algorithm was able to delineate relatively homogeneous soils, based on all soil properties and layers in635

the BIS-4D example and the SoilGrids SOC example, but failed completely with SOLUS. A limitation of this approach is

that there is no objective way to adjust the compactness and supercell number parameters, other than the expert opinion on

which choice looks most “realistic”. However, the minimum size parameter can be set to match a minimum legible delineation

corresponding to a desired map scale.

The GeoPAT algorithm was able to segment DSM products into objectively-defined areas made up of fixed-size blocks, each640

relatively homogeneous in its pattern internally and relatively isolated from its neighbours. Segmentation was quite successful

on appropriate scales for BIS-4D and the test area and property of SoilGrids v2.0, but much less successful for the test area

of SOLUS100. The class composition of segments, although not their internal spatial pattern, were well-characterised by

normalized Shannon Entropy.

A limitation of the GeoPAT approach is the requirement for relatively large numbers of pixels per grid cell, and the rectan-645

gular shape of the grid cells that are combined into segments. Thus, the segment boundaries can not follow complex natural

boundaries. Also, the landscape segments are at much more general scale than the source map.

::
An

:::::::
obvious

:::::::
question

::
is
::::
how

::
to

:::::::::::
parameterise

:::
the

:::
two

::::::::::
approaches.

::
In

::::
this

:::::
paper

::
we

:::::::::
compared

::::::
several

::::::
choices

::
of

::::::::::
parameters

::
in

::::
each

::::
case

:::::
study

::
on

:::
an

::
at

:::
hoc

::::
basis.

::
It

::::
may

::
be

::::::::
possible

::
to

:::::::::
systematise

::::
this

::::
with

:::::::::
sensitivity

:::::::
analysis,

::
to
::::::::
quantify

:::
the

:::::::
changes

::
in

:::::
results

::
as

::::::::::
parameters

::::::
change.

::::
This

::::
was

::::::
outside

:::
the

:::::
scope

::
of

::::
this

:::::
paper.

:
650

The question remains as to the relation of the supercells or segments with the actual soil landscape at the several scales.

There are two related questions. (1) For aggregation, do the relatively homogeneous (according to the supercells algo-

rithm) groups of pixels correspond to landscape elements? These would correspond to polypedons or consociations. (2) For

segmentation, do the patterns of pixels within the segment correspond to finer-scale patterns at the design scale of the segmen-

tation? These would correspond to associations or complexes.655

In the case of BIS-4D and the detailed traditional Dutch soil survey, the degree to which the aggregation matches the

published map (Figure ??
:
4) is likely sufficient. The success of segmentation was discussed in §3.2. It is not clear which

segmentation scale is the most appropriate.

In the case of SoilGrids, the “true” soil landscape pattern in the test area is not so clear. When comparing SoilGrids with

the USA, a problem is that the detailed gSSURGO map (NRCS Soils, 2022) has been compiled from multiple survey areas,660

mapped over many years, and with imperfect correlation between areas. This is compiled from traditional surveys at design

scales from 1:12’ 000 to 1:24’ 000 in most areas, but somewhat coarser in less populated areas in the western USA. The INEGI

map in México is a consistent 1:250’000 national product (Instituto Nacional de Estadística, Geografía e Informática (INEGI),

2024), which can show a minimum delineation of 250 ha. Figure ??
::
30

:
shows a SOC stock maps of the study area, compiled

from the above-mentioned USA and Mexican sources by the FAO as part of the Global Soil Organic Carbon Map (GSOCmap)665
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Figure 30. Global Soil Organic Carbon (GSOC) map (part). Boundary is between México (south) and the USA (north).
:::::
Values

:::
are

::::::
T ha−1

::::
SOC

::::
stock.

:
Source and legend: FAO (2024).

project (FAO, 2018). Version 1.6.1 of this product was downloaded from the FAO’s Global Soil Information System (GloSIS)

(FAO, 2024). The inconsistency in values and pattern between México and the USA is obvious, as are several sharp boundaries

between survey areas in the USA. So it is difficult to evaluate how well SoilGrids identifies supercells or segments.

In the case of SOLUS
::::::
SOLUS

:::::::
example, the geomorphology and soil pattern of the test area is well understood and has been

mapped in detail. Of the SOLUS layers only soil organic carbon and coarse fragment volume showed a relation with known670

patterns in the test area. Aggregation based on multiple properties completely failed to find landscape units. Segmentation

based on multiple properties failed to find more general units with consistent internal patterns.

6.2
:::::::::

Evaluating
:
a
:::::
DSM

::::::::
product

:::
So,

::::
how

:::::
should

::::::::::
aggregation

::::
and

:::::::::::
segmentation

:::
be

::::
used

::
in

::
an

::::::
overall

:::::::::
evaluation

::
of

::
a
:::::
DSM

:::::::
product?

::::
The

::::::::
common

:::
use

::
of

:::::
point

::::::::
evaluation

::::::::
statistics

::
by

::::::::::::::
cross-validation

::
or

:::::::
repeated

::::
data

::::::::
splitting

::
is

:::
still

:::::::::
important,

:::
as

::::
long

::
as

:::
the

:::::::::::::::
representativeness

:::
in

::::
both675

:::::::::
geographic

:::
and

:::::::
feature

:::::
space

::
is

::::
clear

:::
to

:::
the

::::
map

::::
user.

::::::
There

::
is

:
a
:::::
large

::::::::
difference

::::::::
between

:::::
these

:::::::
statistics

:::::::
applied

::
to

::::::
legacy

::::::::::
observations

::::
that

::::
were

:::::::::::::::
opportunistically

::::::
located

:::::
(e.g.,

:::::::::::::
farmer-supplied

::::::::::::
observations),

::::::::::
purposively

:::::::
located

:::::
(e.g.,

::
at

::::::::
“typical”

:::::::
locations

:::
for

::::
soil

::::::
series),

:::
or

::::::
placed

::
by

::
a
:::::::
method

:::::
meant

::
to
::::::

cover
::::::
feature

:::::
space,

:::::
e.g.,

::::::::::
conditioned

:::::
Latin

:::::::::
hypercube

::::::::
sampling

:::::::::::::::::::::::::::
(Minasny and McBratney, 2006)

:
or

::::::::::
geographic

:::::
space,

::::
e.g.,

::::::
spatial

:::::::
coverage

::::::::
sampling

::::::::::::::::::
Walvoort et al. (2009)

:
.
:::
But

::
as
:::::::::
explained

::
in

:::
the

:::::::::::
Introduction

::::
(§1),

:::::
these

::
do

:::
not

:::::::
account

:::
for

::::::
spatial

:::::::
patterns.680

::
An

:::::::
obvious

:::::::::
evaluation

::
of

::::::::::
aggregation

::::
and

:::::::::::
segmentation

:::
can

:::
be

:::
the

::::::
expert

::::::
opinion

:::
of

:::
the

:::
soil

::::::::::
geographer

:::::::
familiar

::::
with

:::
the

::::::
mapped

:::::
area.

::::::
Notable

::::::::::::
soil-landscape

:::::::
features

::::::
should

::
be

::::::::
identified

:::::
either

:::
by

::::::::::
aggregation

::
for

::::::::
relatively

::::::::::::
homogeneous

:::::
areas

::::
such
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::
as

:::::::
swamps

:::
and

:::
salt

:::::
flats,

::
or

:::::::::::
segmentation

:::
for

::::::::::::
heterogeneous

:::::
areas

::
at

:::
the

::::::
design

:::::
scale,

::
for

::::::::
example

::::::
prairie

::::::
pothole

::::::::::
topography

:::::::::::::::
(Kiss et al., 2022)

:
at

::::::
scales

:::::
where

:::::::::
individual

::::::::
potholes

:::
can

:::
not

:::
be

::::::
shown.

::::::::
Although

::::::::::
subjective,

:::
this

::::
can

::
be

:::::::::
supported

:::
by

:::
the

::::::::::
geographer’s

:::::::::
conceptual

::::::
model

:::::::::::::
(Hudson, 1992)

:::::
based

:::
on

::::
field

:::::::::
experience

:::
and

::::::
known

::::::::
landscape

::::::::::
expression.

:::
An

:::::::
example

::
is

:::
the685

::::::::
discussion

:::
of

:::
the

:::::::
SOLUS

::::
map

::
in

:::
the

:::::::::::::
well-understood

::::
soil

::::::::
landscape

:::
of

::::
Case

::::::
Study

:
3
:::::
(§5).

:::
All

:::
soil

:::::::::
surveyors

:::
and

:::::
most

::::
field

:::::::
scientists

:::::
using

::::
soil

::::
maps

::::
soon

:::::::::
recognise

:::
that

:::::
some

:::::::::::
conventional

::::
maps

:::
are

:::::
more

::::::
reliable

::::
than

::::::
others,

::::
that

::
is,

:::::
some

::::::::::
delineations

::
are

:::::
more

:::::::
reliably

::::::::
identified

::::
than

::::::
others.

::
So

::::
just

::::::::
matching

:
a
:::::::::::
conventional

::::
map

::
at

:::
the

:::::::::
appropriate

::::::
degree

::
of

::::::::::::
generalisation

::
is

:::
not

::::::
always

::::::::::
appropriate.

::
In

::::
Case

::::::
Study

:
3
:::
the

:::::::::
landscape

:::
and

:::
soil

:::::::
patterns

:::
are

::::::
highly

:::::::::
distinctive

::
so

::::
that

:::
the

::::::
original

:::::::::
surveyors

:::::
could

:::::
hardly

:::::
make

:::::::
mistakes

::
–
:::
the

::::
only

:::::::
problem

:::::
could

:::
be

::::::::
digitizing

::::
from

:::
the

:::::::::
unrectified

:::::
photo

:::::
base

::::
used

:::
for

:::
the

::::::
original

::::::
survey

::
to

::
a690

::::::
correct

::::::::::
topographic

::::
base

:::
for

:::::::::::
incorporation

::
in

:::::::::
SSURGO.

::
In

:::::
other

:::::::
contexts

:::
the

::::::::::::
soil-landscape

:::::::
relation

:::
and

:::
soil

::::::::::
boundaries

::::
may

:::
not

::
be

::
so

:::::
clear

:::
and

::
so

:::::::
difficult

::
to

::::::::
represent

::::::::::::::::::::
(Lagacherie et al., 1996)

:
,
:::
and

::
in

::::::
others

:::
the

::::::::::
conventional

::::
map

::::
may

:::::
have

::::
been

:::::
made

::
by

:::::::::
less-skilled

:::::::::
surveyors.

:::
No

::::::
general

:::::::
solution

::::
can

::
be

:::::
given

:
–
::::
this

::
is

:
a
:::::::
separate

::::
level

::
of

::::::
expert

:::::::
opinion,

:::
i.e.,

:::
the

:::::::::
reliability

::
of

:::
the

::::::::
traditional

:::::
map.

:::
The

:::::::
starting

::::
point

::
in
::::

any
:::::::::
evaluation

::
is

:::
the

:::::::
intended

:::::
use(s)

:::
of

:::
the

::::
map.

:::::
Then

::
its

::::::
fitness

:::
for

:::
use

:::
can

:::
be

:::::::
assessed

:::::::::
according

::
to695

::
the

::::::::::::
requirements

::
to

::::::
support

:::::
those

:::::
uses.

:::::::::::
Pattern-based

:::::::::
evaluation

::
is
::::::::
indicated

::
if
:::
be

::::
map

::
be

:::::
used

::
to

::::::::
represent

:::
soil

::::::::::
geography,

::
for

::::::::
example,

::
to

::::
help

::::
map

:::::
users

:::::
assess

:::
the

:::::::
relation

::
of

:::::
soils

::::
with

:::
the

:::::::::
landscape.

:
It
::
is
::::
also

::::::::
indicated

::
if

:::
the

::::
map

::::
user

:::
will

:::::
need

::
to

::::::
identify

:::::::::
landscape

::::::::::
components,

:::
for

:::::::
example

:::
for

:::::::::
ecological

::::::
zoning

::
of

::
a

::::::::
protected

::::
area.

::::
The

:::::
degree

:::
of

::::::
internal

::::::::::::
heterogeneity

::
as

:::::::
revealed

::
by

:::
the

:::::::::::
segmentation

::::
can

::
be

::::
used

::
to

::::::
assess

::::::::::
connectivity,

:::
for

:::::::
example

::
in
:::::::::
catchment

:::::::::::
hydrological

::::::
models.

:

:::
One

::::::::::
application

:::::
where

::::::::::::
segmentation

:::::::
analysis

:::
can

:::
be

::::
used

::
is

::::::::::
identifying

::::
areas

:::::::
similar

::
in

::::
their

:::::::
internal

::::::
spatial

::::::
pattern

::
to

::
a700

:::::
known

::::
area

::::::
where

:::
the

::::::
pattern

::::
has

::::
been

::::::::::::
characterized.

:::::
This

:::
has

::::
been

:::::::
applied

::
to

::::
land

::::::
cover

:::::::::::::::
(Nowosad, 2018)

::
but

::::
can

:::::
apply

::::::
equally

::::
well

::
to

::::
soil

:::::::
patterns.

:::
For

::::::::
example,

::
in

:::::
every

::::::
region

:::::
there

:::
are

::::
areas

::::
with

:::::
high

::::::::
sampling

::::::
density

:::
and

::::::::::::::::
well-characterized

::::
soils,

::::
and

::::::
others

::::
with

::::
less

:::::::::::
information.

:::::
Once

:::
the

::::::::
segments

:::
are

::::::::::
established

::::
over

::::
the

:::::
whole

:::::
area,

:::::::
specific

::::::::
segments

::
in
::::

the

::::::::::
high-density

::::
area

:::
can

:::
be

::::::::
matched

::
to

:::::
those

::
in

:::
the

::::::::::
low-density

:::::
area,

:::::
where

:::
the

::::
soil

::::::
pattern

::
is
::::::::
expected

::
to

:::
be

::::::
similar.

:::::
This

::
is

::
the

:::::::::::
“Homosoil”

::::::
concept

:::::::::::::::::::
(Nenkam et al., 2022)

::::::
applied

::
to

:::::
areas.

::::
The

::::::::
clustering

::
of

::::::::
segments

::
in
:::
the

:::::::
BIS-4D

::::
(§3)

::::
and

::::::::
SoilGrids705

:::
(§4)

::::
case

:::::::
studies

:::::
shows

::::
one

:::
way

:::
to

::
do

::::
this.

::::
The

:::::::::::::
Jensen-Shannon

::::::::
distance

::::
from

::
a

:::::
target

:::::::
segment

:::
can

::::
also

:::
be

::::
used

::
to

:::::::
identify

::
the

:::::
most

::::::
similar

::::::::
segments.

:

7 Conclusions

The methods presented in this paper are part of an effort to evaluate DSM products based on how well they represent the soil

landscape. The approach taken here complements pattern analysis of the DSM product, which characterises the map without710

attempting aggregation or segmentation, as in Rossiter et al. (2022).

Both the aggregation and segmentation approaches were able to allow the DSM product “speak for itself”. ,
::::
with

::::
the

::::::::
assistance

::
of

:::
the

::::::::
analyst’s

::::::
choices

:::
of

:::::::::
parameters.

:
Individual predictions in pixels were combined into possible soil-landscape

elements, which could be evaluated statistically and by expert judgment. Both of these approaches require the intervention of

the analyst to select scales and parameters, often with large differences in resulting patterns. This has the advantage that the715
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analyst can match desired scales of landscape analysis, and indeed can perform a multi-resolution evaluation. The analysis of

the resulting maps is a significant addition to the commonly-used “point”-based evaluation statistics, which (1) do not evaluate

the full map, (2) even at point support, do not take into account the spatial relation between evaluation points. We hope that

this will stimulate digital soil mappers to evaluate their own products in this light. This should lead to clearer communication

with DSM users, so that digital soil maps become more widely accepted and properly used.720

Code and data availability. The GeoPAT modules are available at its GitHub repository1. The superpixels R package is available at

CRAN2 and must be installed from within the R environment. The analysis code for this paper is available in a GitLab repository3. The

datasets used in case studies can be obtained from the websites referenced in the text.
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