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Abstract. Hydraulic fracturing serves as a critical in-situ stress testing technique, where the accurate determination of rock 

fracture pressure and closure pressure in fracturing intervals is essential for precise in-situ stress estimation. During hydraulic 

fracturing stress measurement, parameters including injection rate, viscosity, density, and compressibility ratio of fracturing 10 

fluid significantly affect the measurement accuracy of fracture and closure pressures, potentially introducing substantial errors 

in in-situ stress calculations. This study develops an MLP-KFold-based correction model for in-situ stress measurements by 

establishing a hydraulic fracturing dataset, incorporating fracturing fluid density, viscosity, injection rate, and corresponding 

rock fracture/closure pressures. Evaluation results demonstrate that the MLP-KFold model achieves superior performance with 

a coefficient of determination (R²=0.9937) on test sets, outperforming Random Forest (Δ+1.89%), Support Vector Regression 15 

(Δ+4.05%), and BiLSTM (Δ+5.34%). Key error metrics including MAE (0.518), MSE (0.646), and maximum error (1.945MPa) 

remain at minimal levels. Field applications demonstrate significant reduction in average percentage differences of calculated 

stresses under different fracturing fluids (σH: -21.48%, σh: -29.03%), confirming its superior compensation effects. This 

research establishes a compensation model for hydraulic fracturing pressures based on a small-scale dataset, providing an 

effective technical approach for correcting field measurement data and compensating in-situ stress calculation results, thereby 20 

contributing to the accurate assessment of regional stress profile states. 

1 Introduction 

The stress that is stored within the undisturbed rock mass is referred to as geo-stress or in-situ stress, which is caused by factors 

such as the self-weight of the rock and geological tectonic movements (Mcgarr and Gay, 1978; Amadei and Stephansson, 

1997). Regional in-situ stress measurement and estimation have important applications in earthquake prediction research, 25 

underground engineering construction, mining, and oil and gas extraction. With the increasing demand for energy and mineral 

resources and the continuous intensification of mining efforts in China, shallow mineral resources are gradually diminishing, 

and domestic mines are successively entering the stage of deep resource development. The "three highs" issues encountered 

in deep mining (high in-situ stress, high temperature, and high water pressure) (Xie, 2019) will become the focus and difficulty 
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in the study of deep mining rock mechanics (He et al., 2005). Therefore, accurately determining the in-situ stress state of the 30 

deep development area is a necessary approach to solving the above problems. 

Observation and estimation of the in-situ stress state in the deep crust remain a major challenge in in-situ stress measurement. 

Scientists have proposed dozens of in-situ stress testing methods, which can be classified into five categories based on data 

sources, as described in Table 1. 

Table.1: In-situ stress testing methods (Wang, 2014) 35 

No. Method Related literatures 

1 Core-based method Simmons et al., 1974; Siegfried and Simmons, 1978 

2 Borehole-based method 
Scheidegger, 1962; Raleigh et al., 1976; Chandler, 1993; 

Fairhurst, 2003 

3 Geological method 
Angelier, 1979; Hill et al., 1994; Adiyaman et al., 1998; 

Zoback, 2007 

4 Geophysical (or seismological) method Crampin, 1985; Yale, 2003; Boness and Zoback, 2004 

5 Underground space-based method Hill et al., 1994; Amadei and Stephansson, 1997 

 

The hydraulic fracturing method, a subset of borehole-based techniques, is currently the only known approach capable of 

directly measuring in-situ stress. Although theoretically unrestricted by depth, practical limitations—such as borehole 

conditions, testing technology, and temperature/pressure resistance of equipment—have resulted in very few successful 

hydraulic fracturing stress measurements worldwide at depths exceeding 1000m (Zhang and Stephansson, 2010; Chen et al., 40 

2017). Consequently, precise measurement and estimation of in-situ stress using hydraulic fracturing remains a critical research 

challenge both domestically and internationally. 

The hydraulic fracturing method features a relatively simple and rapid testing process, along with straightforward data 

processing and analysis. However, during testing, deformation of drill pipes and packers, as well as external factors related to 

the fluid mechanics parameters of fracturing fluids (e.g., viscosity, density, compressibility, and injection rate), can 45 

significantly affect the measurements of rock breakdown pressure, closure pressure, and reopening pressure in the fracturing 

interval. Consequently, these influences also introduce errors in subsequent calculations of the maximum and minimum 

horizontal principal stresses, ultimately impairing the accurate estimation of in-situ stress. Related scholars have conducted in-

depth research on the influence of fracturing fluid parameters such as flow rate, viscosity, and density on rock breakdown 

pressure and closure pressure. Ito (1991) and Chang (2014) proposed that the tensile strength of rock increases with the 50 

injection rate. Zhou et al. (2013) and Zhang (2018) conducted laboratory hydraulic fracturing experiments, demonstrating that 



3 
 

mud media with different densities significantly affect the measured values of rock breakdown. Matsunaga (1993) and Ishida 

et al. (1997) confirmed in their studies on petroleum drilling that the viscosity of fracturing fluid influences rock breakdown. 

Wang (2012) and Zhou (2013) both used water as the fracturing fluid to analyze the effect of fluid compressibility on system 

compliance, which leads to errors in in-situ stress measurement. Ingrid and Marte (2017) employed a Bonded Particle Model 55 

(BPM) within the Discrete Element Method (DEM) framework to conduct coupled thermo-hydro-mechanical analysis, 

revealing that temperature gradients and fluid-rock compressibility ratios critically govern fracture dynamics in enhanced 

geothermal systems: the coupled convective-conductive thermal effects shorten primary fractures and induce secondary 

microcracks, while cold fluid infiltration reduces near-wellbore pressure accumulation to delay propagation, with 

compressibility ratio governing fracture velocity and dynamic viscosity modulating thermal damage extent. Liu et al. (2019) 60 

optimized hydraulic fracturing simulation experiments using the uniform design method and preliminarily analyzed the 

influence of different fracturing fluid media on breakdown pressure through regression fitting. Ma et al. (2024) utilized an 

LSTM to directly predict the breakdown pressure of horizontal wells in petroleum engineering, effectively establishing a 

nonlinear relationship between logging parameters and breakdown pressure in horizontal wells. Zou et al. (2024) investigated 

the influences of key parameters, including rock temperature, in situ stress, injection rate, fluid viscosity, azimuth of the radial 65 

borehole, and the number of radial boreholes on the fracture morphology and breakdown pressure, the breakdown pressure of 

radial borehole fracturing can be reduced by 14.1%–43.7% compared to conventional fracturing, which has been demonstrated 

that the increases in the vertical density of radial boreholes, injection rate, and fluid viscosity enhance the guiding ability of 

radial boreholes. Liu et al. (2024) proposed a horizontal-hole hydraulic fracturing based in-situ stress model incorporating 

fluid flow rate by conducting hydraulic fracturing fluid-solid coupling simulation tests to explore the effect of different 70 

fracturing fluid flow rates on fracture propagation and breakdown pressure in granite, and the model calculations matched test 

values with a relative error under 9% , establishing a more precise in - situ stress calculation model for tunnel surrounding 

rock. 

Measurement errors in rock breakdown pressure and closure pressure can lead to significant variations in the calculated 

maximum and minimum horizontal principal stresses, severely impacting the accuracy of hydraulic fracturing-based in-situ 75 

stress estimation (Wang et al., 2017). Accurately determining rock breakdown pressure and closure pressure has long been a 

challenging task. Reducing the errors in in-situ stress calculations caused by influencing factors such as fracturing fluid flow 

rate, viscosity, density, and compressibility—and establishing corresponding error compensation models—necessitates the 

application of machine learning and deep learning methods. This paper constructed a dataset based on laboratory hydraulic 

fracturing simulation experiments. For relatively small-scale datasets, we employed a multi-layer perceptron (MLP) with K-80 

fold cross-validation (KFold) to develop correction models for breakdown pressure and closure pressure. This approach 

demonstrates high data utilization efficiency and stable performance evaluation, exhibiting certain advantages over other 

machine learning models. The proposed method holds significant theoretical and practical value for precise regional stress 

profile estimation, crustal stability assessment, earthquake prediction, and mine strata stability evaluation. 



4 
 

2 Principle of hydraulic fracturing in-situ stress testing 85 

The classical hydraulic fracturing theory, based on the plane strain theory of elasticity, was proposed and refined by Haimson 

(1968). This theory is based on three key assumptions: First, rocks are considered to be homogeneous, linearly elastic, and 

isotropic materials, which means that the mechanical properties of rocks are the same in all directions, and there is a linear 

relationship between stress and strain; second, rocks are assumed to be porous media, and the fluid flow within the pores 

follows Darcy's Law, which states that the fluid flow rate is directly proportional to the pressure gradient; finally, it is assumed 90 

that one of the principal axes of the in-situ stress is parallel to the borehole axis. Based on these assumptions, the fractures 

induced by hydraulic fracturing are vertical and perpendicular to the direction of the minimum horizontal principal stress, as 

shown in Figure 1. 

  

Figure 1: Mechanical model and pressure curve diagram of hydraulic fracturing measurement 95 

Using the stress field model and fracture criteria depicted in Figure 1, the fracture values of the fractured rock section are 

shown below, according to the elastic theory (Timoshenko and Goodier, 1951): 

- +=3b h HP T             (1) 

=hsP              (2) 

Here, σH and σh represent the maximum and minimum horizontal principal stresses, respectively, Pb and Ps represent the 100 

fracture pressure and closure pressure, respectively, and T represents the tensile strength of the rock. Equations 1 and 2 indicate 

that the fracture values of the rock are independent of the size of the borehole and the rock's elastic modulus, and are mainly 

determined by the tensile strength of the rock and the magnitude of the in-situ stress around the borehole. Therefore, accurately 

obtaining the fracture pressure, closure pressure, and tensile strength of the rock is key to improving the accuracy of hydraulic 

fracturing stress measurements. 105 
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3 Hydraulic fracturing dataset 

3.1 Dataset construction 

The fracturing fluids commonly used in hydraulic fracturing mainly include water-based, oil-based, foam-based and slurry-

based types (Cuisiat and Haimson, 1992; Birdsell et al., 2015). In order to construct a dataset for hydraulic fracturing simulation 

experiments, this paper used a hollow cylinder test method to obtain fracture pressure and closure pressure data of granite 110 

using water-based, oil-based, and mud as fracturing fluid media. (Ito and Lin, 1991; Zhang Jie, 2018). Table 4 summarizes 

various experimental factors and their corresponding levels. 

Table 2: Experimental factors and their levels 

Factor Level Unit Parameter value 

Injection rate 8 MPa/s 0.17; 0.35; 0.48; 0.55; 0.6; 0.69; 3.15; 3.88; 4.25 

Density 3 g/cm3 0.88; 1.01; 1.51 

Viscosity 5 mPa•s 1; 70.2; 130.6; 171.6; 284.5 

The constructed hydraulic fracturing dataset was used for 35 cubic specimens with different tensile strengths, and 35 hydraulic 

fracturing simulation experiments were conducted based on 8-level injection rate, 2-level density, and 5-level viscosity (as 115 

shown in Table 2). The experimental results (fracturing pressure and closure pressure) are shown in the Appendix. 

3.2 Correlation analysis 

Dual analytical methodologies—the Pearson correlation coefficient and SHAP (SHapley Additive exPlanations) value 

heatmaps—were systematically employed to quantify variable interdependencies. The Pearson metric provides efficient 

identification of linear correlations, enabling preliminary feature screening, while SHAP decomposition elucidates complex 120 

feature contributions within the model architecture, particularly nonlinear interactions (Nahler, 2020). Figure 3 quantitatively 

illustrates the operational relationships between extrinsic parameters (injection rate, density, and viscosity) and critical 

geomechanical outputs: fracturing pressure (Pb) and closure pressure (Ps). 
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Figure3. Correlation between Inputs and Outputs 125 

Figure 3 demonstrates that injection rate exhibits the most significant influence on fracturing pressure (Pb) and closure pressure 

(Ps), with a pronounced positive correlation observed, particularly for fracture pressure. In contrast, fluid density and viscosity 

demonstrate comparatively weaker correlations with these output parameters. Owing to the multifaceted influences on Pb and 

Ps—where complex interactions among governing factors may involve nonlinear relationships—conventional linear regression 

models may prove inadequate to accurately characterize these dependencies. To enhance predictive accuracy, this study 130 

proposes the adoption of neural network architectures or machine learning frameworks to develop error-compensated 

predictive models. Such approaches are anticipated to better capture the inherent nonlinear dynamics between operational 

variables and geomechanical responses, thereby optimizing pressure prediction fidelity in hydraulic fracturing operations. 

4 MLP-KFold model 

4.1 MLP model 135 

The multilayer perceptron (MLP) model is a fully connected neural network composed of multiple neurons. By adjusting the 

weights of these neurons, the model minimizes prediction errors, enabling effective training and subsequent outcome 

prediction (Zhang et al., 2021). The MLP features a multi-layered structure, including an input layer, one or more hidden layers, 

and an output layer, as illustrated in the network architecture diagram (Figure 4). 
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 140 

Figure 4: MLP Model Structure Diagram 

The neurons in an MLP model receive input signals, sum them with weights, and produce an output through an activation 

function. Building upon the perceptron model, MLP increases the nesting level of neurons and introduces an activation function 

between the inputs and outputs of each layer, thereby enhancing the learning capabilities of the MLP model. The output formula 

of a neuron is shown in Equation 3, where σ represents the activation function. 145 
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And from the hidden layer to the output layer: suppose there are p neurons in the output layer, and the weight matrix from the 

hidden layer to the output layer is W2. Then the output of the output layer is shown in Equation 4, where k = 1, 2, …, p. By 

continuously iterating and updating the weights and biases, the model can effectively fit the data and make accurate predictions. 
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4.2 Model Structure of MLP-KFold 

The MLP-KFold model combines a Multilayer Perceptron (MLP) with K-Fold Cross-validation (KFold) as a method for model 

training and evaluation. The MLP-KFold is built using the Sequential model, which is composed of multiple network layers 

stacked in sequence. The data flows through each layer in order from front to back for processing. As shown in Figure 5, the 

MLP model is primarily a feedforward neural network composed of an input layer, hidden layers, a Dropout layer, and an 155 
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output layer. The input layer has a dimension of 6, corresponding to the number of features in the dataset (as listed in Table 

2). The three hidden layers consist of 96, 48, and 24 neurons, respectively, all using the ReLU activation function and L2 

regularization to prevent overfitting. A Dropout layer is added after the first and second hidden layers to further mitigate the 

risk of overfitting. The output layer contains 2 neurons, corresponding to the two prediction targets: fracturing pressure (Ps) 

and closure pressure (Pb). 160 

Input Layer (6 features)

Dense (96N, ReLU)

Dropout (0.1)

L2 Regularization

Dense (48N, ReLU) L2 Regularization

Dropout(0.1)

Dense(24N, ReLU) L2 Regularization

Output Layer (2 units, linear)

Loss:Mean Squared Error
Optimizer:Adam (lr:0.001)

MLP model

Full Dataset
(Input dim = 6)

Split into Folds (Kfold, shuffle=True)

Train Fold 1
Test Fold 1

Train Fold 2
Test Fold 2

…
Train Fold 9
Test Fold 9

MLP model 1
(Dense+L2)

MLP model 2
(Dense+L2)

MLP model 9
(Dense+L2)

…

Predict on Test
Fold 10 → y_prediction

Prediction & Actuals
Global MSE

K-Fold
 

Figure 5: MLP-KFold Model Structure Diagram 

To maximize the utility of the small-scale dataset and enhance evaluation reliability, the K-Fold model adopts 10-fold cross-

validation (KFold), therefore, it is suitable for the smaller scale dataset in this paper. The data is randomly split into 10 

subsets—9 for training and 1 for testing—and this process repeats 10 times, cycling through each subset as the test set. This 165 

ensures every data point contributes to validation, leading to a more robust and stable performance assessment. 
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4.3 Parameter Setting 

The core and training parameters of the MLP-KFold model are systematically configured prior to model implementation. The 

core parameters include: input dimension, output units, maximum number of neurons, and dropout. The training parameters 

include: number of epochs, learning rate, batch size, and validation ratio, as detailed in Table 5. Following parameter 170 

initialization, the model was trained using the prepared training dataset through iterative optimization processes. 

Table 5: Parameter Setting Table 

 Parameter Value 

Core parameters 

input dimension 6 

output units 2 

maximum number of neurons 96 

dropout 0.05 

Training parameters 

epochs 100~150 

learning rate Adam optimizer, 0.001 

batch size 1 

validation ratio 0.1 

5 Discussion 

5.1 The prediction performance of MLP KFold 

Following the model architecture and parameter configuration detailed in Chapter 3, the machine learning model was trained 175 

using the specified training dataset (refer to Table 5). The training process enables the model to learn inherent patterns and 

characteristic features within the data, thereby establishing predictive capabilities for subsequent correction and forecasting 

applications. Post-training visualization analysis revealed the comparative performance between actual and predicted values 

for both fracture pressure and closure pressure, as illustrated in Figure 6. In this graphical representation, blue bars denote 

measured pressure values while red bars indicate model-predicted values, demonstrating the algorithm's predictive accuracy 180 

through visual comparison of these dual pressure parameters. 
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Figure 6: Comparative performance between actual and predicted values for both fracture pressure and closure 

pressure 

As evidenced in Table 6, the MLP-KFold model demonstrates exceptional predictive accuracy, achieving a mean R² coefficient 185 

of determination of 0.9937 – a value remarkably close to the ideal unity. The error metrics further substantiate this performance, 

with the Mean Absolute Percentage Error (MAPE) and Mean Squared Error (MSE) registering at minimal values of 4.115% 

and 0.6457 respectively. Notably, the maximum observed prediction error remains constrained to 1.9449 MPa, confirming 

tight error distribution boundaries. These collective findings indicate that the proposed model successfully accounts for 99.37% 
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of total data variance, achieving near-perfect goodness-of-fit. The minimal divergence between predicted values and empirical 190 

observations validates the model's robust generalization capabilities across the experimental dataset. 

Table 6: Performance indices of the MLP-KFold model 

Outputs R² MSE RMSE MAE MAPE Max Error 

Fracturing pressure 0.9910 1.1918 1.0917 0.7758 5.19% 3.0725 

Closure  pressure 0.9964 0.0995 0.3155 0.2597 3.04% 0.8173 

5.2 Multi-model comparative analysis 

Based on the satisfactory fitting performance achieved by the MLP-KFold model, a systematic comparison study is 

subsequently conducted to evaluate its predictive efficacy against alternative machine learning architectures, including 195 

Random Forest (ensemble-based decision tree model), Support Vector Regression (SVR, kernel method), and Bidirectional 

Long Short-Term Memory (BiLSTM, deep sequential learning framework). This benchmarking framework employs identical 

training datasets and preprocessing protocols to ensure fair performance assessment. Quantitative metrics such as mean squared 

error (MSE) and coefficient of determination (R²) will be comparatively analyzed across all models, while their generalization 

capabilities and computational efficiency will be critically examined. The cross-model comparison aims to (1) validate the 200 

robustness of MLP-KFold in handling geomechanical pressure prediction tasks, (2) identify algorithm-specific advantages 

under controlled experimental conditions, and (3) establish methodological guidelines for optimal model selection in fracture 

pressure characterization studies. Table 7 shows performance indices of these multi-model. 

Table 7: Performance indices table of the the multi-model 

Model Outputs R² MSE RMSE MAE MAPE Max Error

MLP-KFold 
Fracturing pressure 0.9910 1.0695 0.7976 0.5378 5.19% 3.0725 

Closure pressure 0.9964 0.0995 0.3155 0.2597 3.04% 0.8173 

Random Forest 
Fracturing pressure 0.9643 4.7345 2.1759 1.3670 6.48% 8.3760 

Closure  pressure 0.9855 0.4058 0.6370 0.3495 4.62% 2.6518 

SVR 
Fracturing pressure 0.9427 7.6026 2.7573 1.5770 8.54% 13.1444 

Closure  pressure 0.9642 1.0007 1.0003 0.7034 6.85% 3.4494 

BiLSTM 
Fracturing pressure 0.9658 3.0339 1.7418 1.4123 14.78% 3.2565 

Closure  pressure 0.9154 0.3963 0.6295 0.4900 6.18% 1.3806 

The radar chart of error indices is plotted using Z-score normalization to provide a more intuitive visualization of the 205 

performance of different models across various error indices, facilitating model comparison and evaluation. Since five error 
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coefficients from Table 8 needed to be compared simultaneously, Z-score standardization is applied to effectively mitigate the 

influence of scale differences and outliers in the radar chart. 

 

 210 

Fig 7. Comparison chart of evaluation indices of the multi-model 
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In the context of small-scale datasets, Figure 7 shows that selecting an appropriate model is critical, as limited data inherently 

increases the risk of model overfitting and reduces generalization capability. MLP-KFold demonstrates robust performance 

when applied to small-scale hydraulic fracturing simulation datasets, and its effectiveness can be attributed to the following 

aspects: 215 

(1) Cross-validation mechanism: The K-fold cross-validation integrated in MLP-KFold enables full utilization of limited data, 

thereby enhancing model generalization and mitigating overfitting risks. By iteratively partitioning the dataset into training 

and validation subsets, this approach ensures reliable performance evaluation while maximizing data exploitation. 

(2) Simplified model architecture: As a relatively simple neural network structure, the Multilayer Perceptron (MLP) inherently 

requires fewer data samples to achieve stable convergence compared to complex deep learning architectures. This 220 

characteristic makes MLP particularly suitable for small-scale datasets where intricate pattern learning is constrained by data 

scarcity. 

(3) Regularization integration: MLP-KFold systematically incorporates regularization techniques, including L2 regularization 

and Dropout, to further suppress overfitting tendencies. These mechanisms impose constraints on weight optimization and 

randomly deactivate neurons during training, effectively reducing model complexity and enhancing robustness to noise in 225 

limited data scenarios. 

This combination of methodological advantages positions MLP-KFold as a computationally efficient and statistically reliable 

framework for analyzing small-scale experimental datasets in hydraulic fracturing simulations. 

5.3 Model Generalization Capability 

While the MLP-KFold model demonstrated remarkable performance on the test set with a coefficient of determination 230 

(R²=0.9937), it is acknowledged that the diversity of rock types, formation conditions, and construction parameters in real-

world applications could pose challenges to the model's generalization capability. To further validate the model's robustness 

and adaptability across different geological environments and construction scenarios, the following aspects should be discussed. 

(1) Cross-Validation with diverse datasets: by merging cross-validation with datasets spanning various geological settings and 

construction conditions with field trials in multiple locations, we can comprehensively assess the model's performance in real-235 

world applications. This integrated method not only identifies potential weaknesses or biases in the model but also provides 

empirical data from different geological environments, thereby enabling targeted adjustments to improve generalization. 

(2) Incorporation of additional features: to further bolster the model's adaptability, we advocate for the incorporation of 

additional features that encapsulate the variability in geological and construction parameters. These features may encompass 

rock anisotropy, formation fluid properties, and dynamic construction variables, among others. In parallel, establishing a 240 

framework for continuous model updating based on new data and feedback from field applications ensures the model evolves 

with emerging geological and construction challenges, maintaining its accuracy and relevance. 
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In summary, these strategies aim to enhance the model's generalization capability and reliability across a broad spectrum of 

practical applications. Future efforts will concentrate on expanding the dataset, conducting extensive field trials, and refining 

the model to address the intricacies of real-world hydraulic fracturing operations. 245 

6 Engineering application 

The MSZK and ZPZK boreholes are serving as adjacent boreholes for in-situ stress testing within a hydraulic investigation 

and design project, both boreholes were designed to a depth of 275 m, with hydraulic fracturing in-situ stress measurements 

conducted following standardized operational procedures (Zhang, 2018). A total of 11 fracturing intervals were implemented 

within the depth range of 145.2–244.3 m across both boreholes, with key fracturing parameters and results summarized in 250 

Table 8. The MSZK maintained favorable wellbore conditions, enabling the use of clean water as fracturing fluid. In contrast, 

the ZPZK required drilling mud (density: 1.5 g/cm³, viscosity: 235 mPaꞏs) for wall stabilization due to severe borehole collapse. 

A comparative analysis of hydraulic fracturing stress measurement outcomes between MSZK and ZPZK under distinct 

fracturing fluid conditions is presented in Table 8, demonstrating significant differences in in-situ stress measurement 

outcomes attributable to fluid medium variations. 255 

Table 8: Comparison table of hydraulic fracturing in-situ stress measurement results 

Depth(m) 
Fracturing parameters (MPa) Stress Value (MPa) 

Pb(m) Ps(m) Tm Pb(w) Ps(w) Tw σH(m) σh(m) σH(w) σh(w) σv 

145.2~146.7 22.33 8.62 10.59 13.21 7.34 7.59 12.93 8.62 12.8 7.34 37.92 

149.8~151.3 16.77 8.75 4.26 14.1 7.86 4.26 12.53 8.75 12.57 7.86 39.08 

157.0~158.5 21.55 12.6 6.21 13.17 8.82 6.21 21.24 12.6 14.6 8.82 40.95 

163.4~164.9 14.67 10.6 7.78 11.84 7.12 7.78 18.58 10.6 12.29 7.12 42.62 

172.3~173.8 30.4 12.3 14.23 12.03 6.13 14.23 19.24 12.3 10.62 6.13 44.93 

182.0~183.5 29.49 12.67 16.25 9.71 5.84 16.25 23.22 12.67 10.37 5.84 47.45 

200.6~202.1 29.45 12.92 15.49 12.95 8.54 15.49 23.18 12.92 14.73 8.54 52.38 

214.6~216.1 30.76 14.81 16.19 9.3 7.20 16.19 28.15 14.81 12.33 7.20 55.91 

220.5~222.0 30.27 18.37 10.8 11.08 7.91 10.8 33.89 18.37 13.25 7.91 57.45 

235.1~236.6 29.51 20.68 10.92 14.08 9.37 10.92 31.58 20.68 16.88 9.37 61.24 

242.8~244.3 28.63 16.92 11.89 12.12 8.68 11.89 32.06 16.92 15.06 8.68 63.24 

 

Here, Pb(m): ZPZK fracturing pressure by mud; Ps(m): ZPZK closure pressure by mud; T: rock tensile strength; Pb(w): MSZK 

fracturing pressure by water; Ps(w): MSZK closure pressure by water; σH(m): ZPZK maximum horizontal principal stress; 

σh(m): ZPZK minimum  horizontal principal stress; σH(w): MSZK maximum horizontal principal stress; σh(w): MSZK 260 

minimum horizontal principal stress; σv: vertical principal stress (the overburden rock unit weight was assigned as 26.5 kN/m³). 
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Figure 8: Comparative curves of maximum and minimum horizontal principal stresses between ZKZP(mud) and 

MSZK(water) 

Figure 8 demonstrates the comparative curves of maximum and minimum horizontal principal stresses between ZKZP(mud) 265 

and MSZK(water). The analysis reveals significantly higher in-situ stress calculation results for ZKZP compared to MSZK. 

The average percentage differences reach 39.32% for maximum horizontal principal stress and 39.61% for minimum 

horizontal principal stress within equivalent depth intervals. Considering the close proximity of these two boreholes (only 50m 

apart) and their comparable geological conditions with identical lithological characteristics in surrounding strata, this 

substantial discrepancy strongly suggests that the drilling mud medium in boreholes exerts considerable influence on 270 

measurement outcomes such as rock breakdown values. To address this systematic bias, the MLP-KFold model was 

subsequently employed to calibrate critical output parameters (fracture pressure and closure pressure values). The refined in-

situ stress calculation results after correction are presented in Table 9. 

 

 275 
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Table 9: Comparison table of hydraulic fracturing in-situ stress measurement results after compensation 

Depth(m) 
Fracturing Parameters（MPa） Stress Value (MPa) 

Pb(m_c) Ps(m_c) Tm Pb(w) Ps(w) Tw σH(m_c) σh(m_c) σH(w) σh(w) σv 

145.2~146.7 14.1 6.81 10.59 13.21 7.34 7.59 13.92 6.81 12.8 7.34 37.92 

149.8~151.3 12.23 7.52 4.26 14.1 7.86 4.26 14.59 7.52 12.57 7.86 39.08 

157.0~158.5 17.18 7.86 6.21 13.17 8.82 6.21 12.61 7.86 14.6 8.82 40.95 

163.4~164.9 15.38 5.79 7.78 11.84 7.12 7.78 9.77 5.79 12.29 7.12 42.62 

172.3~173.8 18.82 7.47 14.23 12.03 6.13 14.23 17.82 7.47 10.62 6.13 44.93 

182.0~183.5 18.63 5.76 16.25 9.71 5.84 16.25 14.9 5.76 10.37 5.84 47.45 

200.6~202.1 20.81 6.97 15.49 12.95 8.54 15.49 15.59 6.97 14.73 8.54 52.38 

214.6~216.1 20.44 6.73 16.19 9.3 7.20 16.19 15.94 6.73 12.33 7.20 55.91 

220.5~222.0 20.87 8.55 10.8 11.08 7.91 10.8 15.58 8.55 13.25 7.91 57.45 

235.1~236.6 22.97 9.29 10.92 14.08 9.37 10.92 15.82 9.29 16.88 9.37 61.24 

242.8~244.3 20.7 7.82 11.89 12.12 8.68 11.89 14.65 7.82 15.06 8.68 63.24 

 280 

Here, (m_c) represents the pressure value of mud as the fracturing fluid after the MLP-KFold correction. The comparative 

curves of maximum and minimum horizontal principal stresses between the calibrated ZKZP and MSZK are presented in 

Figure 9. As illustrated in Figure 9, the discrepancy in calculated in-situ stress values between the two boreholes shows a 

marked reduction after model calibration. Within equivalent depth intervals, the maximum horizontal principal stress 

difference decreases to 17.84%, while the minimum horizontal principal stress difference demonstrates a more pronounced 285 

improvement, achieving a remarkable decrease to 10.58%. 
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Figure 9: The comparative curves of maximum and minimum horizontal principal stresses between the calibrated 

ZKZP and MSZK 

7 Conclusions 290 

This paper presents a rock mechanics measurement result correction model based on MLP KFold, developed from a dataset 

constructed via hydraulic fracturing simulation experiments. The model demonstrates superior performance in addressing 

measurement deviations of hydraulic fracturing-induced fracture and closure pressures, enhancing the accuracy of in-situ stress 

calculations. By combining MLP with K-Fold cross-validation, this study offers a data-efficient solution for in-situ stress 

measurement correction and optimizing regional stress profile assessments. The key findings are as follows: 295 

(1) The MLP KFold model shows outstanding predictive ability on small-scale datasets, achieving an R² of 0.9937, surpassing 

benchmark models by Δ+1.89% ~ +5.34%, and its low error metrics (MAE = 0.518, MSE = 0.646, and maximum error = 

1.945 MPa) confirm its predictive accuracy and robustness with limited experimental data. 

(2) The model significantly reduces average discrepancies in principal stress calculations under varying fracturing fluid 

conditions (σH: -21.48%; σh: -29.03%), effectively addressing errors from fracturing fluid property differences. This validates 300 

its engineering applicability and effectiveness in hydraulic fracturing stress measurements under complex field conditions. 
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Appendix 

Optimal design table of values for the hydraulic fracturing simulation experiments 

No. 
Influencing factors Experimental results 

Density  Viscosity Injection Rate Tensile strength Fracturing pressure Closure pressure 

1 1.01 1 0.69 14.42 18.7 2.14 

2 1.01 1 1.2 12.92 18.0 2.54 

3 1.01 1 1.2 9.48 22.0 6.26 

4 1.01 1 0.69 8.3 29.0 10.35 

5 1.01 1 0.69 7.6 29.0 10.7 

6 1.01 1 0.69 6.38 28.0 10.81 

7 1.01 1 0.55 4.5 32.1 13.8 

8 1.01 1 0.69 2.8 31.0 14.1 

9 1.01 1 0.69 3.06 31.5 14.22 

10 1.01 1 4.25 16.3 24.1 3.9 

11 1.01 1 3.88 18.4 27.0 4.3 

12 1.01 1 3.15 18.8 30.0 5.6 

13 1.01 1 4.25 16.6 28.2 5.8 
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14 1.01 1 3.88 6.6 25.0 9.2 

15 1.01 1 3.88 15 36.0 10.5 

16 1.01 1 3.88 11.82 34.0 11.09 

17 1.01 1 3.15 18.2 48.0 14.9 

18 1.01 1 4.25 8 38.0 15 

19 1.01 1 3.88 13.2 44.0 15.4 

20 1.01 1 0.48 9.4 8.22 0 

21 1.01 1 0.48 9.76 10.95 1.19 

22 1.01 1 0.48 7.65 8.84 1.19 

23 1.01 70.2 0.6 8.99 10.17 1.18 

24 1.01 70.2 0.6 5.85 7.03 1.18 

25 1.01 70.2 0.6 8.33 9.5 1.18 

26 0.88 130.6 0.55 11.88 13.07 1.19 

27 0.88 130.6 0.55 12.6 13.78 1.18 

28 0.88 130.6 0.55 9.98 11.22 1.19 

29 1.51 171.6 0.17 9.57 12.74 1.87 

30 1.51 171.6 0.17 9.07 12.25 1.88 

31 1.51 171.6 0.17 10.37 13.54 1.87 

32 1.51 284.5 0.35 9.64 12.83 1.89 

33 1.51 284.5 0.35 12.31 15.47 1.89 

34 1.51 284.5 0.35 9.83 12.99 1.89 

35 1.51 284.5 0.35 12.27 15.44 1.89 

 


