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Abstract: Predicting future drought conditions are crucial for effective disaster management. In this
study, a machine learning framework is proposed to predict hydrological drought in the Huaihe River
Basin, China. The Extreme Gradient Boosting (XGBoost) model is applied to predict four drought
categories in 28 grid regions for one-month prediction, using 26 features for monthly and 18 for seasonal
predictions. The framework also integrates the Shapley Additive Explanation (SHAP) variable
importance index to infer drought prediction features. The model achieves 79.9% accuracy in classifying
droughts, with the Standard Precipitation Index (SPI) being the most influential feature. The SHAP
values of SPI are 0.360, 0.261, 0.169, and 0.247 for spring, summer, autumn, and winter, respectively.
Soil moisture content and evapotranspiration are particularly affected in spring and autumn, while large-
scale climatic features are more significant in summer and winter. Overall, this study offers valuable
decision support for regional drought management and water resource allocation.

Keywords: XGBoost; SHAP; Drought prediction; SRI; Huaihe River Basin

1 Introduction

Drought is a global disaster characterized by its long duration and extensive impacts, resulting in
severe implications for the economy, agriculture, and environment (Fu et al., 2018; Shi et al., 2018; Zhou
et al., 2020; 2021). Over the past 20 years, the frequency and severity of global drought events have
increased (Dai 2011; 2012; 2013; Zhang et al., 2019), affecting water security, economic growth, and
food supply in some areas. Therefore, drought prediction is of great significance for managing water
resources and reducing losses caused by drought.

Consequently, according to the different effects of drought, previous studies have divided it into
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several different types. Among them, four types of droughts are widely used: meteorology, hydrology,
agriculture, and social economy (Wilhite and Glantz, 1985; American Meteorological Society, 2013). In
the past few decades, more than one hundred drought indices based on single or multiple hydroclimatic
variables have been proposed to represent different drought characteristics. For example, the Palmer
Drought Severity Index (PDSI) (Palmer 1965), the Standardized Precipitation Index (SPI) (McKee et al.,
1993), and the Standardized Runoff Index (SRI) (Shukla and Wood, 2008). SPI index and SRI index are
robust, statistically straightforward to compute, and well-suited to long-term time series data. Therefore,
this study chooses the SPI index and SRI index to characterize meteorological drought and hydrological
drought.

In recent years, there has been an increasing trend toward utilizing machine learning to predict
droughts (Ardabili et al., 2020; Sun and Scanlon, 2019). Compared to conventional regression models,
machine learning-based models better capture the non-linear characteristics inherent in drought problems
and exhibit more robustness, especially when dealing with high-dimensional datasets (Mishra and Singh,
2010; Kikon and Deka, 2022; Prodhan et al., 2022; Wu et al., 2022). Multiple machine learning models
such as artificial neural networks (Orimoloye et al., 2021; Orimoloye et al., 2022), support vector
machines (Li et al., 2021), random forests(Park et al., 2019), and extreme gradient boosting (XGBoost)
(Choi et al. 2018; Han et al. 2019; Zhang et al., 2023) have been extensively employed in the research
field of drought. Machine Learning models can learn the input-output relationships in training data and
can effectively leverage big data to improve prediction accuracy (Mardian et al., 2023). By training tree-
based machine learning models, Bachmair et al. (2016) discovered that tree-based machine learning
models outperform baseline models. Jungho and Kim (2023) employed a tree-structured XGBoost model
to predict the likelihood of impact occurrence (LIO) of drought on public water supply. Their findings
demonstrated that the XGBoost model exhibited high accuracy and low uncertainty. Furthermore, the
XGBoost model necessitates only minor hyperparameter tuning, and its performance is relatively
insensitive to the selection of hyperparameters (Gao and Ding, 2020; Barnwal et al., 2022).

Previous research indicates that numerous features significantly impact hydrological drought. Zou
et al. (2018) demonstrated that climate change is the primary feature affecting hydrological drought on
long-term scales. Wang et al. (2021) found that climatic variables such as precipitation and
evapotranspiration significantly influence the duration of hydrological drought. Additionally, Gan et al.

(2023) revealed that large-scale climatic features and sunspot activity have a substantial impact on
2
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hydrological drought events in the Huaihe River Basin. Despite many studies showing that machine
learning models outperform physical models in terms of prediction accuracy, these models lack
transparency and interpretability. Most research on machine learning models for drought prediction
focuses on model performance, often neglecting the role of different features influencing drought
occurrence in model predictions. For example, Xu et al. (2022) established a hybrid model combining
autoregressive integrated moving averages (ARIMA) and long short-term memory (LSTM) to predict
the standardized precipitation evapotranspiration index at multiple time scales. Yu et al. (2023) combined
the Hydrologiska Byrans Vattenbalansavdelning (HBV) model with an LSTM neural network to improve
the prediction ability for semi-arid basins. Yalcin et al. (2023) proposed a hybrid model of convolutional
neural networks (CNN) and LSTM to enhance the prediction accuracy of the standardized precipitation
evapotranspiration index. However, these studies do not consider the influence of different features on
the model output.

Recent advancements in Explainable Al (XAI) techniques have provided opportunities for
understanding why models make certain predictions (Gunning et al., 2019; Islam et al., 2022). Recently,
local interpretability methods have been developed and can be implemented for neural network and
random forest model architectures (Ribeiro et al., 2016a). The Local Interpretable Model-Agnostic
Explanation (LIME) method has been widely used, but it exhibits a high degree of instability due to
considerable variation in its explanations upon repeated use (Ribeiro et al., 2016b). Therefore, the
Shapley Additive Explanations (SHAP) approach was proposed as a solution. Grounded in the strong
theoretical basis of game theory, it provides more robust mathematical accuracy and consistent extension
on top of the LIME framework (Lundberg and Lee, 2017; Molnar, 2022). At present, SHAP has been
applied to a variety of prediction scenarios. For example, Dikshit and Pradhan (2021) employed an LSTM
model combined with the SHAP algorithm to predict droughts, demonstrating that the inclusion of
climate variables as predictors can enhance prediction accuracy. Mardian et al. (2023) utilized an
XGBoost model and SHAP to predict droughts in the Canadian prairies, and clarified the importance of
spatial and temporal predictors, drought indicators, GRACE groundwater distribution and teleconnection
in drought prediction. Similarly, Xue et al. (2024) analyzed the spatial and temporal characteristics and
driving factors of agricultural drought during the extreme drought period in northern Italy in 2022 by
using the integrated machine learning model explained by SHAP combined with the new integrated

agricultural drought index (IADI), quantified the dominant factors, and revealed that meteorological
3
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conditions were the main driving factors. Likewise, Zeng et al. (2025) used the XGBoost model
explained by SHAP combined with the new rate of extension (RE) index to analyze the spatial and
temporal evolution of meteorological drought characteristics in the Yangtze River Basin of China,
quantified the dominant driving factors, and revealed that soil moisture was a primary factor. However,
the range of drought-influencing features considered in their research is still not comprehensive enough.
For example, soil temperature and water content, surface thermal radiation and other features are also
important features affecting drought (Raposo et al., 2023).

In light of the above, the novelty of this study is to employ interpretable machine learning models
for hydrological drought prediction and to identify the contribution of different influencing features to
the model prediction results. While SPI is a precursor to SRI, this study disentangles the hierarchy of
contributing features, including SPI, large-scale climate indices, soil moisture etc. Soil moisture directly
affects hydrological drought, and it can analyze the contribution of different features to drought when it
is predicted together with drought features such as large-scale climate features. For example, Mardian et
al. (2023) employed a method combining the XGBoost model with SHAP (Shapley Additive
Explanations) values, utilizing a variety of drought-influencing features such as large-scale climatic
features and soil moisture, to predict drought conditions in the context of the Canadian Drought Monitor
(CDM) and to understand the underlying driving features. Therefore, the objectives of the study are: 1)
Utilizing the XGBoost model, combined with 26 features predicted monthly and 18 features predicted
seasonally, the hydrological drought in the Huaihe River Basin is predicted, and the performance
evaluation is carried out by using precision and recall indicators; ii) Various SHAP plots were employed
to gain insights into the model outputs and analyze the influence of different drought variables on the

predictive results of the model.

2 Study area and data

2.1 Study area

In this paper, as shown in Figure 1, the Huaihe River Basin is selected as the research area, and the
grid is divided at a resolution of 1°latx1°lon, with a total of 28 grid regions, which takes into account the
computational feasibility and spatial heterogeneity. Although large-cale climatic features have spatial

consistency, their effects on regional precipitation can be different through local terrain-atmosphere
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feedback (Lu et al.,, 2006). Gridded analysis identifies sensitive subregions, supporting targeted
mitigation. The Huaihe River Basin is located at 111°55'-121°25'E, 30°55'-36°36'N, covering an area of
approximately 270,000 square kilometers. It experiences significant spatiotemporal variations in
precipitation, with an average annual precipitation of around 883 millimeters. Situated in the transitional
climatic zone from south to north, the southern part of the basin falls under a subtropical climate, while
the northern part experiences a warm temperate climate. The average annual temperature ranges from 11
to 16°C. The winter and spring seasons in the basin are relatively dry, while the autumn and summer
seasons are hot and rainy, resulting in pronounced seasonal fluctuations between droughts and floods.
The average annual runoff depth in the basin is 230 millimeters. Due to its unique geographical location,
the area is prone to frequent flooding, leading to high water levels and prolonged flood conditions. In
addition, the annual average water surface evaporation in the Huaihe River Basin ranges from 900 to
1500 millimeters. As one of the important agricultural production bases in China, the basin is densely
populated with substantial water demands. However, the region frequently suffers from drought disasters.
Since the beginning of the 21st century, an average of 2.698 million hectares of crops, accounting for 21%
of the total cultivated land area in the basin, have been affected annually. The Huaihe River Basin is a
significant agricultural area and a high-population-intensive area in eastern China. Seasonal droughts
frequently affect food production and water resources. One-month advance prediction is essential for

reservoir scheduling, irrigation planning and early warning times for farmers.
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Figure 1: Huaihe River Basin and 28 grid area location.
2.2 Data
We obtained monthly average precipitation, wind speed, temperature, evapotranspiration, monthly

average runoff, 0-10cm soil moisture, and 100-200cm soil moisture data sets for the Huaihe River Basin

from the website https://disc.gsfc.nasa.gov/datasets/GLDAS NOAHI10 M 2.0/ for the period 1960 to

2014. The monthly average 2 m dewpoint temperature, surface net solar radiation, surface net thermal
radiation, surface pressure, and leaf area index data sets were obtained from the ERAS-Land reanalysis

dataset (https://cds.climate.copernicus.eu/). According to whether the grid center point falls within the

basin, 28 grid regions are defined. If the center point of the grid is not within the basin boundary, the
region is not divided into grids. The grid analysis is carried out with these grid points as the center and
1°latx1°lon as the resolution, covering a total of 28 grid regions. Using the interpolation method based
on the Xarray package, the data of Huaihe River Basin are interpolated to 28 grid regions.

Numerous studies have demonstrated the significant influence of large-scale climate indices,
including the Atlantic Multidecadal Oscillation (AMO), Arctic Oscillation (AO), North Pacific pattern
(NP), Pacific Decadal Oscillation (PDO), and Nino3.4, on drought dynamics(Gan et al., 2023; Phan-Van
et al., 2022; Wu and Xu, 2020; Xiao et al., 2019). For example, the positive phase of AMO leads to a

decrease in summer precipitation in the Huaihe River Basin by enhancing the western Pacific subtropical
6
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high (Lu et al., 2006); the Pacific Decadal Oscillation ( PDO ) has the most significant impact on the
monthly runoff in the Huaihe River Basin (Sun et al., 2018). These selected climate features (Nino3.4,
AMO, TPI, PDO, AO, TNI, and NP) for the Huaihe River basin analysis were acquired from the National
Oceanic and Atmospheric Administration (NOAA) climate database

(http://www.esrl.noaa.gov/psd/data/climateindices) , covering the period from 1960 to 2014.

3 Methods

3.1 Drought indices

In this study, the standardized precipitation index (SPI) (McKee et al., 1993) is used to characterize
meteorological drought. SPI is widely used for drought risk assessment and monitoring due to its ease of
calculation and ability to work on multiple time scales.

The standardized runoff index (SRI) was first proposed by Shukla and Wood (2008) as an effective
and accurate index for describing hydrological drought characteristics. It has been widely used in
hydrological drought identification. SRI is also calculated by transforming the cumulative flow
distribution of a given time scale into a standard normal distribution using equiprobability transformation,
similar to the calculation method of SPI. The SPI/SRI classes are classified as shown in Table 1 (Li et al.
2024). In this study, drought is classified into four classes, namely, Normal (ND), Mild drought (D1),
Moderate drought (D2), and Severe drought and Extreme drought (D3), according to Table 1. However,
due to the limited number of extreme drought events, it posed an issue in training the model. Therefore,

the classes of Severe drought and Extreme drought were merged into one.

Table 1: Drought category classification and corresponding SPI and SRI values.

SPI/SRI value Category
SPI/SRI> 0 Normal (ND)
-1.0< SPI/SRI <0 Mild (D1)
-1.5<SPI/SRI<-1.0 Moderate (D2)
-2.0<SPI/SRI<-1.5 Severe (D3)
SPI/SRI< -2.0 Extreme(D3)
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3.2 Machine learning models

In this paper, the XGBoost model is used for multi-input single-output regression prediction
problems to predict the hydrological drought in the Huaihe River Basin. The XGBoost model is an
ensemble learning algorithm belonging to the Boosting algorithm category. It utilizes decision trees as
its basic elements and implements a gradient-boosting algorithm to minimize loss when adding new
models. XGBoost aims to improve the training speed and predictive performance of gradient-boosting
decision trees. The foundational knowledge about the mechanism and implementation behind XGBoost

can be found in the paper by Chen and Guestrin (2016).

3.3 Modeling Settings

The study period for this research spans from 1960 to 2014, with the model training period from
1960 to 2003 and the prediction period from 2004 to 2014. The input and output data types for 28 grid
areas are the same. We use a sliding window of 12 and 3 months. The prediction lead time is 1 month.
The relevant settings for models are shown in Table 2.

Take the 7th grid area as an example. When using monthly data, the input was 26 different drought
influencing features, and the output was SRI-1. The number of input samples during model training was
13767, and the number of output samples was 526. There are 3432 input samples and 132 output samples
during the model prediction period. When using seasonal data, the input is 18 features without drought,
and the output is SRI-3 in different seasons. The number of input samples during model training is 792,
and the number of output samples is 44. The number of input samples in the model prediction period is
198, and the number of output samples is 11. The model uses Bayesian hyperparameter optimization to
find optimal parameters, such as learning rate, tree depth, and number of iterations.

Table 2. Model setup and data overview

Phase Data Period Input Window Lead time Output

Training phase 1960-2003  M-12 to M-1 (12month) 1 month  SRI-1
(Monthly time scale)

Validation phase 2004-2014  M-12 to M-1 (12month) 1 month  SRI-1
(Monthly time scale)

Training phase 1960-2003 M-3 to M-1 (3month) 1 month  SRI-3
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(Seasonal time scale)
Validation phase 2004-2014 M-3 to M-1 (3month) 1 month  SRI-3

(Seasonal time scale)

The XGBoost model for 28 grid areas is established, and the data types used in each region are the
same. As shown in Table 3, for the monthly data analysis, 26 different drought-influencing features were
considered. These include a month-scale SPI (SPI-1) and SPI indices at different time scales of 1 month
and 2 months in advance. Large-scale climate indices (AMO, TPI, PDO, AO, TNI, NP),
evapotranspiration, wind speed, 2 m dewpoint temperature, soil moisture content, surface net thermal
radiation, surface net solar radiation, surface pressure and leaf area index were considered.

As shown in Table 3, for seasonal data analysis, the basin data are classified by season, and 18
different drought influencing features are used. It includes SPI-3 value, soil moisture content,
evapotranspiration, surface net thermal radiation, air temperature, NINO3.4, NP, wind speed, TNI, PDO,
TPI, surface pressure, AO, AMO, leaf area index, 2 m dewpoint temperature and surface net solar
radiation in four seasons.

For monthly and seasonal data sets, SHAP (Shapley Additive Explanation) values were used to
analyze the contribution of 28 grid regions to determine the impact of each feature.

Monthly-scale predictions capture the rapid onset of drought, which is critical for early warning
systems, whereas seasonal analysis aligns with agricultural planning cycles. Thus, our study employs
both monthly and seasonal analyses to comprehensively assess short-term variability and long-term

trends in hydrological drought.

Table 3: The monthly scale and seasonal scale of the model predict the input target variables. (T is the lead
time, SPI-1, SP1-3, SPI-6, and SPI1-9 are SPI values at different monthly scales.).

SPI-1, T=1 SPI-1, T=1 SPI-3, T=1 SPI-6, T=1 SPI-9, T=2 SPI-1, T=2
SPI-3, T=2 SPI-6, T=2 SPI-9, d2m temperature, surface pressure,
Drought influencing
features (monthly) evapotranspiration, Air temperature, wind speed, surface net solar

radiation, surface net thermal radiation, 0-10cm soil moisture, 100-200cm

soil moisture, Nino3.4, AMO, PDO, AO, TNI, NP, TPI, leaf area index
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SPI-3 (different seasons), d2m temperature, surface pressure,
Drought influencing evapotranspiration, Air temperature, wind speed, surface net solar
feature (seasonal)

radiation, surface net thermal radiation, 0-10cm soil moisture, 100-200cm

soil moisture, Nino3.4, AMO, PDO, AO, TNI, NP, TPI, leaf area index

3.4 Model evaluation

Based on the optimal parameters obtained during the training phase, the XGBoost model is utilized
to predict the hydrological drought situation in the Huaihe River Basin from 2004 to 2014. These
predictions will be assessed using precision, recall, and the Heidke Skill Score (HSS) as measurement
metrics. Precision is defined as the ratio of correctly classified instances of a specific category to the total
number of predicted instances, quantifying the model's precision in predicting drought conditions and
evaluating its reliability. Recall represents the ratio of correctly classified instances of a specific category
to the total number of observed instances in that category, capturing the probability of the model
predicting observed drought conditions and reflecting its sensitivity (Mardian et al., 2023; Zhang et al.,
2023). The HSS measures the model’s classification performance relative to random chance, accounting
for both correct and incorrect predictions. It is particularly useful for assessing predictive skill in

imbalanced datasets (Heidke, 1926). The following are precision, recall and HSS formulas:

precision= TP (1)
TP+FP
Recall __™ )
TP+ FN
Hes 2x(TPxTN — FN x FP) 3
[(TP+FN)x(FN +TN)+(TP+FP)x(FP+TN)] @)

Where the classification evaluation metrics employed are True Positives (TP), True Negative (TN),
False Positives (FP), and False Negatives (FN). TP denotes the number of actual positive samples
correctly predicted as positive, TN is the actual number of negative samples that are correctly predicted
to be negative, FP represents the number of actual negative samples incorrectly predicted as positive, and

FN signifies the number of actual positive samples incorrectly predicted as negative.

10



235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

3.5 Shapley Additive Explanations (SHAP)

SHAP, a machine learning interpretability method, provides a unified approach by combining
elements from additional variable attribution methods with Shapley values as a measure of variable
importance. Shapley values were originally introduced in game theory to determine the contributions
made by each player in cooperative games. The fundamental idea is that each player receives a
corresponding payout based on their contribution (Shapley, 1953). The interpretation of SHAP values is
straightforward: larger absolute SHAP values indicate greater weight of the variable in predicting the
model, while negative (positive) SHAP values exert a negative (positive) influence on the prediction
process. Lundberg and Lee (2017) developed the SHAP method based on the theoretical foundation of
Shapley values to explain the influence of each variable on model predictions, thereby providing
increased transparency to the model. The Shapley value is calculated as the average marginal contribution
based on all possible variable permutations. Importantly, SHAP values reflect local feature importance,
meaning that they quantify the contribution of each variable to a specific prediction instance, rather than
summarizing its overall effect across the entire dataset.

In our study, the SHAP baseline is the difference between the prediction of the model and the
average prediction on the data set. For each sample and each feature, the SHAP value is the difference
between the predicted value of the model containing the feature and the predicted value after removing
the feature and the baseline. We use these SHAP values to quantitatively analyze the positive or negative

effects of each predictor on hydrological drought prediction.

4 Results

4.1 Model performance

According to the data in Table 4 and Figure 2, the overall precision of the XGBoost model is 79.9%,
which means that it has a 79.9% ability to correctly identify drought categories. In the identification of
the ND drought category, the performance of the model is particularly excellent. Figure 2 shows that the
median precision and recall rate of the ND category is both more than 0.8. It can be seen from the data
in Table 4 that the recall rate of the ND drought category is 91% and the precision rate is 88%, which
proves that the model has high sensitivity and reliability in predicting the ND drought category. For ND,
the HSS is 0.77, showing a significant discriminant advantage over the no-skill baseline that always

11
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predicts the most common category. At the same time, the precision rates of ND and D3 drought
categories are 88% and 86%, respectively, indicating that the model had good prediction accuracy for
these two types of droughts. However, the precision rates of the D1 and D2 drought categories are 74%
and 61%, respectively, reflecting the lack of prediction accuracy of the model in these categories.

In addition, the boxplot in Figure 2 further reveals the precision and recall performance of the model
for each drought category in 28 grid regions. Although the median precision and recall of the D1 drought
category is both close to 0.8, indicating that the model has a high predictive ability in this category, the
performance of the D2 and D3 drought categories is relatively poor. Especially for the D3 drought
category, the median recall rate does not exceed 0.5, indicating that the model is not sensitive to the
identification of such drought events, and there are some limitations in the prediction. However, although
the recall rate of the D3 drought category is low, its precision is almost as high as the ND drought category,
which is mainly due to the low frequency of D3 drought category events. The model can successfully
capture all D3 drought category events in some grid areas, thereby improving the precision of this
category. The HSS metric complements precision and recall by evaluating the model’s performance
relative to the no-skill baseline. Values closer to 1 indicate superior performance. The declining HSS
from ND to D2 underscores the model’s reduced discriminatory power for less extreme drought

categories, aligning with the observed precision-recall trade-offs.

Table 4: The average accuracy, recall and HSS of each drought category in 28 regional models.

Category Precision (%) Recall (%) HSS
ND 88 91 0.77
D1 74 78 0.61
D2 61 47 0.46
D3 86 50 0.59

Average 77.3 66.5 0.608

12
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Figure 2: Box plots of the accuracy and recall rates of the four drought categories predicted by the 28 regional
models (‘P’ represents the accuracy rate, and ‘R’ represents the recall rate. The small square represents the

average.).

4.2 Prediction maps

According to the predicted drought data, 2011 was identified as a year with relatively severe drought
conditions. To visually assess the predictive capability of the model, drought predicted, observed, and
difference maps were created for each month of 2011 (Figure 3 to Figure 4). Figure 3 shows the
comparison between the prediction and observation in the first six months of 2011, and the complete
month map is placed in the appendix. In 2011, the model accurately captured drought situations across
most regions. In January, the drought situation was severe, and the drought category was mainly in the
D2 and D3 categories. However, the prediction map of the model shows that the drought degree in most
regions is lighter than the actual drought situation, and the drought category is mainly classified as D1,
which relatively underestimates the actual situation of drought. In February, the drought situation was
rapidly reduced, and the prediction map of the model was basically consistent with the observation map.

In March and April, the drought conditions in the entire basin rapidly escalated and became severe, and
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most of the areas in the observation map reached the drought categories of D2 and D3, and only a few
areas in the north were classified as D1 drought category. Consequently, this period poses a considerable
challenge to the predictive ability of the model, making it an appropriate period to evaluate the predictive
performance of the model. In general, the model effectively predicts the occurrence and deterioration of
drought and captures the spatial distribution pattern. However, in some parts of the central and western

regions, the model still underestimates the drought situation.
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Figure 3: Monthly model predictions and observed drought categories for the first six months of 2011.

In May, the severity of the drought situation decreased relative to the previous two months, and the
actual observed map and the model-predicted map were largely consistent. According to the observed
map, in June, a drought occurrence was observed in the northern region where no drought had been
previously recorded. Furthermore, in July, the drought area shifted from the northern to the western
region. It was not until August that drought gradually diminished in most areas. Basically, the model
captures the change of drought, but for some areas of D3 drought category, the model predicts them as

D2 drought category.

In September, drought conditions were found in the eastern and southern regions on the observed

map. However, the drought situation in some areas is underestimated on the map predicted by the model.
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In October, the model significantly overestimated the severity of the drought situation. According to the
observed map, all regions except a small part of the western region experienced the D1 drought category.
In contrast, the model-predicted map shows widespread drought across the region, with most of the
regions classified in the D2 drought category. In November and December, the drought in the observation

map dissipated rapidly, and the drought situation was basically the same as that in the model prediction

map.
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Figure 4: The difference between the predicted results of the model and the observed data values (Difference
= SRI-prediction — SRI-actual) From blue to red indicates that the model predicts the degree of

underestimation to overestimation of observations.

In general, the XGBoost model has a great performance in capturing the spatial structure and
temporal dynamics of drought events during the 12-month period of 2011. However, the model indicates
that while the model can distinguish between drought and non-drought conditions, it lacks clarity in
defining the boundaries between different drought categories. In most cases, the model underestimates

drought conditions compared to the observed results.
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4.3 Variable importance analysis

4.3.1 Monthly prediction analysis

To study the effects of different features on drought, 26 different drought influencing features were
considered, and the corresponding influencing features are analyzed for 28 grid regions, and the
contribution analysis is made with SHAP values. Due to the limited space, only the analysis of the 7th
grid region is shown in Figure 5. Figure 5 reveals the contribution of each input feature based on the
SHAP value of each instance in 28 grid regions. In the vertical direction, the variables in the beeswarm
plot are sorted according to their absolute SHAP values, which also reflects the importance of ranking
variables. The density of points represents the eigenvalues of each instance in each row. The X-axis
shows the SHAP value corresponding to a single instance. The left side of the Y-axis of the bee colony
graph represents the negative total contribution of the features in the XGBoost model, while the right
side represents the positive total contribution. The negative and positive SHAP values represent the
corresponding negative and positive total contribution of the related target variables to the XGBoost
model. Therefore, the beeswarm plot reflects the relationship between the variables and the related target
variables. The larger the absolute value of SHAP is, the greater the contribution to the model is. The

analysis reveals that SPI plays a dominant role, followed by AMO and evapotranspiration.
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Figure 5: The SHAP values of 26 different influencing features in each month of the 7th grid region from
2004 to 2014.

To gain a deeper understanding of the features contributing to drought events in the study area, As
shown in Figure 6, this study shows the spatial distribution of the first three main drought-influencing
features and discusses the changes of drought-influencing features in the basin. The results show that the
main influencing feature of hydrological drought in the Huaihe River Basin is meteorological drought.
As shown in Table 5, the absolute average SHAP value of the first influencing feature is significantly
higher than that of the second and third influencing features. Large-scale climate features (particularly
AMO) emerge as the secondary major influence, and about half of the North Central Basin is significantly
dependent on these features. For the third influencing feature, a diverse range of large-scale climate
variables, such as TPI, PDO, NP, TNI, and AMO, affect almost half of the study area. In summary, the
foremost determinant of hydrological drought is meteorological drought. Large-scale climate features

(notably AMO) rank second in importance, followed by features like soil moisture content, and so on.
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The findings demonstrate that the Standardized Precipitation Index (SPI) serves as the dominant

driver of hydrological drought in the Huaihe River Basin, consistent with the conclusions of Gan et al.

(2023), who identified meteorological drought as a critical precursor to hydrological extremes in this

region. Further support arises from Wang et al. (2021), whose analysis of drought propagation

mechanisms in the Huaihe Basin revealed indirect hydrological drought impacts mediated through soil

moisture and evapotranspiration—a pattern corroborated by the secondary influence of soil moisture and

evapotranspiration in this study. However, compared with the study of Zou et al. (2018) in the Weihe

River Basin, the influence of large-scale climate features in this study is more prominent, which may be

related to the fact that the Huaihe River Basin is located in the climate transition zone and is more

sensitive to the air-sea coupling phenomenon.

Table 5: The first three drought influencing features and the SHAP value of the absolute average influence

of 28 grid areas in Huaihe River Basin.

The first Average Average i Average

. . The second The third

influencing  SHAP . . SHAP . . SHAP
influencing feature influencing feature
feature value value value
SPI-1 0.160 Evapotranspiration 0.040 TPI 0.038
Soil moisture

2 SPI-1 0.190 AO 0.018 content(100- 0.014

200cm)

Soil moisture

3 SPI-1 0.189 TPI 0.030 content(100- 0.023

200cm)
4 SPI-1 0.178 NP 0.020 PDO 0.016
5 SPI-1 0.147 Evapotranspiration 0.044 NP 0.017
6 SPI-1 0.180 TPI 0.025 Evapotranspiration 0.021
7 SPI-1 0.190 AMO 0.037 Evapotranspiration 0.023
8 SPI-1 0.212 TPI 0.030 TNI 0.020
9 SPI-1 0.161 AMO 0.034 T=2 SPI-6 0.028

Surface net
10 SPI-1 0.195 AMO 0.037 . 0.031
thermal radiation
11 SPI-1 0.226 AMO 0.037 TNI 0.012
12 SPI-1 0.221 AMO 0.033 T=2 SPI-3 0.017
13 SPI-1 0.228 AMO 0.028 NP 0.026
Soil moisture

14 SPI-1 0.204 0.057 T=1SPI-1 0.029

content(100-200cm)
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Figure 6: The first three drought-influencing features of 28 grid areas in the Huaihe River Basin.

4.3.2 Seasonal prediction analysis

To accurately reflect the differences in drought-influencing features across different seasons, this
study utilized 18 different drought-influencing features to predict the hydrological drought in the Huaihe
River Basin. Histograms of the absolute average SHAP values for different influencing features in four
seasons in the 7th grid region are presented in Figure 7. The absolute average SHAP values of SPI-3 in
spring, summer, autumn, and winter were 0.360, 0.261, 0.169, and 0.247 respectively, which had the
greatest impact on hydrological drought in the same season. In addition, the absolute average SHAP
values of evapotranspiration, soil moisture content, air temperature, and surface net thermal radiation
were close to or exceeded 0.05, which also had a significant impact on hydrological drought in the Huaihe

River Basin.
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Figure 7: The absolute average SHAP values of 18 different influencing features in the 7th grid region of four

seasons ((a) Spring; (b) Summer; (c) Autumn; (d) Winter).

To understand the spatial and temporal distribution characteristics of drought and the potential

impact mechanism, Figure 8 displays the spatial distribution of the top three influencing features in each

season. The leading influencing features across the four seasons include SPI-3, soil moisture content, and

surface net thermal radiation, with SPI-3 being predominant across all seasons and regions. As shown in

Figure 9, the absolute average SHAP value of the primary feature exceeded the sum SHAP values of the

second and third features. Aside from SPI-3, soil moisture content also exerts a significant influence on

hydrological drought in summer and autumn, particularly in the southern and southeastern parts of the

river basin. In winter, certain areas in the central part of the river basin are mainly affected by surface net

thermal radiation and surface net solar radiation.
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From the perspective of the second influencing feature, hydrological drought in most areas of the
basin in spring is mainly affected by soil water content and evapotranspiration. In the rest of the region,
surface pressure, temperature, radiation, and other features also play an important role. It is worth noting
that in the 15th grid region, the surface pressure becomes a key secondary influencing feature, and its
absolute average SHAP value reaches 0.175. This value is significantly higher than the second impact
feature in other regions, and even close to the primary impact feature in the same grid area. This indicates
that it is extremely sensitive to surface pressure in this particular place. During summer, the influence of
large-scale climatic features such as the AMO, PDO, and TPI becomes more pronounced compared to
spring. Additionally, soil moisture content and surface radiation continue to account for a substantial
proportion of the influence on hydrological drought. Regions with absolute average SHAP values
surpassing 0.1 in summer constitute approximately one-seventh of the study area, indicating elevated
sensitivity to these features during this season. Similar to spring, soil moisture content and
evapotranspiration remain predominant influencing features for hydrological drought in half of the grid
areas during autumn and winter. The remaining regions are mainly influenced by surface net thermal
radiation and surface net solar radiation. Specifically, during winter, the second influencing features for
three grid regions (the 12th, 13th, and 21st grid regions) in the central part of the basin are soil moisture
content and evapotranspiration, with absolute average SHAP values exceeding 0.1. This indicates a
relatively higher influence of these secondary features in these regions compared to others.

Compared with the second impact feature, the large-scale climatic features in the third impact
feature have an increased influence on hydrological drought in the four seasons. In spring and autumn,
soil moisture content exhibits a more substantial influence on hydrological drought, while in summer, air
temperature is considered to be a more important feature. However, in winter, half of the study areas
continue to be dominated by soil moisture content and evapotranspiration, whereas most of the remaining
study areas are primarily influenced by large-scale climate featuresfeatures such as TNI, PDO, NP, and

AO.
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Figure 8: The first three drought-influencing features of 28 grid points in Huaihe River Basin in each season.

According to the above results, there were significant differences in the influencing features of
drought among the four seasons. This diversity highlights the need for us to pay more attention to the
weights and dynamic changes of various influencing features when predicting and understanding the
spatial-temporal distribution characteristics of drought. Although the SPI feature continues to dominate,
at some grid points, features such as soil moisture content in summer and autumn, as well as thermal
radiation in winter, cannot be ignored. This suggests that even for the same influencing feature, its
influence can vary greatly in different seasons and regions. Furthermore, in addition to the influence of
meteorological drought, the influencing features of spring hydrological drought are mainly biased toward
soil moisture content and evapotranspiration, in addition to surface pressure, temperature, radiation, and
other related features. The absolute average SHAP value of these influencing features is basically no
more than 0.1, which is very different from SPI-3, but its impact on hydrological drought cannot be
ignored. In autumn and winter, the above features still dominate, but at the same time, the proportion of
large-scale climate features gradually increases, indicating that climate change between different seasons

may play an important regulatory role in the composition of drought-influencing features.
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Figure 9: The absolute average SHAP values of the first three drought-influencing features in each season.

5 Discussion

This study demonstrates the efficacy of an XGBoost-SHAP framework for hydrological drought
prediction in the Huaihe River Basin. The model achieved robust accuracy for the ND and D1 categories,
yet underperformed for the more severe categories (D2 and D3), likely due to limited extreme event
samples. The prediction of a one-month lead time is helpful for drought monitoring. This enables water
managers to adjust reservoir operations and irrigation schedules based on predicted drought conditions.
The framework provides a 30-day buffer for proactive measures, such as mobilizing drought relief
resources and implementing crop recommendations.

SHAP analysis based on the XGBoost model unequivocally identifies the SPI as the most influential
predictor of hydrological drought across the Huaihe River Basin. Such as (Tanriverdi and Batmaz, 2025)
for U.S. drought prediction, also identified SPI as one of the most critical features across diverse regions
and advanced models. Their SHAP analysis consistently ranked SPI among the top predictors,
reinforcing its fundamental role as a primary driver of drought conditions, even within sophisticated deep
learning frameworks. Beyond SPI, the key secondary drivers exhibit a distinct spatial and seasonal
differences. In terms of space, the hydrological drought in the northern part of the basin shows higher

sensitivity to large-scale climate oscillations such as AMO, indicating that large-scale climate features
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regulate regional precipitation patterns (Yu et al., 2024). On the contrary, the secondary features affecting
the hydrological drought in the southern part of the basin are mainly surface processes, especially soil
moisture and evapotranspiration.(Mtupili et al., 2025; Zhu et al., 2025). The difference in the second
influencing features of hydrological drought in the southern and northern parts of the basin may be due
to the fact that the basin belongs to the temperate-subtropical transition position. For the seasonal scale,
in spring, soil moisture and evapotranspiration account for a large proportion of the explanatory power
of the model. In summer, the relative weight of large-scale climatic features increases, which is consistent
with the enhancement of water vapor transport (Yu et al., 2024). In autumn and winter, radiative fluxes
(net solar and thermal radiation) assume greater importance (Jin et al., 2025). Collectively, these findings
underscore SPI as the primary driver while revealing the nuanced spatio-temporal controls exerted by
secondary features, thereby providing a scientific foundation for developing more targeted drought
mitigation and water resource management strategies across the diverse Huaihe River Basin.

When studying the influence of large-scale climate indices on drought, the correlation between
climate indices and drought for the same period and a certain lead time is often considered, and the results
show that climate indices for the same period and different lead times have a certain influence on drought
in the basin, and the degree of influence varies with the changes in the study area. For example, Ren et
al. (2017) studied the correlation between SPI and large-scale climate indices with advance periods of 0,
1, 2, and 3 months, and the correlation results show that Nino3.4 has significant correlation in August-
October, and PDO has significant correlation in January-May and June-December of the same period.
Lv et al. (2022) analyzed the correlation between large-scale climatic features and drought in different
lag periods. The results show that large-scale climatic features in the same period also have an impact on
drought. Due to the many influencing features considered in this paper, only the effect of climate indices
on drought in the basin during the same period was considered when selecting the large-scale climate
indices. Subsequent studies can consider selecting the most relevant large-scale climate features in
different months or seasons as the influencing features for basin drought prediction to further improve
the accuracy of drought prediction. Before inputting the influencing features into the machine learning
model for training, methods such as random forest and principal component analysis (PCA) can be used
to select the influencing features. Future research can extend the existing one-month-ahead framework
to multiple prediction periods to evaluate the impact of different lead times on prediction accuracy. To

improve the robustness of the model, a variety of ensemble learning schemes can be compared.
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Furthermore, the introduction of uncertainty quantification and data enhancement helps to alleviate

category imbalances and improve prediction reliability.

6 Conclusions

Drought is one of the most significant environmental and climate problems in the world, and
drought prediction is a crucial means of drought prevention. In this study, the integration of SHAP and
XGBoost provides a novel framework that can not only improve the prediction accuracy, but also show
the impact of different drought influencing features on drought. The framework can provide two types
of support for decision makers: (1) giving priority to high weight features in real-time drought warning;
(2) Identifying early risk signals in long-term water resources planning. The main conclusions are as
follows:

1) The XGBoost model achieved an accuracy of 79.9% for identifying drought categories.
The model performs particularly well in predicting ND and D1 drought categories, with a precision
rate of 88 % and 74 %, respectively. It also has a recall rate of 91 % and 78 %. However, the
prediction performance of the model for the D2 and D3 drought categories is relatively poor,
especially for the D3 drought, the recall rate should not exceed 0.5, indicating that the recognition
sensitivity of the model for the D3 category is limited. In general, the model has high prediction
reliability for ND and D1 categories, but limits in the prediction performance of D2 and D3
categories.

2)  This study determined that SPI is the most critical factor affecting hydrological drought
in the Huaihe River Basin. In 28 grid regions, the absolute average SHAP value of SPI is not less
than 0.147, which is much higher than other influencing features. In addition, large-scale climate
features, soil moisture content, and evapotranspiration play a significant role in hydrological
drought in the basin.

3) The SPI remains a major influence in all seasons with absolute average SHAP values of
0.360, 0.261, 0.169, and 0.247 in spring, summer, autumn, and winter respectively. Additional
features such as soil moisture content, net heat radiation, and solar radiation also play seasonal roles.
Soil moisture content and evapotranspiration are significant features in spring and autumn, while

temperature and large-scale climate features are critical in summer and winter.

25



515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

S1 Appendices

Appendix A:

The calculation method of SPI is as follows:

f ()= (A1)

X
F(x) = j f (x)dx (A2)
Assuming that the precipitation series X at a certain time scale follows a stationary gamma

distribution, where ¢ and /3 are the scale and shape parameters (& >0, #>0). The cumulative

probability F(X) of each item is normalized to obtain the corresponding SPI.

Appendix B:

Assuming we have K base models denoted as ft(X) eFt=12,...... ,K, where F the model

space contains all the base models, the XGBoost model can be represented using the following function:

§=F(x)= ztk:l f.(x) (B3)

Where the parameters of the XGBoost model primarily consist of the structure of each tree and the
scores in the leaf nodes, that is, the learning of each function f, (X)

As each base model is generated in a certain sequential order, the creation of the subsequent tree

takes into account the predictions made by the preceding tree. Therefore, the objective function of the t

base model can be expressed as follows:

y(t) = Z::l I (Yi ) yi(H) + ft (Xi ))+ Q( ft) (B4)

~ (-1 ~ -1 -1
Here, I(yi,yi(t ))represents the loss function related to yi,yi(t ) , yi(t )denotes the

predictions of the first t —1 decision trees for sample 1 (i.e., the sum of predictions made by the first

t-1 trees), Y; represents the actual value of sample i, f, (X ) represents the prediction of the t

decision tree for sample | , and Q( ft) represents the model complexity of the T tree. Therefore,

the predictions of the first K trees for the sample | are equal to the predictions of the first k-1

trees plus the prediction of the K tree.
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Appendix C:
The mathematical expression for the classic SHAP value is as follows:

S R VS ©

n!

Where ¢; represents the contribution of variable i , N represent the set of all variables, N

denote the number of variables N s S indicate the subset of N that includes variable i , and
V(N ) represent the baseline, which signifies the predicted outcome of each variablein N when their

values are unknown.
The model results for each observed value are estimated by summing the SHAP values of each

variable corresponding to that observed value. Hence, formulating the explanation model as follows:
M
9(z')=¢+ 247 (€7)
i=1

Where, Z' e {O,l}M , the variable quantity is denoted as M, and the value ¢, can be obtained from

equation (C7). SHAP offers a variety of Al model explainers.
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