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Abstract: Predicting future drought conditions are crucial for effective disaster management. 9 

In this study, a machine learning framework is proposed to predict hydrological drought in the Huaihe 10 

River Basin, China. The Extreme Gradient Boosting (XGBoost) model is applied to predict four drought 11 

categories in 28 grid regions for one-month prediction, using 26 features for monthly and 18 for seasonal 12 

predictions. The framework also integrates the Shapley Additive Explanation (SHAP) variable 13 

importance index to infer drought prediction features. The model achieves 79.9% accuracy in classifying 14 

droughts, with the Standard Precipitation Index (SPI) being the most influential feature. The SHAP 15 

values of SPI are 0.360, 0.261, 0.169, and 0.247 for spring, summer, autumn, and winter, respectively. 16 

Soil moisture content and evapotranspiration are particularly affected in spring and autumn, while large-17 

scale climatic features are more significant in summer and winter. Overall, this study offers valuable 18 

decision support for regional drought management and water resource allocation. 19 

Keywords: XGBoost; SHAP; Drought prediction; SRI; Huaihe River Basin 20 

1 Introduction 21 

Drought is a global disaster characterized by its long duration and extensive impacts, resulting in 22 

severe implications for the economy, agriculture, and environment (Fu et al., 2018; Shi et al., 2018; Zhou 23 

et al., 2020; 2021). Over the past 20 years, the frequency and severity of global drought events have 24 

increased (Dai 2011; 2012; 2013; Zhang et al., 2019), affecting water security, economic growth, and 25 

food supply in some areas. Therefore, drought prediction is of great significance for managing water 26 

resources and reducing losses caused by drought. 27 

Consequently, according to the different effects of drought, previous studies have divided it into 28 
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several different types. Among them, four types of droughts are widely used: meteorology, hydrology, 29 

agriculture, and social economy (Wilhite and Glantz, 1985; American Meteorological Society, 2013). In 30 

the past few decades, more than one hundred drought indices based on single or multiple hydroclimatic 31 

variables have been proposed to represent different drought characteristics. For example, the Palmer 32 

Drought Severity Index (PDSI) (Palmer 1965), the Standardized Precipitation Index (SPI) (McKee et al., 33 

1993), and the Standardized Runoff Index (SRI) (Shukla and Wood, 2008). SPI index and SRI index are 34 

robust, statistically straightforward to compute, and well-suited to long-term time series data. Therefore, 35 

this study chooses the SPI index and SRI index to characterize meteorological drought and hydrological 36 

drought.  37 

In recent years, there has been an increasing trend toward utilizing machine learning to predict 38 

droughts (Ardabili et al., 2020; Sun and Scanlon, 2019). Compared to conventional regression models, 39 

machine learning-based models better capture the non-linear characteristics inherent in drought problems 40 

and exhibit more robustness, especially when dealing with high-dimensional datasets (Mishra and Singh, 41 

2010; Kikon and Deka, 2022; Prodhan et al., 2022; Wu et al., 2022). Multiple machine learning models 42 

such as artificial neural networks (Orimoloye et al., 2021; Orimoloye et al., 2022), support vector 43 

machines (Li et al., 2021), random forests(Park et al., 2019), and extreme gradient boosting (XGBoost) 44 

(Choi et al. 2018; Han et al. 2019; Zhang et al., 2023) have been extensively employed in the research 45 

field of drought. Machine Learning models can learn the input-output relationships in training data and 46 

can effectively leverage big data to improve prediction accuracy (Mardian et al., 2023). By training tree-47 

based machine learning models, Bachmair et al. (2016) discovered that tree-based machine learning 48 

models outperform baseline models. Jungho and Kim (2023) employed a tree-structured XGBoost model 49 

to predict the likelihood of impact occurrence (LIO) of drought on public water supply. Their findings 50 

demonstrated that the XGBoost model exhibited high accuracy and low uncertainty. Furthermore, the 51 

XGBoost model necessitates only minor hyperparameter tuning, and its performance is relatively 52 

insensitive to the selection of hyperparameters (Gao and Ding, 2020; Barnwal et al., 2022).  53 

Previous research indicates that numerous features significantly impact hydrological drought. Zou 54 

et al. (2018) demonstrated that climate change is the primary feature affecting hydrological drought on 55 

long-term scales. Wang et al. (2021) found that climatic variables such as precipitation and 56 

evapotranspiration significantly influence the duration of hydrological drought. Additionally, Gan et al. 57 

(2023) revealed that large-scale climatic features and sunspot activity have a substantial impact on 58 
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hydrological drought events in the Huaihe River Basin. Despite many studies showing that machine 59 

learning models outperform physical models in terms of prediction accuracy, these models lack 60 

transparency and interpretability. Most research on machine learning models for drought prediction 61 

focuses on model performance, often neglecting the role of different features influencing drought 62 

occurrence in model predictions. For example, Xu et al. (2022) established a hybrid model combining 63 

autoregressive integrated moving averages (ARIMA) and long short-term memory (LSTM) to predict 64 

the standardized precipitation evapotranspiration index at multiple time scales. Yu et al. (2023) combined 65 

the Hydrologiska Byrans Vattenbalansavdelning (HBV) model with an LSTM neural network to improve 66 

the prediction ability for semi-arid basins. Yalcin et al. (2023) proposed a hybrid model of convolutional 67 

neural networks (CNN) and LSTM to enhance the prediction accuracy of the standardized precipitation 68 

evapotranspiration index. However, these studies do not consider the influence of different features on 69 

the model output. 70 

Recent advancements in Explainable AI (XAI) techniques have provided opportunities for 71 

understanding why models make certain predictions (Gunning et al., 2019; Islam et al., 2022). Recently, 72 

local interpretability methods have been developed and can be implemented for neural network and 73 

random forest model architectures (Ribeiro et al., 2016a). The Local Interpretable Model-Agnostic 74 

Explanation (LIME) method has been widely used, but it exhibits a high degree of instability due to 75 

considerable variation in its explanations upon repeated use (Ribeiro et al., 2016b). Therefore, the 76 

Shapley Additive Explanations (SHAP) approach was proposed as a solution. Grounded in the strong 77 

theoretical basis of game theory, it provides more robust mathematical accuracy and consistent extension 78 

on top of the LIME framework (Lundberg and Lee, 2017; Molnar, 2022). At present, SHAP has been 79 

applied to a variety of prediction scenarios.. For example, Dikshit and Pradhan (2021) employed an 80 

LSTM model combined with the SHAP algorithm to predict droughts, demonstrating that the inclusion 81 

of climate variables as predictors can enhance prediction accuracy. Mardian et al. (2023) utilized an 82 

XGBoost model and SHAP to predict droughts in the Canadian prairies, and clarified the importance of 83 

spatial and temporal predictors, drought indicators, GRACE groundwater distribution and teleconnection 84 

in drought prediction. Similarly, Xue et al. (2024) analyzed the spatial and temporal characteristics and 85 

driving factors of agricultural drought during the extreme drought period in northern Italy in 2022 by 86 

using the integrated machine learning model explained by SHAP combined with the new integrated 87 

agricultural drought index (IADI), quantified the dominant factors, and revealed that meteorological 88 
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conditions were the main driving factors. Likewise, Zeng et al. (2025) used the XGBoost model 89 

explained by SHAP combined with the new rate of extension (RE) index to analyze the spatial and 90 

temporal evolution of meteorological drought characteristics in the Yangtze River Basin of China, 91 

quantified the dominant driving factors, and revealed that soil moisture was a primary factor. However, 92 

the range of drought-influencing features considered in their research is still not comprehensive enough. 93 

For example, soil temperature and water content, surface thermal radiation and other features are also 94 

important features affecting drought (Raposo et al., 2023). 95 

In light of the above, the novelty of this study is to employ interpretable machine learning models 96 

for hydrological drought prediction and to identify the contribution of different influencing features to 97 

the model prediction results. While SPI is a precursor to SRI, this study disentangles the hierarchy of 98 

contributing features, including SPI, large-scale climate indices,  soil moisture etc. Soil moisture 99 

directly affects hydrological drought, and it can analyze the contribution of different features to drought 100 

when it is predicted together with drought features such as large-scale climate features. For example, 101 

Mardian et al. (2023) employed a method combining the XGBoost model with SHAP (Shapley Additive 102 

Explanations) values, utilizing a variety of drought-influencing features such as large-scale climatic 103 

features and soil moisture, to predict drought conditions in the context of the Canadian Drought Monitor 104 

(CDM) and to understand the underlying driving features. Therefore, the objectives of the study are: ⅰ) 105 

Utilizing the XGBoost model, combined with 26 features predicted monthly and 18 features predicted 106 

seasonally, the hydrological drought in the Huaihe River Basin is predicted, and the performance 107 

evaluation is carried out by using precision and recall indicators; ⅱ) Various SHAP plots were employed 108 

to gain insights into the model outputs and analyze the influence of different drought variables on the 109 

predictive results of the model.  110 

2 Study area and data 111 

2.1 Study area 112 

In this paper, as shown in Figure 1, the Huaihe River Basin is selected as the research area, and the 113 

grid is divided at a resolution of 1°lat×1°lon, with a total of 28 grid regions, which takes into account the 114 

computational feasibility and spatial heterogeneity. Although large-cale climatic features have spatial 115 

consistency, their effects on regional precipitation can be different through local terrain-atmosphere 116 
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feedback (Lu et al., 2006). Gridded analysis identifies sensitive subregions, supporting targeted 117 

mitigation. The Huaihe River Basin is located at 111°55'–121°25'E, 30°55'–36°36'N, covering an area of 118 

approximately 270,000 square kilometers. It experiences significant spatiotemporal variations in 119 

precipitation, with an average annual precipitation of around 883 millimeters. Situated in the transitional 120 

climatic zone from south to north, the southern part of the basin falls under a subtropical climate, while 121 

the northern part experiences a warm temperate climate. The average annual temperature ranges from 11 122 

to 16°C. The winter and spring seasons in the basin are relatively dry, while the autumn and summer 123 

seasons are hot and rainy, resulting in pronounced seasonal fluctuations between droughts and floods. 124 

The average annual runoff depth in the basin is 230 millimeters. Due to its unique geographical location, 125 

the area is prone to frequent flooding, leading to high water levels and prolonged flood conditions. In 126 

addition, the annual average water surface evaporation in the Huaihe River Basin ranges from 900 to 127 

1500 millimeters. As one of the important agricultural production bases in China, the basin is densely 128 

populated with substantial water demands. However, the region frequently suffers from drought disasters. 129 

Since the beginning of the 21st century, an average of 2.698 million hectares of crops, accounting for 21% 130 

of the total cultivated land area in the basin, have been affected annually. The Huaihe River Basin is a 131 

significant agricultural area and a high-population-intensive area in eastern China. Seasonal droughts 132 

frequently affect food production and water resources. One-month advance prediction is essential for 133 

reservoir scheduling, irrigation planning and early warning times for farmers. 134 
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 135 
Figure 1: Huaihe River Basin and 28 grid area location. 136 

2.2 Data 137 

We obtained monthly average precipitation, wind speed, temperature, evapotranspiration, monthly 138 

average runoff, 0-10cm soil moisture, and 100-200cm soil moisture data sets for the Huaihe River Basin 139 

from the website https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH10_M_2.0/ for the period 1960 to 140 

2014. The monthly average 2 m dewpoint temperature, surface net solar radiation, surface net thermal 141 

radiation, surface pressure, and leaf area index data sets were obtained from the ERA5-Land reanalysis 142 

dataset (https://cds.climate.copernicus.eu/). According to whether the grid center point falls within the 143 

basin, 28 grid regions are defined. If the center point of the grid is not within the basin boundary, the 144 

region is not divided into grids. The grid analysis is carried out with these grid points as the center and 145 

1°lat×1°lon as the resolution, covering a total of 28 grid regions. Using the interpolation method based 146 

on the Xarray package, the data of Huaihe River Basin are interpolated to 28 grid regions. 147 

Numerous studies have demonstrated the significant influence of large-scale climate indices, 148 

including the Atlantic Multidecadal Oscillation (AMO), Arctic Oscillation (AO), North Pacific pattern 149 

(NP), Pacific Decadal Oscillation (PDO), and Nino3.4, on drought dynamics(Gan et al., 2023; Phan-Van 150 

et al., 2022; Wu and Xu, 2020; Xiao et al., 2019). For example, the positive phase of AMO leads to a 151 

decrease in summer precipitation in the Huaihe River Basin by enhancing the western Pacific subtropical 152 

https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH10_M_2.0/
https://cds.climate.copernicus.eu/
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high (Lu et al., 2006); the Pacific Decadal Oscillation ( PDO ) has the most significant impact on the 153 

monthly runoff in the Huaihe River Basin (Sun et al., 2018). These selected climate features (Nino3.4, 154 

AMO, TPI, PDO, AO, TNI, and NP) for the Huaihe River basin analysis were acquired from the National 155 

Oceanic and Atmospheric Administration (NOAA) climate database 156 

(http://www.esrl.noaa.gov/psd/data/climateindices) , covering the period from 1960 to 2014. 157 

3 Methods 158 

3.1 Drought indices 159 

In this study, the standardized precipitation index (SPI) (McKee et al., 1993) is used to characterize 160 

meteorological drought. SPI is widely used for drought risk assessment and monitoring due to its ease of 161 

calculation and ability to work on multiple time scales.   162 

The standardized runoff index (SRI) was first proposed by Shukla and Wood (2008) as an effective 163 

and accurate index for describing hydrological drought characteristics. It has been widely used in 164 

hydrological drought identification. SRI is also calculated by transforming the cumulative flow 165 

distribution of a given time scale into a standard normal distribution using equiprobability transformation, 166 

similar to the calculation method of SPI. The SPI/SRI classes are classified as shown in Table 1 (Li et al. 167 

2024). In this study, drought is classified into four classes, namely, Normal (ND), Mild drought (D1), 168 

Moderate drought (D2), and Severe drought and Extreme drought (D3), according to Table 1. However, 169 

due to the limited number of extreme drought events, it posed an issue in training the model. Therefore, 170 

the classes of Severe drought and Extreme drought were merged into one. 171 

Table 1: Drought category classification and corresponding SPI and SRI values. 172 

    SPI/SRI value    Category 

SPI/SRI> 0 

-1.0≤ SPI/SRI <0 

-1.5≤SPI/SRI<-1.0-2.0≤SPI/SRI<-1.5  

Normal (ND) 

Mild (D1) 

Moderate (D2) 

Severe (D3) 

SPI/SRI< -2.0 Extreme(D3) 

http://www.esrl.noaa.gov/psd/data/climateindices)(1960-2014
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3.2 Machine learning models 173 

In this paper, the XGBoost model is used for multi-input single-output regression prediction 174 

problems to predict the hydrological drought in the Huaihe River Basin. The XGBoost model is an 175 

ensemble learning algorithm belonging to the Boosting algorithm category. It utilizes decision trees as 176 

its basic elements and implements a gradient-boosting algorithm to minimize loss when adding new 177 

models. XGBoost aims to improve the training speed and predictive performance of gradient-boosting 178 

decision trees. The foundational knowledge about the mechanism and implementation behind XGBoost 179 

can be found in the paper by Chen and Guestrin (2016).  180 

3.3 Modeling Settings 181 

The study period for this research spans from 1960 to 2014, with the model training period from 182 

1960 to 2003 and the prediction period from 2004 to 2014. The input and output data types for 28 grid 183 

areas are the same. We use a sliding window of 12 and 3 months. The prediction lead time is 1 month. 184 

The relevant settings for models are shown in Table 2.  185 

Take the 7th grid area as an example. When using monthly data, the input was 26 different drought 186 

influencing features, and the output was SRI-1. The number of input samples during model training was 187 

13767, and the number of output samples was 526. There are 3432 input samples and 132 output samples 188 

during the model prediction period. When using seasonal data, the input is 18 features without drought, 189 

and the output is SRI-3 in different seasons. The number of input samples during model training is 792, 190 

and the number of output samples is 44. The number of input samples in the model prediction period is 191 

198, and the number of output samples is 11. The model uses Bayesian hyperparameter optimization to 192 

find optimal parameters, such as learning rate, tree depth, and number of iterations.  193 

Table 2. Model setup and data overview 194 

Phase Data Period Input Window Lead time Output 

Training phase  

(monthly time scale) 

1960-2003 M-12 to M-1 (12month) 1 month SRI-1 

Validation phase 

 (monthly time scale) 

2004-2014 M-12 to M-1 (12month) 1 month SRI-1 

Training phase  1960-2003 M-3 to M-1 (3month) 1 month SRI-3 
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(seasonal time scale)  

Validation phase  

(seasonal time scale) 

2004-2014 M-3 to M-1 (3month) 1 month SRI-3 

The XGBoost model for 28 grid areas is established, and the data types used in each region are the 195 

same. As shown in Table 3, for the monthly data analysis, 26 different drought-influencing features were 196 

considered. These include a month-scale SPI (SPI-1) and SPI indices at different time scales of 1 month 197 

and 2 months in advance. Large-scale climate indices (AMO, TPI, PDO, AO, TNI, NP), 198 

evapotranspiration, wind speed, 2 m dewpoint temperature, soil moisture content, surface net thermal 199 

radiation, surface net solar radiation, surface pressure and leaf area index were considered. 200 

As shown in Table 3, for seasonal data analysis, the basin data are classified by season, and 18 201 

different drought influencing features are used. It includes SPI-3 value, soil moisture content, 202 

evapotranspiration, surface net thermal radiation, air temperature, NINO3.4, NP, wind speed, TNI, PDO, 203 

TPI, surface pressure, AO, AMO, leaf area index, 2 m dewpoint temperature and surface net solar 204 

radiation in four seasons.  205 

For monthly and seasonal data sets, SHAP (Shapley Additive Explanation) values were used to 206 

analyze the contribution of 28 grid regions to determine the impact of each feature. 207 

Monthly-scale predictions capture the rapid onset of drought, which is critical for early warning 208 

systems, whereas seasonal analysis aligns with agricultural planning cycles. Thus, our study employs 209 

both monthly and seasonal analyses to comprehensively assess short-term variability and long-term 210 

trends in hydrological drought. 211 

Table 3: The monthly scale and seasonal scale of the model predict the input target variables. (T is the lead 212 

time, SPI-1, SPI-3, SPI-6, and SPI-9 are SPI values at different monthly scales.). 213 

Drought influencing 

features (monthly) 

SPI-1, T=1 SPI-1, T=1 SPI-3, T=1 SPI-6, T=1 SPI-9, T=2 SPI-1, T=2 

SPI-3, T=2 SPI-6, T=2 SPI-9, d2m temperature, surface pressure, 

evapotranspiration, Air temperature, wind speed, surface net solar 

radiation, surface net thermal radiation, 0-10cm soil moisture, 100-200cm 

soil moisture, Nino3.4, AMO, PDO, AO, TNI, NP, TPI, leaf area index 
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Drought influencing 

feature (seasonal) 

SPI-3 (different seasons), d2m temperature, surface pressure, 

evapotranspiration, Air temperature, wind speed, surface net solar 

radiation, surface net thermal radiation, 0-10cm soil moisture, 100-200cm 

soil moisture, Nino3.4, AMO, PDO, AO, TNI, NP, TPI, leaf area index 

 214 

3.4 Model evaluation 215 

Based on the optimal parameters obtained during the training phase, the XGBoost model is utilized 216 

to predict the hydrological drought situation in the Huaihe River Basin from 2004 to 2014. These 217 

predictions will be assessed using precision, recall, and the Heidke Skill Score (HSS) as measurement 218 

metrics. Precision is defined as the ratio of correctly classified instances of a specific category to the total 219 

number of predicted instances, quantifying the model's precision in predicting drought conditions and 220 

evaluating its reliability. Recall represents the ratio of correctly classified instances of a specific category 221 

to the total number of observed instances in that category, capturing the probability of the model 222 

predicting observed drought conditions and reflecting its sensitivity (Mardian et al., 2023; Zhang et al., 223 

2023). The HSS measures the model’s classification performance relative to random chance, accounting 224 

for both correct and incorrect predictions. It is particularly useful for assessing predictive skill in 225 

imbalanced datasets (Heidke, 1926). The following are precision, recall and HSS formulas: 226 

   
FPTP

TP
precision

+
=  (1) 227 

 
FNTP

TP
callR

+
=e  (2) 228 

 
( )

( ) ( ) ( ) ( )

2 TP TN FN FP
HSS

TP FN FN TN TP FP FP TN

  − 
=

+  + + +  +  
 (3) 229 

Where the classification evaluation metrics employed are True Positives (TP), True Negative (TN), 230 

False Positives (FP), and False Negatives (FN). TP denotes the number of actual positive samples 231 

correctly predicted as positive, TN is the actual number of negative samples that are correctly predicted 232 

to be negative, FP represents the number of actual negative samples incorrectly predicted as positive, and 233 

FN signifies the number of actual positive samples incorrectly predicted as negative. 234 
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3.5 Shapley Additive Explanations (SHAP) 235 

SHAP, a machine learning interpretability method, provides a unified approach by combining 236 

elements from additional variable attribution methods with Shapley values as a measure of variable 237 

importance. Shapley values were originally introduced in game theory to determine the contributions 238 

made by each player in cooperative games. The fundamental idea is that each player receives a 239 

corresponding payout based on their contribution (Shapley, 1953). The interpretation of SHAP values is 240 

straightforward: larger absolute SHAP values indicate greater weight of the variable in predicting the 241 

model, while negative (positive) SHAP values exert a negative (positive) influence on the prediction 242 

process. Lundberg and Lee (2017) developed the SHAP method based on the theoretical foundation of 243 

Shapley values to explain the influence of each variable on model predictions, thereby providing 244 

increased transparency to the model. The Shapley value is calculated as the average marginal contribution 245 

based on all possible variable permutations. Importantly, SHAP values reflect local feature importance, 246 

meaning that they quantify the contribution of each variable to a specific prediction instance, rather than 247 

summarizing its overall effect across the entire dataset.  248 

In our study, the SHAP baseline is the difference between the prediction of the model and the 249 

average prediction on the data set. For each sample and each feature, the SHAP value is the difference 250 

between the predicted value of the model containing the feature and the predicted value after removing 251 

the feature and the baseline. We use these SHAP values to quantitatively analyze the positive or negative 252 

effects of each predictor on hydrological drought prediction. 253 

4 Results  254 

4.1 Model performance 255 

According to the data in Table 4 and Figure 2, the overall precision of the XGBoost model is 79.9%, 256 

which means that it has a 79.9% ability to correctly identify drought categories. In the identification of 257 

the ND drought category, the performance of the model is particularly excellent. Figure 2 shows that the 258 

median precision and recall rate of the ND category is both more than 0.8. It can be seen from the data 259 

in Table 4 that the recall rate of the ND drought category is 91% and the precision rate is 88%, which 260 

proves that the model has high sensitivity and reliability in predicting the ND drought category. For ND, 261 

the HSS is 0.77, showing a significant discriminant advantage over the no-skill baseline that always 262 
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predicts the most common category. At the same time, the precision rates of ND and D3 drought 263 

categories are 88% and 86%, respectively, indicating that the model had good prediction accuracy for 264 

these two types of droughts. However, the precision rates of the D1 and D2 drought categories are 74% 265 

and 61%, respectively, reflecting the lack of prediction accuracy of the model in these categories. 266 

In addition, the boxplot in Figure 2 further reveals the precision and recall performance of the model 267 

for each drought category in 28 grid regions. Although the median precision and recall of the D1 drought 268 

category is both close to 0.8, indicating that the model has a high predictive ability in this category, the 269 

performance of the D2 and D3 drought categories is relatively poor. Especially for the D3 drought 270 

category, the median recall rate does not exceed 0.5, indicating that the model is not sensitive to the 271 

identification of such drought events, and there are some limitations in the prediction. However, although 272 

the recall rate of the D3 drought category is low, its precision is almost as high as the ND drought category, 273 

which is mainly due to the low frequency of D3 drought category events. The model can successfully 274 

capture all D3 drought category events in some grid areas, thereby improving the precision of this 275 

category. The HSS metric complements precision and recall by evaluating the model’s performance 276 

relative to the no-skill baseline. Values closer to 1 indicate superior performance. The declining HSS 277 

from ND to D2 underscores the model’s reduced discriminatory power for less extreme drought 278 

categories, aligning with the observed precision-recall trade-offs. 279 

Table 4: The average accuracy, recall and HSS of each drought category in 28 regional models. 280 

Category Precision (%) Recall (%) HSS 

ND 88 91 0.77 

D1 74 78 0.61 

D2 61 47 0.46 

D3 86 50 0.59 

Average 77.3 66.5 0.608 

 281 
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 282 

Figure 2: Box plots of the accuracy and recall rates of the four drought categories predicted by the 28 regional 283 

models (‘P’ represents the accuracy rate, and ‘R’ represents the recall rate. The small square represents the 284 

average.). 285 

4.2 Prediction maps 286 

According to the predicted drought data, 2011 was identified as a year with relatively severe drought 287 

conditions. To visually assess the predictive capability of the model, drought predicted, observed, and 288 

difference maps were created for each month of 2011 (Figure 3 to Figure 4). Figure 3 shows the 289 

comparison between the prediction and observation in the first six months of 2011, and the complete 290 

month map is placed in the appendix. In 2011, the model accurately captured drought situations across 291 

most regions. In January, the drought situation was severe, and the drought category was mainly in the 292 

D2 and D3 categories. However, the prediction map of the model shows that the drought degree in most 293 

regions is lighter than the actual drought situation, and the drought category is mainly classified as D1, 294 

which relatively underestimates the actual situation of drought. In February, the drought situation was 295 

rapidly reduced, and the prediction map of the model was basically consistent with the observation map. 296 

In March and April, the drought conditions in the entire basin rapidly escalated and became severe, and 297 
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most of the areas in the observation map reached the drought categories of D2 and D3, and only a few 298 

areas in the north were classified as D1 drought category. Consequently, this period poses a considerable 299 

challenge to the predictive ability of the model, making it an appropriate period to evaluate the predictive 300 

performance of the model. In general, the model effectively predicts the occurrence and deterioration of 301 

drought and captures the spatial distribution pattern. However, in some parts of the central and western 302 

regions, the model still underestimates the drought situation. 303 

 304 
Figure 3: Monthly model predictions and observed drought categories for the first six months of 2011. 305 

In May, the severity of the drought situation decreased relative to the previous two months, and the 306 

actual observed map and the model-predicted map were largely consistent. According to the observed 307 

map, in June, a drought occurrence was observed in the northern region where no drought had been 308 

previously recorded. Furthermore, in July, the drought area shifted from the northern to the western 309 

region. It was not until August that drought gradually diminished in most areas. Basically, the model 310 

captures the change of drought, but for some areas of D3 drought category, the model predicts them as 311 

D2 drought category. 312 

 313 

In September, drought conditions were found in the eastern and southern regions on the observed 314 

map. However, the drought situation in some areas is underestimated on the map predicted by the model. 315 
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In October, the model significantly overestimated the severity of the drought situation. According to the 316 

observed map, all regions except a small part of the western region experienced the D1 drought category. 317 

In contrast, the model-predicted map shows widespread drought across the region, with most of the 318 

regions classified in the D2 drought category. In November and December, the drought in the observation 319 

map dissipated rapidly, and the drought situation was basically the same as that in the model prediction 320 

map. 321 

 322 
Figure 4: The difference between the predicted results of the model and the observed data values (Difference 323 

= SRI-prediction – SRI-actual) From blue to red indicates that the model predicts the degree of 324 

underestimation to overestimation of observations. 325 

In general, the XGBoost model has a great performance in capturing the spatial structure and 326 

temporal dynamics of drought events during the 12-month period of 2011. However, the model indicates 327 

that while the model can distinguish between drought and non-drought conditions, it lacks clarity in 328 

defining the boundaries between different drought categories. In most cases, the model underestimates 329 

drought conditions compared to the observed results. 330 
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4.3 Variable importance analysis 331 

4.3.1 Monthly prediction analysis 332 

To study the effects of different features on drought, 26 different drought influencing features were 333 

considered, and the corresponding influencing features are analyzed for 28 grid regions, and the 334 

contribution analysis is made with SHAP values. Due to the limited space, only the analysis of the 7th 335 

grid region is shown in Figure 5. Figure 5 reveals the contribution of each input feature based on the 336 

SHAP value of each instance in 28 grid regions. In the vertical direction, the variables in the beeswarm 337 

plot are sorted according to their absolute SHAP values, which also reflects the importance of ranking 338 

variables. The density of points represents the eigenvalues of each instance in each row. The X-axis 339 

shows the SHAP value corresponding to a single instance. The left side of the Y-axis of the bee colony 340 

graph represents the negative total contribution of the features in the XGBoost model, while the right 341 

side represents the positive total contribution. The negative and positive SHAP values represent the 342 

corresponding negative and positive total contribution of the related target variables to the XGBoost 343 

model. Therefore, the beeswarm plot reflects the relationship between the variables and the related target 344 

variables. The larger the absolute value of SHAP is, the greater the contribution to the model is. The 345 

analysis reveals that SPI plays a dominant role, followed by AMO and evapotranspiration. 346 
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 347 

Figure 5: The SHAP values of 26 different influencing features in each month of the 7th grid region from 348 

2004 to 2014. 349 

To gain a deeper understanding of the features contributing to drought events in the study area, As 350 

shown in Figure 6, this study shows the spatial distribution of the first three main drought-influencing 351 

features and discusses the changes of drought-influencing features in the basin. The results show that the 352 

main influencing feature of hydrological drought in the Huaihe River Basin is meteorological drought. 353 

As shown in Table 5, the absolute average SHAP value of the first influencing feature is significantly 354 

higher than that of the second and third influencing features. Large-scale climate features (particularly 355 

AMO) emerge as the secondary major influence, and about half of the North Central Basin is significantly 356 

dependent on these features. For the third influencing feature, a diverse range of large-scale climate 357 

variables, such as TPI, PDO, NP, TNI, and AMO, affect almost half of the study area. In summary, the 358 

foremost determinant of hydrological drought is meteorological drought. Large-scale climate features 359 

(notably AMO) rank second in importance, followed by features like soil moisture content, and so on. 360 
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The findings demonstrate that the Standardized Precipitation Index (SPI) serves as the dominant 361 

driver of hydrological drought in the Huaihe River Basin, consistent with the conclusions of Gan et al. 362 

(2023), who identified meteorological drought as a critical precursor to hydrological extremes in this 363 

region. Further support arises from Wang et al. (2021), whose analysis of drought propagation 364 

mechanisms in the Huaihe Basin revealed indirect hydrological drought impacts mediated through soil 365 

moisture and evapotranspiration—a pattern corroborated by the secondary influence of soil moisture and 366 

evapotranspiration in this study. However, compared with the study of Zou et al. (2018) in the Weihe 367 

River Basin, the influence of large-scale climate features in this study is more prominent, which may be 368 

related to the fact that the Huaihe River Basin is located in the climate transition zone and is more 369 

sensitive to the air-sea coupling phenomenon. 370 

Table 5: The first three drought influencing features and the SHAP value of the absolute average influence 371 

of 28 grid areas in Huaihe River Basin. 372 

SHAP 

value 

 

Grid  

area 

The first 

influencing 

feature 

Average 

SHAP 

value 

The second 

influencing feature 

Average 

SHAP 

value 

The third 

influencing feature 

Average 

SHAP 

value 

1 SPI-1 0.160 Evapotranspiration 0.040 TPI 0.038 

2 SPI-1 0.190 AO 0.018 

Soil moisture 

content(100-

200cm) 

0.014 

3 SPI-1 0.189 TPI 0.030 

Soil moisture 

content(100-

200cm) 

0.023 

4 SPI-1 0.178 NP 0.020 PDO 0.016 

5 SPI-1 0.147 Evapotranspiration 0.044 NP 0.017 

6 SPI-1 0.180 TPI 0.025 Evapotranspiration 0.021 

7 SPI-1 0.190 AMO 0.037 Evapotranspiration 0.023 

8 SPI-1 0.212 TPI 0.030 TNI 0.020 

9 SPI-1 0.161 AMO 0.034 T=2 SPI-6 0.028 

10 SPI-1 0.195 AMO 0.037 
Surface net 

thermal radiation 
0.031 

11 SPI-1 0.226 AMO 0.037 TNI 0.012 

12 SPI-1 0.221 AMO 0.033 T=2 SPI-3 0.017 

13 SPI-1 0.228 AMO 0.028 NP 0.026 

14 SPI-1 0.204 
Soil moisture 

content(100-200cm) 
0.057 T=1 SPI-1 0.029 
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15 SPI-1 0.160 
Soil moisture 

content(100-200cm) 
0.033 NP 0.032 

16 SPI-1 0.157 Wind speed 0.033 AMO 0.030 

17 SPI-1 0.186 AMO 0.064 Evapotranspiration 0.025 

18 SPI-1 0.235 AMO 0.040 
Soil moisture 

content(0-10cm) 
0.032 

19 SPI-1 0.168 TPI 0.055 AMO 0.035 

20 SPI-1 0.172 AMO 0.038 T=2 SPI-3 0.026 

21 SPI-1 0.165 AMO 0.039 PDO 0.039 

22 SPI-1 0.179 AMO 0.042 Evapotranspiration 0.025 

23 SPI-1 0.176 AMO 0.029 T=1 SPI-9 0.022 

24 SPI-1 0.189 PDO 0.053 AMO 0.021 

25 SPI-1 0.149 AMO 0.055 TPI 0.024 

26 SPI-1 0.160 AMO 0.043 PDO 0.030 

27 SPI-1 0.169 AMO 0.047 T=2 SPI-3 0.018 

28 SPI-1 0.287 NP 0.025 T=1 SPI-1 0.016 

 373 

Figure 6: The first three drought-influencing features of 28 grid areas in the Huaihe River Basin. 374 

4.3.2 Seasonal prediction analysis 375 

To accurately reflect the differences in drought-influencing features across different seasons, this 376 

study utilized 18 different drought-influencing features to predict the hydrological drought in the Huaihe 377 

River Basin. Histograms of the absolute average SHAP values for different influencing features in four 378 

seasons in the 7th grid region are presented in Figure 7. The absolute average SHAP values of SPI-3 in 379 

spring, summer, autumn, and winter were 0.360, 0.261, 0.169, and 0.247 respectively, which had the 380 

greatest impact on hydrological drought in the same season. In addition, the absolute average SHAP 381 

values of evapotranspiration, soil moisture content, air temperature, and surface net thermal radiation 382 

were close to or exceeded 0.05, which also had a significant impact on hydrological drought in the Huaihe 383 

River Basin. 384 
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 385 

Figure 7: The absolute average SHAP values of 18 different influencing features in the 7th grid region of four 386 

seasons ((a) Spring; (b) Summer; (c) Autumn; (d) Winter). 387 

To understand the spatial and temporal distribution characteristics of drought and the potential 388 

impact mechanism, Figure 8 displays the spatial distribution of the top three influencing features in each 389 

season. The leading influencing features across the four seasons include SPI-3, soil moisture content, and 390 

surface net thermal radiation, with SPI-3 being predominant across all seasons and regions. As shown in 391 

Figure 9, the absolute average SHAP value of the primary feature exceeded the sum SHAP values of the 392 

second and third features. Aside from SPI-3, soil moisture content also exerts a significant influence on 393 

hydrological drought in summer and autumn, particularly in the southern and southeastern parts of the 394 

river basin. In winter, certain areas in the central part of the river basin are mainly affected by surface net 395 

thermal radiation and surface net solar radiation.  396 
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From the perspective of the second influencing feature, hydrological drought in most areas of the 397 

basin in spring is mainly affected by soil water content and evapotranspiration. In the rest of the region, 398 

surface pressure, temperature, radiation, and other features also play an important role. It is worth noting 399 

that in the 15th grid region, the surface pressure becomes a key secondary influencing feature, and its 400 

absolute average SHAP value reaches 0.175. This value is significantly higher than the second impact 401 

feature in other regions, and even close to the primary impact feature in the same grid area. This indicates 402 

that it is extremely sensitive to surface pressure in this particular place. During summer, the influence of 403 

large-scale climatic features such as the AMO, PDO, and TPI becomes more pronounced compared to 404 

spring. Additionally, soil moisture content and surface radiation continue to account for a substantial 405 

proportion of the influence on hydrological drought. Regions with absolute average SHAP values 406 

surpassing 0.1 in summer constitute approximately one-seventh of the study area, indicating elevated 407 

sensitivity to these features during this season. Similar to spring, soil moisture content and 408 

evapotranspiration remain predominant influencing features for hydrological drought in half of the grid 409 

areas during autumn and winter. The remaining regions are mainly influenced by surface net thermal 410 

radiation and surface net solar radiation. Specifically, during winter, the second influencing features for 411 

three grid regions (the 12th, 13th, and 21st grid regions) in the central part of the basin are soil moisture 412 

content and evapotranspiration, with absolute average SHAP values exceeding 0.1. This indicates a 413 

relatively higher influence of these secondary features in these regions compared to others. 414 

Compared with the second impact feature, the large-scale climatic features in the third impact 415 

feature have an increased influence on hydrological drought in the four seasons. In spring and autumn, 416 

soil moisture content exhibits a more substantial influence on hydrological drought, while in summer, air 417 

temperature is considered to be a more important feature. However, in winter, half of the study areas 418 

continue to be dominated by soil moisture content and evapotranspiration, whereas most of the remaining 419 

study areas are primarily influenced by large-scale climate featuresfeatures such as TNI, PDO, NP, and 420 

AO. 421 

 422 
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 423 
Figure 8: The first three drought-influencing features of 28 grid points in Huaihe River Basin in each season. 424 

According to the above results, there were significant differences in the influencing features of 425 

drought among the four seasons. This diversity highlights the need for us to pay more attention to the 426 

weights and dynamic changes of various influencing features when predicting and understanding the 427 

spatial-temporal distribution characteristics of drought. Although the SPI feature continues to dominate, 428 

at some grid points, features such as soil moisture content in summer and autumn, as well as thermal 429 

radiation in winter, cannot be ignored. This suggests that even for the same influencing feature, its 430 

influence can vary greatly in different seasons and regions. Furthermore, in addition to the influence of 431 

meteorological drought, the influencing features of spring hydrological drought are mainly biased toward 432 

soil moisture content and evapotranspiration, in addition to surface pressure, temperature, radiation, and 433 

other related features. The absolute average SHAP value of these influencing features is basically no 434 

more than 0.1, which is very different from SPI-3, but its impact on hydrological drought cannot be 435 

ignored. In autumn and winter, the above features still dominate, but at the same time, the proportion of 436 

large-scale climate features gradually increases, indicating that climate change between different seasons 437 

may play an important regulatory role in the composition of drought-influencing features. 438 

 439 
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 440 
Figure 9: The absolute average SHAP values of the first three drought-influencing features in each season. 441 

5 Discussion 442 

This study demonstrates the efficacy of an XGBoost-SHAP framework for hydrological drought 443 

prediction in the Huaihe River Basin. The model achieved robust accuracy for the ND and D1 categories, 444 

yet underperformed for the more severe categories (D2 and D3), likely due to limited extreme event 445 

samples. The prediction of a one-month lead time is helpful for drought monitoring. This enables water 446 

managers to adjust reservoir operations and irrigation schedules based on predicted drought conditions. 447 

The framework provides a 30-day buffer for proactive measures, such as mobilizing drought relief 448 

resources and implementing crop recommendations. 449 

SHAP analysis based on the XGBoost model unequivocally identifies the SPI as the most influential 450 

predictor of hydrological drought across the Huaihe River Basin. Such as (Tanriverdi and Batmaz, 2025) 451 

for U.S. drought prediction, also identified SPI as one of the most critical features across diverse regions 452 

and advanced models. Their SHAP analysis consistently ranked SPI among the top predictors, 453 

reinforcing its fundamental role as a primary driver of drought conditions, even within sophisticated deep 454 

learning frameworks. Beyond SPI, the key secondary drivers exhibit a distinct spatial and seasonal 455 

differences. In terms of space, the hydrological drought in the northern part of the basin shows higher 456 

sensitivity to large-scale climate oscillations such as AMO, indicating that large-scale climate features 457 
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regulate regional precipitation patterns (Yu et al., 2024). On the contrary, the secondary features affecting 458 

the hydrological drought in the southern part of the basin are mainly surface processes, especially soil 459 

moisture and evapotranspiration.(Mtupili et al., 2025; Zhu et al., 2025). The difference in the second 460 

influencing features of hydrological drought in the southern and northern parts of the basin may be due 461 

to the fact that the basin belongs to the temperate-subtropical transition position. For the seasonal scale, 462 

in spring, soil moisture and evapotranspiration account for a large proportion of the explanatory power 463 

of the model. In summer, the relative weight of large-scale climatic features increases, which is consistent 464 

with the enhancement of water vapor transport (Yu et al., 2024). In autumn and winter, radiative fluxes 465 

(net solar and thermal radiation) assume greater importance (Jin et al., 2025). Collectively, these findings 466 

underscore SPI as the primary driver while revealing the nuanced spatio-temporal controls exerted by 467 

secondary features, thereby providing a scientific foundation for developing more targeted drought 468 

mitigation and water resource management strategies across the diverse Huaihe River Basin. 469 

When studying the influence of large-scale climate indices on drought, the correlation between 470 

climate indices and drought for the same period and a certain lead time is often considered, and the results 471 

show that climate indices for the same period and different lead times have a certain influence on drought 472 

in the basin, and the degree of influence varies with the changes in the study area. For example, Ren et 473 

al. (2017) studied the correlation between SPI and large-scale climate indices with advance periods of 0, 474 

1, 2, and 3 months, and the correlation results show that Nino3.4 has significant correlation in August-475 

October, and PDO has significant correlation in January-May and June-December of the same period. 476 

Lv et al. (2022) analyzed the correlation between large-scale climatic features and drought in different 477 

lag periods. The results show that large-scale climatic features in the same period also have an impact on 478 

drought. Due to the many influencing features considered in this paper, only the effect of climate indices 479 

on drought in the basin during the same period was considered when selecting the large-scale climate 480 

indices. Subsequent studies can consider selecting the most relevant large-scale climate features in 481 

different months or seasons as the influencing features for basin drought prediction to further improve 482 

the accuracy of drought prediction. Before inputting the influencing features into the machine learning 483 

model for training, methods such as random forest and principal component analysis (PCA) can be used 484 

to select the influencing features. Future research can extend the existing one-month-ahead framework 485 

to multiple prediction periods to evaluate the impact of different lead times on prediction accuracy. To 486 

improve the robustness of the model, a variety of ensemble learning schemes can be compared. 487 
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Furthermore, the introduction of uncertainty quantification and data enhancement helps to alleviate 488 

category imbalances and improve prediction reliability.  489 

6 Conclusions 490 

Drought is one of the most significant environmental and climate problems in the world, and 491 

drought prediction is a crucial means of drought prevention. In this study, the integration of SHAP and 492 

XGBoost provides a novel framework that can not only improve the prediction accuracy, but also show 493 

the impact of different drought influencing features on drought. The framework can provide two types 494 

of support for decision makers: (1) giving priority to high weight features in real-time drought warning; 495 

(2) Identifying early risk signals in long-term water resources planning. The main conclusions are as 496 

follows: 497 

1) The XGBoost model achieved an accuracy of 79.9% for identifying drought categories. 498 

The model performs particularly well in predicting ND and D1 drought categories, with a precision 499 

rate of 88 % and 74 %, respectively. It also has a recall rate of 91 % and 78 %. However, the 500 

prediction performance of the model for the D2 and D3 drought categories is relatively poor, 501 

especially for the D3 drought, the recall rate should not exceed 0.5, indicating that the recognition 502 

sensitivity of the model for the D3 category is limited. In general, the model has high prediction 503 

reliability for ND and D1 categories, but limits in the prediction performance of D2 and D3 504 

categories. 505 

2) This study determined that SPI is the most critical factor affecting hydrological drought 506 

in the Huaihe River Basin. In 28 grid regions, the absolute average SHAP value of SPI is not less 507 

than 0.147, which is much higher than other influencing features. In addition, large-scale climate 508 

features, soil moisture content, and evapotranspiration play a significant role in hydrological 509 

drought in the basin.  510 

3) The SPI remains a major influence in all seasons with absolute average SHAP values of 511 

0.360, 0.261, 0.169, and 0.247 in spring, summer, autumn, and winter respectively. Additional 512 

features such as soil moisture content, net heat radiation, and solar radiation also play seasonal roles. 513 

Soil moisture content and evapotranspiration are significant features in spring and autumn, while 514 

temperature and large-scale climate features are critical in summer and winter. 515 
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