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Abstract: Predicting future drought conditions isare crucial for effective disaster management. 10 

In this study, a machine learning framework is proposed to predict hydrological drought in the Huaihe 11 

River Basin, China. The interpretable Extreme Gradient Boosting (XGBoost) model is applied to 12 

forecastpredict four drought categories in 28 grid regions for one-month forecastingprediction(forecast 13 

horizon T=1), using 26 factors features for monthly and 18 for seasonal predictions. The framework also 14 

integrates the Shapley Additive Explanation (SHAP) variable importance index to infer drought 15 

prediction featuresfactors. The model achieves 79.9% accuracy in classifying droughts, with the Standard 16 

Precipitation Index (SPI) being the most influential factorfeature. The SHAP values of SPI are 0.360, 17 

0.261, 0.169, and 0.247 for spring, summer, autumn, and winter, respectively. Soil moisture content and 18 

evapotranspiration are particularly affected in spring and autumn, while large-scale climatic 19 

featuresfactors are more significant in summer and winter. Overall, this study offers valuable decision 20 

support for regional drought management and water resource allocation. 21 

Keywords: XGBoost; SHAP; Drought prediction; SRI; Huaihe River Basin 22 

1 Introduction 23 

Drought is a global disaster characterized by its long duration and extensive impacts, resulting in 24 

severe implications for the economy, agriculture, and environment (Fu et al., 2018; Shi et al., 2018; Zhou 25 

et al., 2020; 2021). Over the past 20 years, the frequency and severity of global drought events have 26 

increased (Dai 2011; 2012; 2013; Zhang et al., 2019), affecting water security, economic growth, and 27 

food supply in some areas. Therefore, drought prediction is of great significance for managing water 28 
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resources and reducing losses caused by drought. 29 

Consequently, according to the different effects of drought, previous studies have divided it into 30 

several different types. Among them, four types of droughts are widely used: meteorology, hydrology, 31 

agriculture, and social economy (Wilhite and Glantz, 1985; American Meteorological Society, 2013). In 32 

the past few decades, more than one hundred drought indices based on single or multiple hydroclimatic 33 

variables have been proposed to represent different drought characteristics. For example, the Palmer 34 

Drought Severity Index (PDSI) (Palmer 1965), the Standardized Precipitation Index (SPI) (McKee et al., 35 

1993), and the Standardized Runoff Index (SRI) (Shukla and Wood, 2008). SPI index and SRI index are 36 

robust, statistically straightforward to compute, and well-suited to long-term time series data. Therefore, 37 

this study chooses the SPI index and SRI index to characterize meteorological drought and hydrological 38 

drought.  39 

In recent years, there has been an increasing trend toward utilizing machine learning to predict 40 

droughts (Ardabili et al., 2020; Sun and Scanlon, 2019). Compared to conventional regression models, 41 

machine learning-based models better capture the non-linear characteristics inherent in drought problems 42 

and exhibit more robustness, especially when dealing with high-dimensional datasets (Mishra and Singh, 43 

2010; Kikon and Deka, 2022; Prodhan et al., 2022; Wu et al., 2022). Multiple machine learning models 44 

such as artificial neural networks (Orimoloye et al., 2021; Orimoloye et al., 2022), support vector 45 

machines (Li et al., 2021), random forests(Park et al., 2019), and extreme gradient boosting (XGBoost) 46 

(Choi et al. 2018; Han et al. 2019; Zhang et al., 2023) have been extensively employed in the research 47 

field of drought. Machine Learning models can learn the input-output relationships in training data and 48 

can effectively leverage big data to improve prediction accuracy (Mardian et al., 2023). By training tree-49 

based machine learning models, Bachmair et al. (2016) discovered that tree-based machine learning 50 

models outperform baseline models. Jungho and Kim (2023) employed a tree-structured XGBoost model 51 

to predict the likelihood of impact occurrence (LIO) of drought on public water supply. Their findings 52 

demonstrated that the XGBoost model exhibited high accuracy and low uncertainty. Furthermore, the 53 

XGBoost model necessitates only minor hyperparameter tuning, and its performance is relatively 54 

insensitive to the selection of hyperparameters (Gao and Ding, 2020; Barnwal et al., 2022).  55 

Previous research indicates that numerous featuresfactors significantly impact hydrological drought. 56 

Zou et al. (2018) demonstrated that climate change is the primary factorfeature affecting hydrological 57 

drought on long-term scales. Wang et al. (2021) found that climatic variables such as precipitation and 58 
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evapotranspiration significantly influence the duration of hydrological drought. Additionally, Gan et al. 59 

(2023) revealed that large-scale climatic featuresfactors and sunspot activity have a substantial impact 60 

on hydrological drought events in the Huaihe River Basin. Despite many studies showing that machine 61 

learning models outperform physical models in terms of prediction accuracy, these models lack 62 

transparency and interpretability. Most research on machine learning models for drought prediction 63 

focuses on model performance, often neglecting the role of different featuresfactors influencing drought 64 

occurrence in model predictions. For example, Xu et al. (2022) established a hybrid model combining 65 

autoregressive integrated moving averages (ARIMA) and long short-term memory (LSTM) to predict 66 

the standardized precipitation evapotranspiration index at multiple time scales. Yu et al. (2023) combined 67 

the Hydrologiska Byrans Vattenbalansavdelning (HBV) model with an LSTM neural network to improve 68 

the prediction ability for semi-arid basins. Yalcin et al. (2023) proposed a hybrid model of convolutional 69 

neural networks (CNN) and LSTM to enhance the prediction accuracy of the standardized precipitation 70 

evapotranspiration index. However, these studies do not consider the influence of different 71 

featuresfactors on the model output. 72 

Recent advancements in Explainable AI (XAI) techniques have provided opportunities for 73 

understanding why models make certain predictions (Gunning et al., 2019; Islam et al., 2022). Recently, 74 

local interpretability methods have been developed and can be implemented for neural network and 75 

random forest model architectures (Ribeiro et al., 2016a). The Local Interpretable Model-Agnostic 76 

Explanation (LIME) method has been widely used, but it exhibits a high degree of instability due to 77 

considerable variation in its explanations upon repeated use (Ribeiro et al., 2016b). Therefore, the 78 

Shapley Additive Explanations (SHAP) approach was proposed as a solution. Grounded in the strong 79 

theoretical basis of game theory, it provides more robust mathematical accuracy and consistent extension 80 

on top of the LIME framework (Lundberg and Lee, 2017; Molnar, 2022). At present, SHAP has been 81 

applied to a variety of prediction scenarios. there are few studies on interpretable machine learning using 82 

the SHAP algorithm. For example, Dikshit and Pradhan (2021) employed an LSTM model combined 83 

with the SHAP algorithm to predict droughts, demonstrating that the inclusion of climate variables as 84 

predictors can enhance prediction accuracy. Similarly, Mardian et al. (2023) utilized an XGBoost model 85 

and SHAP to forecastpredict droughts in the Canadian prairies, and clarified the importance of spatial 86 

and temporal predictors, drought indicators, GRACE groundwater distribution and teleconnection in 87 

drought prediction. Similarly, Xue et al. (2024) analyzed the spatial and temporal characteristics and 88 
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driving factors of agricultural drought during the extreme drought period in northern Italy in 2022 by 89 

using the integrated machine learning model explained by SHAP combined with the new integrated 90 

agricultural drought index (IADI), quantified the dominant factors, and revealed that meteorological 91 

conditions were the main driving factors. Likewise, Zeng et al. (2025) used the XGBoost model 92 

explained by SHAP combined with the new rate of extension (RE) index to analyze the spatial and 93 

temporal evolution of meteorological drought characteristics in the Yangtze River Basin of China, 94 

quantified the dominant driving factors, and revealed that soil moisture was a primary factor. However, 95 

the range of drought-influencing featuresfactors considered in their research is still not comprehensive 96 

enough. For example, soil temperature and water content, surface thermal radiation and other 97 

featuresfactors are also important featuresfactors affecting drought (Raposo et al., 2023). 98 

In light of the above, the novelty of this study is to employ interpretable machine learning models 99 

for hydrological drought prediction and to identify the contribution of different influencing 100 

featuresfactors to the model prediction results. While SPI is a precursor to SRI, this study disentangles 101 

the hierarchy of contributing featuresfactors, including SPI, large-scale climate indices, and soil moisture 102 

etc. Soil moisture directly affects hydrological drought, and it can analyze the contribution of different 103 

featuresfactors to drought when it is predicted together with drought featuresfactors such as large-scale 104 

climate featuresfactors. For example, Mardian et al. (2023) employed a method combining the XGBoost 105 

model with SHAP (Shapley Additive Explanations) values, utilizing a variety of drought- influencing 106 

featuresfactors such as large-scale climatic featuresfactors and soil moisture, to predict drought 107 

conditions in the context of the Canadian Drought Monitor (CDM) and to understand the underlying 108 

driving featuresfactors. Therefore, the objectives of the study are: ⅰ) Utilizing the XGBoost model, 109 

combined with 26 featuresfactors predicted monthly and 18 featuresfactors predicted seasonally, the 110 

hydrological drought in the Huaihe River Basin is predicted, and the performance evaluation is carried 111 

out by using precision and recall indicators; ⅱ) Various SHAP plots were employed to gain insights into 112 

the model outputs and analyze the influence of different drought variables on the predictive results of the 113 

model.  114 
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2 Study area and data 115 

2.1 Study area 116 

In this paper, as shown in Figure 1, the Huaihe River Basin is selected as the research area, and the 117 

grid is divided at a resolution of 1°lat×1°lon, with a total of 28 grid regions, which takes into account the 118 

computational feasibility and spatial heterogeneity. Although large-cale climatic featuresfactors have 119 

spatial consistency, their effects on regional precipitation can be different through local terrain-120 

atmosphere feedback (Lu et al., 2006). Gridded analysis identifies sensitive subregions, supporting 121 

targeted mitigation. The Huaihe River Basin is located at 111°55'–121°25'E, 30°55'–36°36'N, covering 122 

an area of approximately 270,000 square kilometers. It experiences significant spatiotemporal variations 123 

in precipitation, with an average annual precipitation of around 883 millimeters. Situated in the 124 

transitional climatic zone from south to north, the southern part of the basin falls under a subtropical 125 

climate, while the northern part experiences a warm temperate climate. The average annual temperature 126 

ranges from 11 to 16°C. The winter and spring seasons in the basin are relatively dry, while the autumn 127 

and summer seasons are hot and rainy, resulting in pronounced seasonal fluctuations between droughts 128 

and floods. The average annual runoff depth in the basin is 230 millimeters. Due to its unique 129 

geographical location, the area is prone to frequent flooding, leading to high water levels and prolonged 130 

flood conditions. In addition, the annual average water surface evaporation in the Huaihe River Basin 131 

ranges from 900 to 1500 millimeters. As one of the important agricultural production bases in China, the 132 

basin is densely populated with substantial water demands. However, the region frequently suffers from 133 

drought disasters. Since the beginning of the 21st century, an average of 2.698 million hectares of crops, 134 

accounting for 21% of the total cultivated land area in the basin, have been affected annually. The Huaihe 135 

River Basin is a significant agricultural area and a high-population-intensive area in eastern China. 136 

Seasonal droughts frequently affect food production and water resources. One-month advance prediction 137 

is essential for reservoir scheduling, irrigation planning and early warning times for farmers. 138 
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 139 
Figure 1: Huaihe River Basin and 28 grid area location. 140 

2.2 Data 141 

We obtained monthly average precipitation, wind speed, temperature, evapotranspiration, monthly 142 

average runoff, 0-10cm soil moisture, and 100-200cm soil moisture data sets for the Huaihe River Basin 143 

from the website https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH10_M_2.0/ for the period 1960 to 144 

2014. The monthly average 2 m dewpoint temperature, surface net solar radiation, surface net thermal 145 

radiation, surface pressure, and leaf area index data sets were obtained from the ERA5-Land reanalysis 146 

dataset (https://cds.climate.copernicus.eu/). According to whether the grid center point falls within the 147 

basin, 28 grid regions are defined. If the center point of the grid is not within the basin boundary, the 148 

region is not divided into grids. The grid analysis is carried out with these grid points as the center and 149 

1°lat×1°lon as the resolution, covering a total of 28 grid regions. Using the interpolation method based 150 

on the Xarray packageUsing the interpolation method in array, the data of Huaihe River Basin are 151 

interpolated to 28 grid regions. 152 

Numerous studies have demonstrated the significant influence of large-scale climate indices, 153 

including the Atlantic Multidecadal Oscillation (AMO), Arctic Oscillation (AO), North Pacific pattern 154 

(NP), Pacific Decadal Oscillation (PDO), and Nino3.4, on drought dynamics(Gan et al., 2023; Phan-Van 155 

et al., 2022; Wu and Xu, 2020; Xiao et al., 2019). For example, the positive phase of AMO leads to a 156 

https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH10_M_2.0/
https://cds.climate.copernicus.eu/
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decrease in summer precipitation in the Huaihe River Basin by enhancing the western Pacific subtropical 157 

high (Lu et al., 2006); the Pacific Decadal Oscillation ( PDO ) has the most significant impact on the 158 

monthly runoff in the Huaihe River Basin (Sun et al., 2018). These selected climate featuresfactors 159 

(Nino3.4, AMO, TPI, PDO, AO, TNI, and NP) for the Huaihe River basin analysis were acquired from 160 

the National Oceanic and Atmospheric Administration (NOAA) climate database 161 

(http://www.esrl.noaa.gov/psd/data/climateindices) , covering the period from 1960 to 2014. 162 

3 Methods 163 

3.1 Drought indicesex 164 

In this study, the standardized precipitation index (SPI) (McKee et al., 1993) is used to characterize 165 

meteorological drought. SPI is widely used for drought risk assessment and monitoring due to its ease of 166 

calculation and ability to work on multiple time scales. The calculation method of SPI is as follows:
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Assuming that the precipitation series x at a certain time scale follows a stationary gamma 170 

distribution, where and  are the scale and shape parameters ( 0 , 0 ). The cumulative 171 

probability ( )xF of each item is normalized to obtain the corresponding SPI. 172 

The standardized runoff index (SRI) was first proposed by Shukla and Wood (2008) as an effective 173 

and accurate index for describing hydrological drought characteristics. It has been widely used in 174 

hydrological drought identification. SRI is also calculated by transforming the cumulative flow 175 

distribution of a given time scale into a standard normal distribution using equiprobability transformation, 176 

similar to the calculation method of SPI. The SPI/SRI classes are classified as shown in Table 1 (Li et al. 177 

2024). In this study, drought is classified into four classes, namely, Normal (ND), Mild drought (D1), 178 

Moderate drought (D2), and Severe drought and Extreme drought (D3), according to Table 1. However, 179 

due to the limited number of extreme drought events, it posed an issue in training the model. Therefore, 180 

the classes of Severe drought and Extreme drought were merged into one. 181 

Table 1: Drought classcategory classification and corresponding SPI values and SRI values. 182 
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    SPI/SRI value    ClassCategory 

SPI/SRI> 0 

-1.0≤0 SPI/SRIto <0-1.0 

-1.5≤SPI/SRI<-1.0-1.0 to -1.5 

-2.0≤SPI/SRI<-1.5 -1.5 to -2.0 

Normal (ND) 

Mild (D1) 

Moderate (D2) 

Severe (D3)Normal 

Mild  

Moderate 

Severe 

SPI/SRI<≤ -2.0 Extreme(D3)Extreme 

3.2 Machine learning models 183 

In this paper, the XGBoost model is used for multi-input single-output regression prediction 184 

problems to predict the hydrological drought in the Huaihe River Basin. The XGBoost model is an 185 

ensemble learning algorithm belonging to the Boosting algorithm category. It utilizes decision trees as 186 

its basic elements and implements a gradient-boosting algorithm to minimize loss when adding new 187 

models. XGBoost aims to improve the training speed and predictive performance of gradient-boosting 188 

decision trees. The foundational knowledge about the mechanism and implementation behind XGBoost 189 

can be found in the paper by Chen and Guestrin (2016). Assuming we have K base models denoted as190 

( ) Fxft  Kt ,......,2,1=  , where F   the model space contains all the base models, the XGBoost 191 

model can be represented using the following function: 192 

  
( ) ( ) =

==
k

t t xfxF
1

ŷ
 (3)  193 

Where the parameters of the XGBoost model primarily consist of the structure of each tree and the 194 

scores in the leaf nodes, that is, the learning of each function ( )xf t .
 195 

As each base model is generated in a certain sequential order, the creation of the subsequent tree 196 

takes into account the predictions made by the preceding tree. Therefore, the objective function of the t  197 

base model can be expressed as follows: 198 
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Here, 
( )( )1

ˆ,
−t

ii yyl  represents the loss function related to 
( )1

ˆ,
−t

ii yy  ,
( )1−t

iy  denotes the 200 

predictions of the first 1−t  decision trees for sample i (i.e., the sum of predictions made by the first 201 

1−t  trees), 
iy  represents the actual value of sample i  , ( )it xf  represents the prediction of the t202 

decision tree for sample i  , and ( )tf  represents the model complexity of the t  tree. Therefore, 203 

the predictions of the first k  trees for the sample i  are equal to the predictions of the first 1−k  204 

trees plus the prediction of the k  tree. 205 

3.3 Modeling SettingsModel input data 206 

The study period for this research spans from 1960 to 2014, with the model training period from 207 

1960 to 2003 and the prediction period from 2004 to 2014. The input and output data types for 28 grid 208 

areas are the same. We use a sliding window of 12 and 3 months. The prediction lead time is 1 month. 209 

The relevant settings for models modeling are shown in Table 2. 对图 2 的 Input Window  Lead time210 

进行说明。 211 

Take the 7th grid area as an example. , Wwhen using monthly data, the input was 26 different 212 

drought influencing features, and the output was SRI-1. The number of input samples during model 213 

training was 13767, and the number of output samples was 526. There are 3432 input samples and 132 214 

output samples during the model prediction period. When using seasonal data, the input is 18 features 215 

without drought, and the output is SRI-3 in different seasons. The number of input samples during model 216 

training is 792, and the number of output samples is 44. The number of input samples in the model 217 

prediction period is 198, and the number of output samples is 11. The model uses Bayesian 218 

hyperparameter optimization to find the optimal parameters, such as learning rate, tree depth, and number 219 

of iterations. Table 2 gives the relevant settings of model modeling. 220 

 221 

Table 2. Model setup and data overview 222 

Phase Data Period Input Window Forecast 

HorizonLead time 

Ooutput 

Training phase  

(monthly time 

scale)Monthly training set 

1960-2003 M-12 to M-1 

(12month) 

1 months SRI-1 

value 
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Validation phase 

 (monthly time 

scale)Monthly Test Set 

2004-2014 M-12 to M-1 

(12month) 

1 months SRI-1 

value 

Training phase  

(seasonal time scale) 

Seasonal scale training set 

1960-2003 M-3 to M-1 

(3month) 

1 months SRI-3 

value 

Validation phase  

(seasonal time 

scale)Seasonal scale 

prediction set 

2004-2014 M-3 to M-1 

(3month) 

1 months SRI-3 

value 

The XGBoost model for 28 grid areas is established, and the data types used in each region are the 223 

same. As shown in Table 31, for the monthly data analysis, 26 different drought-influencing 224 

featuresfactors were considered. These include a month-scale SPI (SPI-1) and SPI indices at different 225 

time scales of 1 month and 2 months in advance. Large-scale climate indices (AMO, TPI, PDO, AO, TNI, 226 

NP), evapotranspiration, wind speed, 2 m dewpoint temperature, soil moisture content, surface net 227 

thermal radiation, surface net solar radiation, surface pressure and leaf area index were considered. 228 

As shown in Table 23, for seasonal data analysis, the basin data are classified by season, and 18 229 

different drought influencing featuresfactors are used. It includes SPI-3 value, soil moisture content, 230 

evapotranspiration, surface net thermal radiation, air temperature, NINO3.4, NP, wind speed, TNI, PDO, 231 

TPI, surface pressure, AO, AMO, leaf area index, 2 m dewpoint temperature and surface net solar 232 

radiation in four seasons.  233 

For monthly and seasonal data sets, SHAP (Shapley Additive Explanation) values were used to 234 

analyze the contribution of 28 grid regions to determine the impact of each featurefactor. 235 

Monthly-scale predictions capture the rapid onset of drought, which is critical for early warning 236 

systems, whereas seasonal analysis aligns with agricultural planning cycles. Thus, our study employs 237 

both monthly and seasonal analyses to comprehensively assess short-term variability and long-term 238 

trends in hydrological drought. 239 

Table 23: The monthly scale and seasonal scale of the model predict the input target variables.The drought 240 

impact factors of the monthly scale prediction input of the model (T is the lead time, SPI-1, SPI-3, SPI-6, and 241 

SPI-9 are SPI values at different monthly scales.). 242 
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Drought influencing 

features (monthly) 

SPI-1, T=1 SPI-1, T=1 SPI-3, T=1 SPI-6, T=1 SPI-9, T=2 SPI-1, T=2 

SPI-3, T=2 SPI-6, T=2 SPI-9, d2m temperature, surface pressure, 

evapotranspiration, Air temperature, wind speed, surface net solar 

radiation, surface net thermal radiation, 0-10cm soil moisture, 100-200cm 

soil moisture, Nino3.4, AMO, PDO, AO, TNI, NP, TPI, leaf area index 

Drought influencing 

feature (seasonal) 

SPI-3 (different seasons), d2m temperature, surface pressure, 

evapotranspiration, Air temperature, wind speed, surface net solar 

radiation, surface net thermal radiation, 0-10cm soil moisture, 100-200cm 

soil moisture, Nino3.4, AMO, PDO, AO, TNI, NP, TPI, leaf area index 

 243 

Drought influencing factors（monthly） 

1 

2 

3 

4 

5 

6 

7 

8 

SPI-1 

T=1 SPI-1 

T=1 SPI-3 

T=1 SPI-6 

T=1 SPI-9 

T=2 SPI-1 

T=2 SPI-3 

T=2 SPI-6 
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9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

T=2 SPI-9 

d2m temperature 

surface pressure 

evapotranspiration 

Air temperature 

wind speed 

surface net solar radiation 

surface net thermal radiation 

0-10cm soil moisture 

100-200cm soil moisture 

Nino3.4 

AMO 

PDO 

AO 

TNI 

NP 

TPI 

leaf area index 

Table 3: The drought impact factors of seasonal prediction input of model. 244 
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Drought influencing factors（seasonal） 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

SPI-3 (different seasons) 

d2m temperature 

surface pressure 

evapotranspiration 

Air temperature 

wind speed 

surface net solar radiation 

surface net thermal radiation 

0-10cm soil moisture 

100-200cm soil moisture 

Nino3.4 

AMO 

PDO 

AO 

TNI 

NP 

TPI 
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18 leaf area index 

3.4 Model evaluation 245 

Based on the optimal parameters obtained during the training phase, the XGBoost model is utilized 246 

to predict the hydrological drought situation in the Huaihe River Basin from 2004 to 2014. These 247 

predictions will be assessed using precision, recall, and the Heidke Skill Score (HSS) as measurement 248 

metricsThese predictions will be assessed using precision and recall as measurement metrics. Precision 249 

is defined as the ratio of correctly classified instances of a specific classcategory to the total number of 250 

predicted instances, quantifying the model's precision in predicting drought conditions and evaluating its 251 

reliability. Conversely, Rrecall represents the ratio of correctly classified instances of a specific 252 

classcategory to the total number of observed instances in that classcategory, capturing the probability of 253 

the model predicting observed drought conditions and reflecting its sensitivity (Mardian et al., 2023; 254 

Zhang et al., 2023). The Heidke Skill Score (HSS) measures the model’s classification performance 255 

relative to random chance, accounting for both correct and incorrect predictions. It is particularly useful 256 

for assessing predictive skill in imbalanced datasets (Heidke, 1926). The following are the precision, 257 

recall and HSS formulas: 258 

   
FPTP

TP
precision

+
=  (15) 259 

 
FNTP

TP
callR

+
=e  (26) 260 

 
( )

( ) ( ) ( ) ( )

2 TP TN FN FP
HSS

TP FN FN TN TP FP FP TN

  − 
=

+  + + +  +  
 (3) 261 

Where the classification evaluation metrics employed are True Positives (TP), True Negative (TN), 262 

False Positives (FP), and False Negatives (FN). TP denotes the number of actual positive samples 263 

correctly predicted as positive, TN is the actual number of negative samples that are correctly predicted 264 

to be negative, FP represents the number of actual negative samples incorrectly predicted as positive, and 265 

FN signifies the number of actual positive samples incorrectly predicted as negative. 266 

3.5 Shapley Additive Explanations (SHAP) 267 

SHAP, a machine learning interpretability method, provides a unified approach by combining 268 

elements from additional variable attribution methods with Shapley values as a measure of variable 269 
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importance. Shapley values were originally introduced in game theory to determine the contributions 270 

made by each player in cooperative games. The fundamental idea is that each player receives a 271 

corresponding payout based on their contribution (Shapley, 1953). The interpretation of SHAP values is 272 

straightforward: larger absolute SHAP values indicate greater weight of the variable in predicting the 273 

model, while negative (positive) SHAP values exert a negative (positive) influence on the prediction 274 

process. Lundberg and Lee (2017) developed the SHAP method based on the theoretical foundation of 275 

Shapley values to explain the influence of each variable on model predictions, thereby providing 276 

increased transparency to the model. The Shapley value is calculated as the average marginal contribution 277 

based on all possible variable permutations. Importantly, SHAP values reflect local feature importance, 278 

meaning that they quantify the contribution of each variable to a specific prediction instance, rather than 279 

summarizing its overall effect across the entire dataset. The mathematical expression for the classic 280 

SHAP value is as follows: 281 

  

( )
 ( ) ( )

! 1 !

!
i

S N

S n S
v S i v S

n




− −
 =  − 

 (7) 282 

Where 𝜑𝑖  represents the contribution of variable i   , N  represent the set of all variables, n283 

denote the number of variables N  , S   indicate the subset of N  that includes variable i   , and 284 

( )Nv  represent the baseline, which signifies the predicted outcome of each variable in N  when their 285 

values are unknown. 286 

The model results for each observed value are estimated by summing the SHAP values of each 287 

variable corresponding to that observed value. Hence, formulating the explanation model as follows:  288 

 

( ) 
=

+=
M

i

ii zzg
1

0 
 (8) 289 

Where,  M
z 1,0 , the variable quantity is denoted as M, and the value 

i  can be obtained from 290 

equation (7). SHAP offers a variety of AI model explainers. 291 
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In this study, we utilized a tree explainer to compute SHAP values based on the best XGBoost model for 292 

assessing drought impacts, aiming to estimate the contributions of each variable. In our study, the SHAP 293 

baseline is the difference between the prediction of the model and the average prediction on the data set. 294 

For each sample and each feature, the SHAP value is the difference between the predicted value of the 295 

model containing the feature and the predicted value after removing the feature and the baseline. We use 296 

these SHAP values to quantitatively analyze the positive or negative effects of each predictor on 297 

hydrological drought prediction. 298 

 299 

4 Results  300 

4.1 Model performance 301 

The study period for this research spans from 1960 to 2014, with the model training period from 302 

1960 to 2003 and the prediction period from 2004 to 2014. The input and output data types for 28 grid 303 

areas are the same. Take the 7th grid area as an example, when using monthly data, the input was 26 304 

different drought influencing factors, and the output was SRI-1. The number of input samples during 305 

model training was 13767, and the number of output samples was 526. There are 3432 input samples and 306 

132 output samples during the model prediction period. When using seasonal data, the input is 18 factors 307 

without drought, and the output is SRI-3 in different seasons. The number of input samples during model 308 

training is 792, and the number of output samples is 44. The number of input samples in the model 309 

prediction period is 198, and the number of output samples is 11. According to the data in Table 44 and 310 

Figure 2, the overall precision of the XGBoost model is 79.9%, which means that it has a 79.9% ability 311 

to correctly identify drought classescategories. In the identification of the ND drought classcategory, the 312 

performance of the model is particularly excellent. Figure 2 shows that the median precision and recall 313 

rate of the ND classcategory areis both more than 0.8. It can be seen from the data in Table 4 that the 314 

recall rate of the ND drought classcategory is 91% and the precision rate is 88%, which proves that the 315 

model has high sensitivity and reliability in predicting the ND drought classcategory. For ND, the HSS 316 

is 0.77, showing a significant discriminant advantage over the no-skill baseline that always predicts the 317 

most common category. At the same time, the precision rates of ND and D3 drought classescategories 318 

are 88% and 86%, respectively, indicating that the model had good prediction accuracy for these two 319 

types of droughts. However, the precision rates of the D1 and D2 drought classescategories are 74% and 320 

61%, respectively, reflecting the lack of prediction accuracy of the model in these classescategories. 321 

批注 [李敏1]: 需要核对表的序号 
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In addition, the boxplot in Figure 2 further reveals the precision and recall performance of the model 322 

for each drought classcategory in 28 grid regions. Although the median precision and recall of the D1 323 

drought classcategory areis both close to 0.8, indicating that the model has a high predictive ability in 324 

this classcategory, the performance of the D2 and D3 drought classescategories is relatively poor. 325 

Especially for the D3 drought classcategory, the median recall rate does not exceed 0.5, indicating that 326 

the model is not sensitive to the identification of such drought events, and there are some limitations in 327 

the prediction. However, although the recall rate of the D3 drought classcategory is low, its precision is 328 

almost as high as the ND drought classcategory, which is mainly due to the low frequency of D3 drought 329 

classcategory events. The model can successfully capture all D3 drought classcategory events in some 330 

grid areas, thereby improving the precision of this classcategory. The HSS metric complements precision 331 

and recall by evaluating the model’s performance relative to the no-skill baseline. , with Vvalues closer 332 

to 1 indicateing superior performance. The declining HSS from ND to D2 underscores the model’s 333 

reduced discriminatory power for less extreme drought categories, aligning with the observed precision-334 

recall trade-offs. 335 

Table 44: The average accuracy, recall and HSS of each drought category in 28 regional models.The average 336 

accuracy and recall rate indicators for each drought level predicted by the 28 regional models. 337 

Category Precision (%) Recall (%) HSSss 

ND 88 91 0.77 

D1 74 78 0.61 

D2 61 47 0.46 

D3 86 50 0.59 

Average 77.3 66.5 0.608 

 338 

Class Precision (%) Recall (%) 

ND 88 91 

D1 74 78 

D2 61 47 

D3 86 50 

 339 
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 340 

Figure 2: Box plots of the accuracy and recall rates of the four drought categories predicted by the 28 regional 341 

models (‘P’ represents the accuracy rate, and ‘R’ represents the recall rate. The small square represents the 342 

average.). 343 

4.2 Prediction maps 344 

According to the predicted drought data, 2011 was identified as a year with relatively severe drought 345 

conditions. To visually assess the predictive capability of the model, drought predicted, observed, and 346 

difference maps were created for each month of 2011 (Figure 3 to Figure 54). Figure 3 shows the 347 

comparison between the prediction and observation in the first six months of 2011, and the complete 348 

month map is placed in the appendix. In 2011, the model accurately captured drought situations across 349 

most regions. In January, the drought situation was severe, and the drought classcategory was mainly in 350 

the D2 and D3 classescategories. However, the prediction map of the model shows that the drought 351 

degree in most regions is lighter than the actual drought situation, and the drought classcategory is mainly 352 

classified as D1, which relatively underestimates the actual situation of drought. In February, the drought 353 

situation was rapidly reduced, and the prediction map of the model was basically consistent with the 354 

observation map. In March and April, the drought conditions in the entire basin rapidly escalated and 355 
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became severe, and most of the areas in the observation map reached the drought classescategories of 356 

D2 and D3, and only a few areas in the north were classified as D1 drought classcategory. Consequently, 357 

this period poses a considerable challenge to the predictive ability of the model, making it an appropriate 358 

period to evaluate the predictive performance of the model. In general, the model effectively predicts the 359 

occurrence and deterioration of drought and captures the spatial distribution pattern. However, in some 360 

parts of the central and western regions, the model still underestimates the drought situation. 361 

 362 
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 363 

Figure 3: Monthly model predictions and observed drought categories for the first six months of 2011The 364 

observed drought types of each month in 2011. 365 

In May, the severity of the drought situation decreased relative to the previous two months, and the 366 

actual observed map and the model-predicted map were largely consistent. According to the observed 367 

map, in June, a drought occurrence was observed in the northern region where no drought had been 368 

previously recorded. Furthermore, in July, the drought area shifted from the northern to the western 369 

region. It was not until August that drought gradually diminished in most areas. Basically, the model 370 

captures the change of drought, but for some areas of D3 drought classcategory, the model predicts them 371 

as D2 drought classcategory. 372 
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 373 
Figure 4: The drought types of each month in 2011 predicted by the Model. 374 

In September, drought conditions were found in the eastern and southern regions on the observed 375 

map. However, the drought situation in some areas is underestimated on the map predicted by the model. 376 

In October, the model significantly overestimated the severity of the drought situation. According to the 377 

observed map, all regions except a small part of the western region experienced the D1 drought 378 

classcategory. In contrast, the model-predicted map shows widespread drought across the region, with 379 

most of the regions classified in the D2 drought classcategory. In November and December, the drought 380 

in the observation map dissipated rapidly, and the drought situation was basically the same as that in the 381 

model prediction map. 382 
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 383 
Figure 45: The difference between the predicted results of the model and the observed data values (Difference 384 

= SRI-prediction -– SRI-actual) From blue to red indicates that the model predicts the degree of 385 

underestimation to overestimation of observations. 386 

In general, the XGBoost model has a great performance in capturing the spatial structure and 387 

temporal dynamics of drought events during the 12-month period of 2011. However, the model indicates 388 

that while the model can distinguish between drought and non-drought conditions, it lacks clarity in 389 

defining the boundaries between different drought classescategories. In most cases, the model 390 

underestimates drought conditions compared to the observed results. 391 

4.3 Variable importance analysis 392 

4.3.1 Monthly prediction analysis 393 

To study the effects of different featuresfactors on drought, 26 different drought influencing 394 

featuresfactors were considered, and the corresponding influencing featuresfactors are analyzed for 28 395 

grid regions, and the contribution analysis is made with SHAP values. Due to the limited space, only the 396 

analysis of the 7th grid region is shown in Figure 65. Figure 6 5 reveals the contribution of each input 397 

feature based on the SHAP value of each instance in 28 grid regions. In the vertical direction, the 398 

variables in the beeswarm plot are sorted according to their absolute SHAP values, which also reflects 399 

the importance of ranking variables. The density of points represents the eigenvalues of each instance in 400 
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each row. The X-axis shows the SHAP value corresponding to a single instance. The left side of the Y-401 

axis of the bee colony graph represents the negative total contribution of the features in the XGBoost 402 

model, while the right side represents the positive total contribution. The negative and positive SHAP 403 

values represent the corresponding negative and positive total contributions of the related target 404 

variablesthe features toin the XGBoost model. Therefore, the beeswarm plot reflects the relationship 405 

between the variables and the related target variablesdrought impact features. The larger the absolute 406 

value of SHAP is, the greater the contribution to the model is. The analysis reveals that SPI plays a 407 

dominant role, followed by AMO and evapotranspiration. 408 

 409 

Figure 56: The SHAP values of 26 different influencing featuresfactors in each month of the 7th grid region 410 

from 2004 to 2014. 411 

Figure 7 illustrates the interpretability of the XGBoost model focusing on the 7th grid region, 412 

providing insights into the average impact of the 26 influencing factors on model output. These findings 413 

corroborate the insights from Figure 6, highlighting that SPI, AMO, and evapotranspiration are the 414 
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predominant factors influencing the predictions of the model. Table 3 indicates that the absolute average 415 

SHAP value of SPI, incorporating monthly precipitation data for the entire basin, is 0.190, marking it as 416 

the most substantial influence on hydrological drought within the 7th grid region. 417 

 418 
Figure 7: The absolute average SHAP values of 26 different influencing factors at the 7th grid region from 419 

2004 to 2014. 420 

To gain a deeper understanding of the featuresfactors contributing to drought events in the study 421 

area, As shown in Figure 68, this study shows the spatial distribution of the first three main drought-422 

influencing featuresfactors and discusses the changes of drought-influencing featuresfactors in the basin. 423 

The results show that the main influencing factorfeature of hydrological drought in the Huaihe River 424 

Basin is meteorological drought. As shown in Table 55, the absolute average SHAP value of the first 425 

influencing factorfeature is significantly higher than that of the second and third influencing 426 

featuresfactors. Large-scale climate featuresfactors (particularly AMO) emerge as the secondary major 427 

influence, and about half of the North Central Basin is significantly dependent on these featuresfactors. 428 

For the third influencing featurefactor, a diverse range of large-scale climate variables, such as TPI, PDO, 429 
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NP, TNI, and AMO, affect almost half of the study area. In summary, the foremost determinant of 430 

hydrological drought is meteorological drought. Large-scale climate featuresfactors (notably AMO) rank 431 

second in importance, followed by featuresfactors like soil moisture content, and so on. 432 

The findings demonstrate that the Standardized Precipitation Index (SPI) serves as the dominant 433 

driver of hydrological drought in the Huaihe River Basin, consistent with the conclusions of Gan et al. 434 

(2023), who identified meteorological drought as a critical precursor to hydrological extremes in this 435 

region. Further support arises from Wang et al. (2021), whose analysis of drought propagation 436 

mechanisms in the Huaihe Basin revealed indirect hydrological drought impacts mediated through soil 437 

moisture and evapotranspiration—a pattern corroborated by the secondary influence of soil moisture and 438 

evapotranspiration in this study. However, compared with the study of Zou et al. (2018) in the Weihe 439 

River Basin, the influence of large-scale climate featuresfactors in this study is more prominent, which 440 

may be related to the fact that the Huaihe River Basin is located in the climate transition zone and is more 441 

sensitive to the air-sea coupling phenomenon. 442 

Table 55: The first three drought influencing featuresfactors and the SHAP value of the absolute average 443 

influence of 28 grid areas in Huaihe River Basin. 444 

SHAP 

value 

 

Ggrid  

area 

The first 

influencing 

factorfeatu

re 

Average 

SHAP 

value 

The second 

influencing 

factorfeature 

Average 

SHAP 

value 

The third 

influencing 

factorfeature 

Average 

SHAP 

value 

1 SPI-1 0.160 Evapotranspiration 0.040 TPI 0.038 

2 SPI-1 0.190 AO 0.018 

Soil moisture 

content(100-

200cm) 

0.014 

3 SPI-1 0.189 TPI 0.030 

Soil moisture 

content(100-

200cm) 

0.023 

4 SPI-1 0.178 NP 0.020 PDO 0.016 

5 SPI-1 0.147 Evapotranspiration 0.044 NP 0.017 

6 SPI-1 0.180 TPI 0.025 Evapotranspiration 0.021 

7 SPI-1 0.190 AMO 0.037 Evapotranspiration 0.023 

8 SPI-1 0.212 TPI 0.030 TNI 0.020 

9 SPI-1 0.161 AMO 0.034 T=2 SPI-6 0.028 

10 SPI-1 0.195 AMO 0.037 
Surface net 

thermal radiation 
0.031 

11 SPI-1 0.226 AMO 0.037 TNI 0.012 
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12 SPI-1 0.221 AMO 0.033 T=2 SPI-3 0.017 

13 SPI-1 0.228 AMO 0.028 NP 0.026 

14 SPI-1 0.204 
Soil moisture 

content(100-200cm) 
0.057 T=1 SPI-1 0.029 

15 SPI-1 0.160 
Soil moisture 

content(100-200cm) 
0.033 NP 0.032 

16 SPI-1 0.157 Wind speed 0.033 AMO 0.030 

17 SPI-1 0.186 AMO 0.064 Evapotranspiration 0.025 

18 SPI-1 0.235 AMO 0.040 
Soil moisture 

content(0-10cm) 
0.032 

19 SPI-1 0.168 TPI 0.055 AMO 0.035 

20 SPI-1 0.172 AMO 0.038 T=2 SPI-3 0.026 

21 SPI-1 0.165 AMO 0.039 PDO 0.039 

22 SPI-1 0.179 AMO 0.042 Evapotranspiration 0.025 

23 SPI-1 0.176 AMO 0.029 T=1 SPI-9 0.022 

24 SPI-1 0.189 PDO 0.053 AMO 0.021 

25 SPI-1 0.149 AMO 0.055 TPI 0.024 

26 SPI-1 0.160 AMO 0.043 PDO 0.030 

27 SPI-1 0.169 AMO 0.047 T=2 SPI-3 0.018 

28 SPI-1 0.287 NP 0.025 T=1 SPI-1 0.016 

 445 

 446 
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Figure 68: The first three drought-influencing featuresfactors of 28 grid areas in the Huaihe River Basin. 447 

4.3.2 Seasonal prediction analysis 448 

To accurately reflect the differences in drought-influencing featuresfactors across different seasons, 449 

this study utilized 18 different drought-influencing featuresfactors to predict the hydrological drought in 450 

the Huaihe River Basin. Histograms of the absolute average SHAP values for different influencing 451 

featuresfactors in four seasons in the 7th grid region are presented in Figure 79. The absolute average 452 

SHAP values of SPI-3 in spring, summer, autumn, and winter were 0.360, 0.261, 0.169, and 0.247 453 

respectively, which had the greatest impact on hydrological drought in the same season. In addition, the 454 

absolute average SHAP values of evapotranspiration, soil moisture content, air temperature, and surface 455 

net thermal radiation were close to or exceeded 0.05, which also had a significant impact on hydrological 456 

drought in the Huaihe River Basin. 457 

 458 
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Figure 79: The absolute average SHAP values of 18 different influencing featuresfactors in the 7th grid region 459 

of four seasons ((a) Spring; (b) Summer; (c) Autumn; (d) Winter). 460 

To understand the spatial and temporal distribution characteristics of drought and the potential 461 

impact mechanism, Figure 810 displays the spatial distribution of the top three influencing 462 

featuresfactors in each season. The leading influencing featuresfactors across the four seasons include 463 

SPI-3, soil moisture content, and surface net thermal radiation, with SPI-3 being predominant across all 464 

seasons and regions. As shown in Figure 119, the absolute average SHAP value of the primary 465 

factorfeature exceeded the sum SHAP values of the second and third featuresfactors. Aside from SPI-3, 466 

soil moisture content also exerts a significant influence on hydrological drought in summer and autumn, 467 

particularly in the southern and southeastern parts of the river basin. In winter, certain areas in the central 468 

part of the river basin are mainly affected by surface net thermal radiation and surface net solar radiation.  469 

From the perspective of the second influencing factorfeature, hydrological drought in most areas of 470 

the basin in spring is mainly affected by soil water content and evapotranspiration. In the rest of the 471 

region, surface pressure, temperature, radiation, and other featuresfactors also play an important role. It 472 

is worth noting that in the 15th grid region, the surface pressure becomes a key secondary influencing 473 

factorfeature, and its absolute average SHAP value reaches 0.175. This value is significantly higher than 474 

the second impact factorfeature in other regions, and even close to the primary impact factorfeature in 475 

the same grid area. This indicates that it is extremely sensitive to surface pressure in this particular place. 476 

During summer, the influence of large-scale climatic featuresfactors such as the AMO, PDO, and TPI 477 

becomes more pronounced compared to spring. Additionally, soil moisture content and surface radiation 478 

continue to account for a substantial proportion of the influence on hydrological drought. Regions with 479 

absolute average SHAP values surpassing 0.1 in summer constitute approximately one-seventh of the 480 

study area, indicating elevated sensitivity to these featuresfactors during this season. Similar to spring, 481 

soil moisture content and evapotranspiration remain predominant influencing featuresfactors for 482 

hydrological drought in half of the grid areas during autumn and winter. The remaining regions are 483 

mainly influenced by surface net thermal radiation and surface net solar radiation. Specifically, during 484 

winter, the second influencing featuresfactors for three grid regions (the 12th, 13th, and 21st grid regions) 485 

in the central part of the basin are soil moisture content and evapotranspiration, with absolute average 486 

SHAP values exceeding 0.1. This indicates a relatively higher influence of these secondary 487 

featuresfactors in these regions compared to others. 488 
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Compared with the second impact factorfeature, the large-scale climatic featuresfactors in the third 489 

impact factorfeature have an increased influence on hydrological drought in the four seasons. In spring 490 

and autumn, soil moisture content exhibits a more substantial influence on hydrological drought, while 491 

in summer, air temperature is considered to be a more important factorfeature. However, in winter, half 492 

of the study areas continue to be dominated by soil moisture content and evapotranspiration, whereas 493 

most of the remaining study areas are primarily influenced by large-scale climate featuresfactorsfeatures 494 

such as TNI, PDO, NP, and AO. 495 

 496 
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 497 

Figure 810: The first three drought-influencing factorsfeatures of 28 grid points in Huaihe River Basin in each 498 

season. 499 

According to the above results, there were significant differences in the influencing factorsfeatures 500 

of drought among the four seasons. This diversity highlights the need for us to pay more attention to the 501 

weights and dynamic changes of various influencing factorsfeatures when predicting and understanding 502 

the spatial-temporal distribution characteristics of drought. Although the SPI factorfeature continues to 503 

dominate, at some grid points, factorsfeatures such as soil moisture content in summer and autumn, as 504 

well as thermal radiation in winter, cannot be ignored. This suggests that even for the same influencing 505 

factorfeature, its influence can vary greatly in different seasons and regions. Furthermore, in addition to 506 

the influence of meteorological drought, the influencing factorsfeatures of spring hydrological drought 507 

are mainly biased toward soil moisture content and evapotranspiration, in addition to surface pressure, 508 

temperature, radiation, and other related factorsfeatures. The absolute average SHAP value of these 509 

influencing factorsfeatures is basically no more than 0.1, which is very different from SPI-3, but its 510 

impact on hydrological drought cannot be ignored. In autumn and winter, the above factorsfeatures still 511 

dominate, but at the same time, the proportion of large-scale climate factorsfeatures gradually increases, 512 

indicating that climate change between different seasons may play an important regulatory role in the 513 

composition of drought-influencing factorsfeatures. 514 
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 515 

 516 

Figure 911: The absolute average SHAP values of the first three drought-influencing factorsfeatures in each 517 

season (The X-axis represents 28 grid regions in the Huaihe River Basin). 518 

5 Discussion 519 

This study demonstrates the efficacy of an XGBoost-SHAP framework for hydrological drought 520 

prediction in the Huaihe River Basin. The model achieveds robust accuracy for the ND and D1 categories, 521 

yet underperformeds for the more severe categories (D2 and D3), likely due to limited extreme event 522 

samples. The prediction of a  one1- month lead time is helpful for drought monitoring. This enables , 523 
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enabling water managers to adjust reservoir operations and irrigation schedules based on predicted 524 

drought conditionsup-to-date drought classifications. The framework can provides a 30-day buffer for 525 

proactive measures, such as mobilizing drought relief resources and implementing crop 526 

recommendations. 527 

SHAP analysis based on the XGBoost model unequivocally identifies the SPI as the most influential 528 

predictor of hydrological drought across the Huaihe River Basin. Such as (Tanriverdi and Batmaz, 2025) 529 

for U.S. drought prediction, also identified SPI as one of the most critical features across diverse regions 530 

and advanced models. Their SHAP analysis consistently ranked SPI among the top predictors, 531 

reinforcing its fundamental role as a primary driver of drought conditions, even within sophisticated deep 532 

learning frameworks. Beyond SPI, the key secondary drivers exhibit a distinct spatial and seasonal 533 

differences. In terms of space, the hydrological drought in the northern part of the basin shows higher 534 

sensitivity to large-scale climate oscillations such as AMO, indicating that large-scale climate 535 

factorsfeatures regulate regional precipitation patterns (Yu et al., 2024). On the contrary, the secondary 536 

factorsfeatures affecting the hydrological drought in the southern part of the basin are mainly surface 537 

processes, especially soil moisture and evapotranspiration.(Mtupili et al., 2025; Zhu et al., 2025). The 538 

difference in the second influencing factorsfeatures of hydrological drought in the southern and northern 539 

parts of the basin may be due to the fact that the basin belongs to the temperate-subtropical transition 540 

position. For the seasonal scale, in spring, soil moisture and evapotranspiration account for a large 541 

proportion of the explanatory power of the model. In summer, the relative weight of large-scale climatic 542 

factorsfeatures increases, which is consistent with the enhancement of water vapor transport (Yu et al., 543 

2024). In autumn and winter, radiative fluxes (net solar and thermal radiation) assume greater importance 544 

(Jin et al., 2025). Collectively, these findings underscore SPI as the primary driver while revealing the 545 

nuanced spatio-temporal controls exerted by secondary factorsfeatures, thereby providing a scientific 546 

foundation for developing more targeted drought mitigation and water resource management strategies 547 

across the diverse Huaihe River Basin. 548 

When studying the influence of large-scale climate indices on drought, the correlation between 549 

climate indices and drought for the same period and a certain lead time is often considered, and the results 550 

show that climate indices for the same period and different lead times have a certain influence on drought 551 

in the basin, and the degree of influence varies with the changes in the study area. For example, Ren et 552 

al. (2017) studied the correlation between SPI and large-scale climate indices with advance periods of 0, 553 
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1, 2, and 3 months, and the correlation results show that Nino3.4 has significant correlation in August-554 

October, and PDO has significant correlation in January-May and June-December of the same period. 555 

Lv et al. (2022) analyzed the correlation between large-scale climatic factorsfeatures and drought in 556 

different lag periods. The results show that large-scale climatic factorsfeatures in the same period also 557 

have an impact on drought. Due to the many influencing factorsfeatures considered in this paper, only 558 

the effect of climate indices on drought in the basin during the same period was considered when 559 

selecting the large-scale climate indices. Subsequent studies can consider selecting the most relevant 560 

large-scale climate factorsfeatures in different months or seasons as the influencing factorsfeatures for 561 

basin drought prediction to further improve the accuracy of drought prediction. Before inputting the 562 

influencing factorsfeatures into the machine learning model for training, methods such as random forest 563 

and principal component analysis (PCA) can be used to select the influencing factorsfeatures. Future 564 

research can extend the existing one-month-ahead framework to multiple prediction periods to evaluate 565 

the impact of different lead times on prediction accuracy. To improve the robustness of the model, a 566 

variety of ensemble learning schemes can be compared. Furthermore, the introduction of uncertainty 567 

quantification and data enhancement helps to alleviate category imbalances and improve prediction 568 

reliability.The application of these methods can optimize the influencing factors and provide strong 569 

support for more accurate drought trend prediction and management strategies.  570 

6 Conclusions 571 

Drought is one of the most significant environmental and climate problems in the world, and 572 

drought prediction is a crucial means of drought prevention. In this study, the integration of SHAP and 573 

XGBoost provides a novel framework that can not only improve the prediction accuracy, but also show 574 

the impact of different drought influencing factorsfeatures on drought. The framework can provide two 575 

types of support for decision makers: (1) giving priority to high weight factorsfeatures in real-time 576 

drought warning; (2) Identifying early risk signals in long-term water resources planning. The main 577 

conclusions are as follows: 578 

1) The XGBoost model achieved an accuracy of 79.9% for identifying drought 579 

classescategories. The model performs particularly well in predicting ND and D1 drought 580 

classescategories, with a precision rate of 88 % and 74 %, respectively. It also has a recall rate of 581 



34 
 

91 % and 78 %. However, the prediction performance of the model for the D2 and D3 drought 582 

classescategories is relatively poor, especially for the D3 drought, the recall rate should not exceed 583 

0.5, indicating that the recognition sensitivity of the model for the D3 classcategory is limited. In 584 

general, the model has high prediction reliability for ND and D1 classescategories, but limits in the 585 

prediction performance of D2 and D3 classescategories. 586 

2) This study determined that SPI is the most critical factor affecting hydrological drought 587 

in the Huaihe River Basin. In 28 grid regions, the absolute average SHAP value of SPI is not less 588 

than 0.147, which is much higher than other influencing factorsfeatures. In addition, large-scale 589 

climate factorsfeatures, soil moisture content, and evapotranspiration play a significant role in 590 

hydrological drought in the basin.  591 

3) The SPI remains a major influence in all seasons with absolute average SHAP values of 592 

0.360, 0.261, 0.169, and 0.247 in spring, summer, autumn, and winter respectively. Additional 593 

factorsfeatures such as soil moisture content, net heat radiation, and solar radiation also play 594 

seasonal roles. Soil moisture content and evapotranspiration are significant factorsfeatures in spring 595 

and autumn, while temperature and large-scale climate factorsfeatures are critical in summer and 596 

winter. 597 
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