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Abstract: Predicting future drought conditions isare crucial for effective disaster management.
In this study, a machine learning framework is proposed to predict hydrological drought in the Huaihe

River Basin, China. The interpretable—Extreme Gradient Boosting (XGBoost) model is applied to

foreeastpredict four drought categories in 28 grid regions, for one-month fereeastingprediction(ferecast

herizenT=1), using 26 factors-features for monthly and 18 for seasonal predictions. The framework also

integrates the Shapley Additive Explanation (SHAP) variable importance index to infer drought

prediction featuresfaetors. The model achieves 79.9% accuracy in classifying droughts, with the Standard

Precipitation Index (SPI) being the most influential factorfeature. The SHAP values of SPI are 0.360,
0.261, 0.169, and 0.247 for spring, summer, autumn, and winter, respectively. Soil moisture content and
evapotranspiration are particularly affected in spring and autumn, while large-scale climatic
featuresfaetors are more significant in summer and winter. Overall, this study offers valuable decision
support for regional drought management and water resource allocation.

Keywords: XGBoost; SHAP; Drought prediction; SRI; Huaihe River Basin

1 Introduction

Drought is a global disaster characterized by its long duration and extensive impacts, resulting in
severe implications for the economy, agriculture, and environment (Fu et al., 2018; Shi et al., 2018; Zhou
et al., 2020; 2021). Over the past 20 years, the frequency and severity of global drought events have
increased (Dai 2011; 2012; 2013; Zhang et al., 2019), affecting water security, economic growth, and

food supply in some areas. Therefore, drought prediction is of great significance for managing water
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resources and reducing losses caused by drought.

Consequently, according to the different effects of drought, previous studies have divided it into
several different types. Among them, four types of droughts are widely used: meteorology, hydrology,
agriculture, and social economy (Wilhite and Glantz, 1985; American Meteorological Society, 2013). In
the past few decades, more than one hundred drought indices based on single or multiple hydroclimatic
variables have been proposed to represent different drought characteristics. For example, the Palmer
Drought Severity Index (PDSI) (Palmer 1965), the Standardized Precipitation Index (SPT) (McKee et al.,
1993), and the Standardized Runoff Index (SRI) (Shukla and Wood, 2008). SPI index and SRI index are
robust, statistically straightforward to compute, and well-suited to long-term time series data. Therefore,
this study chooses the SPI index and SRI index to characterize meteorological drought and hydrological
drought.

In recent years, there has been an increasing trend toward utilizing machine learning to predict
droughts (Ardabili et al., 2020; Sun and Scanlon, 2019). Compared to conventional regression models,
machine learning-based models better capture the non-linear characteristics inherent in drought problems
and exhibit more robustness, especially when dealing with high-dimensional datasets (Mishra and Singh,
2010; Kikon and Deka, 2022; Prodhan et al., 2022; Wu et al., 2022). Multiple machine learning models
such as artificial neural networks (Orimoloye et al., 2021; Orimoloye et al., 2022), support vector
machines (Li et al., 2021), random forests(Park et al., 2019), and extreme gradient boosting (XGBoost)
(Choi et al. 2018; Han et al. 2019; Zhang et al., 2023) have been extensively employed in the research
field of drought. Machine Learning models can learn the input-output relationships in training data and
can effectively leverage big data to improve prediction accuracy (Mardian et al., 2023). By training tree-
based machine learning models, Bachmair et al. (2016) discovered that tree-based machine learning
models outperform baseline models. Jungho and Kim (2023) employed a tree-structured XGBoost model
to predict the likelihood of impact occurrence (LIO) of drought on public water supply. Their findings
demonstrated that the XGBoost model exhibited high accuracy and low uncertainty. Furthermore, the
XGBoost model necessitates only minor hyperparameter tuning, and its performance is relatively
insensitive to the selection of hyperparameters (Gao and Ding, 2020; Barnwal et al., 2022).

Previous research indicates that numerous featuresfaeters significantly impact hydrological drought.
Zou et al. (2018) demonstrated that climate change is the primary facterfeature affecting hydrological

drought on long-term scales. Wang et al. (2021) found that climatic variables such as precipitation and
2
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evapotranspiration significantly influence the duration of hydrological drought. Additionally, Gan et al.

(2023) revealed that large-scale climatic featuresfaetors and sunspot activity have a substantial impact

on hydrological drought events in the Huaihe River Basin. Despite many studies showing that machine
learning models outperform physical models in terms of prediction accuracy, these models lack
transparency and interpretability. Most research on machine learning models for drought prediction
focuses on model performance, often neglecting the role of different featuresfactors influencing drought
occurrence in model predictions. For example, Xu et al. (2022) established a hybrid model combining
autoregressive integrated moving averages (ARIMA) and long short-term memory (LSTM) to predict
the standardized precipitation evapotranspiration index at multiple time scales. Yu et al. (2023) combined
the Hydrologiska Byrans Vattenbalansavdelning (HBV) model with an LSTM neural network to improve
the prediction ability for semi-arid basins. Yalcin et al. (2023) proposed a hybrid model of convolutional
neural networks (CNN) and LSTM to enhance the prediction accuracy of the standardized precipitation
evapotranspiration index. However, these studies do not consider the influence of different
featuresfaetors on the model output.

Recent advancements in Explainable Al (XAI) techniques have provided opportunities for
understanding why models make certain predictions (Gunning et al., 2019; Islam et al., 2022). Recently,
local interpretability methods have been developed and can be implemented for neural network and
random forest model architectures (Ribeiro et al., 2016a). The Local Interpretable Model-Agnostic
Explanation (LIME) method has been widely used, but it exhibits a high degree of instability due to
considerable variation in its explanations upon repeated use (Ribeiro et al., 2016b). Therefore, the
Shapley Additive Explanations (SHAP) approach was proposed as a solution. Grounded in the strong
theoretical basis of game theory, it provides more robust mathematical accuracy and consistent extension
on top of the LIME framework (Lundberg and Lee, 2017; Molnar, 2022). At present, SHAP has been

applied to a variety of prediction scenarios.-there-are-few-studies-on-interpretable-machine learning using

the-SHAP-algerithm. For example, Dikshit and Pradhan (2021) employed an LSTM model combined

with the SHAP algorithm to predict droughts, demonstrating that the inclusion of climate variables as
predictors can enhance prediction accuracy.-Simitarly; Mardian et al. (2023) utilized an XGBoost model
and SHAP to fereeastpredict droughts in the Canadian prairies, and clarified the importance of spatial
and temporal predictors, drought indicators, GRACE groundwater distribution and teleconnection in

drought prediction. Similarly, Xue et al. (2024) analyzed the spatial and temporal characteristics and
3
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driving factors of agricultural drought during the extreme drought period in northern Italy in 2022 by

using the integrated machine learning model explained by SHAP combined with the new integrated

agricultural drought index (IADI), quantified the dominant factors, and revealed that meteorological

conditions were the main driving factors. Likewise, Zeng et al. (2025)_used the XGBoost model

explained by SHAP combined with the new rate of extension (RE) index to analyze the spatial and

temporal evolution of meteorological drought characteristics in the Yangtze River Basin of China

quantified the dominant driving factors, and revealed that soil moisture was a primary factor. However,

the range of drought-influencing featuresfactors considered in their research is still not comprehensive

enough. For example, soil temperature and water content, surface thermal radiation and other

featuresfaetors are also important featuresfaetors affecting drought (Raposo et al., 2023).

In light of the above, the novelty of this study is to employ interpretable machine learning models
for hydrological drought prediction and to identify the contribution of different influencing
featuresfaetors to the model prediction results. While SPI is a precursor to SRI, this study disentangles

the hierarchy of contributing featuresfaeters, including SPI, large-scale climate indices, ard soil moisture

etc. Soil moisture directly affects hydrological drought, and it can analyze the contribution of different
featuresfaeters to drought when it is predicted together with drought featuresfaeters such as large-scale

climate featuresfaetors. For example, Mardian et al. (2023) employed a method combining the XGBoost

model with SHAP (Shapley Additive Explanations) values, utilizing a variety of drought--influencing
featuresfactors such as large-scale climatic featuresfactors and soil moisture, to predict drought
conditions in the context of the Canadian Drought Monitor (CDM) and to understand the underlying

driving featuresfactors. Therefore, the objectives of the study are: i) Utilizing the XGBoost model,

combined with 26 featuresfactors predicted monthly and 18 featuresfactors predicted seasonally, the

hydrological drought in the Huaihe River Basin is predicted, and the performance evaluation is carried
out by using precision and recall indicators; ii) Various SHAP plots were employed to gain insights into
the model outputs and analyze the influence of different drought variables on the predictive results of the

model.
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2 Study area and data

2.1 Study area

In this paper, as shown in Figure 1, the Huaihe River Basin is selected as the research area, and the
grid is divided at a resolution of 1°latx1°lon, with a total of 28 grid regions, which takes into account the
computational feasibility and spatial heterogeneity. Although large-cale climatic featuresfactors have
spatial consistency, their effects on regional precipitation can be different through local terrain-
atmosphere feedback (Lu et al., 2006). Gridded analysis identifies sensitive subregions, supporting
targeted mitigation. The Huaihe River Basin is located at 111°55'-121°25'E, 30°55'-36°36'N, covering
an area of approximately 270,000 square kilometers. It experiences significant spatiotemporal variations
in precipitation, with an average annual precipitation of around 883 millimeters. Situated in the
transitional climatic zone from south to north, the southern part of the basin falls under a subtropical
climate, while the northern part experiences a warm temperate climate. The average annual temperature
ranges from 11 to 16°C. The winter and spring seasons in the basin are relatively dry, while the autumn
and summer seasons are hot and rainy, resulting in pronounced seasonal fluctuations between droughts
and floods. The average annual runoff depth in the basin is 230 millimeters. Due to its unique
geographical location, the area is prone to frequent flooding, leading to high water levels and prolonged
flood conditions. In addition, the annual average water surface evaporation in the Huaihe River Basin
ranges from 900 to 1500 millimeters. As one of the important agricultural production bases in China, the
basin is densely populated with substantial water demands. However, the region frequently suffers from
drought disasters. Since the beginning of the 2 1st century, an average of 2.698 million hectares of crops,
accounting for 21% of the total cultivated land area in the basin, have been affected annually. The Huaihe

River Basin is a significant agricultural area and a high-population-intensive area in eastern China.

Seasonal droughts frequently affect food production and water resources. One-month advance prediction

is essential for reservoir scheduling, irrigation planning and early warning times for farmers.
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Figure 1: Huaihe River Basin and 28 grid area location.

2.2 Data

‘We obtained monthly average precipitation, wind speed, temperature, evapotranspiration, monthly

average runoff, 0-10cm soil moisture, and 100-200cm soil moisture data sets for the Huaihe River Basin

from the website https://disc.gsfc.nasa.gov/datasets/ GLDAS NOAH10_M_2.0/ for the period 1960 to
2014. The monthly average 2 m dewpoint temperature, surface net solar radiation, surface net thermal
radiation, surface pressure, and leaf area index data sets were obtained from the ERAS-Land reanalysis
dataset (https://cds.climate.copernicus.eu/). According to whether the grid center point falls within the
basin, 28 grid regions are defined. If the center point of the grid is not within the basin boundary, the
region is not divided into grids. The grid analysis is carried out with these grid points as the center and

1°latx1°lon as the resolution, covering a total of 28 grid regions. Using the interpolation method based

on the Xarray packageUsing-the-interpelation-method-in-array, the data of Huaihe River Basin are

interpolated to 28 grid regions.

Numerous studies have demonstrated the significant influence of large-scale climate indices,
including the Atlantic Multidecadal Oscillation (AMO), Arctic Oscillation (AO), North Pacific pattern
(NP), Pacific Decadal Oscillation (PDO), and Nino3.4, on drought dynamics(Gan et al., 2023; Phan-Van

et al., 2022; Wu and Xu, 2020; Xiao et al., 2019). For example, the positive phase of AMO leads to a
6
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decrease in summer precipitation in the Huaihe River Basin by enhancing the western Pacific subtropical
high (Lu et al., 2006); the Pacific Decadal Oscillation ( PDO ) has the most significant impact on the
monthly runoff in the Huaihe River Basin (Sun et al., 2018). These selected climate featuresfactors
(Nino3.4, AMO, TPI, PDO, AO, TNI, and NP) for the Huaihe River basin analysis were acquired from
the National Oceanic and Atmospheric ~Administration (NOAA) climate database

(http://www.esrl.noaa.gov/psd/data/climateindices) , covering the period from 1960 to 2014.

3 Methods
3.1 Drought indicesex
In this study, the standardized precipitation index (SPI) (McKee et al., 1993) is used to characterize

meteorological drought. SPI is widely used for drought risk assessment and monitoring due to its ease of

calculation and ability to work on multiple time scales. The-ealenlationmethod-of SPHs-asfolows:
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The standardized runoff index (SRI) was first proposed by Shukla and Wood (2008) as an effective
and accurate index for describing hydrological drought characteristics. It has been widely used in
hydrological drought identification. SRI is also calculated by transforming the cumulative flow
distribution of a given time scale into a standard normal distribution using equiprobability transformation,
similar to the calculation method of SPI. The SPI/SRI classes are classified as shown in Table 1 (Li et al.
2024). In this study, drought is classified into four classes, namely, Normal (ND), Mild drought (D1),
Moderate drought (D2), and Severe drought and Extreme drought (D3), according to Table 1. However,
due to the limited number of extreme drought events, it posed an issue in training the model. Therefore,

the classes of Severe drought and Extreme drought were merged into one.

Table 1: Drought elasscategory classification and corresponding SPI-values and SRI values.
7
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SPI/SRI> 0 Normal (ND
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3.2 Machine learning models

In this paper, the XGBoost model is used for multi-input single-output regression prediction
problems to predict the hydrological drought in the Huaihe River Basin. The XGBoost model is an
ensemble learning algorithm belonging to the Boosting algorithm category. It utilizes decision trees as
its basic elements and implements a gradient-boosting algorithm to minimize loss when adding new
models. XGBoost aims to improve the training speed and predictive performance of gradient-boosting
decision trees. The foundational knowledge about the mechanism and implementation behind XGBoost

can be found in the paper by Chen and Guestrin (2016).-Assaming-we-have— K base-models-denoted-as
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3.3 Modeling SettingsMedel-input-data

The study period for this research spans from 1960 to 2014, with the model training period from

1960 to 2003 and the prediction period from 2004 to 2014. The input and output data types for 28 grid

areas are the same. We use a sliding window of 12 and 3 months. The prediction lead time is 1 month.

The relevant settings for models medeling-are shown in Table 2.

e

Take the 7th grid area as an example. —Wwhen using monthly data, the input was 26 different

drought influencing features, and the output was SRI-1. The number of input samples during model

training was 13767, and the number of output samples was 526. There are 3432 input samples and 132

output samples during the model prediction period. When using seasonal data, the input is 18 features

without drought, and the output is SRI-3 in different seasons. The number of input samples during model

training is 792, and the number of output samples is 44. The number of input samples in the model

prediction period is 198, and the number of output samples is 11. The model uses Bayesian

hyperparameter optimization to find the-optimal parameters, such as learning rate, tree depth, and number

therelevant settings-of-modelmedeling:
s-therelev .

of iterations. Fable 2-giv

Jable 2. Model setup and data overview, N
Phase Data Period Input Window Foreeast— Oseutput
Herizenlead time
Training phase 1960-2003 M-12 to M-1 1 months SRI-1-
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Validation phase 2004-2014 M-12 to M-1 1 months SRI-1-
(monthly time (12month value <
scale)Menthly-TestSet
Training phase 1960-2003 M-3 to M-1 1 months SRI-3—
(seasonal time scale) (3month) value <

Validation phase 2004-2014 M-3 to M-1 1 months SRI-3—

(seasonal time (3month) value ¢

scale)Seasonal-seale—

The XGBoost model for 28 grid areas is established, and the data types used in each region are the
same. As shown in Table 3+, for the monthly data analysis, 26 different drought-influencing
featuresfaeters were considered. These include a month-scale SPI (SPI-1) and SPI indices at different
time scales of 1 month and 2 months in advance. Large-scale climate indices (AMO, TPI, PDO, AO, TNI,
NP), evapotranspiration, wind speed, 2 m dewpoint temperature, soil moisture content, surface net
thermal radiation, surface net solar radiation, surface pressure and leaf area index were considered.

As shown in Table 23, for seasonal data analysis, the basin data are classified by season, and 18
different drought influencing featuresfaetors are used. It includes SPI-3 value, soil moisture content,
evapotranspiration, surface net thermal radiation, air temperature, NINO3.4, NP, wind speed, TNI, PDO,
TPI, surface pressure, AO, AMO, leaf area index, 2 m dewpoint temperature and surface net solar
radiation in four seasons.

For monthly and seasonal data sets, SHAP (Shapley Additive Explanation) values were used to
analyze the contribution of 28 grid regions to determine the impact of each featurefactor.

Monthly-scale predictions capture the rapid onset of drought, which is critical for early warning
systems, whereas seasonal analysis aligns with agricultural planning cycles. Thus, our study employs
both monthly and seasonal analyses to comprehensively assess short-term variability and long-term

trends in hydrological drought.

Table 23: The monthly scale and seasonal scale of the model predict the input target variables. Fhe-drought
impact-factorsof the-menthly seale prediction-inputof the-model (T is the lead time, SPI-1, SPI-3, SPI-6, and

SPI-9 are SP1 values at different monthly scales.).
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3.4 Model evaluation

Based on the optimal parameters obtained during the training phase, the XGBoost model is utilized
to predict the hydrological drought situation in the Huaihe River Basin from 2004 to 2014. These

predictions will be assessed using precision, recall, and the Heidke Skill Score (HSS) as measurement

ies. Precision

is defined as the ratio of correctly classified instances of a specific elasscategory to the total number of
predicted instances, quantifying the model's precision in predicting drought conditions and evaluating its
reliability. Cenversely,—Rrecall represents the ratio of correctly classified instances of a specific
elasscategory to the total number of observed instances in that elasscategory, capturing the probability of
the model predicting observed drought conditions and reflecting its sensitivity (Mardian et al., 2023;

Zhang et al., 2023)._The Heidke Skill Seore{HSS) measures the model’s classification performance

relative to random chance, accounting for both correct and incorrect predictions. It is particularly useful

for assessing predictive skill in imbalanced datasets (Heidke, 1926). The following are the-precision

recall and HSS formulas:

precision= L (15)
TP +FP -
Recall = _TP (26)
TP+FN
2x(TP xTN — FN x FP)
HSS = 3)

[(II—’+I—N)><U—N+IN)+(II—’+H—’)><(H—’+IN)]

Where the classification evaluation metrics employed are True Positives (TP), True Negative (TN),
False Positives (FP), and False Negatives (FN). TP denotes the number of actual positive samples

correctly predicted as positive, TN is the actual number of negative samples that are correctly predicted

to be negative, FP represents the number of actual negative samples incorrectly predicted as positive, and

FN signifies the number of actual positive samples incorrectly predicted as negative.

3.5 Shapley Additive Explanations (SHAP)

SHAP, a machine learning interpretability method, provides a unified approach by combining

elements from additional variable attribution methods with Shapley values as a measure of variable
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[BRBOER

(BETHR: 7 i




270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

importance. Shapley values were originally introduced in game theory to determine the contributions
made by each player in cooperative games. The fundamental idea is that each player receives a
corresponding payout based on their contribution (Shapley, 1953). The interpretation of SHAP values is
straightforward: larger absolute SHAP values indicate greater weight of the variable in predicting the
model, while negative (positive) SHAP values exert a negative (positive) influence on the prediction
process. Lundberg and Lee (2017) developed the SHAP method based on the theoretical foundation of
Shapley values to explain the influence of each variable on model predictions, thereby providing
increased transparency to the model. The Shapley value is calculated as the average marginal contribution

based on all possible variable permutations. Importantly, SHAP values reflect local feature importance

meaning that they quantify the contribution of each variable to a specific prediction instance, rather than

summarizing its overall effect across the entire dataset. The-mathematical-expression—for-the-elassie

< [S{(n—|s|-1)!

WM B, gt EITE:
L5 T

2 FAF, ATHR:

o= I—vlsuri\\_v/s\—l ) 1
o LVsEi=v(s)] .

! bution of variable - N- - sables.

lenote-the_numberof variablesN-—S—indicate the subsetofN-that includes variable 1 and

N .

< BRAM: EL, G BTG

Y= g; r ; L5 fhiriE

2 FAF, ATHR:

15



292
293
294
295
296
297
298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

baseline is the difference between the prediction of the model and the average prediction on the data set.

For each sample and each feature, the SHAP value is the difference between the predicted value of the

model containing the feature and the predicted value after removing the feature and the baseline. We use
these SHAP values to quantitatively analyze the positive or negative effects of each predictor on

hydrological drought prediction.

4 Results

4.1 Model performance

Figure 2, the overall precision of the XGBoost model is 79.9%, which means that it has a 79.9% ability

to correctly identify drought elassescategories. In the identification of the ND drought elasscategory, the
performance of the model is particularly excellent. Figure 2 shows that the median precision and recall
rate of the ND elasscategory areis both more than 0.8. It can be seen from the data in Table 4 that the
recall rate of the ND drought efasscategory is 91% and the precision rate is 88%, which proves that the

model has high sensitivity and reliability in predicting the ND drought elasscategory. For ND, the HSS

is 0.77, showing a significant discriminant advantage over the no-skill baseline that always predicts the

most common category. At the same time, the precision rates of ND and D3 drought elassescategories

are 88% and 86%, respectively, indicating that the model had good prediction accuracy for these two
types of droughts. However, the precision rates of the D1 and D2 drought elassescategories are 74% and
61%, respectively, reflecting the lack of prediction accuracy of the model in these elassescategories.
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In addition, the boxplot in Figure 2 further reveals the precision and recall performance of the model
for each drought elasscategory in 28 grid regions. Although the median precision and recall of the D1
drought elasscategory areis both close to 0.8, indicating that the model has a high predictive ability in
this elasscategory, the performance of the D2 and D3 drought elassescategories is relatively poor.
Especially for the D3 drought elasscategory, the median recall rate does not exceed 0.5, indicating that
the model is not sensitive to the identification of such drought events, and there are some limitations in
the prediction. However, although the recall rate of the D3 drought elasscategory is low, its precision is
almost as high as the ND drought elasscategory, which is mainly due to the low frequency of D3 drought
elasscategory events. The model can successfully capture all D3 drought elasscategory events in some

grid areas, thereby improving the precision of this elasscategory. The HSS metric complements precision

and recall by evaluating the model’s performance relative to the no-skill baseline. -with-Vvalues closer

to 1 indicateing superior performance. The declining HSS from ND to D2 underscores the model’s

reduced discriminatory power for less extreme drought categories, aligning with the observed precision-

recall trade-offs.

Table 44: The average accuracy, recall and HSS of each drought category in 28 regional models.Fhe-average

Category Precision (%) Recall (%) HSSss, <+
ND 88 91 Q7
D1 74 78 06,
D2 61 47 0.46, «
D3 86 50 0.59 N

Average 77.3 66.5 0.608

Class Preeision{(%) Reeall (%) <
ND 88 9+

DI 74 78

D2 61 47

b3 86 50

17

W E

BETHR: 75

AR

BRAE

BRETHN: 7

A

AR Eh

BETHA: T

Ak I

RETHR: Fh:

AF I

RETHR: Fh:

AE I

BETHA: 7

AR

WA B

BETHR: Fh:

AR

BETHN: 7

A

Gz S AR

BETHRN: 7h:

AE I

{
(
(
(
(
|
(#HRm: B
(
(
(
(
(
(
(
(

BN i

O 0 0 N A U AL




340
341
342
343

344

345

346

347

348

349

350

351

352

353

354

355

1. 0

o
0
1 .
i
oot
s
o

\ 3] . g
0.6 ‘ . N .
(4] X .
o * o
=] p
< o
m .
-
0.4 - . ow
:
0.2

0.0 T T T T T T T T

PND PD1 PD2 PD3 RND RD1 RD2 RD3

Figure 2: Box plots of the accuracy and recall rates of the four drought categories predicted by the 28 regional
models (‘P’ represents the accuracy rate, and ‘R’ represents the recall rate. The small square represents the

average.).

4.2 Prediction maps

According to the predicted drought data, 2011 was identified as a year with relatively severe drought
conditions. To visually assess the predictive capability of the model, drought predicted, observed, and
difference maps were created for each month of 2011 (Figure 3 to Figure 54). Figure 3 shows the

comparison between the prediction and observation in the first six months of 2011, and the complete

month map is placed in the appendix. In 2011, the model accurately captured drought situations across

most regions. In January, the drought situation was severe, and the drought elasscategory was mainly in
the D2 and D3 elassescategories. However, the prediction map of the model shows that the drought
degree in most regions is lighter than the actual drought situation, and the drought elasscategory is mainly
classified as D1, which relatively underestimates the actual situation of drought. In February, the drought
situation was rapidly reduced, and the prediction map of the model was basically consistent with the

observation map. In March and April, the drought conditions in the entire basin rapidly escalated and
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356  became severe, and most of the areas in the observation map reached the drought elassescategories of
357 D2 and D3, and only a few areas in the north were classified as D1 drought elasscategory. Consequently,
358 this period poses a considerable challenge to the predictive ability of the model, making it an appropriate
359  period to evaluate the predictive performance of the model. In general, the model effectively predicts the
360 occurrence and deterioration of drought and captures the spatial distribution pattern. However, in some
361 parts of the central and western regions, the model still underestimates the drought situation.
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366 In May, the severity of the drought situation decreased relative to the previous two months, and the

367  actual observed map and the model-predicted map were largely consistent. According to the observed
368  map, in June, a drought occurrence was observed in the northern region where no drought had been
369 previously recorded. Furthermore, in July, the drought area shifted from the northern to the western
370  region. It was not until August that drought gradually diminished in most areas. Basically, the model
371  captures the change of drought, but for some areas of D3 drought efasscategory, the model predicts them

372 as D2 drought elasscategory.
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In September, drought conditions were found in the eastern and southern regions on the observed
map. However, the drought situation in some areas is underestimated on the map predicted by the model.
In October, the model significantly overestimated the severity of the drought situation. According to the
observed map, all regions except a small part of the western region experienced the D1 drought
elasscategory. In contrast, the model-predicted map shows widespread drought across the region, with
most of the regions classified in the D2 drought elasscategory. In November and December, the drought
in the observation map dissipated rapidly, and the drought situation was basically the same as that in the

model prediction map.
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Figure 45: The difference between the predicted results of the model and the observed data values (Difference
= SRI-prediction — SRI-actual)_From blue to red indicates that the model predicts the degree of

underestimation to overestimation of observations.

In general, the XGBoost model has a great performance in capturing the spatial structure and
temporal dynamics of drought events during the 12-month period of 2011. However, the model indicates
that while the model can distinguish between drought and non-drought conditions, it lacks clarity in
defining the boundaries between different drought elassescategories. In most cases, the model

underestimates drought conditions compared to the observed results.

4.3 Variable importance analysis

4.3.1 Monthly prediction analysis

To study the effects of different featuresfaetors on drought, 26 different drought influencing
featurestaetors were considered, and the corresponding influencing featuresfactors are analyzed for 28
grid regions, and the contribution analysis is made with SHAP values. Due to the limited space, only the
analysis of the 7th grid region is shown in Figure 65. Figure 6-5 reveals the contribution of each input
feature based on the SHAP value of each instance in 28 grid regions. In the vertical direction, the
variables in the beeswarm plot are sorted according to their absolute SHAP values, which also reflects

the importance of ranking variables. The density of points represents the eigenvalues of each instance in
22



401 each row. The X-axis shows the SHAP value corresponding to a single instance. The left side of the Y-
402  axis of the bee colony graph represents the negative total contribution of the features in the XGBoost

403  model, while the right side represents the positive total contribution. The negative and positive SHAP

404 values represent the corresponding negative and positive total contributions of the related target

405 variablesthefeatures toin the XGBoost model. Therefore, the beeswarm plot reflects the relationship

406 between the variables and the related target variablesdreught-impaetfeatares. The larger the absolute

407  value of SHAP is, the greater the contribution to the model is. The analysis reveals that SPI plays a

408  dominant role, followed by AMO and evapotranspiration.
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To gain a deeper understanding of the featuresfacters contributing to drought events in the study
area, As shown in Figure 68, this study shows the spatial distribution of the first three main drought-
influencing featuresfaetors and discusses the changes of drought-influencing featuresfaeters in the basin.
The results show that the main influencing faeterfeature of hydrological drought in the Huaihe River
Basin is meteorological drought. As shown in Table 55, the absolute average SHAP value of the first
influencing faetorfeature is significantly higher than that of the second and third influencing
featuresfaeters. Large-scale climate featuresfaeters (particularly AMO) emerge as the secondary major
influence, and about half of the North Central Basin is significantly dependent on these featuresfactors.

For the third influencing featurefaeter, a diverse range of large-scale climate variables, such as TPI, PDO,
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NP, TNI, and AMO, affect almost half of the study area. In summary, the foremost determinant of

hydrological drought is meteorological drought. Large-scale climate featuresfaetors (notably AMO) rank
second in importance, followed by featuresfaetors like soil moisture content, and so on.

The findings demonstrate that the Standardized Precipitation Index (SPI) serves as the dominant
driver of hydrological drought in the Huaihe River Basin, consistent with the conclusions of Gan et al.
(2023), who identified meteorological drought as a critical precursor to hydrological extremes in this
region. Further support arises from Wang et al. (2021), whose analysis of drought propagation
mechanisms in the Huaihe Basin revealed indirect hydrological drought impacts mediated through soil
moisture and evapotranspiration—a pattern corroborated by the secondary influence of soil moisture and
evapotranspiration in this study. However, compared with the study of Zou et al. (2018) in the Weihe

River Basin, the influence of large-scale climate featuresfaeters in this study is more prominent, which

may be related to the fact that the Huaihe River Basin is located in the climate transition zone and is more

sensitive to the air-sea coupling phenomenon.

Table 55: The first three drought influencing featuresfactors and the SHAP value of the absolute average

Y

influence of 28 grid areas in Huaihe River Basin.

The first .
. i Average The second Average The third Average
influencing i . . .
SHAP influencing SHAP influencing SHAP
factorfeatu
value factorfeature value factorfeature value
re
SPI-1 0.160 Evapotranspiration 0.040 TPI 0.038
Soil moisture
2 SPI-1 0.190 AO 0.018 content(100- 0.014
200cm)
Soil moisture
3 SPI-1 0.189 TPI 0.030 content(100- 0.023
200cm)
4 SPI-1 0.178 NP 0.020 PDO 0.016
5 SPI-1 0.147 Evapotranspiration 0.044 NP 0.017
6 SPI-1 0.180 TPI 0.025 Evapotranspiration 0.021
7 SPI-1 0.190 AMO 0.037 Evapotranspiration 0.023
8 SPI-1 0.212 TPI 0.030 TNI 0.020
9 SPI-1 0.161 AMO 0.034 T=2 SPI-6 0.028
Surface net
10 SPI-1 0.195 AMO 0.037 L 0.031
thermal radiation
11 SPI-1 0.226 AMO 0.037 TNI 0.012
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446

12 SPI-1 0.221 AMO 0.033 T=2 SPI-3
13 SPI-1 0.228 AMO 0.028 NP
Soil moisture
14 SPI-1 0.204 0.057 T=1SPI-1
content(100-200cm)
Soil moisture
15 SPI-1 0.160 0.033 NP
content(100-200cm)
16 SPI-1 0.157 Wind speed 0.033 AMO
17 SPI-1 0.186 AMO 0.064 Evapotranspiration
Soil moisture
18 SPI-1 0.235 AMO 0.040
content(0-10cm)
19 SPI-1 0.168 TPI 0.055 AMO
20 SPI-1 0.172 AMO 0.038 T=2 SPI-3
21 SPI-1 0.165 AMO 0.039 PDO
22 SPI-1 0.179 AMO 0.042 Evapotranspiration
23 SPI-1 0.176 AMO 0.029 T=1SPI-9
24 SPI-1 0.189 PDO 0.053 AMO
25 SPI-1 0.149 AMO 0.055 TPI
26 SPI-1 0.160 AMO 0.043 PDO
27 SPI-1 0.169 AMO 0.047 T=2 SPI-3
28 SPI-1 0.287 NP 0.025 T=1SPI-1
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447 Figure 68: The first three drought-infl featuresfactors of 28 grid areas in the Huaihe River Basin. <
448 4.3.2 Seasonal prediction analysis
449 To accurately reflect the differences in drought-influencing featuresfaetors across different seasons,
450  this study utilized 18 different drought-influencing featuresfaetors to predict the hydrological drought in
451 the Huaihe River Basin. Histograms of the absolute average SHAP values for different influencing
452 featuresfaetors in four seasons in the 7th grid region are presented in Figure 79. The absolute average
453 SHAP values of SPI-3 in spring, summer, autumn, and winter were 0.360, 0.261, 0.169, and 0.247
454  respectively, which had the greatest impact on hydrological drought in the same season. In addition, the
455 absolute average SHAP values of evapotranspiration, soil moisture content, air temperature, and surface
456  net thermal radiation were close to or exceeded 0.05, which also had a significant impact on hydrological
457  drought in the Huaihe River Basin.
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Figure 79: The absolute average SHAP values of 18 different influencing featuresfacters in the 7th grid region
of four seasons ((a) Spring; (b) Summer; (c) Autumn; (d) Winter).

To understand the spatial and temporal distribution characteristics of drought and the potential
impact mechanism, Figure 848 displays the spatial distribution of the top three influencing
featuresfaetors in each season. The leading influencing featuresfactors across the four seasons include
SPI-3, soil moisture content, and surface net thermal radiation, with SPI-3 being predominant across all
seasons and regions. As shown in Figure 119, the absolute average SHAP value of the primary
factorfeature exceeded the sum SHAP values of the second and third featuresfacters. Aside from SPI-3,
soil moisture content also exerts a significant influence on hydrological drought in summer and autumn,
particularly in the southern and southeastern parts of the river basin. In winter, certain areas in the central
part of the river basin are mainly affected by surface net thermal radiation and surface net solar radiation.

From the perspective of the second influencing faeterfeature, hydrological drought in most areas of
the basin in spring is mainly affected by soil water content and evapotranspiration. In the rest of the

region, surface pressure, temperature, radiation, and other featuresfaeters also play an important role. It

is worth noting that in the 15th grid region, the surface pressure becomes a key secondary influencing
faetorfeature, and its absolute average SHAP value reaches 0.175. This value is significantly higher than
the second impact faetorfeature in other regions, and even close to the primary impact factorfeature in
the same grid area. This indicates that it is extremely sensitive to surface pressure in this particular place.
During summer, the influence of large-scale climatic featuresfaetors such as the AMO, PDO, and TPI
becomes more pronounced compared to spring. Additionally, soil moisture content and surface radiation
continue to account for a substantial proportion of the influence on hydrological drought. Regions with
absolute average SHAP values surpassing 0.1 in summer constitute approximately one-seventh of the

study area, indicating elevated sensitivity to these featuresfactors during this season. Similar to spring,

soil moisture content and evapotranspiration remain predominant influencing featuresfaetors for

hydrological drought in half of the grid areas during autumn and winter. The remaining regions are

mainly influenced by surface net thermal radiation and surface net solar radiation. Specifically, during

winter, the second influencing featuresfactors for three grid regions (the 12th, 13th, and 21st grid regions)
in the central part of the basin are soil moisture content and evapotranspiration, with absolute average
SHAP values exceeding 0.1. This indicates a relatively higher influence of these secondary

featuresfaetors in these regions compared to others.
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Compared with the second impact factorfeature, the large-scale climatic featuresfaetors in the third
impact faeterfeature have an increased influence on hydrological drought in the four seasons. In spring
and autumn, soil moisture content exhibits a more substantial influence on hydrological drought, while
in summer, air temperature is considered to be a more important facterfeature. However, in winter, half
of the study areas continue to be dominated by soil moisture content and evapotranspiration, whereas

most of the remaining study areas are primarily influenced by large-scale climate featuresfaetorsfeatures

such as TNI, PDO, NP, and AO.
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Figure 810: The first three drought-infl ing factorsfeatures of 28 grid points in Huaihe River Basin in each

season.

According to the above results, there were significant differences in the influencing faetorsfeatures
of drought among the four seasons. This diversity highlights the need for us to pay more attention to the
weights and dynamic changes of various influencing faetorsfeatures when predicting and understanding
the spatial-temporal distribution characteristics of drought. Although the SPI facterfeature continues to
dominate, at some grid points, faetorsfeatures such as soil moisture content in summer and autumn, as
well as thermal radiation in winter, cannot be ignored. This suggests that even for the same influencing
faetorfeature, its influence can vary greatly in different seasons and regions. Furthermore, in addition to
the influence of meteorological drought, the influencing faetorsfeatures of spring hydrological drought
are mainly biased toward soil moisture content and evapotranspiration, in addition to surface pressure,
temperature, radiation, and other related factorsfeatures. The absolute average SHAP value of these
influencing faetersfeatures is basically no more than 0.1, which is very different from SPI-3, but its
impact on hydrological drought cannot be ignored. In autumn and winter, the above faetorsfeatures still
dominate, but at the same time, the proportion of large-scale climate faetorsfeatures gradually increases,
indicating that climate change between different seasons may play an important regulatory role in the

composition of drought-influencing faetorsfeatures.
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519 5 Discussion

520 This study demonstrates the efficacy of an XGBoost-SHAP framework for hydrological drought

521 prediction in the Huaihe River Basin. The model achieveds robust accuracy for the ND and D1 categories,

522 yet underperformeds for the more severe categories (D2 and D3), likely due to limited extreme event

523 samples. The prediction of a —onet--month lead time is helpful for drought monitoring. This enables 5
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nabline-water managers to adjust reservoir operations and irrigation schedules based on predicted

drought conditionsup-te-date-droushtclassifications. The framework eanprovides a 30-day buffer for

proactive measures, such as mobilizing drought relief resources and implementing crop

recommendations.
SHAP analysis based on the XGBoost model unequivocally identifies the SPI as the most influential
predictor of hydrological drought across the Huaihe River Basin. Such as (Tanriverdi and Batmaz, 2025)

for U.S. drought prediction, also identified SPI as one of the most critical features across diverse regions

and advanced models. Their SHAP analysis consistently ranked SPI among the top predictors

reinforcing its fundamental role as a primary driver of drought conditions, even within sophisticated deep

learning frameworks. Beyond SPI, the key secondary drivers exhibit a distinct spatial and seasonal
differences. In terms of space, the hydrological drought in the northern part of the basin shows higher
sensitivity to large-scale climate oscillations such as AMO, indicating that large-scale climate

faetorsfeatures regulate regional precipitation patterns (Yu et al., 2024). On the contrary, the secondary

faetorsfeatures affecting the hydrological drought in the southern part of the basin are mainly surface

processes, especially soil moisture and evapotranspiration.(Mtupili et al., 2025; Zhu et al., 2025). The

difference in the second influencing faetersfeatures of hydrological drought in the southern and northern
parts of the basin may be due to the fact that the basin belongs to the temperate-subtropical transition
position. For the seasonal scale, in spring, soil moisture and evapotranspiration account for a large
proportion of the explanatory power of the model. In summer, the relative weight of large-scale climatic
faetorsfeatures increases, which is consistent with the enhancement of water vapor transport (Yu et al.,
2024). In autumn and winter, radiative fluxes (net solar and thermal radiation) assume greater importance
(Jin et al., 2025). Collectively, these findings underscore SPI as the primary driver while revealing the

nuanced spatio-temporal controls exerted by secondary factorsfeatures, thereby providing a scientific

foundation for developing more targeted drought mitigation and water resource management strategies
across the diverse Huaihe River Basin.

When studying the influence of large-scale climate indices on drought, the correlation between
climate indices and drought for the same period and a certain lead time is often considered, and the results
show that climate indices for the same period and different lead times have a certain influence on drought
in the basin, and the degree of influence varies with the changes in the study area. For example, Ren et

al. (2017) studied the correlation between SPI and large-scale climate indices with advance periods of 0,
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1, 2, and 3 months, and the correlation results show that Nino3.4 has significant correlation in August-
October, and PDO has significant correlation in January-May and June-December of the same period.
Lv et al. (2022) analyzed the correlation between large-scale climatic faetorsfeatures and drought in
different lag periods. The results show that large-scale climatic factorsfeatures in the same period also
have an impact on drought. Due to the many influencing factorsfeatures considered in this paper, only
the effect of climate indices on drought in the basin during the same period was considered when
selecting the large-scale climate indices. Subsequent studies can consider selecting the most relevant
large-scale climate faetersfeatures in different months or seasons as the influencing faetersfeatures for
basin drought prediction to further improve the accuracy of drought prediction. Before inputting the

influencing faetersfeatures into the machine learning model for training, methods such as random forest

and principal component analysis (PCA) can be used to select the influencing faetersfeatures. Future

research can extend the existing one-month-ahead framework to multiple prediction periods to evaluate

the impact of different lead times on prediction accuracy. To improve the robustness of the model, a

variety of ensemble learning schemes can be compared. Furthermore, the introduction of uncertainty

quantification and data enhancement helps to alleviate category imbalances and improve prediction

reliability.

6 Conclusions

Drought is one of the most significant environmental and climate problems in the world, and
drought prediction is a crucial means of drought prevention. In this study, the integration of SHAP and
XGBoost provides a novel framework that can not only improve the prediction accuracy, but also show

the impact of different drought influencing factorsfeatures on drought. The framework can provide two

types of support for decision makers: (1) giving priority to high weight factorsfeatures in real-time

drought warning; (2) Identifying early risk signals in long-term water resources planning. The main
conclusions are as follows:

1) The XGBoost model achieved an accuracy of 79.9% for identifying drought

elassescategories. The model performs particularly well in predicting ND and D1 drought

elassescategories, with a precision rate of 88 % and 74 %, respectively. It also has a recall rate of
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91 % and 78 %. However, the prediction performance of the model for the D2 and D3 drought
elassescategories is relatively poor, especially for the D3 drought, the recall rate should not exceed
0.5, indicating that the recognition sensitivity of the model for the D3 elasscategory is limited. In
general, the model has high prediction reliability for ND and D1 elassescategories, but limits in the
prediction performance of D2 and D3 elassescategories.

2)  This study determined that SPI is the most critical factor affecting hydrological drought
in the Huaihe River Basin. In 28 grid regions, the absolute average SHAP value of SPI is not less

than 0.147, which is much higher than other influencing faetorsfeatures. In addition, large-scale

climate factorsfeatures, soil moisture content, and evapotranspiration play a significant role in
hydrological drought in the basin.

3)  The SPI remains a major influence in all seasons with absolute average SHAP values of
0.360, 0.261, 0.169, and 0.247 in spring, summer, autumn, and winter respectively. Additional
factorsfeatures such as soil moisture content, net heat radiation, and solar radiation also play

seasonal roles. Soil moisture content and evapotranspiration are significant faetersfeatures in spring

and autumn, while temperature and large-scale climate factorsfeatures are critical in summer and

winter.
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