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Abstract 11 

This study presents the High Order Prediction Environment (HOPE), an automatically differentiable, non-oscillatory 12 

finite-volume dynamical core for shallow water equations on the cubed-sphere grid. HOPE integrates five key features: (1) 13 

arbitrary high-order accuracy through genuine two-dimensional reconstruction schemes; (2) essential non-oscillation via 14 

adaptive polynomial order reduction in discontinuous regions; (3) exact mass conservation inherited from finite-volume 15 

discretization; (4) automatically differentiable and (5) GPU-native scalability through PyTorch-based implementation. 16 

Another innovation is the development of a two-way coupled ghost cell interpolation method. This approach incorporates 17 

information from adjacent panels on both sides of the boundary, thereby overcoming the integration instability inherent in 18 

one-sided ghost cell interpolation approaches when using high-order reconstruction. Leveraging the linear operator nature of 19 

this interpolation scheme, we optimized its computation: information exchange across the panel boundary is achieved through 20 

a single matrix-vector multiplication instead of iterative coupling, without accuracy loss. Numerical experiments demonstrate 21 

the capabilities of HOPE: The 11th-order scheme reduces errors to near double-precision round-off levels in steady-state 22 

geostrophic flow tests on coarse grids. Maintenance of Rossby-Haurwitz waves over 100 simulation days without crashing. 23 

A cylindrical dam-break test case confirms the genuinely two-dimensional WENO scheme exhibits significantly better 24 

isotropy compared to dimension-by-dimension approaches. Moreover, normalized conservation errors in total energy, total 25 

potential enstrophy, and total zonal angular momentum significantly reduce with increasing order of the reconstruction scheme. 26 

Two implementations are developed: a Fortran version for convergence analysis and a PyTorch version leveraging automatic 27 
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differentiation and GPU acceleration. The PyTorch implementation maps reconstruction and quadrature operation to 2D 28 

convolution and Einstein summation respectively, achieving about 2× speedup on single NVIDIA RTX3090 GPU versus 29 

Dual Intel E5-2699v4 CPUs execution. This design enables seamless coupling with neural network parameterizations, 30 

positioning HOPE as a foundational tool for next-generation differentiable atmosphere models. 31 

1. Introduction 32 

Recent years have witnessed a surge in research integrating numerical weather prediction (NWP) with artificial 33 

intelligence (AI) techniques. A prominent advancement in this domain is the hybrid modeling paradigm, which synergizes the 34 

complementary strengths of both approaches. This framework implements numerical dynamical cores within AI software 35 

platforms such as TensorFlow or PyTorch, thereby enabling seamless integration of AI models into the numerical solution 36 

process for atmospheric dynamical partial differential equations (PDEs). Unlike the fully surrogated methods, such as Pangu-37 

Weather (Bi et al., 2022), FengWu (Chen et al., 2023), GraphCast (Lam et al., 2023), NowcastNet (Zhang et al., 2023), hybrid 38 

model integrates traditional PDE-based dynamical cores with neural network (NN)-based physical parameterizations. The 39 

auto-differentiable nature of the dynamical core enables training losses to propagate through the entire model during 40 

backpropagation, allowing the NN-based parameterization module to access more comprehensive residual information. 41 

NeuralGCM (Kochkov et al., 2024) exemplifies this hybrid approach by combining a spectral numerical dynamical core with 42 

NN-based physical parameterizations. The governing equation-based dynamical core imposes rigorous physical constraints 43 

within the framework, effectively mitigating the blurriness characteristic of purely data-driven models. Furthermore, 44 

NeuralGCM demonstrates superior power spectra performance compared to conventional data-driven meteorological models. 45 

While the implementation of a spectral dynamical core in NeuralGCM theoretically enables infinite-order accuracy, the global 46 

nature of spectral expansion restricts the method’s scalability. Furthermore, in contrast to finite-volume algorithms which 47 

inherently ensure strict mass conservation, achieving strict mass conservation with NeuralGCM’s spectral dynamical core 48 

requires supplementary modifications. 49 

To address these shortcomings, we present the High Order Prediction Environment (HOPE) dynamical core with 50 

following contributions: 51 

1) A new-generation shallow-water model architecture integrating: 52 

(i) Arbitrary high-order accuracy (up to 13th-order verified) via tensor product polynomial (TPP). 53 

(ii) A finite-volume scheme requiring only information from a local stencil surrounding each cell to perform state 54 

updates, enabling massively parallel scalability. 55 

(iii) Inherent mass conservation from finite-volume discretization. 56 
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(iv) A WENO (Weighted Essentially Non-Oscillatory) based, adaptive polynomial order reduction for essential 57 

non-oscillation. 58 

2) A novel two-way coupled ghost cell interpolation scheme achieving: 59 

(i) Arbitrary odd-order convergence through central stencil interpolation. 60 

(ii) Single sparse matrix-vector operation replacing iterative procedures (Appendix Eq.(A.12)). 61 

(iii) Overcome numerical instability beyond 7th-order accuracy. 62 

3) PyTorch-based high performance differentiable implementation featuring: 63 

(i) GPU acceleration through convolution/einsum operator in PyTorch, 2× speedup on single RTX3090 GPU vs. 64 

Dual Intel Xeon 2699v4 CPUs. 65 

(ii) Automatic ghost cell interpolation matrix generation via native auto-differentiation. 66 

(iii) Seamless integration with NN modules for hybrid modeling. 67 

In the following part of the introduction, we introduce the relevant work on constructing the HOPE model, and from this, 68 

we elaborate on the challenges and motivations for establishing the algorithm of the dynamical core. High-order accuracy is 69 

an extremely appealing trait for the design of a dynamical core, particularly in high-resolution atmospheric simulations. A 70 

dynamical core model with high-order accuracy produces significantly less simulation error in smooth regions compared to a 71 

low-order model. Furthermore, even when the resolution is equivalent or coarser, a high-order model is capable of resolving 72 

finer details than a low-order one. 73 

 A high-order finite volume model was developed on cubed sphere, named MCORE (Ullrich et al., 2010; Ullrich and 74 

Jablonowski, 2012). High-order reconstruction requires information from cells external to panel boundaries (commonly 75 

termed ghost cells). Due to coordinate discontinuities across the six panels of the cubed-sphere grid, MCORE implements an 76 

interpolation scheme for ghost cells based on one-side information. This approach employs a two-dimensional reconstruction 77 

stencil to interpolate prognostic variables onto Gaussian quadrature points within each cell, followed by integration to obtain 78 

cell-averaged values. The authors assert that MCORE's convergence rate can theoretically be of arbitrary order. However, 79 

during the design of the ghost cell interpolation for HOPE, we initially attempted to use a one-sided reconstruction stencil 80 

similar to MCORE. While stable integration was achieved with the 3rd-, 5th-, and 7th-order schemes, the model became 81 

unstable when schemes of 9th-order or higher were used. In other words, for HOPE, overcoming the 7th-order accuracy 82 

limitation necessitated the development of a new ghost cell interpolation scheme. 83 

Therefore, we designed a bilateral interpolation algorithm. This algorithm employs an iterative procedure that 84 

incorporates information from both adjacent panels of the cubed-sphere grid simultaneously. This enabled stable model 85 

integration even with higher-order schemes. Though not detailed in the paper, our testing confirmed stable integration even 86 
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at 13th-order accuracy. 87 

In this article, we devise the reconstruction based on tensor product polynomial (TPP). When the stencil width is 𝑘, our 88 

method achieves 𝑘𝑡ℎ  order accuracy, surpassing MCORE by one order of accuracy with the same stencil width. In addition, 89 

we have developed a new class of ghost interpolation schemes that abandon the use of one-sided stencils and instead adopt 90 

central stencils. This new approach enables the scheme to overcome the non-physical oscillations arising from interpolation 91 

at panel boundaries. Our method allows for arbitrary order of accuracy while the field is smooth enough, and we have verified 92 

this by testing up to the 11th order. 93 

Nevertheless, higher-order reconstruction does not invariably yield superior simulation outcomes, as elucidated by 94 

analyzing the properties of the Taylor series remainder term. The accuracy of approximating a function via a Taylor series 95 

requires two essential conditions: (1) the existence of higher-order derivatives of the function at the expansion point, and (2) 96 

The convergence of the series within the relevant domain. When the field exhibits poor continuity—where higher-order 97 

derivatives either do not exist or lead to increasing residuals with series order—employing higher-order approximations can 98 

introduce significant errors. Therefore, for reconstruction schemes based on polynomial functions, high-order accuracy should 99 

only be adopted when the field is sufficiently smooth. Conversely, for discontinuous or poorly continuous fields, reducing the 100 

reconstruction order is necessary to maintain numerical stability and effectiveness. 101 

The Weighted Essentially Non-Oscillatory (WENO) scheme is an adaptive limiter widely employed in computational 102 

fluid dynamics (CFD) to address this challenge. Originally developed for one-dimensional problems (Liu et al., 1994), WENO 103 

was later extended to two dimensions by Shi et al. (2002) using two distinct approaches: a genuinely two-dimensional 104 

(WENO2D) scheme and a dimension-by-dimension reconstruction. In this work, we implement WENO2D scheme to enforce 105 

the non-oscillatory property. This approach effectively suppresses non-physical oscillations near sharp discontinuities while 106 

preserving high-order accuracy in smooth regions. 107 

The remainder of this paper is organized as follows: Section 2 details the governing equations on the cubed-sphere grid. 108 

Section 3 presents the numerical methods, including reconstruction schemes, panel boundary treatment method, and temporal 109 

marching scheme. Section 4 focuses on HOPE's high-performance implementation leveraging PyTorch's built-in operators 110 

for GPU acceleration. The adoption of PyTorch simultaneously enables automatic differentiation capabilities through its 111 

computational graph construction. Section 5 validates model performance through standard test cases, followed by 112 

conclusions and future directions in Section 6. 113 

2. Governing Equation on Cubed Sphere 114 

The cubed-sphere grid partitions the spherical domain into six panels, each with a structured and rectangular 115 
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computational space. This configuration facilitates high-order spatial reconstruction and efficient massive-thread parallelism 116 

(see Figure 1). Early work on solving the primitive equations on the cubed-sphere grid dates back to Sadourny (1972). In 117 

recent decades, the cubed-sphere grid has been widely adopted in high-order-accuracy atmospheric models. For instance, 118 

Chen and Xiao (2008) developed a shallow water model using the multi-moment constrained finite volume method on the 119 

cubed sphere, achieving 3rd~4th order accuracy. Ullrich et al. (2010) designed a high-order finite volume dynamical core based 120 

on this grid, Nair et al. (2005a, 2005b) implemented a discontinuous Galerkin model on the cubed sphere. 121 

In this study, we also employ the equiangular cubed-sphere grid. Although the mesh is non-orthogonal, the computational 122 

space can still be treated as a rectangular grid by adopting a generalized curvilinear coordinate system. In this section, we 123 

present the shallow water equations in generalized curvilinear coordinates and discuss specialized treatments for topography. 124 

 125 

Figure 1 Cubed sphere grid. (a) Physical space; (b) Computational space. Six panels are identified by indices from 1 to 6. 126 

Shallow water equation set on gnomonic equiangular cubed sphere grid is written as 127 
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(1)   

The gnomonic equiangular coordinates are represented by (𝑥, 𝑦, 𝑝), where (𝑥, 𝑦) ∈ [−
𝜋

4
,
𝜋

4
] are local equiangular coordinate 128 

of each panel and 𝑝 = 1,2,3,… , 𝑛𝑝  is panel index as shown in Figure 1(b); 𝑛𝑝 66 is the number of panels. 𝜙 = 𝑔ℎ  is 129 

geopotential, ℎ  is fluid thickness, 𝑢, 𝑣  is contravariant wind in 𝑥, 𝑦  direction, 𝑔  is gravity acceleration. 𝜓𝑀 , 𝜓𝐶 , 𝜓𝐵  are the 130 

metric term, Coriolis term and bottom topography influence term 131 

 
𝜓𝑀 = (

𝜓𝑀
1

𝜓𝑀
2 ) =

2√𝐺

𝛿2
(
−𝑋𝑌2𝜙𝑢𝑢 + 𝑌(1 + 𝑌2)𝜙𝑢𝑣

𝑋(1 + 𝑋2)𝜙𝑢𝑣 − 𝑋2𝑌𝜙𝑣𝑣
) (2)   

 
𝜓𝐶 = −√𝐺√𝐺𝑓𝒌 × 𝜙𝒖 = √𝐺𝑓 (

−𝐺12 𝐺11
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𝜓𝐵 = −√𝐺𝜙𝐺
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(4)   

where 𝑋 = tan𝑥 , 𝑌 = tan𝑦 , 𝛿 = √1 + 𝑋2 + 𝑌2, 𝑓 = 2Ω𝑠𝑖𝑛𝜃 is Coriolis parameter, 𝜙𝑠 = 𝑔ℎ𝑠 is surface geopotential, and 132 

ℎ𝑠 is surface height. 133 

 
𝑠𝑖𝑛𝜃 = {

𝑌/𝛿, 𝑝 ∈ {1,2,3,4}

1/𝛿, 𝑝 = 5
−1/𝛿, 𝑝 = 6

 
(5)   

The contravariant metric on cubed-sphere is 134 

 
𝐺𝑖𝑗 =

𝛿2

𝑟2(1 + 𝑋2)(1 + 𝑋2)
(1 + 𝑌

2 𝑋𝑌
𝑋𝑌 1 + 𝑋2

) (6)   

The covariant metric 135 

 
𝐺𝑖𝑗 =

𝑟2(1 + 𝑋2)(1 + 𝑌2)

𝛿4
(1 + 𝑋

2 −𝑋𝑌
−𝑋𝑌 1 + 𝑌2

) (7)   

and the metric determinant is given by 136 

 
√𝐺 = √det(𝐺𝑖𝑗) =

𝑟2(1 + 𝑋2)(1 + 𝑌2)

𝛿3
 (8)   

𝑟 is radius of earth. 137 

The contravariant wind vector 𝑽 = (𝑢, 𝑣) can be convert to wind vector on spherical LAT/LON coordinate 𝑽𝑠 = (𝑢𝑠, 𝑣𝑠) 138 

by the following formula 139 

 (
𝑢𝑠
𝑣𝑠
) = 𝐴 (

𝑢
𝑣
) (9)   

where 𝐴 is a 2 × 2 conversion matrix, the expressions are different in each panel 140 
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=
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) , 𝑝 = 6

 

(10)   

 
𝜆𝑝 = 𝜆 −

𝜋

2
(𝑝 − 1), Γ1 = 1 +

sin2 𝜆

tan2 𝜃
, Γ2 = 1+

cos2 𝜆

tan2 𝜃
 (11)   

where 𝜆, 𝜃 are longitude and latitude. The relation between 𝐴 and 𝐺𝑖𝑗 is  141 

 𝐺𝑖𝑗 = 𝐽
𝑇𝐽 

(12)   

To discretize and solve the equation system, we first perform reconstruction on the prognostic variables to obtain their 142 

values at the cell interfaces. These reconstructed values are then used within a Riemann solver to compute the numerical 143 

fluxes. During the numerical experiments, we observed that reconstructing √𝐺𝜙 directly leads to non-physical oscillations. 144 

This occurs because topography may induce discontinuities in the variable 𝜙, while high-order reconstruction fundamentally 145 



 

7 

 

requires smoothness of the field. 146 

To address this, inspired by the approach mentioned by Ii and Xiao (2010), we instead reconstruct√𝐺𝜙𝑡, where 𝜙𝑡 =147 

𝜙 + 𝜙𝑠 is total geopotential. The detailed formulation of this reconstruction method is presented in Section 3. Crucially, √𝐺𝜙𝑡 148 

is used exclusively during the reconstruction step. The prognostic variable remains √𝐺𝜙 to ensure exact mass conservation. 149 

The momentum equations need to be modified as follow 150 
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(13)   

and the bottom topography influence term is now expressed as 151 
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(14)   

The reconstruction variables are (√𝐺𝜙𝑡, √𝐺𝜙𝑢, √𝐺𝜙𝑣).  152 

We write the governing equation set to vector form 153 

 𝜕𝒒
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, 𝑺 = [
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1
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] (16)   

3. Numerical Discretization 154 

The finite volume method computes the temporal tendency of cell-averaged quantities by evaluating the net flux across 155 

cell interfaces. The interfacial flux is obtained through Gaussian quadrature, where the field values at quadrature points are 156 

reconstructed spatially and then processed by a Riemann solver to determine the flux magnitude. 157 

In this section, we present two distinct spatial reconstruction approaches: (1) a two-dimensional tensor product 158 

polynomial (TPP) method, and (2) a two-dimensional weighted essentially non-oscillatory (WENO2D) scheme based on 159 

tensor product polynomials. Each reconstruction yields two potential values at every Gaussian quadrature point (GQP). These 160 

values are then resolved into a single flux value using the Low Mach number Approximate Riemann Solver (LMARS) (Chen 161 

et al., 2013) or AUSM+-up (Liou, 2006; Ullrich et al., 2010). Even with an approximate Riemann solver like LMARS, the 162 
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scheme preserves high-order because it combines high-order reconstructions from both sides of the cell interface to determine 163 

the flux. Finally, the total flux across each cell edge is computed by applying linear Gaussian quadrature integration along the 164 

interface. 165 

Panel 4 Panel 1

Panel 5

(a) (b)

A

B

C

 166 

Figure 2 (a) Adjacent area of panels 1,4 and 5. (b) 5 × 5 reconstruction stencil nearby panel corner is represented by shade. The 167 

cell contains red dot is the target cell on panel 4; the magenta points are overlapped GQPs shared by panel 1 and panel 5; red solid 168 

lines are boundary of panel 4, red dash lines are extension line of panel 4 boundary line. 𝐴 and 𝐶 are points on dash line, 𝐵 is the 169 

upper right corner point of panel 4. 170 

According to the finite volume scheme, average Eq.(15) on cell 𝑖, 𝑗, we have 171 

 𝜕𝒒
𝑖,𝑗

𝜕𝑡
+

𝑭
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1
2
,𝑗
− 𝑭

𝑖−
1
2
,𝑗

∆𝑥
+

𝑮
𝑖,𝑗+

1
2
−𝑮

𝑖,𝑗−
1
2

∆𝑦
= 𝑺𝑖,𝑗 

(17)   
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 (18)   
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𝑮
𝑖,𝑗−

1
2
=
1
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𝑒
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1
2
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1
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=
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𝑒
𝑗+
1
2

𝑑𝑥 (20)   

where Ω𝑖,𝑗 represents the region overlapped by cell (𝑖, 𝑗), 𝑒
𝑖−

1

2

, 𝑒
𝑖+

1

2

, 𝑒
𝑗−

1

2

, 𝑒
𝑗+

1

2

 are left, right, bottom, top edges of cell (𝑖, 𝑗).  172 
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 173 

Figure 3 Function points on cell. Red points are edge quadrature points (EQP) or called flux points, green points are inner cell 174 

quadrature points (CQP). 175 

The physical interpretation of equation Eq.(17) is that the average tendency of prognostic field 𝒒  within cell (𝑖, 𝑗)  is 176 

governed by the average net flux and average source. In this study, we calculate these averages using Gaussian quadrature, 177 

the function points within each cell are illustrated in Figure 3, the EQPs are share by adjacent cells, and CQPs are exclusive 178 

for each cell. 179 

Average on edge by 1D scheme: 180 

 
𝑭
𝑖+
1
2
,𝑗
≈∑𝑤𝜉𝑭𝜉

𝑚𝑒

𝜉=1

= 𝒘𝑭⃗⃗  (21)   

where 𝑚𝑒 is the number of quadrature points on each edge, 𝒘 = (𝑤1, 𝑤2, … , 𝑤𝑚𝑒
) is the 1D Gaussian quadrature coefficient 181 

vector. 𝑭⃗⃗ = (𝑭1, 𝑭2, … , 𝑭𝑚𝑒
)
𝑇
 is the vector of flux, the elements of 𝑭⃗⃗  represent the flux on EQPs. 182 

Average in cell by 2D scheme: 183 

 
𝑺𝑖,𝑗 ≈∑𝑊𝜉𝑺𝜉

𝑚𝑐

𝜉=1

= 𝑾𝑺⃗⃗  (22)   

where 𝑚𝑐 is the number of quadrature points on each cell, 𝑾 = (𝑊1,𝑊2, … ,𝑊𝑚𝑐
) is the 2D Gaussian quadrature coefficient 184 

matrix, 𝑺⃗⃗ = (𝑺1, 𝑺2, … , 𝑺𝑚𝑐
)
𝑇
 is the vector of source term, the elements of 𝑺⃗⃗  represent the source value on GQPs, superscript 185 

𝑇 stands for transpose matrix. 186 

HOPE employs an equiangular cubed-sphere grid, where each panel undergoes uniform angular discretization into  𝑛𝑐187 

× 𝑛𝑐 cells. In the computational space (equiangular coordinates), each cell spans an angular interval of 
𝜋

2𝑛𝑐
, therefore 188 



 

10 

 

 ∆𝑥 = ∆𝑦 =
𝜋

2𝑛𝑐
 (23)   

This uniformity ensures that all cells are geometrically identical in the computational space, thereby avoiding the need for 189 

cell-specific treatment during reconstruction studies. In the following part of this section, we set a new computational space 190 

for reconstruction process. The local coordinate system (𝑥̂, 𝑦̂) is established such that within each reconstruction stencil, the 191 

origin (0,0) is located at the stencil center, the central cell spans[−0.5,0.5] in both 𝑥̂ and 𝑦̂ directions, as shown in Figure 4 192 

(a). All of the cells have the same size in 𝑥̂, 𝑦̂ directions: 193 

 
∆𝑥̂ = ∆𝑦̂ = 1 (24)   

On the cubed-sphere grid, a fixed reconstruction scheme yields consistent stencils across all cells. This structural 194 

homogeneity renders the reconstruction operation computationally equivalent to two-dimensional convolution, thereby 195 

enabling efficient GPU acceleration through PyTorch's built-in conv2d function. 196 

3.1 Tensor Product Polynomial (TPP) Reconstruction 197 

HOPE employs genuinely two-dimensional reconstruction, simultaneously incorporating information in both spatial 198 

dimensions to minimize dimensional splitting errors. For computational efficiency, reconstruction algorithms using square 199 

stencils are computationally equivalent to convolution operations. This equivalence allows efficient implementation via 200 

PyTorch's conv2d function for acceleration. 201 

To construct genuinely 2D reconstructions, the functional form of the reconstruction basis must be selected. A bivariate 202 

polynomial of degree 𝑑  contains 
(𝑑+1)(𝑑+2)

2
  terms. As illustrated in Figure 4 (b), the 6 terms of a bivariate quadratic 203 

polynomial (𝑑 = 2) are insufficient to cover a square stencil. To address this, we adopt Tensor Product Polynomials (TPP) as 204 

basis functions. We denote a TPP function containing 𝑛 × 𝑛 terms as TPPn. Determining the coefficients of TPPn requires 205 

information from a 𝑛 × 𝑛 block of cells. When using a TPP reconstruction stencil of size 𝑛 × 𝑛, HOPE achieves fifth-order 206 

accuracy when simulating smooth flow fields. We therefore designate a TPP reconstruction stencil of size 𝑛 × 𝑛 as an n-th 207 

order TPP stencil, the 3rd and 5th order TPP stencils are shown in Figure 4 (c)(d). 208 
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 209 

Figure 4 Reconstruction coordinate and polynomial terms on stencils. (a): Local reconstruction coordinate (the red points denote 210 

cell centers) (b): 2nd degree polynomial stencil; (c): TPP3 stencil; (d) TPP5 stencil 211 

A TPPn polynomial is expressed as 212 

 
𝑝(𝑥̂, 𝑦̂) =∑∑𝑎𝑘𝑥̂

𝑖̂−1𝑦̂ 𝑗̂−1
𝑛

𝑖̂=1

𝑛

𝑗̂=1

=∑𝑎𝑘𝑐𝑘

𝑁

𝑘=1

(𝑥̂, 𝑦̂) (25)   

where 𝑛 is width of stencil. 𝑎𝑘 is the coefficient of each term, the term index 𝑘 = 𝑖̂ + 𝑛(𝑗̂ − 1), and 𝑐𝑘(𝑥̂, 𝑦̂) = 𝑥̂
𝛼𝑦̂𝛽 , 𝛼 =213 

𝑘 − 𝑖𝑛𝑡 (
𝑘−1

𝑛
)𝑛 − 1, 𝛽 = 𝑖𝑛𝑡 (

𝑘−1

𝑛
) , 𝑖𝑛𝑡  is equivalent to Fortran's intrinsic function 𝑖𝑛𝑡()   that truncates to integer values. 214 

𝑁 = 𝑛2  is the cell number in stencil and also the term number of the TPP. We define column vectors 𝒄(𝑥̂, 𝑦̂) =215 

{𝑐𝑘(𝑥̂, 𝑦̂)|𝑘 = 1,2,3,… ,𝑁} and 𝒂 = {𝑎𝑘|𝑘 = 1,2,3,… , 𝑁}, the point value on (𝑥̂, 𝑦̂) can be written as 216 

 𝑝(𝑥̂, 𝑦̂) = 𝒄(𝑥̂, 𝑦̂) ∙ 𝒂 
(26)  

The volume integration average (VIA) of prognostic field 𝑞 on cell 𝛺𝑖,𝑗 is represented by 217 

 
𝑞̅𝑖,𝑗 =

1

∆𝑥̂𝑖,𝑗∆𝑦̂𝑖,𝑗
∬𝑝(𝑥̂, 𝑦̂)𝑑𝑥̂𝑑𝑦̂

𝛺𝑖,𝑗

 (27)   

∆𝑥𝑖,𝑗 , ∆𝑦̂𝑖,𝑗 are length of edges 𝑥̂, 𝑦̂ of cell 𝛺𝑖,𝑗 in computational space. The VIA value 𝑞̅𝑖 on each cell is predicted by time 218 

integration, we wish to determine the coefficient vector 𝒂 by these VIA values. HOPE employs an equiangular cubed-sphere 219 

grid, wherein each cell in computational space can be considered a perfectly identical square, according to Eq.(24), we may 220 

assume without loss of generality that ∆𝑥̂𝑖,𝑗 = ∆𝑦̂𝑖,𝑗 = 1, and Eq.(27) becomes 221 
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 𝑞̅𝑖,𝑗 = ∬𝑝(𝑥̂, 𝑦̂)𝑑𝑥̂𝑑𝑦̂

𝛺𝑖,𝑗

= ∬𝒄 ∙ 𝒂 𝑑𝑥̂𝑑𝑦̂

𝛺𝑖,𝑗

= 𝝍𝑖,𝑗 ∙ 𝒂 (28)   

where 𝝍𝑖,𝑗 = ∬ 𝒄𝑑𝑥̂𝑑𝑦̂
𝛺𝑖,𝑗

=

(

  
 

∬ 𝑐1𝑑𝑥̂𝑑𝑦̂𝛺𝑖,𝑗

∬ 𝑐2𝑑𝑥̂𝑑𝑦̂𝛺𝑖,𝑗

⋮
∬ 𝑐𝑁𝑑𝑥̂𝑑𝑦̂𝛺𝑖,𝑗 )

  
 

, combining 𝑁 cells. We have following linear system 222 

 𝐴𝒂 = 𝒒̅ 
(29)   

 

 𝐴 =

(

 

𝝍1
𝑇

𝝍2
𝑇

⋮
𝝍𝑁
𝑇)

 , 𝒒̅ = (

𝑞̅1
𝑞̅2
⋮
𝑞̅𝑁

) 
(30)   

and polynomial coefficient 𝒂 can be obtain by solving Eq.(29). 223 

  𝒂 = 𝐴−1𝒒̅ 
(31)   

The reconstruction values on 𝑀 points can be obtained by following formula 224 

 𝒑 = 𝐶𝒂 = 𝐶𝐴−1𝒒̅ = 𝑅𝒒̅ 
(32)   

where 𝒑 = (

𝑝(𝑥̂1, 𝑦̂1)

𝑝(𝑥̂2, 𝑦̂2)
⋮

𝑝(𝑥̂𝑀, 𝑦̂𝑀)

) , 𝐶 =

(

 

𝒄1
𝑇

𝒄2
𝑇

⋮
𝒄𝑀
𝑇 )

 , 𝒄𝑚
𝑇 = 𝒄𝑇(𝑥̂𝑚, 𝑦̂𝑚),𝑚 = 1,2,… ,𝑀 , superscript 𝑇  stands for transpose matrix, 225 

(𝑥̂𝑚, 𝑦̂𝑚) represents the 𝑚-th function point on target cell. The reconstruction matrix 226 

 𝑅 = 𝐶𝐴−1 
(33)   

In practical implementation, the reconstruction matrix 𝑅 needs to be computed only once during model initialization and 227 

stored in memory. Crucially, a fundamental advantage of our cubed-sphere grid dynamical core implementation lies in 228 

employing a globally shared reconstruction matrix 𝑅. This unification signifies that a single instance of 𝑅 applies identically 229 

to all grid cells, thereby significantly reducing memory/VRAM requirements, and enabling straightforward utilization of 230 

PyTorch's conv2d for accelerated reconstruction. For example, the TPP reconstruction procedure can be directly formulated 231 

as a two-dimensional convolutional operation using 𝑅 as the convolution kernel. 232 

3.2 Genuine Two-Dimensional WENO 233 

Weighted Essentially Non-Oscillatory (WENO) represents an adaptive algorithm that dynamically preserves high-order 234 

approximation accuracy in smooth flow regions while automatically degenerating to robust low-order reconstruction near 235 

discontinuities for effective shock capturing. Shi et al. (2002) mentioned two different approaches for constructing a fifth-236 

order finite volume WENO scheme: the "Genuine 2D" method and the "Dimension by Dimension" method. 237 

For HOPE, within the Genuine 2D framework, 𝑛 -th order accuracy WENO scheme employs a 𝑛 × 𝑛  master stencil 238 
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partitioned into 
(𝑛+1)2

4
 distinct 

(𝑛+1)

2
×
(𝑛+1)

2
 sub-stencils, for example: 239 

a) WENO3: Third-order reconstruction utilizes a 3×3 cell stencil that decomposes into four 2×2 sub-stencils 240 

b) WENO5: Fifth-order accuracy employs a 5×5 master stencil partitioned into nine distinct 3×3 sub-stencils 241 

(Complete schematic representations of these decomposition strategies are provided in Figure 5 and Figure 6) 242 

The scheme's theoretical order of accuracy fundamentally depends on the proper determination of optimal linear weights 243 

for the multidimensional stencil combination. These weights, when correctly derived, enable the weighted superposition of 244 

sub-stencils to recover full high-order accuracy in smooth solution regions. While (Shi et al., 2002) indicated the theoretical 245 

possibility of computing these weights through Lagrange interpolation basis analysis, they omitted specific implementation 246 

details. In this section, we present the methods for constructing genuine two-dimensional WENO (WENO 2D) schemes using 247 

least squares method. 248 

987

654

321

987

654

321

987

654

321

987

654

321

(1) (2)

(3) (4)
 249 

Figure 5 Stencils of 3rd order WENO 2D. The high order stencil contains cells No.1~9, blue ones represent the cells in sub-250 

stencils (1) ~ (4). 251 

 252 
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 253 

Figure 6 Stencils of 5th order WENO 2D. The high order stencil contains cells No.1~25, blue ones represent the cells in sub-254 

stencils (1) ~ (9). 255 

 256 

We construct WENO 2D based on TPP and square stencil. As mentioned in previous section, a 𝑛-th order stencil contains 257 

𝑁 = 𝑛2 cells, and the full stencil (also called high-order stencil) width is ℎ = 𝑛. Decomposing the high-order stencil into 𝑠 =258 

(
𝑛+1

2
)
2
 sub-stencils, there are 𝑠𝑐 = 𝑠 cells in each sub-stencil (also called low-order stencil), and the sub-stencil width is 𝑙 =259 

𝑛+1

2
. We define 𝑝𝐻 as the high- order reconstruction polynomial, and 𝑝𝑖 represents 𝑖-th sub-stencil reconstruction polynomial, 260 

they share the same expression as Eq.(25) with different stencil width and coefficient 𝑎. For the reconstruction point (𝑥̂, 𝑦̂), 261 

suppose 𝑝𝐻(𝑥̂, 𝑦̂) is the reconstruction value of high-order stencil, the reconstruction values of sub-stencils are stored in vector 262 

𝒑 = (𝑝1(𝑥̂, 𝑦̂), 𝑝2(𝑥̂, 𝑦̂),⋯ , 𝑝𝑠(𝑥̂, 𝑦̂))
𝑇
. The intention of constructing the optimal linear weights is to determine the unique 263 

weights 𝜸 = (𝛾1, 𝛾2,⋯ , 𝛾𝑠), such that 264 

 
𝑝𝐻 = 𝑅𝐻𝒒̅ = 𝜸𝒑 (34)   
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where the elements of vector 𝒒̅ = (𝑞1, 𝑞2,⋯ , 𝑞𝑁)
𝑇 represent VIA of each cell in high-order stencil. 𝑅𝐻 = (𝑟𝐻𝑗) , 𝑗 = 1,2,… ,𝑁 265 

is the reconstruction matrix of high-order stencil. 266 

It should be noted that Eq.(34) appears overdetermined at first glance. However, subsequent analysis demonstrates that 267 

the solution obtained via the least squares method satisfies Eq.(34) exactly. Specifically, in the case of square stencils, the 268 

rank of the system defined by Eq.(34) becomes 𝑠, resulting in a unique solution for the linear system. This finding aligns with 269 

observations presented in Hu and Shu (1999) regarding their research on Triangular Meshes. 270 

The computation of 𝜸 requires the integration of both high-order and low-order reconstruction matrices into a unified 271 

linear system. For each sub-stencil 𝑖 we define the reconstruction matrix 𝑅𝑖 = (𝑟𝑖𝑘), 𝑘 = 1,2,… , 𝑠𝑐 (computed via Eq.(33)). 272 

and 𝑅𝐿𝑖 = (𝑟𝐿𝑖𝑗) , 𝑗 = 1,2,… ,𝑁 is the extension matrix of 𝑅𝑖. The matrix relationship is expressed as 273 

 (𝑅𝑖)1×𝑠𝑐(𝐸)𝑠𝑐×𝑁 = (𝑅𝐿𝑖)1×𝑁
 (35)   

where the subscripts denote matrix dimensions. The correspondence matrix 𝐸 = (𝑒𝑖𝑗), 𝑖 = 1,2,… , 𝑠𝑐;  𝑗 = 1,2,… ,𝑁 encodes 274 

the cell relationships between stencils: when the 𝑖-th cell in low-order stencil is the same as the 𝑗-th cell in high order stencil, 275 

𝑒𝑖𝑗 = 1, otherwise, 𝑒𝑖𝑗 = 0. 276 

Substitute Eq.(32) into Eq.(34), yield 277 

 
𝑅𝐻𝒒̅ =∑𝑅𝐿𝑖𝛾𝑖𝒒̅

𝑠

𝑖=1

 (36)   

We set 𝑅𝐿 = (𝑅𝐿1 , 𝑅𝐿2 , … , 𝑅𝐿𝑠)
𝑇
, Eq.(36) becomes 278 

 𝑅𝐿𝜸 = 𝑅𝐻 
(37)   

The unknown optimal weights vector 𝜸 can be determined by following least square procedure 279 

 𝜸 = (𝑅𝐿
𝑇𝑅𝐿)

−1𝑅𝐿
𝑇𝑅𝐻 

(38)   

However, the elements of 𝜸 could be negative, which would cause unstable. A split technique mentioned by (Shi et al., 280 

2002) was adopted to solve this problem. The optimal weights can be split into two parts: 281 

 
𝜸̃+ =

𝜃|𝜸| + 𝜸

2
, 𝜸̃− = 𝜸+ − 𝜸 (39)   

where the constant 𝜃 = 3. For keeping the sum of weights to 1, 𝜸̃± and new value of 𝜸± can be rescaled as: 282 

 
𝜎± =∑𝛾̃𝑖

±

𝑠

𝑖=1

 (40)   

and 283 

 
𝛾𝑖
± =

𝛾̃𝑖
±

𝜎±
 𝑖 = 1,2,… , 𝑠 (41)   

where 𝛾̃𝑖
± is the i-th element of 𝜸̃±, 𝛾𝑖

± is the 𝑖-th element of 𝜸±. 284 
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The WENO scheme adaptively assigns nonlinear weights 𝜔𝑖 , (𝑖 = 1,2,… , 𝑠)  to each candidate stencil to suppress 285 

unphysical oscillations during high-order reconstruction. Essentially, it gives greater weight to stencils identified as smooth 286 

over the local cell, while suppressing the influence of those containing discontinuities by assigning them smaller weights. 287 

Several nonlinear weighting schemes have been developed to meet these criteria, including WENO-JS (Jiang and Shu, 1996), 288 

WENO-Z (Borges et al., 2008), WENO-Z+ (Acker et al., 2016), WENO-Z+M (Luo and Wu, 2021), among others. 289 

In this work, we employ the WENO-Z formulation as our baseline scheme. While most existing WENO schemes were 290 

originally developed for one-dimensional problems, we propose a two-dimensional extension of WENO-Z through 291 

modification of τ, a crucial coefficient that governs the scheme's higher-order accuracy properties.  292 

For stencil 𝑖 the nonlinear weight is given as 293 

 
𝜔𝑖
± =

𝛼𝑖
±

∑ 𝛼𝑖
±𝑠

𝑖=1

 (42)   

 
𝛼𝑖
± = 𝛾𝑖

± (1 +
𝜏

𝛽𝑖 + 𝜀
) [1 + (

𝜏

𝛽𝑖 + 𝜀
)
2

] (43)   

 
𝜏 =

2

(𝑠 − 1)𝑠
∑ ∑ |𝛽𝜓 − 𝛽𝜂|

𝑠

𝜓=𝜂+1

𝑠−1

𝜂=1

 (44)   

where 𝜀 = 10−14  is introduced to prevent division by zero. The smooth indicators 𝛽𝑖  quantify the smoothness of 294 

reconstruction functions within the target cell. We employ a formulation analogous to that described in Zhu and Shu (2019),  295 

As mentioned in Eq.(24), all cells participating in reconstruction within HOPE's computational space can be treated as 296 

identical unit squares with ∆𝑥̂ = ∆𝑦̂ = 1. Thus, the smooth indicator for sub-stencil 𝑖 is expressed as: 297 

 
𝛽𝑖 =∑∬[

𝜕𝜁

𝜕𝑥̂𝜁1𝜕𝑦̂𝜁2
𝑝𝑖(𝑥̂, 𝑦̂)]

2

𝑑𝑥̂𝑑𝑦̂

𝛺

𝑙

𝜁=1

 (45)   

where 𝜁1 + 𝜁2 = 𝜁 and 𝜁 > 0, 𝜁1, 𝜁2 ∈ [0, 𝑛], and 𝑙 is the sub-stencil width. 298 

The reconstruction value on point (𝑥̂, 𝑦̂) is expressed by: 299 

 
𝑞(𝑥̂, 𝑦̂) =∑(𝜎+𝜔𝑖

+ − 𝜎−𝜔𝑖
−)𝑝𝑖(𝑥̂, 𝑦̂)

𝑠

𝑖=1

 (46)   

3.3 Treatment of the Panel Boundaries 300 

The cubed sphere grid comprises 12 panel boundaries, and the flux across the interface between any two panels must be 301 

computed at the quadrature points situated on the edges of the boundary cells, as depicted in Figure 7 (a). However, a challenge 302 

arises because the coordinates across these panel boundaries are discontinuous. Given that the TPP reconstruction necessitates 303 

a square stencil, the values of the cells outside the domain (referred to as ghost cells) must be computed through interpolation 304 



 

17 

 

within the adjacent panel, as illustrated in Figure 7 (b). While Ullrich et al. (2010) proposed a one-sided interpolation scheme, 305 

our testing with the HOPE model revealed that using a similar one-sided ghost cell interpolation approach around panel 306 

boundaries resulted in instability when scheme exceeded 7th order of accuracy. To address this limitation, we redesigned the 307 

ghost cell interpolation scheme to incorporate information from both panels adjacent to the boundary. This modified approach 308 

ensures stable integration even for very high-order schemes, as validated in tests up to 13th-order accuracy. 309 

(a) 

Panel 4 Panel 1

 (b)  (c)  310 

Figure 7 Points and cells close to panel boundary. (a) Flux points (red points) on the interface between Panel 1 and Panel 4, the 311 

flux across each panel at these points are determined by Riemann solver, which merges the reconstruction outcomes from both 312 

panels into a single flux value; (b) Ghost cells (shaded cells) out of Panel 4 boundary, with green points representing the GQPs in 313 

these cells; (c) Cells requirement for 5th order ghost cell interpolation stencil, red points represent the GQPs located in the ghost 314 

cell on Panel 4, the blue shaded region represents the TPP reconstruction stencil (on Panel 1) to interpolate these red GQPs. 315 

3.3.1 Ghost Cell Interpolation 316 

To achieve arbitrary high-order accuracy, we propose a ghost cell interpolation scheme that incorporates information 317 

from both sides of the panel boundary. Since the ghost cell values are inherently unknown prior to interpolation, our approach 318 

involves an initial estimation through an iterative process. Specifically, the method iteratively performs ghost cell interpolation 319 

until the increments of the cell values converge to within a specified tolerance. 320 

Through mathematical analysis (detailed in the Appendix), we demonstrate that this iterative process can be expressed 321 

as a linear mapping, thereby eliminating the need for actual iterations. However, direct computation of the mapping matrix 322 

requires inversion of a large matrix, which poses significant computational and memory challenges. To address this, we 323 

implement the iterative interpolation process using PyTorch and leverage its automatic differentiation capability to efficiently 324 

obtain the interpolation matrix. 325 

The complete methodology, as derived in the Appendix, proceeds as follows: 326 

1. Initialization: All ghost cell values are initialized to zero (denoted as 𝒈(0) =  0 , where the superscript indicates the 327 

iteration number). 328 



 

18 

 

2. Interpolation: The Gaussian quadrature points (GQPs) in the ghost cells are interpolated using the Tensor Product 329 

Polynomial (TPP) stencil. For instance, considering two adjacent panels (Figure 7(a)), any out-domain cell in Panel 4 330 

(shaded cell in Figure 7(b)) contains GQPs that physically reside in Panel 1. These GQPs are interpolated using the TPP 331 

stencil shown in Figure 7(c), which incorporates relevant ghost cells from Panel 1. 332 

3. Update and convergence check: After interpolating all GQPs, the ghost cell values are updated via Gaussian quadrature 333 

(Eq. (22)), yielding 𝒈(1). The L2-norm residual 𝑟(𝑘) = ‖𝒈(𝑘+1) − 𝒈(𝑘)‖
2
 is then computed. Steps 2-3 repeat until 𝑟(𝑘) <334 

𝜖, where 𝜖 = 1. 𝑒−14 for double precision and 𝜖 = 1. 𝑒−5 for single precision. In practice, convergence typically occurs 335 

within 10 iterations, so we fix the iteration count at 10 for consistency. 336 

This process establishes a linear mapping 𝒢: 𝒒 → 𝒈 from known cell values to ghost cell values. As proven in Eq.(A.12) 337 

(Appendix), the mapping's linearity implies that 𝒢 =
𝜕𝒈

𝜕𝒒
   forms a matrix, which we efficiently compute using PyTorch's 338 

autograd functionality. This approach avoids explicit matrix inversion while maintaining numerical precision. 339 

It is important to note that overlapping GQPs occur at the corner positions of the cubed-sphere grid, as illustrated by the 340 

magenta points in Figure 2(b). These points lie on the interface shared by adjacent panels (e.g., Panel 1 and Panel 5). 341 

Consequently, during ghost value interpolation, two distinct interpolated values are obtained at these overlapping points – one 342 

from each adjoining panel. The final interpolated value is computed as the average of these two values. Since the interpolation 343 

performed on each individual panel is high-order, the approximation order is preserved when taking this average. 344 

𝒢 is a sparse matrix containing many zero entries. To avoid unnecessary memory costs, we adopt the Compressed Sparse 345 

Row (CSR) format for storing 𝒢 . Furthermore，the size of 𝒢  is extremely large，making direct application 346 

of 𝑡𝑜𝑟𝑐ℎ. 𝑎𝑢𝑡𝑜𝑔𝑟𝑎𝑑. 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙. 𝑗𝑎𝑐𝑜𝑏𝑖𝑎𝑛 to generate 𝒢 computationally infeasible. Our implementation for generating 347 

ghost cell interpolation matrix achieves significant acceleration and substantially reduces VRAM demand compared to 348 

PyTorch's native “𝑡𝑜𝑟𝑐ℎ. 𝑎𝑢𝑡𝑜𝑔𝑟𝑎𝑑. 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙. 𝑗𝑎𝑐𝑜𝑏𝑖𝑎𝑛” function. The key optimizations are: 349 

1. Parallel Multi-Row Computation: Utilizing “𝑡𝑜𝑟𝑐ℎ. 𝑣𝑚𝑎𝑝 ” to encapsulate “𝑡𝑜𝑟𝑐ℎ. 𝑓𝑢𝑛𝑐. 𝑣𝑗𝑝 ”, enabling simultaneous 350 

computation of multiple matrix rows. 351 

2. CSR Compression & Incremental Disk Storage: 352 

a) Employing Compressed Sparse Row (CSR) format for matrix representation. 353 

b) Implementing incremental disk storage, where computed data batches are immediately written to disk after 354 

processing, avoiding prolonged VRAM retention. 355 

3. Tunable Batch Processing: Adjusting the number of rows processed per iteration maximizes GPU utilization while 356 

respecting VRAM constraints (e.g., 24GB on NVIDIA RTX 3090). 357 
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It should be note that the model grid does not change during simulation, the ghost interpolation matrix 𝒢 needs to be 358 

calculated only once in initialization progress. 359 

3.3.2 Fields Conversion Between Panels 360 

Due to the differing coordinate systems across panels, field variables must be appropriately transformed when 361 

transferring information between adjacent panels. To illustrate this process, we consider the interface between Panel 1 and 362 

Panel 4, as depicted in Figure 2(a) and Figure 7(a). Although flux points are shared between the two panels, their coordinate 363 

representations are discontinuous across the interface. 364 

To ensure consistency, two key transformations are required: 365 

1. Metric reset for mass variables: The mass-related prognostic quantities must be recomputed in the target panel's 366 

coordinate system to maintain metric consistency. 367 

2. Wind vector transformation: Velocity components (or other vector quantities) must be converted from the source 368 

panel's local coordinate frame to that of the target panel. 369 

This coordinate conversion ensures proper continuity and physical consistency when interpolating or exchanging data 370 

across panel boundaries. 371 

Suppose 𝒒1 = [(√𝐺𝜙)1, (√𝐺𝜙𝑢)1, (√𝐺𝜙𝑣)1]
𝑇
  and 𝒒4 = [(√𝐺𝜙)4, (√𝐺𝜙𝑢)4, (√𝐺𝜙𝑣)4]

𝑇
   represent the fields on 372 

panel 1 and 4. The mass field conversion from panel 4 to panel 1 is expressed by 373 

 
(√𝐺𝜙)

4

1
=
√𝐺4

√𝐺1
(√𝐺𝜙)

1
 (47)   

the subscript represents the target panel and the superscript stands for source panel. 374 

The transformation of momentum vectors between panels is performed in two sequential steps to maintain proper tensor 375 

consistency. The contravariant momentum components in Panel 1 are first projected onto the global spherical coordinate 376 

system using the transformation matrix 𝐽, as defined in Eq.(10). The resulting spherical momentum components are then 377 

transformed into the contravariant representation specific to Panel 4, ensuring compatibility with the target panel's local 378 

coordinate system. 379 

 
[
(√𝐺𝜙𝑢𝑠)1

(√𝐺𝜙𝑣𝑠)1

] = 𝐽1 [
(√𝐺𝜙𝑢)

1

(√𝐺𝜙𝑣)
1

] (48)   

 
[
(√𝐺𝜙𝑢)

4

(√𝐺𝜙𝑣)
4

] = 𝐽4
−1√𝐺4

√𝐺1
[
(√𝐺𝜙𝑢𝑠)1

(√𝐺𝜙𝑣𝑠)1

] (49)   

where 𝐽1 is the 𝐽 matrix on panel 1, 𝐽4
−1 is the inverse matrix of 𝐽 on panel 4. (𝑢𝑠, 𝑣𝑠) are zonal wind and meridional wind, 380 
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(𝑢, 𝑣) are contravariant wind components. Since the vector conversion is linear process, Eq.(48) and Eq.(49) can be merged 381 

into following equation 382 

 
[
(√𝐺𝜙𝑢)

4

(√𝐺𝜙𝑣)
4

] = 𝐶1,4 [
(√𝐺𝜙𝑢)

1

(√𝐺𝜙𝑣)
1

] (50)   

where matrix 𝐶1,4 =
√𝐺4

√𝐺1
𝐽4
−1𝐽1, the subscript stands for converting vector form panel 1 to panel 4. 383 

The mass and vector are also need to be converted on GQPs in the same manner. 384 

3.4 Riemann Solver 385 

Following spatial reconstruction, discontinuous solutions arise on either side of each flux point location. Since the 386 

majority of atmospheric flow speeds correspond to small Mach numbers, we adopt the Low Mach number Approximate 387 

Riemann Solver (Chen et al., 2013) and AUSM+-up (Liou, 2006; Ullrich et al., 2010) as Riemann solvers to determine the 388 

flux at the edge quadrature points (EQPs). 389 

3.4.1 Low Mach number Approximate Riemann Solver (LMARS) 390 

Spatial reconstruction gives the left and right state vector, 391 

 

𝒒𝐿 =

[
 
 
 (√𝐺𝜙)𝐿

(√𝐺𝜙𝑢)
𝐿

(√𝐺𝜙𝑣)
𝐿]
 
 
 

, 𝒒𝑅 =

[
 
 
 (√𝐺𝜙)𝑅

(√𝐺𝜙𝑢)
𝑅

(√𝐺𝜙𝑣)
𝑅]
 
 
 

 
(51)   

First of all, we convert the contravariant wind 𝑢 to physical speed 𝑢⊥ that is perpendicular to the cell edge. 392 

 𝑢⊥ =
𝑢

√𝐺𝑖𝑖
, 𝑖 = {

1, 𝑥 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛
2, 𝑦 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

 (52)   

For example, in 𝑥 direction, 𝑢⊥ =
𝑢

√𝐺11
, and there’s no summation over 𝑖 in Eq.(52). 393 

The wind speed 𝑚∗ and geopotential 𝜙 are calculated by 394 

 
𝑚∗ =

1

2
(𝑢𝐿

⊥ + 𝑢𝑅
⊥ −

𝜙𝑅 − 𝜙𝐿
𝑐

) (53)   

 
𝜙 =

1

2
[𝜙𝐿 + 𝜙𝑅 − 𝑐(𝑢𝑅

⊥ − 𝑢𝐿
⊥)] (54)   

 𝑐 =
𝑐𝐿 + 𝑐𝑅
2

 (55)   

 𝑐𝐿 = √𝜙𝐿 , 𝑐𝑅 = √𝜙𝑅 
(56)   

𝑐 is the phase speed of external gravity wave, the subscript 𝐿, 𝑅 represent the left and right side of cell edge. 395 

 Once 𝑚∗ is determined, we convert it back to contravariant speed by 396 
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 𝑚 = 𝑚∗√𝐺𝑖𝑖 (57)   

We define the pressure-driven flux as 397 

 
𝑃 =

1

2
√𝐺𝜙𝑡

2 (58)   

The flux across the cell edge is then given by 398 

 
𝑭 =

1

2
𝑚[(𝒒𝐿 + 𝒒𝑅) − 𝑠𝑖𝑔𝑛(𝑚)(𝒒𝑅 − 𝒒𝐿)] + 𝑷 (59)   

 
𝑷 = (

0
𝐺1𝑖𝑃
𝐺2𝑖𝑃

) , 𝑖 = {
1, 𝑥 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛
2, 𝑦 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

 (60)   

For calculation of 𝑮 (the flux in y direction) the method is similar. 399 

3.4.2 Advection Upstream Splitting Method for All Speeds (AUSM+-up) 400 

The differences between AUSM+-up and LMARS lie in the method of determining the wind speed 𝑚∗ and pressure-401 

driven flux 𝑃. In AUSM+-up 402 

 𝑚∗ = 𝑐𝑀 
(61)   

where 𝑐 denotes the gravity phase speed defined in Eq.(55). Mach number 𝑀 is expressed as 403 

 
𝑀 =ℳ(4)

+ (𝑀𝐿) +ℳ(4)
− (𝑀𝑅) − 𝐾𝑝max(1 − 𝜎𝑀̅

2, 0)
𝑃𝑅 − 𝑃𝐿
𝑐2𝜙

 (62)   

where 𝑀𝐿 =
𝑢𝐿
⊥

𝑐
, 𝑀𝑅 =

𝑢𝑅
⊥

𝑐
, 𝑀̅2 =

(𝑢𝐿
⊥)

2
+(𝑢𝑅

⊥)
2
 

2𝑐2
, and 404 

 
ℳ(4)

± (𝑀) = {

1

2
(𝑀 ± |𝑀|), |𝑀| ≥ 1

ℳ(2)
± (𝑀)[1 ∓ 16𝛽ℳ(2)

∓ (𝑀)], |𝑀| < 1
 

(63)   

 
ℳ(2)

± (𝑀) = ±
1

4
(𝑀 ± 1)2 (64)   

The pressure-driven flux is expressed as 405 

 𝑃 = 𝒫(5)
+ (𝑀𝐿)𝑃𝐿 +𝒫(5)

− (𝑀𝑅)𝑃𝑅 +−2𝐾𝑢𝒫(5)
+ (𝑀𝐿)𝒫(5)

− (𝑀𝑅)𝜙𝑐(𝑢𝑅
⊥ − 𝑢𝐿

⊥) 
(65)   

where 𝑃𝐿 =
1

2
𝜙𝐿
2, 𝑃𝑅 =

1

2
𝜙𝑅
2,  and 406 

 
𝒫(5)
± = {

1

2
(1 ± 𝑠𝑖𝑔𝑛(𝑀)), |𝑀| ≥ 1

ℳ(2)
± (𝑀)[(±2 −𝑀) ∓ 16𝛼𝑀ℳ(2)

∓ (𝑀)], |𝑀| < 1
 

(66)   

The mathematical meaning of 𝑠𝑖𝑔𝑛(𝑀) (returning -1, 0, or 1 based on the sign of M) is standard. The coefficients take the 407 

values: 𝜎 = 1, 𝛼 =
3

16
, 𝛽 =

1

8
, 𝐾𝑝 =

1

4
, 𝐾𝑢 =

3

4
. 408 

Once 𝑚∗ and 𝑃 are computed, the flux across the cell edge can be calculated using Eqs.(57) to (60). 409 
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3.5 Temporal Integration 410 

We use the explicit Runge-Kutta (RK) as time marching scheme, Wicker and Skamarock (2002) described a 3rd order 411 

RK with three stages (achieves third-order accuracy exclusively when applied to linear problems). For the prognostic fields 412 

𝒒, the integration step from time slot 𝑛 to 𝑛 + 1: 413 

 
𝒒∗ = 𝒒𝑛 +

∆𝑡

3
(
𝜕𝒒𝑛

𝜕𝑡
) (67)   

 
𝒒∗∗ = 𝒒∗ +

∆𝑡

2
(
𝜕𝒒∗

𝜕𝑡
) (68)   

 
𝒒𝑛+1 = 𝒒𝑛 + ∆𝑡 (

𝜕𝒒∗∗

𝜕𝑡
) (69)   

where ∆𝑡  is the time step, and temporal tendency terms 
𝜕𝒒

𝜕𝑡
  can be obtain by Eqs.(15) and (16). In our numerical 414 

experiments, the choice of different time marching schemes influenced only the integration stability; it had no significant 415 

impact on the simulation norm errors, non-oscillatory property, or conservation property. 416 

4. High Performance Implementation and Automatic Differentiation 417 

The spatial operator and temporal integration of HOPE can be easily implemented using PyTorch. Specifically, the spatial 418 

reconstruction given by Eq.(32) is implemented as a convolution operation, while the Gaussian quadrature can be efficiently 419 

expressed as a matrix-vector multiplication. Leveraging PyTorch's highly optimized built-in functions for both convolution 420 

and quadrature operations ensures superior performance on GPUs. 421 

Furthermore, PyTorch's role as a versatile AI development platform provides automatic differentiation capabilities across 422 

the entire computation graph. This streamlines implementation and enables efficient gradient computation for all components. 423 

For the reconstruction implementation. Suppose the cubed sphere grid comprises 𝑛𝑐 cells in 𝑥-direction within each 424 

panel, including ghost cells. The panel number is 𝑛𝑝, and the shallow water equation involves 𝑛𝑣 prognostic variables per 425 

cell, we write the cell state tensor 𝒒 with the shape (𝑛𝑣, 𝑛𝑝, 1, 𝑛𝑐 , 𝑛𝑐). The TPP reconstruction weight tensor 𝑹 has shape 426 

(𝑛𝑝𝑜𝑐, 1, 𝑠𝑤 , 𝑠𝑤), where 𝑛𝑝𝑜𝑐 is the number of points required to be interpolated within each cell (including EQP and CQP), 427 

𝑠𝑤 denotes the stencil width (same as the stencil width represented by 𝑛 in Section 3.1). The reconstruction can be executed 428 

by a simple command (pseudo-code):  429 

 𝒒𝑟𝑒𝑐 = 𝑡𝑜𝑟𝑐ℎ. 𝑛𝑛. 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙. 𝑐𝑜𝑛𝑣2𝑑(𝒒. 𝑣𝑖𝑒𝑤(𝑛𝑣𝑛𝑝, 1, 𝑛𝑐 , 𝑛𝑐), 𝑹). 𝑣𝑖𝑒𝑤(𝑛𝑣, 𝑛𝑝, 𝑛𝑝𝑜𝑐, 𝑛𝑐 , 𝑛𝑐) (70)   

where the shape of 𝒒𝑟𝑒𝑐 is (𝑛𝑣, 𝑛𝑝, 𝑛𝑝𝑜𝑐 , 𝑛𝑐 , 𝑛𝑐). 430 

We exclusively demonstrate the flux computation procedure at cell edges as an illustrative example, where Gaussian 431 

quadrature is employed to obtain edge-averaged fluxes. The analogous procedure applies to source term integration at CQPs. 432 
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The edge state tensor 𝒒𝑒, corresponding to the EQPs along each cell edge, is subsequently expressed as: 433 

 𝒒𝑒 = 𝒒𝑟𝑒𝑐(… , 𝑝𝑒𝑠: 𝑝𝑒𝑒, : , : ) (71)   

where subscript 𝑒 represents edges on cell including 𝐿(𝑙𝑒𝑓𝑡), 𝑅(𝑟𝑖𝑔ℎ𝑡), 𝐵(𝑏𝑜𝑡𝑡𝑜𝑚), 𝑇(𝑡𝑜𝑝). 𝑝𝑒𝑠, 𝑝𝑒𝑒 are start and end 434 

point indices on edge 𝑒. The shape of 𝒒𝑒 (including 𝒒𝐿 , 𝒒𝑅 , 𝒒𝐵, 𝒒𝑇) is  (𝑛𝑣, 𝑛𝑝, 𝑛𝑝𝑜𝑒 , 𝑛𝑐 , 𝑛𝑐). 𝑛𝑝𝑜𝑒 denotes the number of edge 435 

quadrature points (EQPs). This value is computed as 𝑛𝑝𝑜𝑒 = 𝑝𝑒𝑒 − 𝑝𝑒𝑠 in PyTorch implementations, whereas in Fortran it is 436 

calculated as 𝑛𝑝𝑜𝑒 = 𝑝𝑒𝑒 − 𝑝𝑒𝑠 + 1, reflecting the difference in array indexing conventions between the two languages. 437 

After spatial reconstruction, the resulting data is utilized in the Riemann solver for EQPs and for source term computation 438 

on CQPs.  Subsequently, integration is performed on both EQPs and CQPs to calculate the net flux and the cell-averaged 439 

source term tendency. The cell-edge flux tensor 𝑭 with dimensions  (𝑛𝑣, 𝑛𝑝, 𝑛𝑝𝑜𝑒 , 𝑛𝑐 , 𝑛𝑐)   is obtained after the Riemann solver. 440 

There is a dimensionality mismatch between the flux tensor and weight tensor during using matrix multiplication. For 441 

the Gaussian quadrature implementation, consider an edge Gaussian quadrature weight tensor 𝒈𝑒 with shape (𝑛𝑝𝑜𝑒), if an 442 

edge flux tensor 𝑭̃ has shape (𝑛𝑣, 𝑛𝑝, 𝑛𝑐 , 𝑛𝑐 , 𝑛𝑝𝑜𝑒), the Gaussian quadrature can be expressed by: 443 

 𝑭𝑔 = 𝑡𝑜𝑟𝑐ℎ.𝑚𝑎𝑡𝑚𝑢𝑙(𝑭̃, 𝒈𝑒) (72)   

where the shape of 𝑭𝑔(𝑛𝑣, 𝑛𝑝, 𝑛𝑐 , 𝑛𝑐) is the average flux on edge. In this operation, 𝑛𝑝𝑜𝑒 must occupy the last dimension of 444 

𝑭̃，to permit “𝑡𝑜𝑟𝑐ℎ.𝑚𝑎𝑡𝑚𝑢𝑙” execution. We note, however, that in the flux tensor 𝑭 obtained from the Riemann solver, 445 

𝑛𝑝𝑜𝑒corresponds to the third dimension, direct matrix multiplication is therefore not feasible. 446 

To address this dimensionality issue, two methods are available. The first method involves rearranging the 𝑛𝑝𝑜𝑐 447 

dimension to the last position using the “𝑡𝑜𝑟𝑐ℎ. 𝑡𝑒𝑛𝑠𝑜𝑟. 𝑝𝑒𝑟𝑚𝑢𝑡𝑒” operation in PyTorch, this allows Gaussian integrations to 448 

be naturally implemented through the "𝑡𝑜𝑟𝑐ℎ.𝑚𝑎𝑡𝑚𝑢𝑙 " operation. The second method, which avoids the need for the 449 

"permute" operation, maintains the original dimension sequence. Instead, Gaussian integrations are performed using the 450 

"𝑡𝑜𝑟𝑐ℎ. 𝑒𝑖𝑛𝑠𝑢𝑚" function. This function sums the product of the elements of the input arrays along dimensions specified 451 

using a notation based on the Einstein summation convention. 452 

 𝑭𝑔 = 𝑡𝑜𝑟𝑐ℎ. einsum(′𝑣𝑛𝑝𝑖𝑗, 𝑝 → 𝑣𝑛𝑖𝑗′, 𝑭, 𝒈𝑒) (73)   

We have conducted performance tests comparing the two methods, and the results indicate that the second method is 453 

approximately 5% faster than the first. Specifically, the first method took 649 seconds, while the second method took 616 454 

seconds. The test was set as a one-day steady state geostrophic flow (with details provided in section 5.2) simulation at a 455 

resolution of C900 (∆𝑥 = ∆𝑦 = 0.1°) , using 3rd order accuracy reconstruction stencil. The time step was 30 seconds, and the 456 

default data type used was “𝑡𝑜𝑟𝑐ℎ. 𝑓𝑙𝑜𝑎𝑡32” (single precision). 457 

The Riemann solver implementation on flux points is way easier, only needs to call “𝑡𝑜𝑟𝑐ℎ. 𝑠𝑖𝑔𝑛” for Eq.(59), while all 458 

other operations can be executed using basic arithmetic: addition, subtraction, multiplication, and division. During a Runge-459 

Kutta sub-step, there are no dependencies, and neither "for" loops nor "if" statements are required in the HOPE kernel code. 460 
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This algorithm fully leverages the capabilities of the GPU. 461 

5. Numerical Experiments 462 

The HOPE dynamical core is evaluated using the standard test cases (Test 1, 2, 5, and 6) for the spherical shallow water 463 

model as described in Williamson et al. (1992), along with the perturbed jet flow case proposed by Galewsky et al. (2004). 464 

Additionally, a dam-break experiment is designed to demonstrate the HOPE model's capability in capturing shock waves. 465 

In our experiments, the grid resolutions are denoted by the count of cells along one dimension on each panel of the cubed 466 

sphere; for instance, C90 signifies that each panel is subdivided into a 90 × 90 grid, corresponding to a grid interval of ∆𝑥 =467 

∆𝑦 = 1°. 468 

We measure the conservation errors by defining the normalized error 𝜖𝑟 of the variable 𝜂 as 𝜖𝑟 =
𝐼𝑔(𝜂

𝑛)−𝐼𝑔(𝜂
0)

𝐼𝑔(𝜂
0)

, where 𝜂0 469 

and 𝜂𝑛 stand for 𝜂 value at initial time and time slot 𝑛, respectively. The global integral is defined as: 470 

 
𝐼(𝜂) = ∑∑∑√𝐺𝑖,𝑗,𝑝𝜂𝑖,𝑗,𝑝

𝑛𝑐

𝑖=1

𝑛𝑐

𝑗=1

𝑛𝑝

𝑝=1

 

(74)   

where 𝜂𝑖,𝑗,𝑝 represents the average value of 𝜂 in cell (𝑖, 𝑗, 𝑝) 471 

We use three kinds of norm errors to measure the simulation errors, 472 

 
𝐿1 =

𝐼[𝜙(𝑖, 𝑗, 𝑝) − 𝜙𝑟𝑒𝑓(𝑖, 𝑗, 𝑝)]

𝐼[𝜙𝑟𝑒𝑓(𝑖, 𝑗, 𝑝)]
 

(75)   

 

𝐿2 =
√
𝐼 [(𝜙(𝑖, 𝑗, 𝑝) − 𝜙𝑟𝑒𝑓(𝑖, 𝑗, 𝑝))

2
]

𝐼[𝜙𝑟𝑒𝑓
2 (𝑥, 𝑦, 𝑝)]

 

(76)   

 
𝐿∞ =

max|𝜙(𝑖, 𝑗, 𝑝) − 𝜙𝑟𝑒𝑓(𝑖, 𝑗, 𝑝)|

max|𝜙𝑟𝑒𝑓(𝑖, 𝑗, 𝑝)|
 

(77)   

the subscript 𝑟𝑒𝑓 represents reference state. 473 

5.1 Cosine Bell Advection 474 

The Solid Body Rotation Cosine Bell (Case 1 from Williamson (1992)) is commonly employed to assess noise generated 475 

by panel boundaries, as noted by Chen and Xiao (2008), Ullrich et al. (2010). The wind field is given by 476 

 𝑢𝑠 = 𝑢0(cos𝜃 cos𝛼 + cos 𝜆 sin 𝜃 sin𝛼) (78)   

 𝑣𝑠 = −𝑢0 sin 𝜆 sin 𝛼 (79)   

where 𝑢𝑠, 𝑣𝑠 are zonal wind and meridional wind, earth radius is 𝑎 = 6371220 𝑚, basic flow speed 𝑢0 =
2𝜋𝑎

12∗86400
 𝑚/𝑠. The 477 

initial height is defined as 478 
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ℎ(𝜆, 𝜃) = {ℎ0 (1 + cos

𝜋𝑑𝑠
𝑅
) , 𝑟 < 𝑅

0, 𝑟 ≥ 𝑅
 

(80)   

where 𝜆, 𝜃 are longitude and latitude. The basic height ℎ0 = 1000 𝑚. The great circle distance between (𝜆, 𝜃) and the initial 479 

center point of cosine bell (𝜆𝑐, 𝜃𝑐) = (3𝜋/2,0)  is expressed by 𝑑𝑠 = 𝑎 acos[sin 𝜃𝑐 sin 𝜃 + cos𝜃𝑐 cos𝜃 cos(𝜆 − 𝜆𝑐)] . The 480 

radius 𝑅 = 𝑎/3. 481 

Figure 8 presents the norm errors for a 12-day simulation at 𝛼 = 0; results for 𝛼 = 𝜋/2 are identical. The temporal 482 

evolution of 𝐿1 and 𝐿2 norm errors does not exhibit a pronounced signature attributable to panel boundaries. In contrast, the 483 

𝐿∞ norm error evolution shows significant sensitivity to panel boundaries, varying considerably with grid resolution and 484 

reconstruction order. When using low resolution and low reconstruction order (TPP3 with C30 grid), oscillations induced by 485 

panel boundaries are relatively weak. However, as the model resolution or reconstruction order increases, the influence of 486 

panel boundaries on the 𝐿∞ norm error manifests as a distinct four-peak pattern, corresponding to the four longitudinally 487 

aligned panel boundaries of the cubed-sphere grid. 488 

 489 

Figure 8 The variation of norm errors during simulation days for the cosine bell advection test case, with direction 490 

parameter 𝛼 = 0. The rows represent reconstruction schemes TPP3, TPP5 and TPP7, the columns stand for grid C30, C45, 491 

C90 and C180. 492 

Figure 9 shows the 12-day simulation norm errors for 𝛼 = 𝜋/4. In this test configuration, the cosine bell initially moves 493 

alone the interface between Panel 1 and Panel 5, and subsequently moves along the interface between Panel 3 and Panel 6. 494 

The temporal evolution of 𝐿1 and 𝐿2 norm errors display two gentle peaks, corresponding to the errors generated as the cosine 495 
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bell crosses these panel interfaces. Similar to Figure 8, the 𝐿∞ norm error progressively exceeds the 𝐿1 and 𝐿2 norm errors as 496 

grid resolution and reconstruction order increase. 497 

 498 

Figure 9 The variation of norm errors during simulation days for the cosine bell advection test case, with direction 499 

parameter 𝛼 = 𝜋/4 . The rows represent reconstruction schemes TPP3, TPP5 and TPP7, the columns stand for grid C30, 500 

C45, C90 and C180. 501 

Because the Cosine Bell field lacks infinite continuity, the convergence rate of the norm errors cannot exceed second 502 

order in our tests, regardless of the reconstruction order employed. This observation aligns with the key point emphasized in 503 

our paper: high-order numerical methods achieve their design accuracy only when the flow field is sufficiently smooth. 504 

Discontinuities in the flow field violate the fundamental premise of polynomial reconstruction (as discontinuities impair the 505 

continuity of higher derivatives, leading to non-convergence of the Taylor series). This inherent sensitivity to smoothness is 506 

precisely the factor causing norm errors to be influenced by cubed-sphere panel boundaries. When using low-order 507 

reconstruction schemes at low resolutions, the Tensor Product Polynomial (TPP) reconstruction employs lower-degree 508 

polynomials and is consequently less sensitive to the smoothness of the flow field. Conversely, high-order TPP reconstruction 509 

requires the flow field to possess higher-order continuity to maintain accuracy; it is thus more sensitive to discontinuities. 510 

Insufficiently smooth flow fields can introduce numerical oscillations with high-order schemes. Therefore, while TPP5 and 511 

TPP7 yield lower 𝐿∞ norm error magnitudes than TPP3, they exhibit more pronounced oscillations caused by the cubed-512 

sphere panel boundaries. 513 
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5.2 Steady State Geostrophic Flow 514 

Steady state geostrophic flow is the 2nd case in Williamson et al. (1992), it provided an analytical solution for spherical 515 

shallow water equations, it was widely used in accuracy test for shallow water models. The analytical solution is a steady 516 

state, which means the initial filed is the exact solution. The initial wind field replicates the formulation given in Eqs.(78) and 517 

(79), while the initial geopotential is expressed as  518 

 
𝜙 = 𝜙0 − (𝑎Ω𝑢0 +

𝑢0
2

2
) (− cos 𝜆 cos𝜃 sin𝛼 + sin 𝜃 cos𝛼)2 

(81)   

where Ω = 7.292 × 10−5 𝑠−1 is the earth rotation angular velocity, basic geopotential 𝜙0 = 29400 𝑚
2/𝑠2,  𝛼 = 0  denotes 519 

the rotation angle transcribed between the physical north pole and the center of the northern panel on the cubed-sphere grid, 520 

and gravity acceleration 𝑔 = 9.80616 𝑚/𝑠2. The conversion between the spherical wind (𝑢𝑠, 𝑣𝑠) and contravariant wind is 521 

given by Eq.(9). 522 

We simulated the steady state geostrophic flow over one period (12 days) to test the norm errors and corresponds 523 

convergence rate. Since the norm error becomes too small to express by double precision number, all of the experiments were 524 

based on the quadruple precision version of HOPE. Time steps were set to ∆𝑡 = 600, 400, 200, 100, 50 𝑠 for C30, C45, C90, 525 

C180 and C360, respectively. 526 

As shown in Figure 10, errors near the panel boundaries of the cubed-sphere grid are significantly higher than those in 527 

the central regions, confirming the presence of grid imprinting. Furthermore, we implemented the AUSM-up+ Riemann solver 528 

(consistent with the scheme described in Ullrich et al. (2010)) as an alternative to LMARS. While computationally more 529 

complex, AUSM+-up substantially reduces simulation errors. Comparative analysis of Figure 10 (a) and (b) demonstrates that 530 

the maximum absolute error decreases from 8.792×10⁻⁵ (LMARS) to 2.413×10⁻⁵ (AUSM+-up), while convergence rates 531 

remain unchanged. 532 

 533 

Figure 10 Numerical errors (simulation result minus exact solution) of geopotential for steady state flow with Riemann solvers (a) 534 

LMARS and (b) AUSM+-up. The reconstruction scheme is TPP5, and the model resolution is C90. 535 
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Performance benchmarks using HOPE's Fortran implementation on a C90 grid show that simulating 12 days with a 200-536 

second integration time step requires 49.4 seconds for LMARS versus 57.34 seconds for AUSM+-up. This demonstrates that 537 

Riemann solver selection critically impacts simulation outcomes, consistent with the discussions in Ullrich et al. (2010). 538 

Table 1 Norm errors and convergence rates of steady state geostrophic flow at day 12, with LMARS as Riemann Solver. 539 

TPP3 C30 C45 C90 C180 C360 

𝐿1 error 1.8853E-03 5.6474E-04 7.0960E-05 8.8777E-06 1.1099E-06 

𝐿1 rate 
 

2.9731  2.9925  2.9988  2.9998  

𝐿2 error 2.1484E-03 6.4171E-04 8.0500E-05 1.0069E-05 1.2588E-06 

𝐿2 rate 
 

2.9802  2.9949  2.9991  2.9998  

𝐿∞ error 4.3242E-03 1.2932E-03 1.6201E-04 2.0275E-05 2.5350E-06 

𝐿∞ rate 
 

2.9770  2.9968  2.9983  2.9997  

TPP5 
     

𝐿1 error 3.6122E-06 4.7493E-07 1.4827E-08 4.6322E-10 1.4474E-11 

𝐿1 rate 
 

5.0039  5.0014  5.0004  5.0002  

𝐿2 error 5.2427E-06 6.9169E-07 2.1627E-08 6.7584E-10 2.1119E-11 

𝐿2 rate 
 

4.9954  4.9992  5.0000  5.0001  

𝐿∞ error 1.6810E-05 2.2451E-06 7.0534E-08 2.2070E-09 6.8985E-11 

𝐿∞ rate 
 

4.9652  4.9923  4.9982  4.9996  

TPP7 
     

𝐿1 error 8.1697E-08 4.7967E-09 3.7678E-11 2.9547E-13 2.3125E-15 

𝐿1 rate  6.9922  6.9922  6.9946  6.9974  

𝐿2 error 8.7991E-08 5.1644E-09 4.0507E-11 3.1728E-13 2.4823E-15 

𝐿2 rate 
 

6.9931  6.9943  6.9963  6.9979  

𝐿∞ error 1.4741E-07 8.6376E-09 6.7814E-11 5.3387E-13 4.1901E-15 

𝐿∞ rate  6.9971  6.9929  6.9889  6.9934  

TPP9 
     

𝐿1 error 7.8909E-10 2.1780E-11 4.3925E-14 8.6359E-17 
 

𝐿1 rate  8.8537  8.9538  8.9905  
 

𝐿2 error 9.5638E-10 2.6409E-11 5.3341E-14 1.0494E-16 
 

𝐿2 rate  8.8526  8.9516  8.9896  
 

𝐿∞ error 2.3946E-09 6.6773E-11 1.3547E-13 2.6644E-16 
 

𝐿∞ rate  8.8285  8.9452  8.9899  
 

TPP11 
     

𝐿1 error 1.1908E-10 1.3799E-12 6.7696E-16 3.3197E-19 
 

𝐿1 rate  10.9943  10.9932  10.9938  
 

𝐿2 error 1.3084E-10 1.5186E-12 7.4489E-16 3.6500E-19 
 

𝐿2 rate  10.9904  10.9934  10.9949  
 

𝐿∞ error 2.4204E-10 2.8579E-12 1.4147E-15 6.9567E-19 
 

𝐿∞ rate  10.9479  10.9803  10.9898  
 

WENO3      

𝐿1 error 2.6438E-03 7.2239E-04 7.7012E-05 8.9622E-06  

𝐿1 rate  3.1998 3.2296 3.1032  

𝐿2 error 4.0817E-03 9.7196E-04 9.5476E-05 1.0553E-05  

𝐿2 rate  3.5390 3.3477 3.1775  

𝐿∞ error 2.5439E-02 7.7486E-03 9.6110E-04 1.0723E-04  

𝐿∞ rate  2.9319 3.0112 3.1640  
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WENO5      

𝐿1 error 3.6191E-06 4.7551E-07 1.4829E-08 4.6322E-10  

𝐿1 rate  5.0056 5.0030 5.0006  

𝐿2 error 5.2659E-06 6.9252E-07 2.1630E-08 6.7585E-10  

𝐿2 rate  5.0033 5.0008 5.0002  

𝐿∞ error 1.6873E-05 2.2466E-06 7.0539E-08 2.2070E-09  

𝐿∞ rate  4.9727 4.9932 4.9983  

In Table 1, we present the geopotential simulation errors and convergence rate of different order accuracy schemes at 540 

various resolutions. It is evident that HOPE is capable of achieving the designed accuracies in all tests. When the resolution 541 

exceeds C180, the errors obtained from the TPP7, TPP9 and TPP11 schemes have surpassed the limits expressible by double-542 

precision numbers. This demonstrates HOPE's excellent error convergence for simulating smooth flow fields. It should be 543 

noted that high-order accuracy schemes do consume more computational resources. HOPE has proven the feasibility of ultra-544 

high-order accuracy finite volume methods on cubed sphere grids. However, in simulating the real atmosphere, a balance 545 

between computational efficiency and error must be considered. We believe that 3rd or 5th order accuracy schemes will be 546 

more practical for subsequent developments in baroclinic atmosphere model. 547 

At lower resolutions, the simulation error of WENO3 is significantly higher than that of TPP3. However, as the resolution 548 

increases, the error of WENO3 progressively approaches that of TPP3. Comparing WENO5 and TPP5 results reveals a 549 

marginal increase in norm errors for WENO5, while maintaining 5th-order convergence rates. This confirms WENO5's 550 

capability to preserve high accuracy when simulating smooth flows. 551 

It should be noted that HOPE achieves extremely small errors in simulating smooth flow fields even on very coarse 552 

resolutions. These errors can be so minute that they fall below the 16 significant digits representable in double precision. 553 

Under these conditions, conducting precision tests using double precision alone fails to accurately capture the true 554 

convergence rate. To obtain correct error measurements and convergence rate, we must employ FP128 (real(16) in Fortran). 555 

However, PyTorch's underlying architecture is built on NVIDIA CUDA, which currently supports only up to FP64 (double 556 

precision). Consequently, the PyTorch implementation cannot provide correct simulation errors when utilizing ultra-high-557 

order schemes. 558 

5.3 Zonal Flow over an Isolated Mountain 559 

Zonal flow over an isolated mountain is the 5th case mentioned in Williamson et al. (1992), this case was usually be 560 

implemented to test the topography influence in shallow water models. The initial condition is defined by Eq.(81)~(79), but 561 

ℎ0 = 5960 𝑚, 𝜙0 = ℎ0𝑔, 𝑢0 = 20𝑚/𝑠. The mountain height is expressed as 562 

 
ℎ𝑠 = ℎ𝑠0 (1 −

𝑑𝑠
𝑅
) 

(82)   
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where ℎ𝑠0 = 2000 𝑚; 𝑅 =
𝜋

9
; 𝑑𝑠 = √min[𝑅2, (𝜆 − 𝜆𝑐)2 + (𝜃 − 𝜃𝑐)2]. 𝜆𝑐 =

3𝜋

2
, 𝜃𝑐 =

𝜋

6
 are the center longitude and latitude 563 

of the mountain, respectively. 564 

 565 

Figure 11 TPP5 (with LMARS) simulation result of the isolated mountain wave on C90 grid. The rows stand for variables: 566 

geopotential, zonal wind, meridional wind and relative vorticity, respectively. The columns represent simulation day 5, 10, 15. 567 

Geopotential contour from 5050 to 5950 𝑚 with interval 50 𝑚. Zonal wind contour from −30 to 50 𝑚/𝑠 with interval 10 𝑚/𝑠. 568 

Meridional wind contour from −30 to 30 𝑚/𝑠 with interval 10 m/s. Relative vorticity contour from −3 × 10−5 to 4 × 10−5 𝑠−1 569 

with interval 1 × 10−5 𝑠−1. 570 

HOPE is able to deal with the bottom topography correctly, as shown in Figure 11, all of the simulation result is consistent 571 

with prior researches such as (Nair et al., 2005a; Ullrich et al., 2010; Chen and Xiao, 2008) and so on. Furthermore, as 572 

discussed in Bao et al. (2014), some high order Discontinuous Galerkin (DG) method exhibit non-physical oscillation during 573 

simulating the over mountain flow, the additional viscosity operators are necessary to alleviate this issue. However, HOPE 574 

does not require any explicit viscosity operator to suppress vorticity oscillations, the vorticity fields are smooth all the time 575 

as illustrated in Figure 11 (j), (k), (l). We have tested other schemes as well, including TPP3, TPP7, WENO3, and WENO5, 576 

all of the schemes are able to achieve similar simulation results. 577 
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 578 

Figure 12 Time series of normalized conservation errors for the zonal flow over isolated mountain simulation on the C90 grid 579 

over days 0 to 100. (a) Normalized total energy error. (b) Normalized total potential enstrophy error. (c) Normalized total zonal 580 

angular momentum error. 581 

In the 15-day simulation of zonal flow over an isolated mountain the total energy exhibited a gradual increase over the 582 

integration time, while the total potential enstrophy showed gradual dissipation as the simulation progressed. The AUSM+-up 583 

scheme demonstrated stronger energy dissipation compared to the LMARS scheme, as illustrated in Figure 12。 584 

5.4 Rossby-Haurwitz Wave with 4 Waves 585 

Rossby-Haurwitz (RH) wave is the 6th test case introduced by Williamson et al. (1992), the RH waves are analytic 586 

solution of the spherical nonlinear barotropic vorticity equation, the reference solution is the zonal advection of RH wave 587 

without pattern changing, the angular phase speed is given by 588 

 
𝑐 =

𝑅(𝑅 + 3)𝜔 − 2Ω

(𝑅 + 1)(𝑅 + 2)
 

(83)   

where 𝑅 = 4  is the zonal wavenumber, 𝜔 = 7.848 × 10−6 𝑠−1 ; the earth rotation angular speed Ω = 7.292 × 10−5 𝑠−1 . 589 

Therefore, we have the period 𝑇 ≈ 29.52 𝑑𝑎𝑦𝑠. The initial condition expressed as 590 

 𝜙 = 𝜙0 + 𝑎
2[𝐴(𝜃) + 𝐵(𝜃) cos𝑅𝜆 + 𝐶(𝜃) cos2𝑅𝜆] (84)   

 𝑢 = 𝑎𝜔 cos𝜃 + 𝑎𝐾 cos𝑅−1 𝜃 (𝑅 sin2 𝜃 − cos2 𝜃) cos𝑅𝜆 (85)   
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 𝑣 = −𝑎𝐾𝑅 cos𝑅−1 𝜃 sin 𝜃 sin𝑅𝜆 (86)   

 
𝐴(𝜃) =

𝜔

2
(2Ω + 𝜔) cos2 𝜃 +

1

4
𝐾2 cos2𝑅 𝜃 [(𝑅 + 1) cos2 𝜃 + 2𝑅2 − 𝑅 − 2 − 2𝑅2 cos−2 𝜃] (87)   

 
𝐵(𝜃) =

2(Ω + 𝜔)𝐾

(𝑅 + 1)(𝑅 + 2)
cos𝑅 𝜃 [𝑅2 + 2𝑅 + 2 − (𝑅 + 1)2 cos2 𝜃] 

(88)   

 
𝐶(𝜃) =

1

4
𝐾2 cos2𝑅 𝜃 [(𝑅 + 1) cos2 𝜃 − 𝑅 − 2] (89)   

where 𝜆, 𝜃 are longitude and latitude, 𝐾 = 𝜔,𝜙0 = 𝑔ℎ0, ℎ0 = 8000 𝑚, and 𝑎 = 6371220 𝑚 is the earth radius. 591 

According to the study by Thuburn and Li (2000), the Rossby-Haurwitz (RH) wave with wavenumber 4 is inherently 592 

dynamically unstable and prone to collapse. This instability can be triggered by minute perturbations, such as those arising 593 

from grid structure (breaking initial symmetry), initial condition imperfections, or numerical errors (e.g., truncation or 594 

roundoff). Similar conclusions have been verified in subsequent research. In tests conducted by Zhou et al. (2020), the TRiSK 595 

framework based on the SCVT grid could only sustain the RH wave pattern for 25 days without collapse. In contrast, (Li et 596 

al., 2020) successfully maintained the RH wave pattern for 89 days using a similar algorithm on a latitude-longitude grid. 597 

Ullrich et al. (2010) developed the high-order accuracy finite volume model based on a cubed-sphere grid, which was able to 598 

sustain the RH wave for up to 90 days. In the most of our experiments, the ability of HOPE to maintain the Rossby-Haurwitz 599 

(RH) wave significantly improved with increased order of accuracy and grid resolution. All of the simulation results are based 600 

on LMARS in this section. 601 

In the TPP3 simulation, we found that the duration for which the RH wave is maintained increases with higher grid 602 

resolution, as exhibit in Figure 13. When the grid resolution is low (C45, C90), an obvious dissipation phenomenon can be 603 

observed. When the resolution reaches C180, the dissipation is significantly reduced, but the waveform has completely 604 

collapsed by day 90. When the resolution reaches C360, the simulation results are further improved, with dissipation further 605 

reduced, and the RH wave waveform can still barely be maintained on day 90. 606 
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 607 

Figure 13 Geopotential of Rossby-Haurwitz wave simulated by TPP3 scheme. The rows represent grid C45, C90, C180 and C360, 608 

the columns stand for simulation day 14, 30, 60, 90. Contours from 8100 to 10500 𝑚 with interval 200 𝑚. 609 

A 100-day simulation of the Rossby-Haurwitz wave was conducted using a C90 grid (1° resolution). The total energy 610 

simulated with the TPP3, TPP5, TPP7, and TPP9 schemes underwent dissipation to varying degrees. By day 100, the 611 

normalized total energy errors reached −1.49 × 10−3, −1.33 × 10−5, −1.71 × 10−6, −4.20 × 10−7, respectively, indicating 612 

significantly stronger dissipation for the TPP3 scheme compared to the other higher-order schemes Figure 14 (a). Figure 14 613 

(b) presents a scaled view of the energy evolution for TPP5, TPP7, and TPP9, clearly demonstrating that increasing the 614 

reconstruction order progressively reduces energy dissipation. Furthermore, following the RH wave collapse, a significant 615 

drop in total energy was observed for the TPP5 scheme (after approximately 90 days) and the TPP7 scheme (after 616 

approximately 95 days). 617 
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 618 

Figure 14 Time series of normalized conservation errors for the Rossby-Haurwitz wave simulation on the C90 grid over days 0 to 619 

100, with LMARS scheme as Riemann solver. (a) Normalized total energy error for TPP3, TPP5, TPP7 and TPP9. (b) The total 620 

energy normalized error for TPP5, TPP7 and TPP9. (c) Normalized potential enstrophy error for TPP3, TPP5, TPP7 and TPP9. (d) 621 

Normalized total zonal angular momentum error for TPP3, TPP5, TPP7 and TPP9. 622 

 Analysis of the normalized total potential enstrophy error (Figure 14 (c)) and the normalized zonal angular momentum 623 

error (Figure 14 (d)) over time yields conclusions consistent with those for total energy. Specifically, the TPP3 scheme 624 

exhibited substantially higher dissipation than the higher-order schemes, confirming that employing higher-order 625 

reconstruction schemes effectively minimizes dissipation. Notably, significant dissipation surges occurred in these quantities 626 

following the RH wave collapse. 627 
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 628 

Figure 15 Geopotential of Rossby-Haurwitz wave on C90 grid, the rows represent the spatial reconstruction scheme with TPP3, 629 

TPP5, TPP7 and TPP9 the columns stand for simulation day 30, 60, 90 and 100. Contours from 8100 to 10500 𝑚 with interval 630 

200 𝑚. 631 

In Figure 15, we compare the impact of order-of-accuracy on the simulation capability of RH waves by fixing the 632 

resolution. By comparing row by row, it can be observed that when the accuracy reaches 5th order or higher, the dissipation 633 

is significantly reduced. Both the TPP5 and TPP7 simulations show signs of waveform distortion on day 90, and the 634 

waveform completely collapses by day 100. However, when using TPP9 for the simulation, the waveform is well maintained 635 

even until day 100. 636 

Figure 16 presents the simulation results on the 80th day for different resolutions and reconstruction schemes. The 637 

dissipation decreases as the resolution and reconstruction order improve. At the C45 resolution, both the TPP3 and TPP5 638 

simulations exhibit significant dissipation. Although the TPP7 simulation shows a notable improvement in dissipation, the 639 

waveform is severely distorted. The TPP9 scheme produces the best simulation results. As the resolution increases, the 640 

simulation performance also improves significantly. When using the C360 resolution, all TPP schemes yield good simulation 641 

results. 642 
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 643 

Figure 16 Geopotential of Rossby-Haurwitz wave at simulation day 80. The rows represent spatial reconstruction with TPP3, TPP5, 644 

TPP7 and TPP9. The columns stand for grid C45, C90, C180 and C360. Contours from 8100 to 10500 𝑚 with interval 200 𝑚. 645 

Significant differences were observed between the 2D WENO scheme and the TPP schemes in this test. Regardless of 646 

the specific WENO order employed (3, 5, 7, or 9), all WENO variants maintained the Rossby-Haurwitz (RH) wave pattern 647 

for a shorter duration compared to their TPP counterparts of equivalent order. We infer that the nonlinear processes inherent 648 

within the WENO scheme introduce asymmetries that disrupt the computational stencil symmetry, leading to a premature 649 

collapse of the RH wave. 650 

5.5 Perturbed Jet Flow 651 

The perturbed jet flow was introduced by Galewsky et al. (2004), this experiment was desired to test the model ability 652 

of simulating the fast and slow motion. the initial field is defined as 653 

 
𝑢(𝜃) = {

𝑢𝑚𝑎𝑥
𝑒𝑛

𝑒
1

(𝜃−𝜃0)(𝜃−𝜃1), 𝜃 ∈ (𝜃0, 𝜃1)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(90)   

 
𝜙(𝜆, 𝜃) = 𝜙0 + 𝜙

′(𝜆, 𝜃) −∫ 𝑎𝑢(𝜃′) [𝑓 +
tan𝜃′

𝑎
𝑢(𝜃′)]  𝑑𝜃′

𝜃

−
𝜋
2

 
(91)   

 
𝜙′(𝜆, 𝜃) = 𝑔ℎ̂ cos𝜃 𝑒

−(
𝜆
𝛼
)
2

−(
𝜃2−𝜃
𝛽

)
2

, 𝜆 ∈ (−𝜋, 𝜋) 
(92)   
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where 𝜆, 𝜃 represents longitude and latitude, 𝑎 = 6371220 𝑚 is radius of earth, 𝑢𝑚𝑎𝑥 = 80 𝑚/𝑠, 𝜃0 =
𝜋

7
, 𝜃1 =

5𝜋

14
, 𝜃2 =

𝜋

4
,654 

𝑒𝑛 = 𝑒
−4

(𝜃1−𝜃0)
2 , 𝛼 =

1

3
, 𝛽 =

1

15
, and ℎ̂ = 120 𝑚. We adopt LMARS as Riemann solver in all of the simulation in this section. 655 

As mentioned in Chen and Xiao (2008), the perturbed jet flow experiment poses a particular challenge for the cubed-656 

sphere grid model. Firstly, the jet stream is located at 45°𝑁, which is very close to the boundaries of panel 5 of the cubed-657 

sphere grid, resulting in a large geopotential gradient in the ghost interpolation region, which leads to larger interpolation 658 

error. Furthermore, the location of the geopotential perturbation 𝜙′ coincides with the boundary between panel 1 and panel 5, 659 

which also leads to greater numerical computation errors. 660 

 661 

Figure 17 Relative vorticity of perturbed jet flow. (a)~(c) represent the results of TPP5 scheme with resolutions C45, C90, C180. 662 

(d)~(f) represent the results of TPP7 scheme with resolutions C45, C90, C180. (g)~(i) represent the results of TPP9 scheme with 663 

resolutions C45, C90, C180. (j)~(l) represent the results of TPP11 scheme with resolutions C45, C90, C180. 664 

Figure 17 displays the HOPE simulation outcomes at day 6 for varying levels of reconstruction order and resolutions. 665 

The four rows correspond to the TPP5, TPP7, TPP9 and TPP11 schemes in terms of reconstruction order. The three columns, 666 

meanwhile, represent the resolutions of C45, C90, and C180, respectively. Upon comparing the different columns, it is evident 667 

that the perturbed jet flow test case converges as the resolution increases. Figure 17 (a), (d), (g), and (j) illustrate that, with an 668 

increase in reconstruction order, the vorticity field patterns become increasingly similar to the high-resolution results shown 669 

in the second and third columns of Figure 17. Notably, HOPE enhances the simulation results by utilizing both higher 670 

reconstruction order and higher resolution. 671 
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5.6 Dam-Break Shock Wave 672 

In this section we introduce a dam-break case for testing the capability of HOPE to capture the shock wave and comparing 673 

the difference between 1D and 2D WENO schemes. The initial condition is configured as a cylinder with a geopotential of 674 

30000 𝑚2/𝑠2, as shown in Figure 18(a). The geopotential is given by 675 

 𝜙(𝑑𝑠(𝜆, 𝜃)) = {
2𝜙0, 𝑟 < 𝑟𝑐
𝜙0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (93)   

where 𝑑𝑠 = √(𝜆 − 𝜆𝑐)2 + (𝜃 − 𝜃𝑐)2, 𝜆𝑐 = 𝜋, 𝜃𝑐 = 0, 𝑟𝑐 =
𝜋

9
, 𝜙0 = 30000 𝑚

2/𝑠2, and the earth rotation angular speed Ω =676 

0. We adopt LMARS as Riemann solver in all of the simulation in this section. 677 

 678 

Figure 18 Geopotential of dam-break test case on C90 grid at 2nd hour. (a) Initial condition, (b) WENO 1D, (c) WENO 2D. The 679 

horizontal resolution for both schemes is C90. Shaded and contour from 3.2 × 104 to  6 × 104 meters, with contour interval 103 680 

meters. 681 

In this experiment, we compare WENO5 (WENO scheme with reconstruction width 5) on both 1D and 2D schemes, the 682 

WENO-Z (Borges et al., 2008) is adopted as WENO 1D scheme, and WENO 2D scheme is consist with section 3.2. Due to 683 

the initial condition being a cylinder, the resulting shock wave should maintain a circular feature. In the simulation results of 684 

WENO 1D, numerous radial textures appear, Figure 18(b).  The simulation results using the WENO 2D scheme exhibit a 685 

smoother circular shape, Figure 18(c). This outcome arises because the 1D reconstruction scheme suffers from dimension 686 

split error, whereas the fitting function in the 2D reconstruction scheme incorporates cross terms. Therefore, when simulating 687 

fluid fields characterized by isotropic features, the 1D scheme lacks the capability to accurately represent diagonal directional 688 

features. Conversely, the 2D scheme correctly captures the inherent isotropic characteristics. 689 

6. Conclusions 690 

This paper presents HOPE, an innovative finite-volume model capable of achieving arbitrary odd-order convergence 691 
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rate. Through comprehensive numerical experiments, we demonstrate that HOPE exhibits excellent convergence properties 692 

when applied to smooth flow fields, with simulation errors decreasing rapidly as the order of accuracy increases. 693 

The model's performance has been rigorously evaluated across several benchmark cases: 694 

1. In Rossby-Haurwitz wave simulations, HOPE demonstrates superior waveform preservation capabilities that scale 695 

with both spatial resolution and accuracy order. 696 

2. For perturbed jet flow scenarios, the model successfully resolves both fast and slow dynamical features, with 697 

significant improvements in solution quality observed at higher orders and finer resolutions. 698 

3. Mountain wave simulations confirm HOPE's ability to accurately represent orographically-forced gravity waves. 699 

4. In the dam break test case featuring cylindrical shock fronts, the two-dimensional WENO reconstruction scheme 700 

proves more effective than dimension-split approaches in maintaining circular symmetry. 701 

In the case of steady geostrophic flow, Both WENO3 and WENO5 achieve the expected 3rd-order and 5th-order 702 

convergence rates, respectively. However, the computed norm errors for WENO schemes are marginally larger than those 703 

obtained with the TPP3 and TPP5 schemes. This observation confirms that the 2D WENO scheme preserves the designed 704 

convergence rate in smooth flow regions. Concurrently, in the Dam-Break Shock Wave case, the 2D WENO scheme 705 

demonstrates its robust capability for handling discontinuous flow fields. These combined results align perfectly with the 706 

primary motivation for introducing the WENO scheme: its adaptive oscillation suppression capability. Specifically, the 707 

scheme preserves the high convergence rate in sufficiently smooth regions while automatically reducing the reconstruction 708 

order near discontinuities to effectively suppress the development and propagation of non-physical oscillations. 709 

A key innovation of HOPE lies in its computational architecture. The algorithm is specifically designed to harness GPU 710 

acceleration through (1) Implementation of spatial reconstructions as convolutional operations, and (2) Formulation of 711 

integration steps as matrix-vector products. These design choices leverage computational patterns widely adopted in machine 712 

learning frameworks. By developing HOPE within PyTorch, we inherit automatic differentiation capabilities, enabling 713 

straightforward coupling with neural network systems. 714 

This integration facilitates the development of hybrid prediction models that combine a high-order, high-performance 715 

dynamical core, and Neural network-based physical parameterizations. Current research efforts have successfully extended 716 

this algorithmic framework to a two-dimensional baroclinic model (X-Z dimensions). 717 

Future work will focus on developing a global, fully compressible baroclinic model using the HOPE algorithm, further 718 

demonstrating its versatility and advantages for modeling complex atmospheric dynamics. The model's unique combination 719 

of physical conservation, computational efficiency, and machine learning compatibility positions it as a powerful tool for 720 

next-generation atmospheric modeling. 721 
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7. Appendix  722 

In this appendix, we introduce a novel boundary ghost cell interpolation scheme for cubed sphere, which is able to 723 

support HOPE to reach the accuracy over 11th order or even higher.  724 

There are two types of cells, in-domain and out-domain (also named ghost cell, as show in Figure 7(b)), we define the 725 

set of in-domain cell values 𝒒𝑑×1 = (𝑞1, 𝑞2, … , 𝑞𝑑)
𝑇, the set of out-domain cell values 𝒈ℎ×1 = (𝑔1, 𝑔2, … , 𝑔𝑑)

𝑇, and the set 726 

of Gaussian quadrature point values (green points in Figure 3) in out-domain cells is define as 𝒗𝑝×1 = (𝑣1, 𝑣2, … , 𝑣𝑝). To 727 

identify the shape of the arrays, we denote the array shape using subscripts (this convention will be followed throughout the 728 

subsequent text). The purpose of ghost cell interpolation is using the known cell value 𝒒 to interpolate the unknown 𝒈. 729 

Define a new set includes the values of domain cell values and ghost cell values 730 

 𝒒̃(𝑑+ℎ)×1 = 𝒒⋃𝒈 = (𝑞1, 𝑞2, … , 𝑞𝑑 , 𝑔1, 𝑔2, … , 𝑔ℎ)
𝑇 

(A.1)   

Similar to the describe in section 0, we can use a TPP to reconstruct the ghost quadrature points 731 

 𝒗𝑝×1 = 𝐴𝑝×(𝑑+ℎ)𝒒̃(𝑑+ℎ)×1 
(A.2)   

where 𝐴𝑝×(𝑑+ℎ) is the interpolation matrix that can be obtain by the similar method to Eq.(29). The ghost cell values are 732 

calculated by Gaussian quadrature 733 

 𝒈ℎ×1 = 𝐵ℎ×𝑝𝒗𝑝×1 
(A.3)   

where 𝐵ℎ×𝑝 is the Gaussian quadrature matrix. 734 

𝒒̃(𝑑+ℎ)×1 can be decomposed as the linear combination of 𝒒𝑑×1 and 𝒗𝑝×1 735 

 
𝒒̃(𝑑+ℎ)×1 = (

𝐼𝑑×𝑑 0
0 𝐵ℎ×𝑝

) (
𝒒𝑑×1
 𝒗𝑝×1

) = 𝐵̃(𝑑+ℎ)×(𝑑+𝑝)𝒒̅(𝑑+𝑝)×1 (A.4)   

where 𝐼𝑑×𝑑 is an identity matrix, and 736 

 
𝐵̃(𝑑+ℎ)×(𝑑+𝑝) = (

𝐼𝑑×𝑑 0
0 𝐵ℎ×𝑝

) (A.5)   

 𝒒̅(𝑑+𝑝)×1 = (
𝒒𝑑×1
 𝒗𝑝×1

) (A.6)   

Substitute Eq.(30) into Eq.(26), we have 737 

 𝒗𝑝×1 = 𝐴𝑝×(𝑑+ℎ)𝐵̃(𝑑+ℎ)×(𝑑+𝑝)𝒒̅(𝑑+𝑝)×1 = 𝐴̃𝑝×(𝑑+𝑝)𝒒̅(𝑑+𝑝)×1 = 𝐴̃𝑝×(𝑑+𝑝) (
𝒒𝑑×1
 𝒗𝑝×1

) (A.7)   

We found that matrix 𝐴̃𝑝×(𝑑+𝑝) can be decomposed into two parts 738 

 𝐴̃𝑝×(𝑑+𝑝) = (𝐴̅𝑝×𝑑 𝐶𝑝×𝑝) (A.8)   

Such that 739 

 𝒗𝑝×1 = 𝐴̅𝑝×𝑑𝒒𝑑×1 + 𝐶𝑝×𝑝𝒗𝑝×1 (A.9)   

Therefore 740 

 (𝐼𝑝×𝑝 − 𝐶𝑝×𝑝)𝒗𝑝×1 = 𝐴̅𝑝×𝑑𝒒𝑑×1 (A.10)   
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We set 𝐷𝑝×𝑝 = 𝐼𝑝×𝑝 − 𝐶𝑝×𝑝, then 𝒗𝑝×1 can be determined by 741 

 𝒗𝑝×1 = 𝐷𝑝×𝑝
−1 𝐴̅𝑝×𝑑𝒒𝑑×1 (A.11)   

Substitute Eq.(A.11) into Eq.(A.3), we establish the relationship between ghost cell values and in-domain cell values 742 

 𝒈ℎ×1 = 𝐵ℎ×𝑝𝒗𝑝×1 = 𝐵ℎ×𝑝𝐷𝑝×𝑝
−1 𝐴̅𝑝×𝑑𝒒𝑑×1 = 𝒢ℎ×𝑑𝒒𝑑×1 (A.12)   

where 𝒢ℎ×𝑑 = 𝐵ℎ×𝑝𝐷𝑝×𝑝
−1 𝐴̅𝑝×𝑑. It’s clear that Eq.(A.12) is linear, and only rely on the mesh and Gaussian quadrature 743 

scheme. Therefore, we need to compute the projection matrix 𝒢ℎ×𝑑 only once for a given mesh and accuracy, this matrix can 744 

be computed by a preprocessing system and save it to the hard disk. 745 
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