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Abstract

This study presents the High Order Prediction Environment (HOPE), an automatically differentiable, non-oscillatory
finite-volume dynamical core for shallow water equations on the cubed-sphere grid. HOPE integrates five key features: (1)
arbitrary high-order accuracy through genuine two-dimensional reconstruction schemes; (2) essential non-oscillation via
adaptive polynomial order reduction in discontinuous regions; (3) exact mass conservation inherited from finite-volume
discretization; (4) automatically differentiable and (5) GPU-native scalability through PyTorch-based implementation.
Another innovation is the development of a two-way coupled ghost cell interpolation method. This approach incorporates
information from adjacent panels on both sides of the boundary, thereby overcoming the integration instability inherent in
one-sided ghost cell interpolation approaches when using high-order reconstruction. Leveraging the linear operator nature of
this interpolation scheme, we optimized its computation: information exchange across the panel boundary is achieved through
a single matrix-vector multiplication instead of iterative coupling, without accuracy loss. Numerical experiments demonstrate
the capabilities of HOPE: The 11th-order scheme reduces errors to near double-precision round-off levels in steady-state
geostrophic flow tests on coarse grids. Maintenance of Rossby-Haurwitz waves over 100 simulation days without crashing.
A cylindrical dam-break test case confirms the genuinely two-dimensional WENO scheme exhibits significantly better
isotropy compared to dimension-by-dimension approaches. Moreover, normalized conservation errors in total energy, total
potential enstrophy, and total zonal angular momentum significantly reduce with increasing order of the reconstruction scheme.

Two implementations are developed: a Fortran version for convergence analysis and a PyTorch version leveraging automatic
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differentiation and GPU acceleration. The PyTorch implementation maps reconstruction and quadrature operation to 2D
convolution and Einstein summation respectively, achieving about 2 X speedup on single NVIDIA RTX3090 GPU versus
Dual Intel E5-2699v4 CPUs execution. This design enables seamless coupling with neural network parameterizations,

positioning HOPE as a foundational tool for next-generation differentiable atmosphere models.

1. Introduction

Recent years have witnessed a surge in research integrating numerical weather prediction (NWP) with artificial
intelligence (Al) techniques. A prominent advancement in this domain is the hybrid modeling paradigm, which synergizes the
complementary strengths of both approaches. This framework implements numerical dynamical cores within Al software
platforms such as TensorFlow or PyTorch, thereby enabling seamless integration of AI models into the numerical solution
process for atmospheric dynamical partial differential equations (PDEs). Unlike the fully surrogated methods, such as Pangu-
Weather (Bi et al., 2022), FengWu (Chen et al., 2023), GraphCast (Lam et al., 2023), NowcastNet (Zhang et al., 2023), hybrid
model integrates traditional PDE-based dynamical cores with neural network (NN)-based physical parameterizations. The
auto-differentiable nature of the dynamical core enables training losses to propagate through the entire model during
backpropagation, allowing the NN-based parameterization module to access more comprehensive residual information.
Neural GCM (Kochkov et al., 2024) exemplifies this hybrid approach by combining a spectral numerical dynamical core with
NN-based physical parameterizations. The governing equation-based dynamical core imposes rigorous physical constraints
within the framework, effectively mitigating the blurriness characteristic of purely data-driven models. Furthermore,
Neural GCM demonstrates superior power spectra performance compared to conventional data-driven meteorological models.
While the implementation of a spectral dynamical core in Neural GCM theoretically enables infinite-order accuracy, the global
nature of spectral expansion restricts the method’s scalability. Furthermore, in contrast to finite-volume algorithms which
inherently ensure strict mass conservation, achieving strict mass conservation with NeuralGCM’s spectral dynamical core
requires supplementary modifications.

To address these shortcomings, we present the High Order Prediction Environment (HOPE) dynamical core with
following contributions:

1) A new-generation shallow-water model architecture integrating:

(i) Arbitrary high-order accuracy (up to 13th-order verified) via tensor product polynomial (TPP).
(i) A finite-volume scheme requiring only information from a local stencil surrounding each cell to perform state
updates, enabling massively parallel scalability.

(iii) Inherent mass conservation from finite-volume discretization.
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(iv) A WENO (Weighted Essentially Non-Oscillatory) based, adaptive polynomial order reduction for essential
non-oscillation.

2)  Anovel two-way coupled ghost cell interpolation scheme achieving:

(i) Arbitrary odd-order convergence through central stencil interpolation.
(i) Single sparse matrix-vector operation replacing iterative procedures (Appendix Eq.(A.12)).
(iii) Overcome numerical instability beyond 7th-order accuracy.

3) PyTorch-based high performance differentiable implementation featuring:

(i) GPU acceleration through convolution/einsum operator in PyTorch, 2x speedup on single RTX3090 GPU vs.
Dual Intel Xeon 2699v4 CPUs.

(i1) Automatic ghost cell interpolation matrix generation via native auto-differentiation.

(iii) Seamless integration with NN modules for hybrid modeling.

In the following part of the introduction, we introduce the relevant work on constructing the HOPE model, and from this,
we elaborate on the challenges and motivations for establishing the algorithm of the dynamical core. High-order accuracy is
an extremely appealing trait for the design of a dynamical core, particularly in high-resolution atmospheric simulations. A
dynamical core model with high-order accuracy produces significantly less simulation error in smooth regions compared to a
low-order model. Furthermore, even when the resolution is equivalent or coarser, a high-order model is capable of resolving
finer details than a low-order one.

A high-order finite volume model was developed on cubed sphere, named MCORE (Ullrich et al., 2010; Ullrich and
Jablonowski, 2012). High-order reconstruction requires information from cells external to panel boundaries (commonly
termed ghost cells). Due to coordinate discontinuities across the six panels of the cubed-sphere grid, MCORE implements an
interpolation scheme for ghost cells based on one-side information. This approach employs a two-dimensional reconstruction
stencil to interpolate prognostic variables onto Gaussian quadrature points within each cell, followed by integration to obtain
cell-averaged values. The authors assert that MCORE's convergence rate can theoretically be of arbitrary order. However,
during the design of the ghost cell interpolation for HOPE, we initially attempted to use a one-sided reconstruction stencil
similar to MCORE. While stable integration was achieved with the 3rd-, 5th-, and 7th-order schemes, the model became
unstable when schemes of 9th-order or higher were used. In other words, for HOPE, overcoming the 7th-order accuracy
limitation necessitated the development of a new ghost cell interpolation scheme.

Therefore, we designed a bilateral interpolation algorithm. This algorithm employs an iterative procedure that
incorporates information from both adjacent panels of the cubed-sphere grid simultaneously. This enabled stable model

integration even with higher-order schemes. Though not detailed in the paper, our testing confirmed stable integration even
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at 13th-order accuracy.

In this article, we devise the reconstruction based on tensor product polynomial (TPP). When the stencil width is k, our
method achieves k" order accuracy, surpassing MCORE by one order of accuracy with the same stencil width. In addition,
we have developed a new class of ghost interpolation schemes that abandon the use of one-sided stencils and instead adopt
central stencils. This new approach enables the scheme to overcome the non-physical oscillations arising from interpolation
at panel boundaries. Our method allows for arbitrary order of accuracy while the field is smooth enough, and we have verified
this by testing up to the 11" order.

Nevertheless, higher-order reconstruction does not invariably yield superior simulation outcomes, as elucidated by
analyzing the properties of the Taylor series remainder term. The accuracy of approximating a function via a Taylor series
requires two essential conditions: (1) the existence of higher-order derivatives of the function at the expansion point, and (2)
The convergence of the series within the relevant domain. When the field exhibits poor continuity—where higher-order
derivatives either do not exist or lead to increasing residuals with series order—employing higher-order approximations can
introduce significant errors. Therefore, for reconstruction schemes based on polynomial functions, high-order accuracy should
only be adopted when the field is sufficiently smooth. Conversely, for discontinuous or poorly continuous fields, reducing the
reconstruction order is necessary to maintain numerical stability and effectiveness.

The Weighted Essentially Non-Oscillatory (WENO) scheme is an adaptive limiter widely employed in computational
fluid dynamics (CFD) to address this challenge. Originally developed for one-dimensional problems (Liu et al., 1994), WENO
was later extended to two dimensions by Shi et al. (2002) using two distinct approaches: a genuinely two-dimensional
(WENO2D) scheme and a dimension-by-dimension reconstruction. In this work, we implement WENO2D scheme to enforce
the non-oscillatory property. This approach effectively suppresses non-physical oscillations near sharp discontinuities while
preserving high-order accuracy in smooth regions.

The remainder of this paper is organized as follows: Section 2 details the governing equations on the cubed-sphere grid.
Section 3 presents the numerical methods, including reconstruction schemes, panel boundary treatment method, and temporal
marching scheme. Section 4 focuses on HOPE's high-performance implementation leveraging PyTorch's built-in operators
for GPU acceleration. The adoption of PyTorch simultaneously enables automatic differentiation capabilities through its
computational graph construction. Section 5 validates model performance through standard test cases, followed by

conclusions and future directions in Section 6.

2. Governing Equation on Cubed Sphere

The cubed-sphere grid partitions the spherical domain into six panels, each with a structured and rectangular
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computational space. This configuration facilitates high-order spatial reconstruction and efficient massive-thread parallelism
(see Figure 1). Early work on solving the primitive equations on the cubed-sphere grid dates back to Sadourny (1972). In
recent decades, the cubed-sphere grid has been widely adopted in high-order-accuracy atmospheric models. For instance,
Chen and Xiao (2008) developed a shallow water model using the multi-moment constrained finite volume method on the
cubed sphere, achieving 3"~4" order accuracy. Ullrich et al. (2010) designed a high-order finite volume dynamical core based
on this grid, Nair et al. (2005a, 2005b) implemented a discontinuous Galerkin model on the cubed sphere.

In this study, we also employ the equiangular cubed-sphere grid. Although the mesh is non-orthogonal, the computational
space can still be treated as a rectangular grid by adopting a generalized curvilinear coordinate system. In this section, we

present the shallow water equations in generalized curvilinear coordinates and discuss specialized treatments for topography.

(a) (b)

Figure 1 Cubed sphere grid. (a) Physical space; (b) Computational space. Six panels are identified by indices from 1 to 6.

Shallow water equation set on gnomonic equiangular cubed sphere grid is written as

( a‘/Eqb a\/E(Pu 6\/5(;[)1} B
e TTax oy 0 €
wap WE(pmirione?) ovE(pwelovgd)
"o dx + 3y =l + YL+ b
1 1
VG VG (puv +5G?1p2?) VG (pvv + 5 G2 ¢h2
\ 6t¢v+ ( axz )+ ( ayz )=1/J1%/1+1/J%+¢12?

The gnomonic equiangular coordinates are represented by (x, y, p), where (x,y) € [—%,ﬂ are local equiangular coordinate

of each panel and p = 1,2,3, ..., n, is panel index as shown in Figure 1(b); n,=6 is the number of panels. ¢ = gh is
geopotential, h is fluid thickness, u, v is contravariant wind in x, y direction, g is gravity acceleration. Y, Y, Pp are the
metric term, Coriolis term and bottom topography influence term

1 2\/5 _yy2 2
Yoy = <¢M> _ ( XY2puu+Y(1+Y )qbuv) @)

Y] 82 \ X(1+X¥)puv — X2Ypvv
- VG
be = —VGVGrkx gu=er (25, G, ( JEZZ) 3)
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h is surface height.

Y/é,
sinf = 1/6,
-1/6,
The contravariant metric on cubed-sphere is
S 2

ij

=V14+X?2+Y? f =2Qsind is Coriolis parameter, ¢

Gll 6¢ 612 6¢
0x dy
d¢s d¢s

212 Fs 2277Fs

G =46 3

The covariant metric

r?(1+X?)(1+7Y?)

TI2A+ XD+ X2)

ij = 54

and the metric determinant is given by

p € {1,2,3,4}

p=>5

p=6

(1+Y2 XY)
1+ X?

(1+X2 —XY)

—XY 1+47Y?

r?(1+ XZ)(1 +Y?)

VG = det(GU =

r is radius of earth.
The contravariant wind vector V =

by the following formula

(o) =4(

(u, v) can be convert to wind vector on spherical LAT/LON coordinate V

o)

where A is a 2 X 2 conversion matrix, the expressions are different in each panel

( cos 6 0
sin?
96/1 96/1 r —sinfcosftand, cosi, C0529+cos/1 ’ pE{l234}
cos——  cos 3y . . . P
J=r 30 30 = A ( cosAsinf I sinAsin @ I‘2> _c
Ep 7 —sinAsin?6 I} cosAsin?8T,)/’ p=
X y (— cosAsinf@ I} sinAsin@ 1"2> —
sinAsin?@ I, cosAsin?8T,)’ p=
h=a-Tp-1, ho14imAp g s
p=ATW ’ 77 " tan26’ 27 7 " tan26

where 4, 6 are longitude and latitude. The relation between A and G;; is
Gij=]"]

(4)

= gh;, is surface geopotential, and

)

(6)

(7)

(8)

= (us,v5)

)

(10)

(11)

(12)

To discretize and solve the equation system, we first perform reconstruction on the prognostic variables to obtain their

values at the cell interfaces. These reconstructed values are then used within a Riemann solver to compute the numerical

fluxes. During the numerical experiments, we observed that reconstructing v/G ¢ directly leads to non-physical oscillations.

This occurs because topography may induce discontinuities in the variable ¢, while high-order reconstruction fundamentally
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requires smoothness of the field.

To address this, inspired by the approach mentioned by Ii and Xiao (2010), we instead reconstructv'G ¢, where ¢, =
¢ + ¢, is total geopotential. The detailed formulation of this reconstruction method is presented in Section 3. Crucially, VG ¢,
is used exclusively during the reconstruction step. The prognostic variable remains VG ¢ to ensure exact mass conservation.

The momentum equations need to be modified as follow

a\/E(P 6\/E¢u 6\/5(1)1} B
ot T Ty O (13)
VG opu VG ((,‘buu + %Glqu)?) NG (¢uv + % Glquf) 1 o
< ac T ox + dy =Yy + P+ i
1 1
VG VG (puv +5G6?1¢p?) VG (pvv + 5G%2 ¢}
6t¢v+ ( axz t)+ ( ayz t):‘pl%/l+‘/)g‘+1/)§

and the bottom topography influence term is now expressed as

v [on e guit 1
Y = VGG =VGgs| o Y
9x 2190t | 2200
dx dy
The reconstruction variables are (\/E b, VGPu, VG qbv).
We write the governing equation set to vector form
dq O0F(q) 0G(q)
T T oy S(q) (15)
VGpu VG v

V6o 0

1 1
0= |Vagu|,F = | VG (wu+561162)| ¢ = [V ($uv+567262)| 5 = [l +wt +vi 6
2 2 2
Veorl  |Va(guv+gemig)|  [vE(guoesamer)|  PHTVETVE

3. Numerical Discretization

The finite volume method computes the temporal tendency of cell-averaged quantities by evaluating the net flux across
cell interfaces. The interfacial flux is obtained through Gaussian quadrature, where the field values at quadrature points are
reconstructed spatially and then processed by a Riemann solver to determine the flux magnitude.

In this section, we present two distinct spatial reconstruction approaches: (1) a two-dimensional tensor product
polynomial (TPP) method, and (2) a two-dimensional weighted essentially non-oscillatory (WENO2D) scheme based on
tensor product polynomials. Each reconstruction yields two potential values at every Gaussian quadrature point (GQP). These
values are then resolved into a single flux value using the Low Mach number Approximate Riemann Solver (LMARS) (Chen
et al., 2013) or AUSM-+-up (Liou, 2006; Ullrich et al., 2010). Even with an approximate Riemann solver like LMARS, the

7



163  scheme preserves high-order because it combines high-order reconstructions from both sides of the cell interface to determine

164  the flux. Finally, the total flux across each cell edge is computed by applying linear Gaussian quadrature integration along the

165 interface.
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167 Figure 2 (a) Adjacent area of panels 1,4 and 5. (b) 5 X 5 reconstruction stencil nearby panel corner is represented by shade. The

z

166

168 cell contains red dot is the target cell on panel 4; the magenta points are overlapped GQPs shared by panel 1 and panel 5; red solid
169 lines are boundary of panel 4, red dash lines are extension line of panel 4 boundary line. A and C are points on dash line, B is the

170 upper right corner point of panel 4.

171 According to the finite volume scheme, average Eq.(15) on cell i, j, we have
09, ; N Figj=Fid, N Grpl =0yt _3 (17)
ot Ax Ay o
;1 iﬂ dx d 5 - o ﬂ Sdxd (18)
ot  AxAyot ni,-q Yy M AxAy ay Y
F ! J Fd F ! f Fd
1. = ) 1=
i=5.J Ay e 1 y l+i,} Ay e 1 y (19)
i-3 i+3
G 1= Gd G 1= f Gd
i,j—% _Ax .. X, i,j+% _Ax . . X (20)
2 AF]

172 where Q; ; represents the region overlapped by cell (i, /), e;_1,€,,1, ej_1,e;,1are left, right, bottom, top edges of cell (i, j).
2 2 2 2
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Figure 3 Function points on cell. Red points are edge quadrature points (EQP) or called flux points, green points are inner cell

quadrature points (CQP).

The physical interpretation of equation Eq.(17) is that the average tendency of prognostic field g within cell (i, j) is
governed by the average net flux and average source. In this study, we calculate these averages using Gaussian quadrature,
the function points within each cell are illustrated in Figure 3, the EQPs are share by adjacent cells, and CQPs are exclusive
for each cell.

Average on edge by 1D scheme:
Me
F ~ —wF 21
Fii,~ Z weFg = wF (2D
&=

where m,, is the number of quadrature points on each edge, w = (Wl, Wy, .r) Wme) is the 1D Gaussian quadrature coefficient

vector. F = (F 1, Fy, .., F me)T is the vector of flux, the elements of F represent the flux on EQPs.

Average in cell by 2D scheme:

mc

S~ 2 WSy = WS (22)
&1

where m_ is the number of quadrature points on each cell, W = (Wl, W, ..., Wmc) is the 2D Gaussian quadrature coefficient
L2 T . =2 .
matrix, § = (Sl, S5, s Smc) is the vector of source term, the elements of $ represent the source value on GQPs, superscript

T stands for transpose matrix.

HOPE employs an equiangular cubed-sphere grid, where each panel undergoes uniform angular discretization into n,

X n, cells. In the computational space (equiangular coordinates), each cell spans an angular interval of %, therefore
c
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2n, (23)

Ax = Ay =

This uniformity ensures that all cells are geometrically identical in the computational space, thereby avoiding the need for
cell-specific treatment during reconstruction studies. In the following part of this section, we set a new computational space
for reconstruction process. The local coordinate system (X, §) is established such that within each reconstruction stencil, the
origin (0,0) is located at the stencil center, the central cell spans[—0.5,0.5] in both X and ¥ directions, as shown in Figure 4
(a). All of the cells have the same size in X, ¥ directions:
AXx =AYy =1 (24)
On the cubed-sphere grid, a fixed reconstruction scheme yields consistent stencils across all cells. This structural
homogeneity renders the reconstruction operation computationally equivalent to two-dimensional convolution, thereby

enabling efficient GPU acceleration through PyTorch's built-in conv2d function.

3.1 Tensor Product Polynomial (TPP) Reconstruction

HOPE employs genuinely two-dimensional reconstruction, simultaneously incorporating information in both spatial
dimensions to minimize dimensional splitting errors. For computational efficiency, reconstruction algorithms using square
stencils are computationally equivalent to convolution operations. This equivalence allows efficient implementation via
PyTorch's conv2d function for acceleration.

To construct genuinely 2D reconstructions, the functional form of the reconstruction basis must be selected. A bivariate

(d+1)(d+2)

polynomial of degree d contains terms. As illustrated in Figure 4 (b), the 6 terms of a bivariate quadratic

polynomial (d = 2) are insufficient to cover a square stencil. To address this, we adopt Tensor Product Polynomials (TPP) as
basis functions. We denote a TPP function containing n X n terms as TPPn. Determining the coefficients of TPPn requires
information from a n X n block of cells. When using a TPP reconstruction stencil of size n X n, HOPE achieves fifth-order
accuracy when simulating smooth flow fields. We therefore designate a TPP reconstruction stencil of size n X n as an n-th

order TPP stencil, the 3" and 5% order TPP stencils are shown in Figure 4 (c)(d).
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Figure 4 Reconstruction coordinate and polynomial terms on stencils. (a): Local reconstruction coordinate (the red points denote
cell centers) (b): 2™ degree polynomial stencil; (c): TPP3 stencil; (d) TPP5 stencil

A TPPn polynomial is expressed as
n n N
p©9) =) ) ad P = ) ac (@) (25)
7=11=1

k=1

where n is width of stencil. ay is the coefficient of each term, the term index k = i + n(j — 1), and ¢, (%, 9) = 2998, a =
k — mt( )n -1,8= mt( ) int is equivalent to Fortran's intrinsic function int() that truncates to integer values.

N =n? is the cell number in stencil and also the term number of the TPP. We define column vectors c¢(&,9) =
{ci (&, Mk =1,2,3,...,N} and a = {a; |k = 1,2,3, ..., N}, the point value on (£, ¥) can be written as

p(x,y) =c(x,)) a 26)

The volume integration average (VIA) of prognostic field q on cell £, ; is represented by

qij = Axl] ﬂp(x y)axdy (27)

AX; ;, Ay; j are length of edges X, ¥ of cell £2; ; in computational space. The VIA value g; on each cell is predicted by time
integration, we wish to determine the coefficient vector a by these VIA values. HOPE employs an equiangular cubed-sphere
grid, wherein each cell in computational space can be considered a perfectly identical square, according to Eq.(24), we may

assume without loss of generality that AX; ; = Ap; ; = 1, and Eq.(27) becomes
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qij = ﬂ p(%,9)dxdy = ﬂ cadidy =1 a 28)
2 Qi
Wy, crd%dy

axdy
'Uﬂi.f C'Z xey , combining N cells. We have following linear system

Il,, cwd2dy

Aa=1q

) (29)
]I)l ql
s I

and polynomial coefficient a can be obtain by solving Eq.(29).

a=A"1qg

(31)
The reconstruction values on M points can be obtained by following formula

=Ca=CA™'qg=Rq
p q q (32)

p(X1,91) Cy

S 5 T
where p = p(xz:, 32) ,C = C,Z ,cl =T (B, V), m =1,2,...,M, superscript T stands for transpose matrix,

p(Zn, I) cl
(%, ¥m) represents the m-th function point on target cell. The reconstruction matrix

R=CA™?
(33)

In practical implementation, the reconstruction matrix R needs to be computed only once during model initialization and
stored in memory. Crucially, a fundamental advantage of our cubed-sphere grid dynamical core implementation lies in
employing a globally shared reconstruction matrix R. This unification signifies that a single instance of R applies identically
to all grid cells, thereby significantly reducing memory/VRAM requirements, and enabling straightforward utilization of
PyTorch's conv2d for accelerated reconstruction. For example, the TPP reconstruction procedure can be directly formulated

as a two-dimensional convolutional operation using R as the convolution kernel.

3.2 Genuine Two-Dimensional WENO

Weighted Essentially Non-Oscillatory (WENO) represents an adaptive algorithm that dynamically preserves high-order
approximation accuracy in smooth flow regions while automatically degenerating to robust low-order reconstruction near
discontinuities for effective shock capturing. Shi et al. (2002) mentioned two different approaches for constructing a fifth-
order finite volume WENO scheme: the "Genuine 2D" method and the "Dimension by Dimension" method.

For HOPE, within the Genuine 2D framework, n-th order accuracy WENO scheme employs a n X n master stencil

12
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distinct X

partitioned into sub-stencils, for example:

a) WENO3: Third-order reconstruction utilizes a 3 X3 cell stencil that decomposes into four 2 X2 sub-stencils
b) WENOS: Fifth-order accuracy employs a 5 X5 master stencil partitioned into nine distinct 3 X 3 sub-stencils

(Complete schematic representations of these decomposition strategies are provided in Figure 5 and Figure 6)

The scheme's theoretical order of accuracy fundamentally depends on the proper determination of optimal linear weights
for the multidimensional stencil combination. These weights, when correctly derived, enable the weighted superposition of
sub-stencils to recover full high-order accuracy in smooth solution regions. While (Shi et al., 2002) indicated the theoretical
possibility of computing these weights through Lagrange interpolation basis analysis, they omitted specific implementation
details. In this section, we present the methods for constructing genuine two-dimensional WENO (WENO 2D) schemes using

least squares method.

Ml1rl2|3|ol1]2]3

4 |15(6 415(|6

1|23 ]|@[1]2]3

Figure 5 Stencils of 3™ order WENO 2D. The high order stencil contains cells No.1~9, blue ones represent the cells in sub-
stencils (1) ~ (4).
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Figure 6 Stencils of 5™ order WENO 2D. The high order stencil contains cells No.1~25, blue ones represent the cells in sub-
stencils (1) ~ (9).

We construct WENO 2D based on TPP and square stencil. As mentioned in previous section, a n-th order stencil contains

N = n? cells, and the full stencil (also called high-order stencil) width is h = n. Decomposing the high-order stencil into s =
(n7+1)2 sub-stencils, there are s, = s cells in each sub-stencil (also called low-order stencil), and the sub-stencil width is | =
nTH. We define py as the high- order reconstruction polynomial, and p; represents i-th sub-stencil reconstruction polynomial,
they share the same expression as Eq.(25) with different stencil width and coefficient a. For the reconstruction point (%, ),
suppose py (%, §) is the reconstruction value of high-order stencil, the reconstruction values of sub-stencils are stored in vector
p= (p1 &, 9),p2(%,9), -, ps(Z, ﬁ))T. The intention of constructing the optimal linear weights is to determine the unique
weights y = (¥4, V2, ***, ¥s), such that

Py = Ryq =vyp (34)
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where the elements of vector § = (q4,q3,***,qn )T represent VIA of each cell in high-order stencil. Ry = (rH].) ,Jj=12,..,N

is the reconstruction matrix of high-order stencil.

It should be noted that Eq.(34) appears overdetermined at first glance. However, subsequent analysis demonstrates that
the solution obtained via the least squares method satisfies Eq.(34) exactly. Specifically, in the case of square stencils, the
rank of the system defined by Eq.(34) becomes s, resulting in a unique solution for the linear system. This finding aligns with
observations presented in Hu and Shu (1999) regarding their research on Triangular Meshes.

The computation of ¥ requires the integration of both high-order and low-order reconstruction matrices into a unified

linear system. For each sub-stencil i we define the reconstruction matrix R; = (1), k = 1,2, ..., s. (computed via Eq.(33)).

and R;; = (rL ; j) ,j = 1,2,..., N is the extension matrix of R;. The matrix relationship is expressed as

(Ri)lxsc(E)scxN = (RLi) (35)

1XN
where the subscripts denote matrix dimensions. The correspondence matrix E = (ei j),i =12,..,5; j=12,..,N encodes
the cell relationships between stencils: when the i-th cell in low-order stencil is the same as the j-th cell in high order stencil,

e;j = 1, otherwise, ¢;; = 0.

Substitute Eq.(32) into Eq.(34), yield

Ryq = Z RL,viq (36)
i=1

We set R, = (RLI,RLZ, ...,RLS)T, Eq.(36) becomes

R,y =R
L H 37)
The unknown optimal weights vector ¥ can be determined by following least square procedure
¥ = (RI'R,)RTR
LiL LIH (38)

However, the elements of y could be negative, which would cause unstable. A split technique mentioned by (Shi et al.,

2002) was adopted to solve this problem. The optimal weights can be split into two parts:

v _Olri+y 7

14 SR =y -y (39)

where the constant 8 = 3. For keeping the sum of weights to 1, T and new value of £ can be rescaled as:

N

ot = Z i (40)

and

Q |;_<z
]~ H

s
i

]/.

i=12,..,s (41)

where )7ii is the i-th element of y*, )/L-i is the i-th element of y*.
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The WENO scheme adaptively assigns nonlinear weights w;, (i = 1,2,...,s) to each candidate stencil to suppress
unphysical oscillations during high-order reconstruction. Essentially, it gives greater weight to stencils identified as smooth
over the local cell, while suppressing the influence of those containing discontinuities by assigning them smaller weights.
Several nonlinear weighting schemes have been developed to meet these criteria, including WENO-JS (Jiang and Shu, 1996),
WENO-Z (Borges et al., 2008), WENO-Z+ (Acker et al., 2016), WENO-Z+M (Luo and Wu, 2021), among others.

In this work, we employ the WENO-Z formulation as our baseline scheme. While most existing WENO schemes were
originally developed for one-dimensional problems, we propose a two-dimensional extension of WENO-Z through
modification of 1, a crucial coefficient that governs the scheme's higher-order accuracy properties.

For stencil i the nonlinear weight is given as

+
wfi:f—iai (42)
i=1"i
N RN Ty
SO e /1+(ﬁi+£>] 43)
s—1 S
2
”mz > 16—l (44)
n=1y=n+1

where € = 107 is introduced to prevent division by zero. The smooth indicators f3; quantify the smoothness of
reconstruction functions within the target cell. We employ a formulation analogous to that described in Zhu and Shu (2019),
As mentioned in Eq.(24), all cells participating in reconstruction within HOPE's computational space can be treated as

identical unit squares with AX = Ay = 1. Thus, the smooth indicator for sub-stencil i is expressed as:

l 2
S
=2l [Wpi(aay)] dzdy (43)
(=149

where {; + {, = {and { > 0, {;,{, € [0,n], and [ is the sub-stencil width.

The reconstruction value on point (£, $) is expressed by:

N

4®9) = ) ("ot —0"w)Ipi(%) (46)

i=1
3.3 Treatment of the Panel Boundaries

The cubed sphere grid comprises 12 panel boundaries, and the flux across the interface between any two panels must be
computed at the quadrature points situated on the edges of the boundary cells, as depicted in Figure 7 (a). However, a challenge
arises because the coordinates across these panel boundaries are discontinuous. Given that the TPP reconstruction necessitates

a square stencil, the values of the cells outside the domain (referred to as ghost cells) must be computed through interpolation
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within the adjacent panel, as illustrated in Figure 7 (b). While Ullrich et al. (2010) proposed a one-sided interpolation scheme,
our testing with the HOPE model revealed that using a similar one-sided ghost cell interpolation approach around panel
boundaries resulted in instability when scheme exceeded 7th order of accuracy. To address this limitation, we redesigned the
ghost cell interpolation scheme to incorporate information from both panels adjacent to the boundary. This modified approach

ensures stable integration even for very high-order schemes, as validated in tests up to 13th-order accuracy.
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Figure 7 Points and cells close to panel boundary. (a) Flux points (red points) on the interface between Panel 1 and Panel 4, the
flux across each panel at these points are determined by Riemann solver, which merges the reconstruction outcomes from both
panels into a single flux value; (b) Ghost cells (shaded cells) out of Panel 4 boundary, with green points representing the GQPs in
these cells; (c) Cells requirement for 5™ order ghost cell interpolation stencil, red points represent the GQPs located in the ghost

cell on Panel 4, the blue shaded region represents the TPP reconstruction stencil (on Panel 1) to interpolate these red GQPs.

3.3.1 Ghost Cell Interpolation

To achieve arbitrary high-order accuracy, we propose a ghost cell interpolation scheme that incorporates information
from both sides of the panel boundary. Since the ghost cell values are inherently unknown prior to interpolation, our approach
involves an initial estimation through an iterative process. Specifically, the method iteratively performs ghost cell interpolation
until the increments of the cell values converge to within a specified tolerance.

Through mathematical analysis (detailed in the Appendix), we demonstrate that this iterative process can be expressed
as a linear mapping, thereby eliminating the need for actual iterations. However, direct computation of the mapping matrix
requires inversion of a large matrix, which poses significant computational and memory challenges. To address this, we
implement the iterative interpolation process using PyTorch and leverage its automatic differentiation capability to efficiently
obtain the interpolation matrix.

The complete methodology, as derived in the Appendix, proceeds as follows:

1. Initialization: All ghost cell values are initialized to zero (denoted as g(® = 0, where the superscript indicates the

iteration number).
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2. Interpolation: The Gaussian quadrature points (GQPs) in the ghost cells are interpolated using the Tensor Product
Polynomial (TPP) stencil. For instance, considering two adjacent panels (Figure 7(a)), any out-domain cell in Panel 4
(shaded cell in Figure 7(b)) contains GQPs that physically reside in Panel 1. These GQPs are interpolated using the TPP
stencil shown in Figure 7(c), which incorporates relevant ghost cells from Panel 1.

3. Update and convergence check: After interpolating all GQPs, the ghost cell values are updated via Gaussian quadrature
(Eq. (22)), yielding g. The L2-norm residual r®) = ||g*+» — g ||2 is then computed. Steps 2-3 repeat until r*) <

€, where € = 1.e~* for double precision and € = 1.e~> for single precision. In practice, convergence typically occurs
within 10 iterations, so we fix the iteration count at 10 for consistency.

This process establishes a linear mapping G: ¢ = g from known cell values to ghost cell values. As proven in Eq.(A.12)

(Appendix), the mapping's linearity implies that G = Z—‘z forms a matrix, which we efficiently compute using PyTorch's

autograd functionality. This approach avoids explicit matrix inversion while maintaining numerical precision.

It is important to note that overlapping GQPs occur at the corner positions of the cubed-sphere grid, as illustrated by the
magenta points in Figure 2(b). These points lie on the interface shared by adjacent panels (e.g., Panel 1 and Panel 5).
Consequently, during ghost value interpolation, two distinct interpolated values are obtained at these overlapping points — one
from each adjoining panel. The final interpolated value is computed as the average of these two values. Since the interpolation
performed on each individual panel is high-order, the approximation order is preserved when taking this average.

G is a sparse matrix containing many zero entries. To avoid unnecessary memory costs, we adopt the Compressed Sparse
Row (CSR) format for storing G . Furthermore, the size of § isextremely large, making direct application
of torch. autograd. functional. jacobian to generate G computationally infeasible. Our implementation for generating
ghost cell interpolation matrix achieves significant acceleration and substantially reduces VRAM demand compared to
PyTorch's native “torch. autograd. functional. jacobian” function. The key optimizations are:

1. Parallel Multi-Row Computation: Utilizing “torch.vmap” to encapsulate “torch. func.vjp”, enabling simultaneous
computation of multiple matrix rows.

2. CSR Compression & Incremental Disk Storage:

a) Employing Compressed Sparse Row (CSR) format for matrix representation.

b) Implementing incremental disk storage, where computed data batches are immediately written to disk after
processing, avoiding prolonged VRAM retention.

3. Tunable Batch Processing: Adjusting the number of rows processed per iteration maximizes GPU utilization while

respecting VRAM constraints (e.g., 24GB on NVIDIA RTX 3090).
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It should be note that the model grid does not change during simulation, the ghost interpolation matrix G needs to be

calculated only once in initialization progress.

3.3.2 Fields Conversion Between Panels

Due to the differing coordinate systems across panels, field variables must be appropriately transformed when
transferring information between adjacent panels. To illustrate this process, we consider the interface between Panel 1 and
Panel 4, as depicted in Figure 2(a) and Figure 7(a). Although flux points are shared between the two panels, their coordinate
representations are discontinuous across the interface.

To ensure consistency, two key transformations are required:

1.  Metric reset for mass variables: The mass-related prognostic quantities must be recomputed in the target panel's

coordinate system to maintain metric consistency.

2. Wind vector transformation: Velocity components (or other vector quantities) must be converted from the source

panel's local coordinate frame to that of the target panel.

This coordinate conversion ensures proper continuity and physical consistency when interpolating or exchanging data

across panel boundaries.

T T
Suppose q, = [(\/5(]5)1,(\/5(]511)1, (\/Eqbv)l] and q4 = [(\/Eq5)4, (\/E¢u)4, (\/Eqbv)J represent the fields on
panel 1 and 4. The mass field conversion from panel 4 to panel 1 is expressed by

1 VG,
(VG¢), = E(\@% (47)

the subscript represents the target panel and the superscript stands for source panel.

The transformation of momentum vectors between panels is performed in two sequential steps to maintain proper tensor
consistency. The contravariant momentum components in Panel 1 are first projected onto the global spherical coordinate
system using the transformation matrix J, as defined in Eq.(10). The resulting spherical momentum components are then
transformed into the contravariant representation specific to Panel 4, ensuring compatibility with the target panel's local

coordinate system.

(\/Egbus)ll s (\/Ed)u)l (48)
(VGovs), (VGov),

(VGpu),| VG, [(Veous), (49)
(Vegv),] " VG, [(Voow),

where J; is the ] matrix on panel 1, /71 is the inverse matrix of / on panel 4. (u,, vg) are zonal wind and meridional wind,

19



381 (u, v) are contravariant wind components. Since the vector conversion is linear process, Eq.(48) and Eq.(49) can be merged

382  into following equation

(VGou), (VGou),

= Cia (50)
(\/E (;bv)4 (\/E ¢v)1
383  where matrix C; 4, = % J+J1, the subscript stands for converting vector form panel 1 to panel 4.
1
384 The mass and vector are also need to be converted on GQPs in the same manner.
385 3.4 Riemann Solver
386 Following spatial reconstruction, discontinuous solutions arise on either side of each flux point location. Since the

387  majority of atmospheric flow speeds correspond to small Mach numbers, we adopt the Low Mach number Approximate
388  Riemann Solver (Chen et al., 2013) and AUSM"-up (Liou, 2006; Ullrich et al., 2010) as Riemann solvers to determine the

389  flux at the edge quadrature points (EQPs).

390  3.4.1 Low Mach number Approximate Riemann Solver (LMARS)

391 Spatial reconstruction gives the left and right state vector,
(VGo), (VGe), (51)
q. = (\/Eqbu)L ) qr = (\/Eqbu)R
(VGov), (VGov),
392 First of all, we convert the contravariant wind u to physical speed u™ that is perpendicular to the cell edge.
L, u . {1, x direction
w= Nrl 2, y direction (52)
393 For example, in x direction, u* = \/%, and there’s no summation over i in Eq.(52).
394 The wind speed m* and geopotential ¢ are calculated by
1 $r — P
ER— 1 1 _
m = Z(uL + up - > (53)
1 L 1
¢:§[¢L+¢R_C(uR_uL)] (54)
_teg
‘T2 (55)

L= ¢L; Cr = v d)R (56)
395  cis the phase speed of external gravity wave, the subscript L, R represent the left and right side of cell edge.

396 Once m* is determined, we convert it back to contravariant speed by
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m=m* Gii (57)

We define the pressure-driven flux as

1
- 2
P =564 (58)
The flux across the cell edge is then given by
1
F = Em[(qL + qg) — sign(m)(qgr — q, )] + P (59)
0 ; :
p=[clp) Q= {; X fiil.rectl_on (60)
c2ip , y direction

For calculation of G (the flux in y direction) the method is similar.

3.4.2 Advection Upstream Splitting Method for All Speeds (AUSM™*-up)

The differences between AUSM™-up and LMARS lie in the method of determining the wind speed m* and pressure-

driven flux P. In AUSM*-up

m* =cM
(61)
where ¢ denotes the gravity phase speed defined in Eq.(55). Mach number M is expressed as
+ - 72 PR - PL
M = M (M) + Mgy (Mg) — K, max(1 — aM?,0) = (62)
n L 182 152
where M, = 22 M, =& 12 = (uz) +(ug)” +guR) _and
Cc c 2c
1
5 M £ M), M| =1
M () = Z(MEIMD, M (63)
+ f—
M D[1F 16pMG (D], M| <1
1
M(%)(M) = iZ(M + 1)2 (64)
The pressure-driven flux is expressed as
P = P(sy(ML)Py + Ps) (Mp)Pr + — 2K, P(5y (M) Ps) (Mp) e (ug — ur) (65)
where P, = %q&f,PR = %q&,%, and
1 .
P = 5 (1 sign(), Ml =1 (66)
L =

MEM[(*2 - M) F16aMME(M)], M| <1
The mathematical meaning of sign(M) (returning -1, 0, or 1 based on the sign of M) is standard. The coefficients take the
values: 0 = 1, = i,ﬂ :1,1( =
16 8

Once m* and P are computed, the flux across the cell edge can be calculated using Eqs.(57) to (60).
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3.5 Temporal Integration

We use the explicit Runge-Kutta (RK) as time marching scheme, Wicker and Skamarock (2002) described a 3" order
RK with three stages (achieves third-order accuracy exclusively when applied to linear problems). For the prognostic fields

q, the integration step from time slot n ton + 1:

. Atgoq
@ =a+5(57) €7
g =q + %(%) (68)

g =g+ ae (20 (69)

where At is the time step, and temporal tendency terms % can be obtain by Egs.(15) and (16). In our numerical

experiments, the choice of different time marching schemes influenced only the integration stability; it had no significant

impact on the simulation norm errors, non-oscillatory property, or conservation property.

4. High Performance Implementation and Automatic Differentiation

The spatial operator and temporal integration of HOPE can be easily implemented using PyTorch. Specifically, the spatial
reconstruction given by Eq.(32) is implemented as a convolution operation, while the Gaussian quadrature can be efficiently
expressed as a matrix-vector multiplication. Leveraging PyTorch's highly optimized built-in functions for both convolution
and quadrature operations ensures superior performance on GPUs.

Furthermore, PyTorch's role as a versatile Al development platform provides automatic differentiation capabilities across
the entire computation graph. This streamlines implementation and enables efficient gradient computation for all components.

For the reconstruction implementation. Suppose the cubed sphere grid comprises n. cells in x-direction within each
panel, including ghost cells. The panel number is n,,, and the shallow water equation involves n,, prognostic variables per
cell, we write the cell state tensor g with the shape (nv,np, 1,nc,nc). The TPP reconstruction weight tensor R has shape
(npoc, 1, sy, sw), where 1y, is the number of points required to be interpolated within each cell (including EQP and CQP),
sy, denotes the stencil width (same as the stencil width represented by n in Section 3.1). The reconstruction can be executed

by a simple command (pseudo-code):

Grec = torch.nn. Functional. conde(q. view(nvnp, 1,n, nc), R). view(n,,, Ny Npocr N nc) (70)
where the shape of Gy is (1, T, poc, Nes T ).
We exclusively demonstrate the flux computation procedure at cell edges as an illustrative example, where Gaussian

quadrature is employed to obtain edge-averaged fluxes. The analogous procedure applies to source term integration at CQPs.
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The edge state tensor q,, corresponding to the EQPs along each cell edge, is subsequently expressed as:
de = qrec(...,pes:pee,:,:) (71)
where subscript e represents edges on cell including L(left), R(right), B(bottom), T (top). pes, pee are start and end
point indices on edge e. The shape of q, (including q;, qr, 95, q7) is (nv, Ny, Npoes Nes nc). Npoe denotes the number of edge
quadrature points (EQPs). This value is computed as n,,,, = pee — pes in PyTorch implementations, whereas in Fortran it is
calculated as n,,, = pee — pes + 1, reflecting the difference in array indexing conventions between the two languages.
After spatial reconstruction, the resulting data is utilized in the Riemann solver for EQPs and for source term computation
on CQPs. Subsequently, integration is performed on both EQPs and CQPs to calculate the net flux and the cell-averaged
source term tendency. The cell-edge flux tensor F with dimensions (nv, Ny, Npoer N nc) is obtained after the Riemann solver.
There is a dimensionality mismatch between the flux tensor and weight tensor during using matrix multiplication. For
the Gaussian quadrature implementation, consider an edge Gaussian quadrature weight tensor g, with shape (npoe), if an

edge flux tensor F has shape (n,,, Ny, Ne, N, npoe), the Gaussian quadrature can be expressed by:

F, = torch.matmul(F, g,) (72)
where the shape of F, (n,,, Ny, N, nc) is the average flux on edge. In this operation, n,,, must occupy the last dimension of
F, to permit “torch.matmul” execution. We note, however, that in the flux tensor F obtained from the Riemann solver,
Nyeecorresponds to the third dimension, direct matrix multiplication is therefore not feasible.

To address this dimensionality issue, two methods are available. The first method involves rearranging the np,¢
dimension to the last position using the “torch. tensor. permute” operation in PyTorch, this allows Gaussian integrations to
be naturally implemented through the "torch.matmul" operation. The second method, which avoids the need for the
"permute" operation, maintains the original dimension sequence. Instead, Gaussian integrations are performed using the
"torch. einsum" function. This function sums the product of the elements of the input arrays along dimensions specified

using a notation based on the Einstein summation convention.

F, = torch. einsum('vnpij,p — vnij',F, g.) (73)
We have conducted performance tests comparing the two methods, and the results indicate that the second method is
approximately 5% faster than the first. Specifically, the first method took 649 seconds, while the second method took 616
seconds. The test was set as a one-day steady state geostrophic flow (with details provided in section 5.2) simulation at a
resolution of C900 (Ax = Ay = 0.1") , using 3" order accuracy reconstruction stencil. The time step was 30 seconds, and the
default data type used was “torch. float32” (single precision).
The Riemann solver implementation on flux points is way easier, only needs to call “torch. sign” for Eq.(59), while all

other operations can be executed using basic arithmetic: addition, subtraction, multiplication, and division. During a Runge-

Kutta sub-step, there are no dependencies, and neither "for" loops nor "if" statements are required in the HOPE kernel code.
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This algorithm fully leverages the capabilities of the GPU.

5. Numerical Experiments

The HOPE dynamical core is evaluated using the standard test cases (Test 1, 2, 5, and 6) for the spherical shallow water
model as described in Williamson et al. (1992), along with the perturbed jet flow case proposed by Galewsky et al. (2004).
Additionally, a dam-break experiment is designed to demonstrate the HOPE model's capability in capturing shock waves.

In our experiments, the grid resolutions are denoted by the count of cells along one dimension on each panel of the cubed
sphere; for instance, C90 signifies that each panel is subdivided into a 90 X 90 grid, corresponding to a grid interval of Ax =
Ay = 1°.

_ Ig(nn)_lg(no)

We measure the conservation errors by defining the normalized error €, of the variable 1 as €, = RO where 1n°
g

and n™ stand for n value at initial time and time slot n, respectively. The global integral is defined as:

Mp ne ne (74)

() = Z Z 2 VGijpijp

p=1j=1i=1
where 7); ;,, represents the average value of 7 in cell (i, j, p)

We use three kinds of norm errors to measure the simulation errors,

! I[¢ref(i:j' p)]

76
(610 = dresGiim) | (76)

I[(p?ef(x’ Y p)]

_ max|¢(i,j, D) — Grep (i), P)| 77
max|dyer (i, j, )|

L2=

(o8]

the subscript ref represents reference state.

5.1 Cosine Bell Advection

The Solid Body Rotation Cosine Bell (Case 1 from Williamson (1992)) is commonly employed to assess noise generated

by panel boundaries, as noted by Chen and Xiao (2008), Ullrich et al. (2010). The wind field is given by

ug = uy(cos O cosa + cos Asin 0 sin @) (78)
v, = —UgsinAsina (79)
where ug, vg are zonal wind and meridional wind, earth radius is a = 6371220 m, basic flow speed uy = 12*2;‘100 m/s. The

initial height is defined as
24
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h(A,0) = {ho (1 + cosnTils), r<R (80)
0, r=R

where A, 6 are longitude and latitude. The basic height hy = 1000 m. The great circle distance between (4, 8) and the initial

center point of cosine bell (4.,0,) = (3m/2,0) is expressed by dy = a acos[sin 8, sin 8 + cos 8, cos 0 cos(1 — A.)]. The

radius R = a/3.

Figure 8 presents the norm errors for a 12-day simulation at @ = 0; results for @ = m/2 are identical. The temporal
evolution of L; and L, norm errors does not exhibit a pronounced signature attributable to panel boundaries. In contrast, the
Lo,norm error evolution shows significant sensitivity to panel boundaries, varying considerably with grid resolution and
reconstruction order. When using low resolution and low reconstruction order (TPP3 with C30 grid), oscillations induced by
panel boundaries are relatively weak. However, as the model resolution or reconstruction order increases, the influence of

panel boundaries on the L., norm error manifests as a distinct four-peak pattern, corresponding to the four longitudinally

aligned panel boundaries of the cubed-sphere grid.
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Figure 8 The variation of norm errors during simulation days for the cosine bell advection test case, with direction
parameter « = 0. The rows represent reconstruction schemes TPP3, TPP5 and TPP7, the columns stand for grid C30, C45,
C90 and C180.

Figure 9 shows the 12-day simulation norm errors for @ = 7 /4. In this test configuration, the cosine bell initially moves
alone the interface between Panel 1 and Panel 5, and subsequently moves along the interface between Panel 3 and Panel 6.

The temporal evolution of L, and L, norm errors display two gentle peaks, corresponding to the errors generated as the cosine
25



496  bell crosses these panel interfaces. Similar to Figure 8, the L, norm error progressively exceeds the L, and L, norm errors as

497  grid resolution and reconstruction order increase.
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499 Figure 9 The variation of norm errors during simulation days for the cosine bell advection test case, with direction

500 parameter @ = /4 . The rows represent reconstruction schemes TPP3, TPP5 and TPP7, the columns stand for grid C30,
501 C45, C90 and C180.

502 Because the Cosine Bell field lacks infinite continuity, the convergence rate of the norm errors cannot exceed second

503  order in our tests, regardless of the reconstruction order employed. This observation aligns with the key point emphasized in
504  our paper: high-order numerical methods achieve their design accuracy only when the flow field is sufficiently smooth.
505  Discontinuities in the flow field violate the fundamental premise of polynomial reconstruction (as discontinuities impair the
506  continuity of higher derivatives, leading to non-convergence of the Taylor series). This inherent sensitivity to smoothness is
507  precisely the factor causing norm errors to be influenced by cubed-sphere panel boundaries. When using low-order
508  reconstruction schemes at low resolutions, the Tensor Product Polynomial (TPP) reconstruction employs lower-degree
509  polynomials and is consequently less sensitive to the smoothness of the flow field. Conversely, high-order TPP reconstruction
510  requires the flow field to possess higher-order continuity to maintain accuracy; it is thus more sensitive to discontinuities.
511 Insufficiently smooth flow fields can introduce numerical oscillations with high-order schemes. Therefore, while TPP5 and
512 TPP7 yield lower L norm error magnitudes than TPP3, they exhibit more pronounced oscillations caused by the cubed-

513 sphere panel boundaries.
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5.2 Steady State Geostrophic Flow

Steady state geostrophic flow is the 2" case in Williamson et al. (1992), it provided an analytical solution for spherical
shallow water equations, it was widely used in accuracy test for shallow water models. The analytical solution is a steady
state, which means the initial filed is the exact solution. The initial wind field replicates the formulation given in Eqs.(78) and

(79), while the initial geopotential is expressed as

2
b=, — (aﬂuo + %) (— cosAcos B sina + sin 6 cos a)? (81)

where Q = 7.292 X 1075 571 is the earth rotation angular velocity, basic geopotential ¢y = 29400 m? /s?

, a = 0 denotes
the rotation angle transcribed between the physical north pole and the center of the northern panel on the cubed-sphere grid,
and gravity acceleration g = 9.80616 m/s?. The conversion between the spherical wind (ug, v5) and contravariant wind is
given by Eq.(9).

We simulated the steady state geostrophic flow over one period (12 days) to test the norm errors and corresponds
convergence rate. Since the norm error becomes too small to express by double precision number, all of the experiments were
based on the quadruple precision version of HOPE. Time steps were set to At = 600,400,200, 100,50 s for C30, C45, C90,
C180 and C360, respectively.

As shown in Figure 10, errors near the panel boundaries of the cubed-sphere grid are significantly higher than those in
the central regions, confirming the presence of grid imprinting. Furthermore, we implemented the AUSM-up+ Riemann solver
(consistent with the scheme described in Ullrich et al. (2010)) as an alternative to LMARS. While computationally more
complex, AUSM*-up substantially reduces simulation errors. Comparative analysis of Figure 10 (a) and (b) demonstrates that

the maximum absolute error decreases from 8.792x10~° (LMARS) to 2.413x1075 (AUSM*-up), while convergence rates

remain unchanged.
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Figure 10 Numerical errors (simulation result minus exact solution) of geopotential for steady state flow with Riemann solvers (a)

LMARS and (b) AUSM"-up. The reconstruction scheme is TPP5, and the model resolution is C90.
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536 Performance benchmarks using HOPE's Fortran implementation on a C90 grid show that simulating 12 days with a 200-
537  second integration time step requires 49.4 seconds for LMARS versus 57.34 seconds for AUSM™-up. This demonstrates that

538  Riemann solver selection critically impacts simulation outcomes, consistent with the discussions in Ullrich et al. (2010).

539 Table 1 Norm errors and convergence rates of steady state geostrophic flow at day 12, with LMARS as Riemann Solver.
TPP3 C30 C45 C90 C180 C360
L, error 1.8853E-03 5.6474E-04 7.0960E-05 8.8777E-06 1.1099E-06
L, rate 2.9731 2.9925 2.9988 2.9998
L, error 2.1484E-03 6.4171E-04 8.0500E-05 1.0069E-05 1.2588E-06
L, rate 2.9802 2.9949 2.9991 2.9998
L error 4.3242E-03 1.2932E-03 1.6201E-04 2.0275E-05 2.5350E-06
L, rate 2.9770 2.9968 2.9983 2.9997
TPP5
L4 error 3.6122E-06 4.7493E-07 1.4827E-08 4.6322E-10 1.4474E-11
L, rate 5.0039 5.0014 5.0004 5.0002
L, error 5.2427E-06 6.9169E-07 2.1627E-08 6.7584E-10 2.1119E-11
L, rate 4.9954 4.9992 5.0000 5.0001
L, error 1.6810E-05 2.2451E-06 7.0534E-08 2.2070E-09 6.8985E-11
L, rate 4.9652 4.9923 4.9982 4.9996
TPP7
L, error 8.1697E-08 4.7967E-09 3.7678E-11 2.9547E-13 2.3125E-15
L, rate 6.9922 6.9922 6.9946 6.9974
L, error 8.7991E-08 5.1644E-09 4.0507E-11 3.1728E-13 2.4823E-15
L, rate 6.9931 6.9943 6.9963 6.9979
L, error 1.4741E-07 8.6376E-09 6.7814E-11 5.3387E-13 4.1901E-15
L, rate 6.9971 6.9929 6.9889 6.9934
TPP9
L, error 7.8909E-10 2.1780E-11 4.3925E-14 8.6359E-17
L, rate 8.8537 8.9538 8.9905
L, error 9.5638E-10 2.6409E-11 5.3341E-14 1.0494E-16
L, rate 8.8526 8.9516 8.9896
L, error 2.3946E-09 6.6773E-11 1.3547E-13 2.6644E-16
L, rate 8.8285 8.9452 8.9899
TPP11
L, error 1.1908E-10 1.3799E-12 6.7696E-16 3.3197E-19
L, rate 10.9943 10.9932 10.9938
L, error 1.3084E-10 1.5186E-12 7.4489E-16 3.6500E-19
L, rate 10.9904 10.9934 10.9949
L, error 2.4204E-10 2.8579E-12 1.4147E-15 6.9567E-19
L, rate 10.9479 10.9803 10.9898
WENO3
L, error 2.6438E-03 7.2239E-04 7.7012E-05 8.9622E-06
L, rate 3.1998 3.2296 3.1032
L, error 4.0817E-03 9.7196E-04 9.5476E-05 1.0553E-05
L, rate 3.5390 3.3477 3.1775
L, error 2.5439E-02 7.7486E-03 9.6110E-04 1.0723E-04
L, rate 2.9319 3.0112 3.1640
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WENOS

L, error 3.6191E-06 4.7551E-07 1.4829E-08 4.6322E-10
L, rate 5.0056 5.0030 5.0006

L, error 5.2659E-06 6.9252E-07 2.1630E-08 6.7585E-10
L, rate 5.0033 5.0008 5.0002

L, error 1.6873E-05 2.2466E-06 7.0539E-08 2.2070E-09
L, rate 4.9727 4.9932 4.9983

In Table 1, we present the geopotential simulation errors and convergence rate of different order accuracy schemes at
various resolutions. It is evident that HOPE is capable of achieving the designed accuracies in all tests. When the resolution
exceeds C180, the errors obtained from the TPP7, TPP9 and TPP11 schemes have surpassed the limits expressible by double-
precision numbers. This demonstrates HOPE's excellent error convergence for simulating smooth flow fields. It should be
noted that high-order accuracy schemes do consume more computational resources. HOPE has proven the feasibility of ultra-
high-order accuracy finite volume methods on cubed sphere grids. However, in simulating the real atmosphere, a balance
between computational efficiency and error must be considered. We believe that 3" or 5" order accuracy schemes will be
more practical for subsequent developments in baroclinic atmosphere model.

At lower resolutions, the simulation error of WENOZ3 is significantly higher than that of TPP3. However, as the resolution
increases, the error of WENO3 progressively approaches that of TPP3. Comparing WENOS and TPP5 results reveals a
marginal increase in norm errors for WENOS, while maintaining Sth-order convergence rates. This confirms WENOS5's
capability to preserve high accuracy when simulating smooth flows.

It should be noted that HOPE achieves extremely small errors in simulating smooth flow fields even on very coarse
resolutions. These errors can be so minute that they fall below the 16 significant digits representable in double precision.
Under these conditions, conducting precision tests using double precision alone fails to accurately capture the true
convergence rate. To obtain correct error measurements and convergence rate, we must employ FP128 (real(16) in Fortran).
However, PyTorch's underlying architecture is built on NVIDIA CUDA, which currently supports only up to FP64 (double
precision). Consequently, the PyTorch implementation cannot provide correct simulation errors when utilizing ultra-high-

order schemes.

5.3 Zonal Flow over an Isolated Mountain

Zonal flow over an isolated mountain is the 5" case mentioned in Williamson et al. (1992), this case was usually be
implemented to test the topography influence in shallow water models. The initial condition is defined by Eq.(81)~(79), but

hy = 5960 m, ¢y = hog, uy = 20m/s. The mountain height is expressed as

ds
hs = hso (1 - E)

29
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where hgy = 2000 m; R = g; ds = /min[R2, (A — 2.)2 + (8 — 0.)2]. A, = 0= % are the center longitude and latitude

of the mountain, respectively.
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Figure 11 TPP5 (with LMARS) simulation result of the isolated mountain wave on C90 grid. The rows stand for variables:
geopotential, zonal wind, meridional wind and relative vorticity, respectively. The columns represent simulation day 5, 10, 15.

Geopotential contour from 5050 to 5950 m with interval 50 m. Zonal wind contour from —30 to 50 m/s with interval 10 m/s.

Meridional wind contour from —30 to 30 m/s with interval 10 m/s. Relative vorticity contour from —3 X 1075 to 4 x 107> 51

with interval 1 X 1075 s71,

HOPE is able to deal with the bottom topography correctly, as shown in Figure 11, all of the simulation result is consistent
with prior researches such as (Nair et al., 2005a; Ullrich et al., 2010; Chen and Xiao, 2008) and so on. Furthermore, as
discussed in Bao et al. (2014), some high order Discontinuous Galerkin (DG) method exhibit non-physical oscillation during
simulating the over mountain flow, the additional viscosity operators are necessary to alleviate this issue. However, HOPE
does not require any explicit viscosity operator to suppress vorticity oscillations, the vorticity fields are smooth all the time
as illustrated in Figure 11 (j), (k), (1I). We have tested other schemes as well, including TPP3, TPP7, WENO3, and WENOS,

all of the schemes are able to achieve similar simulation results.
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Figure 12 Time series of normalized conservation errors for the zonal flow over isolated mountain simulation on the C90 grid
over days 0 to 100. (a) Normalized total energy error. (b) Normalized total potential enstrophy error. (¢c) Normalized total zonal

angular momentum error.

In the 15-day simulation of zonal flow over an isolated mountain the total energy exhibited a gradual increase over the
integration time, while the total potential enstrophy showed gradual dissipation as the simulation progressed. The AUSM*-up

scheme demonstrated stronger energy dissipation compared to the LMARS scheme, as illustrated in Figure 12,

5.4 Rossby-Haurwitz Wave with 4 Waves

Rossby-Haurwitz (RH) wave is the 6™ test case introduced by Williamson et al. (1992), the RH waves are analytic
solution of the spherical nonlinear barotropic vorticity equation, the reference solution is the zonal advection of RH wave

without pattern changing, the angular phase speed is given by
_R(R+3)w—20
‘TR+rDR+2)

(83)

where R = 4 is the zonal wavenumber, w = 7.848 X 107¢ s71; the earth rotation angular speed Q = 7.292 X 1075 s71,

Therefore, we have the period T = 29.52 days. The initial condition expressed as
¢ = ¢y + a?[A(6) + B(8) cos RA + C(0) cos 2RA] (84)
(85)

u = aw cos @ + aK cos®~1 0 (R sin? § — cos? 0) cos RA
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v = —aKR cos®~10sin 0 sin RA (86)

1
AO) = %(ZQ + w) cos? 0 + ZKZ cos?RO[(R +1)cos?6 + 2R> —R — 2 — 2R?cos ™2 0] (87)
_ 2@+ w)kK R 2 2 e (88)
B<9)_(R+1)(R+2)COS O[R*“+2R+2— (R + 1)“cos*0]
1
() =ZK2 cos*® O [(R + 1) cos?6 — R — 2] (89)

where A, 8 are longitude and latitude, K = w, ¢y = ghy, hy = 8000 m, and a = 6371220 m is the earth radius.

According to the study by Thuburn and Li (2000), the Rossby-Haurwitz (RH) wave with wavenumber 4 is inherently
dynamically unstable and prone to collapse. This instability can be triggered by minute perturbations, such as those arising
from grid structure (breaking initial symmetry), initial condition imperfections, or numerical errors (e.g., truncation or
roundoff). Similar conclusions have been verified in subsequent research. In tests conducted by Zhou et al. (2020), the TRiSK
framework based on the SCVT grid could only sustain the RH wave pattern for 25 days without collapse. In contrast, (Li et
al., 2020) successfully maintained the RH wave pattern for 89 days using a similar algorithm on a latitude-longitude grid.
Ullrich et al. (2010) developed the high-order accuracy finite volume model based on a cubed-sphere grid, which was able to
sustain the RH wave for up to 90 days. In the most of our experiments, the ability of HOPE to maintain the Rossby-Haurwitz
(RH) wave significantly improved with increased order of accuracy and grid resolution. All of the simulation results are based
on LMARS in this section.

In the TPP3 simulation, we found that the duration for which the RH wave is maintained increases with higher grid
resolution, as exhibit in Figure 13. When the grid resolution is low (C45, C90), an obvious dissipation phenomenon can be
observed. When the resolution reaches C180, the dissipation is significantly reduced, but the waveform has completely
collapsed by day 90. When the resolution reaches C360, the simulation results are further improved, with dissipation further

reduced, and the RH wave waveform can still barely be maintained on day 90.
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Figure 13 Geopotential of Rossby-Haurwitz wave simulated by TPP3 scheme. The rows represent grid C45, C90, C180 and C360,
the columns stand for simulation day 14, 30, 60, 90. Contours from 8100 to 10500 m with interval 200 m.

A 100-day simulation of the Rossby-Haurwitz wave was conducted using a C90 grid (1° resolution). The total energy
simulated with the TPP3, TPP5, TPP7, and TPP9 schemes underwent dissipation to varying degrees. By day 100, the
normalized total energy errors reached —1.49 X 1073,—1.33 x 1075, —1.71 x 107°,—4.20 x 1077, respectively, indicating
significantly stronger dissipation for the TPP3 scheme compared to the other higher-order schemes Figure 14 (a). Figure 14
(b) presents a scaled view of the energy evolution for TPP5, TPP7, and TPPY, clearly demonstrating that increasing the
reconstruction order progressively reduces energy dissipation. Furthermore, following the RH wave collapse, a significant
drop in total energy was observed for the TPPS5 scheme (after approximately 90 days) and the TPP7 scheme (after

approximately 95 days).
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Figure 14 Time series of normalized conservation errors for the Rossby-Haurwitz wave simulation on the C90 grid over days 0 to
100, with LMARS scheme as Riemann solver. (a) Normalized total energy error for TPP3, TPPS5, TPP7 and TPP9. (b) The total
energy normalized error for TPP5, TPP7 and TPP9. (c) Normalized potential enstrophy error for TPP3, TPP5, TPP7 and TPP9. (d)
Normalized total zonal angular momentum error for TPP3, TPP5, TPP7 and TPP9.

Analysis of the normalized total potential enstrophy error (Figure 14 (c¢)) and the normalized zonal angular momentum
error (Figure 14 (d)) over time yields conclusions consistent with those for total energy. Specifically, the TPP3 scheme
exhibited substantially higher dissipation than the higher-order schemes, confirming that employing higher-order
reconstruction schemes effectively minimizes dissipation. Notably, significant dissipation surges occurred in these quantities

following the RH wave collapse.
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Figure 15 Geopotential of Rossby-Haurwitz wave on C90 grid, the rows represent the spatial reconstruction scheme with TPP3,
TPP5, TPP7 and TPP9 the columns stand for simulation day 30, 60, 90 and 100. Contours from 8100 to 10500 m with interval
200 m.

In Figure 15, we compare the impact of order-of-accuracy on the simulation capability of RH waves by fixing the
resolution. By comparing row by row, it can be observed that when the accuracy reaches 5th order or higher, the dissipation
is significantly reduced. Both the TPP5 and TPP7 simulations show signs of waveform distortion on day 90, and the
waveform completely collapses by day 100. However, when using TPP9 for the simulation, the waveform is well maintained
even until day 100.

Figure 16 presents the simulation results on the 80th day for different resolutions and reconstruction schemes. The
dissipation decreases as the resolution and reconstruction order improve. At the C45 resolution, both the TPP3 and TPP5
simulations exhibit significant dissipation. Although the TPP7 simulation shows a notable improvement in dissipation, the
waveform is severely distorted. The TPP9 scheme produces the best simulation results. As the resolution increases, the
simulation performance also improves significantly. When using the C360 resolution, all TPP schemes yield good simulation

results.
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Figure 16 Geopotential of Rossby-Haurwitz wave at simulation day 80. The rows represent spatial reconstruction with TPP3, TPP5,
TPP7 and TPP9. The columns stand for grid C45, C90, C180 and C360. Contours from 8100 to 10500 m with interval 200 m.

Significant differences were observed between the 2D WENO scheme and the TPP schemes in this test. Regardless of
the specific WENO order employed (3, 5, 7, or 9), all WENO variants maintained the Rossby-Haurwitz (RH) wave pattern
for a shorter duration compared to their TPP counterparts of equivalent order. We infer that the nonlinear processes inherent
within the WENO scheme introduce asymmetries that disrupt the computational stencil symmetry, leading to a premature

collapse of the RH wave.

5.5 Perturbed Jet Flow

The perturbed jet flow was introduced by Galewsky et al. (2004), this experiment was desired to test the model ability

of simulating the fast and slow motion. the initial field is defined as
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where 4, 6 represents longitude and latitude, a = 6371220 m is radius of earth, u,,,, = 80m/s, 8, = g, 6, = i_Z‘ 6, = %,
-4
e, = e01-00% o = é, B = 1—15, and h = 120 m. We adopt LMARS as Riemann solver in all of the simulation in this section.

As mentioned in Chen and Xiao (2008), the perturbed jet flow experiment poses a particular challenge for the cubed-
sphere grid model. Firstly, the jet stream is located at 45°N, which is very close to the boundaries of panel 5 of the cubed-
sphere grid, resulting in a large geopotential gradient in the ghost interpolation region, which leads to larger interpolation
error. Furthermore, the location of the geopotential perturbation ¢’ coincides with the boundary between panel 1 and panel 5,

which also leads to greater numerical computation errors.
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Figure 17 Relative vorticity of perturbed jet flow. (a)~(c) represent the results of TPP5 scheme with resolutions C45, C90, C180.
(d)~(f) represent the results of TPP7 scheme with resolutions C45, C90, C180. (g)~(i) represent the results of TPP9 scheme with
resolutions C45, C90, C180. (j)~(1) represent the results of TPP11 scheme with resolutions C45, C90, C180.

Figure 17 displays the HOPE simulation outcomes at day 6 for varying levels of reconstruction order and resolutions.
The four rows correspond to the TPPS, TPP7, TPP9 and TPP11 schemes in terms of reconstruction order. The three columns,
meanwhile, represent the resolutions of C45, C90, and C180, respectively. Upon comparing the different columns, it is evident
that the perturbed jet flow test case converges as the resolution increases. Figure 17 (a), (d), (g), and (j) illustrate that, with an
increase in reconstruction order, the vorticity field patterns become increasingly similar to the high-resolution results shown
in the second and third columns of Figure 17. Notably, HOPE enhances the simulation results by utilizing both higher

reconstruction order and higher resolution.
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5.6 Dam-Break Shock Wave

In this section we introduce a dam-break case for testing the capability of HOPE to capture the shock wave and comparing
the difference between 1D and 2D WENO schemes. The initial condition is configured as a cylinder with a geopotential of

30000 m?/s2, as shown in Figure 18(a). The geopotential is given by
2
ICRZN R A (93)

bo» otherwise

where dg = /(A —2.)2+ (6 — 6.)2,A, =m,0, = 0,7, = %, ¢o = 30000 m?/s?, and the earth rotation angular speed Q =

0. We adopt LMARS as Riemann solver in all of the simulation in this section.

40 40 40 6

(@)

20+

latitude(®)
)
latitude(®)
)
latitude(®)
)
IS
)
Geopotential Height (meter)

=20 -20F -20F

a0 160 180 200 220 140 160 180 200 220 140 160 180 200 220
longitude(®) longitude(®) longitude(®)

Figure 18 Geopotential of dam-break test case on C90 grid at 2nd hour. (a) Initial condition, (b) WENO 1D, (c) WENO 2D. The
horizontal resolution for both schemes is C90. Shaded and contour from 3.2 X 10* to 6 X 10* meters, with contour interval 103

meters.

In this experiment, we compare WENOS5 (WENO scheme with reconstruction width 5) on both 1D and 2D schemes, the
WENO-Z (Borges et al., 2008) is adopted as WENO 1D scheme, and WENO 2D scheme is consist with section 3.2. Due to
the initial condition being a cylinder, the resulting shock wave should maintain a circular feature. In the simulation results of
WENO 1D, numerous radial textures appear, Figure 18(b). The simulation results using the WENO 2D scheme exhibit a
smoother circular shape, Figure 18(c). This outcome arises because the 1D reconstruction scheme suffers from dimension
split error, whereas the fitting function in the 2D reconstruction scheme incorporates cross terms. Therefore, when simulating
fluid fields characterized by isotropic features, the 1D scheme lacks the capability to accurately represent diagonal directional

features. Conversely, the 2D scheme correctly captures the inherent isotropic characteristics.

6. Conclusions

This paper presents HOPE, an innovative finite-volume model capable of achieving arbitrary odd-order convergence
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rate. Through comprehensive numerical experiments, we demonstrate that HOPE exhibits excellent convergence properties
when applied to smooth flow fields, with simulation errors decreasing rapidly as the order of accuracy increases.

The model's performance has been rigorously evaluated across several benchmark cases:

1. In Rossby-Haurwitz wave simulations, HOPE demonstrates superior waveform preservation capabilities that scale

with both spatial resolution and accuracy order.

2. For perturbed jet flow scenarios, the model successfully resolves both fast and slow dynamical features, with

significant improvements in solution quality observed at higher orders and finer resolutions.

3. Mountain wave simulations confirm HOPE's ability to accurately represent orographically-forced gravity waves.

4. In the dam break test case featuring cylindrical shock fronts, the two-dimensional WENO reconstruction scheme

proves more effective than dimension-split approaches in maintaining circular symmetry.

In the case of steady geostrophic flow, Both WENO3 and WENOS achieve the expected 3rd-order and Sth-order
convergence rates, respectively. However, the computed norm errors for WENO schemes are marginally larger than those
obtained with the TPP3 and TPP5 schemes. This observation confirms that the 2D WENO scheme preserves the designed
convergence rate in smooth flow regions. Concurrently, in the Dam-Break Shock Wave case, the 2D WENO scheme
demonstrates its robust capability for handling discontinuous flow fields. These combined results align perfectly with the
primary motivation for introducing the WENO scheme: its adaptive oscillation suppression capability. Specifically, the
scheme preserves the high convergence rate in sufficiently smooth regions while automatically reducing the reconstruction
order near discontinuities to effectively suppress the development and propagation of non-physical oscillations.

A key innovation of HOPE lies in its computational architecture. The algorithm is specifically designed to harness GPU
acceleration through (1) Implementation of spatial reconstructions as convolutional operations, and (2) Formulation of
integration steps as matrix-vector products. These design choices leverage computational patterns widely adopted in machine
learning frameworks. By developing HOPE within PyTorch, we inherit automatic differentiation capabilities, enabling
straightforward coupling with neural network systems.

This integration facilitates the development of hybrid prediction models that combine a high-order, high-performance
dynamical core, and Neural network-based physical parameterizations. Current research efforts have successfully extended
this algorithmic framework to a two-dimensional baroclinic model (X-Z dimensions).

Future work will focus on developing a global, fully compressible baroclinic model using the HOPE algorithm, further
demonstrating its versatility and advantages for modeling complex atmospheric dynamics. The model's unique combination
of physical conservation, computational efficiency, and machine learning compatibility positions it as a powerful tool for

next-generation atmospheric modeling.
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7. Appendix

In this appendix, we introduce a novel boundary ghost cell interpolation scheme for cubed sphere, which is able to
support HOPE to reach the accuracy over 11" order or even higher.

There are two types of cells, in-domain and out-domain (also named ghost cell, as show in Figure 7(b)), we define the
set of in-domain cell values q4; = (g1, 72, ..., qq)7, the set of out-domain cell values g,x; = (g1, 92, -, ga)T, and the set
of Gaussian quadrature point values (green points in Figure 3) in out-domain cells is define as v,y = (vl, Uy, ...,vp). To
identify the shape of the arrays, we denote the array shape using subscripts (this convention will be followed throughout the
subsequent text). The purpose of ghost cell interpolation is using the known cell value q to interpolate the unknown g.

Define a new set includes the values of domain cell values and ghost cell values

q = U = ( ) ) ) ) ) ) ) )T
da+h)x1 = qUgG q1, 9> qa, 91,92 In (A.l)

Similar to the describe in section 0, we can use a TPP to reconstruct the ghost quadrature points

Vpx1 = Apx(d+h)¢~l(d+h)><1

(A2)

where Apx(q+n) 18 the interpolation matrix that can be obtain by the similar method to Eq.(29). The ghost cell values are

calculated by Gaussian quadrature

Ihx1 = BrxpVpx1

(A.3)
where Bj,x,, is the Gaussian quadrature matrix.
G (a+n)x1 can be decomposed as the linear combination of g4, and Vx4
~ Igxa 0 Gax1 = _
qa+r)x1 = ( 0 Bth) ( vpxl) = Ba+n)x(@+p)d(a+p)x1 (A4)
where I;.4 1s an identity matrix, and
~ Idxd 0
Banan = (5" g, )
(d+h)x(d+p) 0 By (A5)
— _ (9ax1
Ga+p)x1 = (pr1) (A.6)
Substitute Eq.(30) into Eq.(26), we have
- _ ~ _ - qax1
Vpx1 = Apxa+n)Ba+nx(a+p)d(a+p)x1 = Apx(@+p)A(a+p)x1 = Apx(d+p) (pr1) (A.7)
We found that matrix /Ipx(dﬂ,) can be decomposed into two parts
Apx(a+p) = (Apxa Cva) (A.8)
Such that
Upx1 = Apxdqul + Cpxpvpxl (A9)
Therefore
(Ipxp - Cpxp)vpxl = /Tpxdqul (AlO)
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We set Dy = Iyxp — Cpxp» then vy can be determined by
Vpx1 = DpsipApxaaxi (A.11)
Substitute Eq.(A.11) into Eq.(A.3), we establish the relationship between ghost cell values and in-domain cell values
Inx1 = BuxpVpx1 = BuxpDpspApxalaxi = Gnxadax1 (A12)
where Gpwg = BthD'Qp/Tpxd. It’s clear that Eq.(A.12) is linear, and only rely on the mesh and Gaussian quadrature
scheme. Therefore, we need to compute the projection matrix G, «4 only once for a given mesh and accuracy, this matrix can

be computed by a preprocessing system and save it to the hard disk.

Code availability. The digital object identifier (DOI) for HOPE shallow water model is 10.5281/zenodo.16635583.(Zhou,

2025)

Author contributions. LZ developed the algorithm, implemented the code, conducted numerical experiments, and wrote the
manuscript. WX provided expert guidance on software architecture design and high-performance computing implementations.

XS provided expert guidance on manuscript writing.

Competing interests. The authors declare that they have no conflict of interest.

Financial support. This work is partially supported by National Natural Science foundation of China (No. U2242210)

Acknowledgements. The authors wish to express their profound respect for the rigorous scientific approach and dedication to
pure science demonstrated by the anonymous reviewers. Their numerous valuable suggestions and critiques have significantly

enhanced the manuscript's linguistic clarity, argumentative rigor, and experimental completeness.

8. References

Acker, F., B. de R. Borges, R., and Costa, B.: An improved WENO-Z scheme, Journal of Computational Physics, 313, 726-753,
10.1016/j.jcp.2016.01.038, 2016.

Bao, L., Nair, R. D., and Tufo, H. M.: A Mass and Momentum Flux-Form High-Order Discontinuous Galerkin Shallow Water
Model on the Cubed-Sphere, Journal of Computational Physics, 271, 224-243, 10.1016/.jcp.2013.11.033, 2014.

Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian, Q.: Pangu-Weather: A 3D High-Resolution System for Fast and Accurate

41


https://doi.org/10.5281/zenodo.16635583

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

Global Weather Forecast, arXiv:2211.02556v1 [physics.ao-ph] 3 Nov 2022, 2022.

Borges, R., Carmona, M., Costa, B., and Don, W. S.: An improved weighted essentially non-oscillatory scheme for hyperbolic
conservation laws, Journal of Computational Physics, 227, 3191-3211, 10.1016/.jcp.2007.11.038, 2008.

Chen, C. and Xiao, F.: Shallow Water Model on Cubed-Sphere by Multi-Moment Finite Volume Method, Journal of
Computational Physics, 227, 5019-5044, 10.1016/j.jcp.2008.01.033, 2008.

Chen, K., Han, T., Chen, X., Ma, L., Gong, J., Zhang, T., Yang, X., Bai, L., Ling, F., Su, R., Ci, Y., and Ouyang, W.: FengWu:
Pushing the Skillful Global Medium-range Weather Forecast beyond 10 Days Lead, arXiv:2304.02948v1 [cs.Al] 6 Apr 2023,
2023.

Chen, X., Andronova, N., Van Leer, B., Penner, J. E., Boyd, J. P., Jablonowski, C., and Lin, S.-J.: A Control-Volume Model of the
Compressible Euler Equations with a Vertical Lagrangian Coordinate, Monthly Weather Review, 141, 2526-2544,
10.1175/mwr-d-12-00129.1, 2013.

Galewsky, J., Scott, R. K., and Polvani, L. M.: An Initial-Value Problem for Testing Numerical Models of the Global Shallow-
Water Equations, Tellus, 56A, 429-440, 2004.

Hu, C. and Shu, C.-W.: Weighted Essentially Non-oscillatory Schemes on Triangular Meshes, Journal of Computational Physics,
150, 97-127, 1999.

Ii, S. and Xiao, F.: A Global Shallow Water Model Using High Order Multi-Moment Constrained Finite Volume Method and
Icosahedral Grid, Journal of Computational Physics, 229, 1774-1796, 10.1016/j.jcp.2009.11.008, 2010.

Jiang, G.-S. and Shu, C.-W.: Efficient Implementation of Weighted ENO Schemes, Journal of Computational Physics, 126, 202—

228, https://doi.org/10.1006/icph.1996.0130, 1996.

Kochkov, D., Yuval, J., Langmore, 1., Norgaard, P., Smith, J., Mooers, G., Lottes, J., Rasp, S., Duben, P., Klower, M., Hatfield, S.,
Battaglia, P., Sanchez-Gonzalez, A., Willson, M., Brenner, M. P., and Hoyer, S.: Neural General Circulation Models for
Weather and Climate, Nature, 632, 1060-1066, 2024.

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Alet, F., Ravuri, S., Ewalds, T., Eaton-Rosen, Z., Hu,
W., Merose, A., Hoyer, S., Holland, G., Vinyals, O., Stott, J., Pritzel, A., Mohamed, S., and Battaglia, P.: GraphCast:
Learning Skillful Medium-Range Global Weather Forecasting, Science, 382, 1416-1421, 2023.

Li, J., Wang, B., and Dong, L.: Analysis of and Solution to the Polar Numerical Noise Within the Shallow - Water Model on the
Latitude-Longitude Grid, Journal of Advances in Modeling Earth Systems, 12, 10.1029/2020ms002047, 2020.

Liou, M.-S.: A Sequel to AUSM, Part II: AUSM+-up for All Speeds, Journal of Computational Physics, 214, 137-170,
10.1016/.jcp.2005.09.020, 2006.

Liu, X.-D., Osher, S., and Chan, T.: Weighted Essentially Non-oscillatory Schemes, Journal of Computational Physics, 115, 200-

42


https://doi.org/10.1006/jcph.1996.0130

798

799

800

801

802

803

804

805

806

807

808

809

&10

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

212, 1994.

Luo, X. and Wu, S.-p.: An improved WENO-Z+ scheme for solving hyperbolic conservation laws, Journal of Computational
Physics, 445, 10.1016/j.jcp.2021.110608, 2021.

Nair, R. D., Thomas, S. J., and Loft, R. D.: A Discontinuous Galerkin Global Shallow Water Model, Monthly Weather Review,
133, 876-888, 2005a.

Nair, R. D., Thomas, S. J., and Loft, R. D.: A Discontinuous Galerkin Transport Scheme on the Cubed Sphere, Monthly Weather
Review, 133, 814-828, 2005b.

Sadourny, R.: Conservative Finite-Difference Approximations of the Primitive Equations on Quasi-Uniform Spherical Grids,
Monthly Weather Review, 100, 136-144, 1972.

Shi, J., Hu, C., and Shu, C.-W.: A Technique of Treating Negative Weights in WENO Schemes, Journal of Computational Physics,
175, 108-127, 10.1006/jcph.2001.6892, 2002.

Thuburn, J. and Li, Y.: Numerical Simulations of Rossby-Haurwitz Waves, Tellus A, 52, 181-189, 10.1034/j.1600-
0870.2000.00107.x, 2000.

Ullrich, P. A. and Jablonowski, C.: MCore: A Non-hydrostatic Atmospheric Dynamical Core Utilizing High-order Finite-Volume
Methods, Journal of Computational Physics, 231, 5078-5108, 10.1016/j.jcp.2012.04.024, 2012.

Ullrich, P. A., Jablonowski, C., and van Leer, B.: High-Order Finite-Volume Methods for the Shallow-Water Equations on the
Sphere, Journal of Computational Physics, 229, 6104-6134, 10.1016/j.jcp.2010.04.044, 2010.

Wicker, L. J. and Skamarock, W. C.: Time-Splitting Methods for Elastic Models Using Forward Time Schemes, Monthly Weather
Review, 130, 2088-2097, 2002.

Williamson, D. L., Drake, J. B., Hack, J. J., Jakob, R., and Swarztrauber, P. N.: A Standard Test Set for Numerical Approximations
to the Shallow Water Equations in Spherical Geometry, Journal of Computational Physics, 102, 211-224, 1992.

Zhang, Y., Long, M., Chen, K., Xing, L., Jin, R., Jordan, M. 1., and Wang, J.: Skilful Nowcasting of Extreme Precipitation with
NowcastNet, Nature, 619, 526-532, 10.1038/s41586-023-06184-4, 2023.

Zhou, L.: High Order Prediction Environment, Zenodo [code], 10.5281/zenodo.16635583, 2025.

Zhou, L., Feng, J., Hua, L., and Zhong, L.: Extending Square Conservation to Arbitrarily Structured C-grids with Shallow Water
Equations, Geoscientific Model Development, 13, 581-595, 10.5194/gmd-13-581-2020, 2020.

Zhu, J. and Shu, C.-W.: A New Type of Multi-resolution WENO Schemes with Increasingly Higher Order of Accuracy on

Triangular Meshes, Journal of Computational Physics, 392, 19-33, 10.1016/j.jcp.2019.04.027, 2019.

43



